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Abstract

The Dubois—Prade operator can transform its parameter into different values when processing data, which can make it
more flexible. Interval-valued g-rung orthopair fuzzy sets (IVq-ROFSs) give decision-makers more degrees of freedom.
Combining the flexibility of the Dubois—Prade operators and the degrees of freedom of IVQ-ROFSs, this paper proposes
the interval-valued g-rung orthopair fuzzy Dubois—Prade (IVq-ROFDP) operations and the interval-valued q-rung orthopair
Dubois—Prade ordered weighted average (IVq-ROFDPOWA) operator under IVq-ROFSs. Built upon this, considering the
interaction between the membership degree and nonmembership degree, the interval-valued g-rung orthopair fuzzy interactive
Dubois—Prade (IVqQ-ROFIDP) operations and the interval-valued g-rung orthopair fuzzy interactive Dubois—Prade ordered
weighted average (IVqQ-ROFIDPOWA) operator are further proposed, and their properties are studied. Finally, a new group
decision-making method based on the IVq-ROFIDPOWA operator is proposed to solve the multiattribute group decision-
making (MAGDM) problem. The results of two case implementations and the sensitivity analysis show that the proposed
operator and group decision-making method are feasible and effective. Furthermore, the comparative analysis shows that the
group decision-making method proposed in this paper can better reflect the differences between alternatives.

Keywords Interactive aggregation operator - Dubois—Prade operator - Interval-valued g-rung orthopair - Decision-making

1 Introduction

The fuzzy sets theory proposed by Zadeh (1965) is widely
used in group decision-making problems concerning uncer-
tain and complex systems (Chen and Niou 2011; Dong
et al. 2021) and some other fields (Chen and Phuong 2017,
Chen and Wang 2009). To further improve the degrees of
freedom possessed by decision-makers, Atanassov proposed
intuitionistic fuzzy sets (Atanassov 1986), whose member-
ship degree (1) and nonmembership degree (v) satisfy the
inequality u +v < 1, and interval-valued intuitionistic fuzzy
sets (Atanassov and Gargov 1989), which are used to solve
group decision-making problems with multiple attributes
and multiple objectives (Chen and Chiou 2014; Liu et al.
2019; Zeng et al. 2020). Yager proposed Pythagorean fuzzy
sets (Yager 2013, 2014) and g-rung orthopair fuzzy sets
(Yager 2017), whose ranges of membership degree () and
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nonmembership degree (v) are extended to u? + v? <
1(g = 1), greatly expanding the degrees of freedom pos-
sessed by decision-makers. For uncertain fuzzy problems,
researchers further proposed and extended interval-valued
g-rung orthopair fuzzy sets (IVqQ-ROFSs) (Joshi et al. 2018;
Peng and Yong 2016), which have been widely used in group
decision-making problems (Gao et al. 2020; Liu et al. 2018;
Rawat and Komal 2022; Wang et al. 2019a). In addition,
researchers have explored the application of many other kinds
of fuzzy sets, such as Fermatean fuzzy sets (Ganie 2022),
T-spherical fuzzy sets (Saad and Rafiq 2022), and proba-
bilistic generalized orthopair fuzzy sets (Feng et al. 2022).
However, during the group decision-making process, it
is necessary to aggregate the decision values of different
decision-makers and the different attribute values of the
scheme. For this reason, researchers have proposed many
aggregation operators (AOs), such as the power average (PA)
operator (Yager 2001), the Dombi Bonferroni mean opera-
tor (DBWA) (Liu et al. 2017), the Heronian mean operator
(Beliakov et al. 2007), the weighted fairly aggregation opera-
tor (Saha et al. 2020), and the probabilistic weighted average
operator (Merigo 2012). Among these aggregation operators,
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many of them are based on the t-norm operation and the t-
conorm operation (Gupta and Qi 1991), such as the max—min
operator (Boukezzoula etal. 2007), the Yager operator (Yager
1994), the Hamacher operator (Hamacher 1975; Wang et al.
2021), and the Einstein operator (Khaista et al. 2018). The
Dubois—Prade operator (Dubois and Prade 1980) is a t-norm
operator with the parameter proposed by Dubois and Prade,
which is actually an ordinal sum of t-norm operations. At
the same time, it can also be regarded as a combination of
operators that can transform different parameters when pro-
cessing data, thereby making it more flexible and convenient
with improved processing efficiency.

Many research results have also been presented regard-
ing aggregate operators and decision-making methods under
interval-valued q-rung orthopair fuzzy sets. Combining the
interval-valued g-rung orthopair fuzzy set with the averaging
operator, Ju et al. (2019) proposed a series of interval-
valued g-rung orthopair fuzzy set averaging operators. Gao
et al. (2019) proposed the interval-valued g-rung orthopair
fuzzy Archimedes—Moorhead mean operator. Wang et al.
(2019a) proposed a series of interval-valued g-rung orthopair
fuzzy Hamy mean operators and applied them to group
decision-making problems. Yang et al. (2021) proposed the
continuous interval-valued q-rung orthopair fuzzy ordered
weighted average operator, and defined new score and accu-
racy functions. Combining the type-2 language set with
interval-valued g-rung orthopair fuzzy sets, Wang et al.
(2019b) defined the interval-valued g-rung orthopair type-2
language set and provided a new method for solving multi-
attribute decision-making problems. Garg (2021) combined
the possibility measure with interval-valued g-rung orthopair
fuzzy sets, defined a possibility measure for interval-valued
g-rung orthopair fuzzy sets, and then proposed a new mul-
tiattribute group decision-making method. By combining
the traditional VIKOR model with interval-valued g-rung
orthopair fuzzy sets, Gao et al. (2020) proposed an interval-
valued g-rung orthopair fuzzy VIKOR model. Combining the
maximum deviation method with g-rung orthopair fuzzy sets
and interval-valued g-rung orthopair fuzzy sets, Wang et al.
(2019c) proposed two new multiattribute decision-making
models. In addition, Farid and Riaz (2021) found in their
study that the Einstein operator has no interaction between
the membership degree and nonmembership degree when
processing data, and if either the membership degree or the
nonmembership degree is zero throughout the aggregation
process, the other grades of these degrees have no effect on
the corresponding averaging or geometric AO, which reduces
the efficiency of the operator.

ESG rating is a method for measuring the social respon-
sibility of companies and institutions by scoring them based
on three aspects: the environment (E), society (S) and cor-
porate governance (G). However, the ESG rating results of
different rating companies are different due to the lack of
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an industry consensus. It is necessary to have a method for
aggregating these data so that subsequent evaluations will
be more rational; this problem can be seen as a MAGDM
problem. Upon investigating and analyzing the literature,
no scholars have studied the Dubois—Prade operator in the
interval-valued g-rung orthopair fuzzy environment and its
applications in MAGDM problems. The main contributions
of the paper are as follows.

(1) The Dubois—Prade operations and the IVq-
ROFDPOWA  operator are proposed for the
interval-valued g-rung orthopair fuzzy environment.
We find that the interaction between the membership
degree and nonmembership degree is not considered in
the IVqQ-ROFDP operations and the IVq-ROFDPOWA
operator.

(2) Inspired by Farid and Riaz (2021), this paper further
proposes the IVQ-ROFIDP operations and the IVq-
ROFIDPOWA operator, which can address the issue
that the membership and nonmembership degrees in the
IVq-ROFDP operations are not affected by each other,
and studies their idempotency, permutation invariance,
monotonicity and boundedness.

(3) A group decision-making method based on the IVq-
ROFIDPOWA operator is proposed. The provided
implementation of ESG ratings and an evaluation
of students’ concentration demonstrate the feasibility
and effectiveness of the proposed operator and group
decision-making method. Moreover, by comparing the
proposed operator with some other operators, the group
decision-making method developed by this paper can
better reflect the differences between alternatives.

The remainder of this paper is arranged as fol-
lows. Section 2 introduces the preliminaries. Section 3
presents the IVq-ROFDPOWA operator and its shortcom-
ings. Section 4 develops the [Vq-ROFIDP operations and the
IVq-ROFIDPOWA operator, as well as the proposed group
decision-making method. Section 5 implements two group
decision-making cases and analyzes the proposed operator
and group decision-making method. Section 6 is the conclu-
sion which summarizes our work and future research.

2 Preliminaries

2.1 Interval-valued q-rung orthopair fuzzy sets
Definition 2.1 (Joshi et al. 2018) Suppose that X is
the domain of discourse; then, an interval-valued g-rung

orthopair fuzzy set IVQ-ROFS) A in X is defined as:

A ={(x, na(x), va(x))|xeX}, (1
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where the membership function and nonmembership func-
tion are the mappings of interval values, which sat-
isfy pua(x) = [pg ), pix)] € [0, 1] and va(x) =
[vy (), vi(x)] € [0, 1], respectively, with 0 < (uf (x))? +
(vF())? <1, (¢ = 1). The hesitation of A is shown as fol-
lows:

A (x) = [m (x), 7} (0)]
=[Gy = G ),
q 1— ; q _ a_ q] )
=z @) = (v ) o

Definition 2.2 (Wang et al. 2019a) Let a =
(e ] o7 v ) an = Always 14, [va,s va, 1) and
a = [/L;z, u;‘z], [va;, vgz]) be three interval-valued g-
rung orthopair fuzzy numbers (IVq-ROFNs) with ¢ > 1;
then, the basic operations for IVq-ROFNSs can be defined as:

Definition 2.5 (Peng and Yong 2016) Let a3 =
Tz 12, [ v Dy and e = ([, 13, ), [ v e
two IVq-ROFNs; then, the rule for comparing their sizes are
defined as follows:

(D) If S(ay) > S(az), then a; > ay;

@) If S(ay) < S(ap), then a; < ay;

(3) If S(a;) = S(a»), then further calculate their accura-
cies and compare them, @if H(a;) > H(ay), then a; > ap;
@if H(a;) < H(ap), then a; < ap; ®if H(a1) = H(ap),
then a; = a».

2.2 Dubois—Prade operator

Definition 2.6 (Dubois and Prade 1980) For any two real
numbers a, be[0, 1], the Dubois—Prade operator is a t-norm
operation, and it is defined as follows:

uwﬂwwfwwﬂ» o

[ s 15145, ]

@ ®a = < W ()" + ()" = () () s ()" + (v)" = (%)q(%)q} > "’

ra =<[‘1 1= (1= ()"

J1—(1- (u*)q)k} ) [(V_)k’ (V+)A]>’ O]

= ([ ] [= - e

Definition 2.3 (Peng and Yong 2016) For each IVq-ROFN
a={([n", u*], [v", v*]), the score function is defined as:

1
$@ = 3[() + @)~ () = 0] @ = 0.
Definition 2.4 (Peng and Yong 2016) For each IVq-ROFN

a = ([,u_, u"], [v_, v+]), the accuracy function is defined
as:

H@ = 5[+ () + () + ()] @2 D ®)

Tpp(a, b) = . (pel0, 1]). ©))

max(a, b, p)
Its corresponding t-conorm operation is shown as follows:

(1—-a)d-0>)

T:o(a, by =1—
pp(@. b) max(1 —a, 1 — b, p)

» (pel0, 1]). (10)

In Formulas (9) and (10), p is a variable parameter. When
p changes, the Dubois—Prade operator also changes. When
p = 1, the operator is transformed into the product opera-
tor, and when p = 0, the operator is transformed into the
minimum operator.

3 Interval-valued g-rung orthopair fuzzy
Dubois-Prade operator

In this section, the interval-valued g-rung orthopair fuzzy

Dubois—Prade (IVq-ROFDP) operations and the interval-
valued q-rung orthopair fuzzy Dubois—Prade ordered

@ Springer



1802

Granular Computing (2023) 8:1799-1818

weighted aggregation (IVqQ-ROFDPOWA) operator are inter-
preted.

3.1 IVq-ROFDP operations

Based on the t-norm and t-conorm operations of
Dubois—Prade operator in Formulas (9) and (10), respec-
tively, the IVq-ROFDP operations are defined.

Definition 3.1 Let @ = ([u=, pu*], [v=,v*]), a1 =

([’ua_l’ M;l]’ [va_l’ va1]>anda2 - (['u;z’ ,bLZz], [ az’ az]>be
three IVQ-ROFNs with g > 1; then, the IVq-ROFDP opera-
tions can be defined as:

a1®ppaz
—q —q
S () ) L e -
_< max{l—p.,;lq,l—p,;:q,p} mux{lful*”q 1—pd,?, 7} >
max{vj,q,va’zq,p} max{v;;‘q,v 4 P}
(11)
a1®ppaz

Ma; /‘Laz Ma|q/1+ a
q )
max #m Naz , max 1.*" e p}

:< (1 Va| 1 va 1 U+q 1—v 4) >‘
a 1_
max{l v ?, 1—vg?, p}

maxl v*‘f 1—v3, p}
(1L—n=)"

R
) J e, m‘“’}’ >

H (=) J (1) }
(max{v=1, p})(k” (max{v+d, p})(k1>
(13)

S J wy ]
(max{u=t, p})*™"" N (max{u+1, p})*”" >

a :< ﬂ]_ (17\)*’1)}” yjl_ (lfv*'q)}” ‘
(max{r—v=?, p})*~" (max{1 — v+, p})® D
(14)

12)

It can be verified that the IVq-ROFDP addition and prod-
uct operations defined in this section satisfy the rules of
t-conorms and t-norms. Additionally, the multiplication and
power operations satisfy the rules of t-conorms and t-norms.

3.2 IVq-ROFDPOWA operator

Definition 3.2 Letqg; = ([u;i, pc;[_], [va_,. Va,]>(l =1,2,3, n)

be a group of IVq-ROFNs and w = (w1, w2, w3, - -, w,,)T
be the corresponding weight vector that satisfies Y ;_ w; =
I, i > 00=1,2,3,---,n). The IVq-ROFDPOWA
operator, shown as Formula (15), is a mapping from
IVq — ROFNs" to an IVq — ROFN.
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IVq—ROFDPOWA(ay, az, az, ---, ay)

n

= ®pp Wido(i)
i=1
. (00 ”)” . (1=t *)”
e —— e Mo %
9 - ! (max{l ~tay ) [7}>( ) - ! (max{l—nj,‘”m",p})( )
" llmax{l Hagiy 17] ?:_llmax{lfu;m[)", p]
_< n (V(Tn(’)‘l)“" n (l’g{” 4/)0‘
Hi: ﬁ ]_[i: ﬁ
R K a0 )
]_[?;llmax{v;qu, p} ]_[;';llmax{v;;m”, p]
(15)
In  Formula  (15), (o(1),0(2),--, o)),
(O{(l), a(2)7 Y a(n))y (13(1)9 ﬁ(z)s Y ﬁ(n))v
are replacements of (1,2,---,n) that satisfy
sy = dg(i+l), 1 — u;a(,,)q > 1 - M;a(m)q,
_ + 9 _ + q - 9 — q
1 M“ﬁ(i) > 1 M“ﬁ(ﬂl) ’ vay(l') = Ay(i+l) and
”;a(,')q > ;5(z+1)q(l =1,2,3, — 1), respectively.

While testing and applymg the IVq-ROFDP operations
and the IVq-ROFDPOWA operator, we find that the aggre-
gation results may not be very satisfactory, especially when
extreme data such as Os are present in the IVq-ROFNs. The
main reason for this situation is that the interaction between
the membership degree and the nonmembership degree is not
represented. It can be seen from Formulas (11) to (14) that
during the process of the IVq-ROFDP operations, the mem-
bership degree and nonmembership degree are independent,
so neither of them is not affected by the change of the other.
Furthermore, in Formula (15), the nonmembership degree in
the result of the IVq-ROFDPOWA operator remains [0, 0],
when there is at least one IVqQ-ROFN whose nonmember-
ship is [0, 0], regardless of how the other IVq-ROFNs and
the weight vector change. Example 1 demonstrates the issue.

Example 1 Suppose that a; = ([0.65, 0.75], [0, O]), a» =
([0.55, 0.8], [0.1, 0.2]) and a3 = {[0.85, 0.95], [0.05, 0.2])
are three IVQ-ROFNs, and the weight vector is @ =
(0.3, 0.4, 0.3). Using the IVq-ROFDPOWA operator with
qg = 3 and p = 0.5, the aggregation result is /Vqg —
ROFDPOWA(a1, a2, a3) = ([0.8130, 0.8704], [0, 0]).
If we modify the values of these IVQ-ROFNs, and
change them to a, = ([0.15,0.3],[0,0]), ay =
([0.4, 0.5], [0.1, 0.2]), a;) = ([0.25, 0.35], [0.05, 0.2]),
then, using the IVq-ROFDPOWA operator, the aggregation

result will become /Vg — ROFDPOWA(a). 5, a;) =
([0.4, 0.5], [0, 0]).

In this case, it can be seen that the membership degree and
the nonmembership degree are not affected by each other’s
changes.
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4 Group decision-making method based
on interactive Dubois-Prade operator

To address the issue of IVqQ-ROFDP, this section proposes
the IVq-ROFIDP operations and the IVq-ROFIDPOWA
operator. A group decision-making method based on the [Vq-
ROFIDPOWA operator is also interpreted.

4.1 IVg-ROFIDP operations

Definition 4.1 Let a = ([u™, pu*]. [v". V'], a1 =

([ma> wé ) [var vyl and az = ([ngy, g, ], [vays vi,]) be
three IVqQ-ROFNs with ¢ > 1; then, the IVq-ROFIDP oper-
ations can be defined as:

a1®ppaz

—q —q
oo mm) o) 0w
max{l—p.glq, 1 —;ng", p}’ max{l — gt =9, P} '

:< j (1= ) (1) = (1" =) (1 -’ =) >

maX{l —ua 1= g, p}

o =m0 =gy ?) = (10— pg = v (=, — v )
max{l —u;‘q, 1 —u;z", p}

(16)
a1Q1ppaz
() (1) — (1w ) (1 -’ - va)
max{lf\),ﬂq, lfv,qu,p} ’
- ) =g (=g ) = (= pfy T — v ) (L= wg? = v )
max{lfut‘;l", lfvlfz‘l,p} ’

[
max{l —vad 1=z, P}

(=) —v29) ]

—rd ] 4
max{l vie, 1= vk ,p}

(a7

- (1—p-y ﬂ|, (1 - oy
ra = < (max{t — =1, p))*~"’ (max{1— e, ph*" |’ >
ﬂ (17/1.*‘1)'\7(1711.*471;7‘1)" P (]7/,&4);“7(17“'“17““{))‘ ,
(max{1—pn=1, P})‘**l) ’ (max{1 — u*, p})(xfn

(13)

|:j (1—v=1) — (1= =1 — 1) j (1= v )" — (1 =+ — u+’1)*}

:< (arft vt p*0 T\ (max{i v 0 >
ﬂ . (-v' (1 —v+ay:

(max{l —v 1, p})“il) ’ (max[l —vta, p})()\il)

19)

It can be verified that the results of the IVq-ROFIDP oper-
ations are still IVq-ROFNS.

Theorem 4.1 Let a = ([y,_, ,u+], [v‘, v+]), a; =

([as ] [vays vy [ and a2 = {[ugy. 1G,): [vays Vi, ]) be
three IVq-ROFNs with ¢ > 1; then, the IVqQ-ROFIDP opera-
tions satisfy the following six properties when A, A1, Ao > 0.

Commutative Law of Addition: aj @yppax =ax ®jpp ay,

(20)
Commutative Law of Multiplication: a; ®jpp a>
=a; ®pp ai, (2D
Distributive Law of Multiplication: A (a; ®;pp a2)
= (Aa1) ®rpp (Aa2), (22)
Distributive Law of Power: (a; ®pp az)A
= (at) ®1pp (2) . (23)

Associative Law of Multiplication: (Aja) ®;pp (M2a)
= (A1 +A2)a, 24)

Associative Law of Power: (ak') QIpp (a“) = qg*1+h2)
(25)

The proof of Theorem 4.1 can be verified by applying the
IV@-ROFIDP operations. This paper only presents the proof
of Formula (22).

Proof From Formulas (16) and (18), we have that

(*a)®1pp(raz)

41 (“WY‘ Jl (1 —p ) ,
(max{l — g, p})uil) (max{1 — g4 p})()\il)

(=1 r—1
(max[l—u(]q,pl)/\ ’ (max{l_ﬂﬁq*l’})(/ !

Fy -

I G [ 0wy
-4 @a-n” (max {1 — p} 9 })Mf]) '

(max{l — Uay p}) Hay ™ P

GBIDP< - - >
A A
|:j (l*l/-uzq) *(l*l/-nzq*"azq) ij (l /L;:")A(lllj,z"vgzq))“|

(max{l - uqu, p})url) (’"”X{l —uh, I’})(}ﬁl)
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1 Mal

1 an

M b ((max

max{l “al p

(A 1))

1- Muzq P}

1 Hal

l l"l;

| (i) (e

max{ 1— ”dl p

maxl /1.2 s

(A 1)) p}

(&
(&
(et
g (e

l /,L”l 1 l’-+ q
max 1 g p} (A ! max{l Hhy (A Y
q
1 u* ‘1 1 /f' /
< max l ) q, () g max{l nh (A )P >
(1*//“;111))» Ilaz —la, 71;“1 — *Uaz
p (max{l—#;lq»ll})(}ﬁ]) (ma,\[l ““2 1) )\ b max{l ll-alq 17} max 1 uaz p )\ b
e ) (s } |
max (A - D
(max 1 Mal P max{l Kay s p}
q (”mx{l*/l.zlq,[’})(}ﬁl) (maxil lL P} (A 8 max l /L+ g p} (A b maxil ll. p} M R
s ) ()]
max (/ 5 ) 5)op
L (max{l l’- 1’} max 1 ;4“7 p
B (R () I}
dq_ May May ﬂ 1— ((1 — K )(] —u ))
0=D? D)
(max{1=ua® 1= 02" p}) (max{l = g%, 1= 3, %, p})'
L _ . -
S e e e B
—1 £
(max{l a1 =g p})a )
q ((1 — 'u“jl—lq)(l B N“:z—zq)))L B ((1 - leq B v;lq)(l - ’u+2q B V(j—zq))}L
L (max{1— g0, 1= 3,7, p})*" |

(1) (1= ")

(U= g ) (1= 3, )
max{l — g =k, p} ’

-

-
max{1 =i 1= g, p) J

) e I ) ()

max{l —pa® 1=z, p}

)

(1 B leq)(l _'u;zq) B (1 _'u'alq B V+ q)(l —ILLZ

2!1 _ ,);261)

-5 J
ﬂ

= Ma1®ippraz).

max{l—uj;lq 1—put, p}

4.2 IVq-ROFIDPOWA operator
Definition4.2 Leta; = ([I‘La_,-’ u;l_], [va_l_, v;l_])(i =1,2,3,
-+, n) be a group of IVQ-ROFNs and o
(w1, w2, w3, -+, a),,)T be the corresponding weight vector
that satisfies ) ;_jw; =1, w; >0 =1, 2,3, ---, n). The
IVg-ROFIDPOWA operator, shown as Formula (26), is a
mapping from IVq — ROFNs" to an IVq — ROFN.
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n
D1pp Wids (i).
i=1

IVq — ROFIDPOWA(ai, az, a3, -+, ay) =
(26)

In Formula (26), (o(1),0(2),0(3), --,0(@®)) is a

replacement of (1,2, 3,---,n) that satisfies a,;) >
asi+)(E =1,2,3, -+, n).
Theorem 4.2 Let a; = ([ug . uf, | [va. vi )i = 1. 2, 3,

-, n) be a group of IVq-ROFNSs; then, the result of the IVg-
ROFIDPOWA operator remains an IVq-ROFN and is shown
as follows:
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I1Vg— ROFIDPOWA(ay, az, az, -+, a)
" (171130(,»)‘1) [ n (1—MZa<i>q) t
4 Hi:l 1 _ g (w;—1) q Hf:l ] N q (w;—1)
1— (m“x{ ~Hag ) p}) 1— (max{ Ra0) ’p])
—1 _ ’ -1 ’
[Ti= max{l ~ Hayp' p} gt max{l ~ Mg p}
27

_< n (1 @i n (1 4, 4 @i no (1t 4 @i o (1_y d_y+ a @i >,
[Tis “Hag ;) Iz THag iy TVag () ) [T _Mag(l-) -IT _ruaa(,-) _Vao(i)

(0=1) q

L e, )

[T (max{l—uza(i)q’p})(wi—l)

l_[;lz_llmax{l - :u“(;a(i)q’ p}

1
| max{l — MZﬁ(i)q’ p}

where (0—(1)’ 0(2)$ 6(3)’ ) U(n))’
(a(1), @(2), «(3), - -+, a(n)) and
(B, B2), B(3), ---, B(n)) are three replacements
of (1,2,3,---,n) that satisfy as() > dAg(i+l),
l - M;a(i)q 2 1 - M;a(Hl)q’ and 1 - I’L;'l.ﬂ(,')q

1 - Mzﬂ(m)q(i =1,2,3,---,n— 1), respectively.

Proof Theorem 4.2 can be proven by mathematical induc-
tion.
Assume that a; > a;11(i=1,2,3,---,n—1); ie.,

(oc(1),012),003), ---,omn)=(1,2,3,---, n).
® For n = 2, we have

_q\@!
(1-na’)
a1 — q

_gq (w1—1)°
\ (max{l_ﬂal 9p})

(1=,
(max{l _leq’ p})(wl—l)

k)

w1a1=< iy o iy i o
(l_l’l/al) _<1_Ma1 _VtI[)

q (1 — leq)wl — (1 — leq — v:l—lq)wl >

! _gq (w1-1)
(maX{l — Ma ,p})

(max{l _leq’ p})(wl—l)

and

— @2
(1)
q 1_ q

. @D’
\ (max{l_l'l/az 9p})

(1 - 'I’ngq)w2
})(wz—l)

s

(max{l —pntp

w2d2:< iy > iy ~, >
(1_M02> _(l_l'l’az _Va2>

q (1 - :U“qu)wz B (1 - H“qu - ngq)wz

’

! s @D
(marf1 - e 1))

(max{l _ 'u:;zq’ p})(wz—l)

>.
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Then, we can obtain

2

IVqg— ROFIDPOWA(a1, a2) = @1pp widi

i=1

o]
o)

g\
(1-4a")

o))

1—pa,?,

) ((max{ o)

|

max

(1)

()"

(rai=s ") (]t )

],

H)z
(1_’*52{1)

|

e

(max{lfuglq,p}

gyt

|

max [

)
)wl

(l—uélq

(o

_ g\l
()

_ g\
(1-4a")

(

(max{l—u;lq,p})(wlil)

I

(max{l—u;zq,p})(w27l)

— —q\*2
<l_ﬂa2q_va2q)

(@01-1)

) ((max{l—p,azq,p

e

i

N
(1-na”)

)wz

max [ (max{

-9
lfﬂal s P

DT (oo

-4
17“:12 5P

})(wrl) P

|

]
(1_“314)

[0}
(1—u:2q) ?

+ 49 + 4 “1
(I_I‘Lal _U(ll )

(

(maxil_ﬂzlq-p})(wl_])

I

(max{l—u:;zq,p})(“?‘l)

+ 4 + 4 “2
(1_“@ "Vay )

1—pug?.p

o)

)

I

(max’l—/ta_zq, pD(mz_])

|

]
(1_%1[,)

w
(1—#22") ?

max{(

T o [ en

2

(=)

q

2
[Tizi

(17%[,)‘”[

1—

i=1 (max!l—ugiq,P})(wiil) q

max{l — /,L;a(l.)q, p}

1—

(maxgl_uziq’p})(wrl)

max{l — M;ﬁmq, p}

|

w; w; w; w; ’
H%:l(l—llf;,-q) l‘ﬂ%:](l—li;iq—‘);,-q) l H%:l(l—ﬂﬁiq) l‘ﬂ%:](l—liziq_‘);iq) l >
w;—1 w;—1
l_[izzl(max{l—lliiq,PD( i l'[?zl(maxll—uziq,p})( Y

max[l — “Zﬂu)q’ P}

q q

max{l — M;‘,mq, p}

This shows that Formula (27) holds for n = 2.
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@ Assuming that Formula (27) holds for n = k, we can

obtain

I1Vg—ROFIDPOWA(a1, az, az, - - -, ax)

oY) oy
. - nzzl (max{l i 4 p})(w i—1) | 4 . Hz:l (max{l—u,tiq,[?})(wi_l) |
l_[ lma-x{ Maa(,') ’ p} Hi{:_llmax{l - MZﬁ(,’)q’ p}
:< _]'[f-‘: (1_ __q)wi_l_[k ( —M;,-q—"a_,-q)wi Hle(l—ﬂéiq)wi—l_[fle(1—/@,»4_”;3;)“”

| (e

q H?ZI(max{l—lt:;iq,p})(‘”i_l)

k—1
]_[l-zlmax{l — Maa(i)q’ p}

k—1
]_[izlmaxll — ,u;ﬂ(i)q’ p}

|

® When n = k + 1, we have

I1Vg—ROFIDPOWA(ay, az, az, -+, Ak, Qk+1)
=1Vq—ROFIDPOWA(a1, az, a3, - -+, ax)D1DpWk+1ak+1
e o e ; -
k i k aj
nz:l ( ) (w;—1) Hi—l ( )

{2 )™

]_[ 1max{l — Wi p}

(1)~

= @ippr
k(1 )Tk (1 e a) >
Hi:l _I’Lai _l_[i:] _I‘Lai _Va,-

q l—[;c:l(max{l_uaiq,pD(wi—l)

q l_[f'czl(max{l_ugiq’p})(w,-_l)

k—1 —
]_[izlmax{l - Maa(i)q7 p]

k—1
]_[izlmaxll — ,u;ﬂ(l_)q’ p}

Jd1o (]7M5k+|q)Wk+] L
(ma)c{l—u;k+lq,p})(wkﬂ_])

B (1 MkH )“’k+1
(max{l ” q’p})(wkﬂ_') ’

I

— q\%k+1 — q Dfe+1
(17Mak+l ) 7(17”“"1(4-] —Va ak+1 ) ﬂ
b

(max { I=pay,, ‘, I’})(wk+l Y

(0g+1-1)
(m’”{l_“zkﬂ q”’})

Dk+1 Dk+1 >
(17M;k+lq) 7(]7/‘21'1(“ 7V+k+1q) }
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— H:.CZI (I*H(;iq)wi _ —_
(max{l—u;iq,p})(m' D ("“Eknq)ww
Hf;llmax lfu;a(i)q*l’} ((m“x{l_“a_k+lq'p})(wl_l))
a0 1— —q4\?i
e, <1_”ai ) i—1
I R T R (S, CU
Tz max{ 1=y ) o p ’ (max{1-nagy, q”’})(wkH_I) ’
" (1,M$l_q)wi _ >
(max{l—uziq,p})(w’ D (1‘”3k+1q)wk+l
I"[f.‘;llmax I*M:Eﬂ(i)qm ((”’"x{l“zkﬂq‘p})(wkﬂl))
al1— @;
Hf:1 (liﬂziq) : 1
I A T RN )
l'[f;llma-X{l*ﬂ?iﬁ(;)q’P} ' (max{lﬂl;kﬂq,p})(‘”kﬂ—]),
= = \ -
- (ma.x{l—uZ,-q»P})(wjil) ( (‘*Uknq)wk“ )_ nf“:l(”’""{l"‘“_iq"’})(wiil) ( (1*“;k+1q*"a_k+1q)wk+l )
R (e B L TN il B T Pom (s B LN N

max

(14 )

k—1 - 4
l'[,-zlmax 1*/’-{!&(” P

<max{17”“7k+1 q'p})(wkﬂfl) s P

.
AR

e, (1
Hf.(:] (max{l—;t;i g, p})

Py
+ q\%i
Vaj )

(w;=1)

o+ a4+ q\%k+1
(] Magy)” ~Vagy )

( )

k-1 o+ q (@41-1)
T RECR B | ETRe|

k
ITio

(o - )

max

I (1w )™
i=1 (max{1—/’»$iqv!’})(Wi_l) (l_uzkﬂq)wkn -
nf’{;ll ""'X{I*#Zﬂ(i) 4, P (max{l*lt}lﬁl q.P})(wkHil)
' (-,

(=)

k—1 o+ q
Hi:lmax{l H“ﬂ(i) D

5 — P
(ma)r{l—ugkﬂq,p})(wk“ 1)

l—[f:l (17“;1' q)wi 1—[5211 (1”‘“:'

+

q

)“’i

q

1—

(max{l—p,;iq,p})(wi_l) q (max{l—u;’i

q‘p})(a’i_l)

1—

)

k —
Hi:lm”x{lfﬂaa(i)q,p}

k .+ q
nlzlm”x{l Hag ’p}

- < 3 e N Y i) N 0t (7 M i

g ]_[{(;11 (max{lfugi q, p})(wi - 1 H{‘;II (max{ 1*/’-21-

11(1"‘gfq*”;iq>wi
q,p})(wi -1

s

k - 9
[Tizimax { 1_M“a(i) , [’}

k gt 4 }
H[:lmax{l /‘Laﬁ(i) P

That is, Formula (27) holds forn = k + 1.
Thus, by the principle of mathematical induction, Theo-
rem 4.2 is true.
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It can be proven that the I'Vq-ROFIDPOWA operator satis-
fies idempotency, permutation invariance, monotonicity, and
boundedness, and these properties are given in detail below.
Because it is easy to prove these properties, using the IVg-
ROFIDP operations given by Formula (18)-Formula (21),
the proofs are omitted in this paper.
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Theorem 4.3 (Idempotency) Let a; = set, C = {cy, ¢2, ¢3, -+, ¢} be the attribute set whose
([u;i, V“Z,-]’ [va_i, v;{i]>(i =1,2,3,---,n) be a group attribute weights are ® = (w1, w2, w3, - - -, w,) and sat-
of IVQ-ROFNs; then, the IVq-ROFIDPOWA operator isfy Z.';:le =1, w;el0, 1]1(j =1,2,3,---,n),and D =
satisfies idempotency, i.e., Formula (28) holds when {d1, do, d3, - -+, d;} be the expert set whose expert weights
a=ay=ay=---=a,. are w = (wy, wy, w3, -+, wy) and satisfy Z;{:lwk =1,

IVqg— ROFIDPOWA(ay, az, az, -+, ap) =a.  (28)

Theorem 4.4 (Permutation Invariance) Let a; =
([,u;;, M;’[], [va_i, vij])(z’ =1,2,3,---,n) be a group
of IVQ-ROFNs; then, the IVq-ROFIDPOWA operator
satisfies permutation invariance, i.e., Formula (29) holds
) is an arbitrary replacement of

/ / / !
when (al, ay, as, -+, 4,

(al, az, az, -+, al’l)'

IVqg— ROFIDPOWA (a}, dy, d, ---, a})

n

=1Vq—ROFIDPOWA(ay, az, az, -+, ap). (29)

Theorem 4.5 (Monotonicity) Let a; =
([a 2] e va )i =1,2,3,--,n) and b =
<[H“l;, “Z,-]’ [Vz:,-’ V;:ri]>(i =1,2,3,---, n) be two groups
of IVq-ROFNSs; then, the IVq-ROFIDPOWA operator sat-
isfies monotonicity, i.e., Formula (30) holds if Mg = ,u;i,
MZI- = Mzi’ va_i = vl:i’ v;-i > v[‘:—l(l = 17 2, 3, Tt n)'
IVqg— ROFIDPOWA (a1, a2, a3, - -, ay)
<IVq—ROFIDPOWA((by, by, b3, ---, by). (30)

It is worth noting that the monotonicity property given
here must satisfy the size comparison between the IVg-
ROFNs. When the data do not satisfy this relationship,
monotonicity does not necessarily hold.

Theorem 4.6 (Boundedness) Let a; =
([;L;i, ,uzi], [va_i, v:{i]>(i =1,2,3,---,n) be a group
of IVQ-ROFNs; then, the IVq-ROFIDPOWA operator sat-
isfies boundedness, i.e., Formula (31) holds when a,,;, =

(|mintie . mintug ). i) minz [} an

Amax = mqu{/l«;,-}’ mqu{/“bzi} P mlﬂx{";,-}’ mqu{v;i }:| .

amin <1Vqg—ROFIDPOWA(ay, az, az, -+, ay) < amax-
(31)

4.3 Group decision-making method based
on the IVq-ROFIDPOWA operator

This section proposes the group decision-making method
based on the IVqQ-ROFIDPOWA operator. For a MAGDM
problem, let X = {x, x2, x3, ---, x;;} be the alternative

wrel0, 11k =1, 2, 3, - - -, ). The decision matrix of the k-
th expert is A®) = (al-(]]-()) l(]k)
n
represents the decision value of the k-th expert regarding
attribute j of alternative i and is an IVq-ROFN that satisfies
q q
(,zﬂ'(k)) + (v+(k>> < 1, g > 1. It should be noted that
al. - ai .

the v]alue of g is ]adapted to the actual situation. In addition,
in practical applications, different attributes have different
meanings and must be normalized. This paper adopts For-
mulas (32) and (33) for normalization, where Formula (33)
is the complement operation for IVqQ-ROFNs. Assuming that
2 represents the benefit type and that 2 represents the cost
type, both formulas are given as follows.

, in which the element a

(k) (k)
a:;’, a;; €
%“—[(” y =123, m, j=1,2,3,-n.

AN = k c k
i afj)) ) ai(j)fﬂz

(32)

(a.@))cz Vvt | | s it (33)
ij a(k)’ a(k) ’ a<k)’ al{;c) .

i ij

The specific steps of the group decision-making process-
ing method are as follows.

Step 1: The selection of g. According to the decision matri-
ces given by experts, a suitable g should be chosen, so that
all elementsin A® k=1, 2,3, .-, t)satisfy the definition

q q
of an IVQ-ROFS, that is, “Z“)) + (v;f(k)> <l(g=1.
Usually, the value of ¢ that sal{isﬁes the rgquirement can be
found by the traversal method.

Step 2: Normalization. In practical applications, if both
benefit-type attributes and cost-type attributes are involved,
the decision matrix A® is transformed into the normal eval-
uation matrix R® using Formulas (32) and (33).

Step 3: The selection of p. Utilizing the IVg-
ROFIDPOWA operator to preprocess the normal evaluation
matrix R® with different parameters p, the appropriate
range of p can be obtained by comparing the results pro-
duced with different values to better reflect the differences
between the alternatives. It should be noted that because the
different values of p do not affect the ranking of the alterna-
tives, this step is not necessary if the final result only requires
the ranks of the alternatives and not their scores for further
analysis or processing.

Step 4: The aggregation of R®). The standard evaluation
matrix R® is aggregated by using the IVq-ROFIDPOWA
operator combined with the given expert weight w, and then
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Table 1 Interval-valued g-rung
orthopair fuzzy number
transformations

Linguistic term

Interval-valued g-rung orthopair fuzzy numbers

22 ru vL Vu
Certainly low important (CLI) 0.05 0.05 0.90 0.95
Very low important (VLI) 0.10 0.20 0.80 0.90
Low important (LI) 0.20 0.35 0.65 0.80
Below average important (BAI) 0.35 0.45 0.55 0.65
Average important (Al) 0.45 0.55 0.45 0.55
Above average important (AAI) 0.55 0.65 0.35 0.45
High important (HI) 0.65 0.80 0.20 0.35
Very high important (VHI) 0.80 0.90 0.10 0.20
Certainly high important (CHI) 0.90 0.95 0.05 0.05
Exactly equal (EE) 0.1965 0.1965 0.1965 0.1965

the aggregated matrix R = (r;;),  is obtained. The aggre-
gation process is shown in Formula (34).

o @ 0 <z>
rij :]Vq—ROFIDPOWA(rij DD )

(34)

Step 5: The aggregation of R. Similar to step 4, the aggre-
gated matrix R is aggregated using the IVq-ROFIDPOWA
operator combined with the given attribute weight w, and
then the attribute values r; of the i-th alternative are obtained.
The aggregation process is shown in Formula (35).
ri =1Vg—ROFIDPOWA(ri1, ri2, 1i3, - -+, rin). (35)

Step 6: Calculating the exact values of scores. According
to the score function and the accuracy function, which are
defined in Formulas (7) and (8), respectively, the score and
accuracy of r; can be obtained, and then the r; are ranked
according to definition 2.5.

Step 7: Determination of the best alternative. Based on the
ranking results of the r; in step 6, the ranking results of the
alternatives x; are obtained, and then the alternative with the
largest score is selected as the optimal alternative.

In addition, during the actual group decision-making pro-
cess, the decision matrices may be difficult to obtain because
of the experts’ lack of understanding of fuzzy theory. To
make it easier for experts to make reasonable evaluations,
grades can be used to obtain the decision matrices. Inspired
by Ilbahar et al. (2018) and Yucesan and Kahraman (2019),
the evaluation grades include 10 grades: certainly low impor-
tant (CLI), very low important (VLI), lower important (LI),
below average important (BAI), average important (Al),
above average important (AAI), high important (HI), very
high important (VHI), certainly high important (CHI) and
exactly equal (EE). Then, these grades can be transformed
into interval-valued q-rung orthopair fuzzy numbers accord-
ingly, as shown in Table 1.

@ Springer

5 Group decision-making cases analysis
5.1 Case 1
5.1.1 Case

ESG ratings (Duuren et al. 2016) are used to score compa-
nies and institutions based on three aspects, the environment
(E), society (S) and corporate governance (G), to measure
the social responsibility of companies and institutions. ESG
ratings, as the basis for performing value judgments to guide
investors’ investment decisions, have attracted increasing
attention from international investors, and domestic investors
have also begun to pay attention to ESG information disclo-
sures and ratings. However, due to the differences among the
ESG data collected by different rating companies, especially
their data processing methods, the ESG rating results of dif-
ferent rating companies are also very different, and the lack
of an industry consensus has seriously affected the use of
ESG ratings by investors. Therefore, the operator and group
decision-making method proposed in this paper are used to
aggregate the ESG rating data of the Ping An Bank, the China
Merchants Bank, the Shanghai Pudong Development Bank,
the Industrial Bank, the CITIC Bank and the Minsheng Bank
from 2020 by selecting Bloomberg, Shangdao Ronglu and
Huaxun to obtain their comprehensive ESG ratings.

In this case, the three evaluation attributes are recorded as e
(environment), s (society) and g (corporate governance), and
the attribute weights are w = ( %, %, %). The weights of the
three evaluation institutions are w = (%, % %). At the same
time, the evaluated institutions are recorded as xj, x2, X3, X4,
x5, and xg in order. Due to the different ESG evaluation sys-
tems and scoring standards of different institutions, to ensure
the rationality of the aggregation and evaluation processes,
the original scoring matrices given by the three institutions
are converted into grade evaluation matrices. Tables 2, 3, 4
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Table 2 Bloomberg’s grade evaluation matrix

¢ 5 & uation matrices R(l), R(Z), and R® under the interval-valued
Y CLI BAI BAI g-rung orthopair fuzzy sets according to Table 1. The con-
o VHI HI Al version results are shown in Tables 5, 6, 7.
(2) According to the observations, when g = 3, the ele-
X3 LI AAI CLI . . ..
ments in RV, R®, and R® satisfy the conditions defined
%4 AAl AAl Al by the IVq-ROFS.
s CHI CHI BAI (3) Utilizing the IVqQ-ROFIDPOWA operator to prepro-
6 VLI CLI CLI cess the standard evaluation matrix R ®) with different param-
eters p, it is found that the data aggregation effect is better
Table 3 Shangdao Ronglu’s grade evaluation matrix when the parameter pe[0.7, 0.9] for the IVq-ROFIDPOWA
e s g operator.
(4) The normal evaluation matrix R® is aggregated using
xi HI Al VHI the IVq-ROFIDPOWA operator with the parameter p found
x2 CHI VHI CHI in step (2) and the expert weights w = (%, _%, %). When the
X3 Al BAI CLI parameter p = 0.8, the result of the aggregation matrix R*)
x4 CHI CLI CLI is shown in Table 8.
X5 CHI CLI VHI (5) The aggregation matrix R is aggregated using the IVq-
6 AAI CHI AAI ROFIDPOWA operator with the parameter p found in step
(2) and the attribute weights w = (%, %, %). When using the
Table 4 Huaxun’s grade evaluation matrix parameter p = 0.8, the results of the attribute values r; for
the i-th alternative are shown as follows.
e K g
r1 = ([0.6951, 0.7638], [0.5173, 0.5673]),
X1 Al CHI BAI
b) Al CHI VHI
3 Al BAI CHI ro = ([0.8104, 0.8891], [0.2277, 0.2718]),
X4 Al BAI HI
X5 Al AAI HI r3 = ([0.6624, 0.7025], [0.6153, 0.6815]),
X6 Al CLI AAI
rq = ([0.6682, 0.7295], [0.5908, 0.6409]),
Table 5 Bloomberg’s standard
evaluation matrix RV ¢ N g
X1 ([0.05, 0.05], [0.90, 0.95]) ([0.35, 0.45], [0.55, 0.65]) ([0.35, 0.45], [0.55, 0.65])
* ([0.80, 0.90], [0.10, 0.20]) ([0.65, 0.801, [0.20, 0.357) ([0.45, 0.55], [0.45, 0.55])
X3 ([0.20, 0.35], [0.65, 0.80]) ([0.55, 0.65], [0.35, 0.45]) ([0.05, 0.05], [0.90, 0.95])
X4 ([0.55, 0.65], [0.35, 0.45]) ([0.55, 0.65], [0.35, 0.45]) ([0.45, 0.55], [0.45, 0.55])
X5 ([0.90, 0.95], [0.05, 0.05]) ([0.90, 0.95], [0.05, 0.057) ([0.35, 0.45], [0.55, 0.65])
X6 ([0.10, 0.20], [0.80, 0.90]) ([0.05, 0.05], [0.90, 0.95]) ([0.05, 0.05], [0.90, 0.95])
Table 6 Shangdao Ronglu’s
standard evaluation matrix R ¢ $ 8
X1 ([0.65, 0.80], [0.20, 0.35]) ([0.45, 0.55], [0.45, 0.55]) ([0.80, 0.90], [0.10, 0.20])
X2 ([0.90, 0.95], [0.05, 0.05]) ([0.80, 0.90], [0.10, 0.20]) ([0.90, 0.95], [0.05, 0.05])
x3 ([0.45, 0.55], [0.45, 0.55]) ([0.35, 0.45], [0.55, 0.65]) ([0.05, 0.051, [0.90, 0.957)
X4 ([0.90, 0.95], [0.05, 0.05]) ([0.05, 0.05], [0.90, 0.95]) ([0.05, 0.05], [0.90, 0.95])
X5 ([0.90, 0.95], [0.05, 0.05]) ([0.05, 0.05], [0.90, 0.95]) ([0.80, 0.90], [0.10, 0.20])
X6 ([0.55, 0.65], [0.35, 0.45]) ([0.90, 0.95], [0.05, 0.05]) ([0.55, 0.65], [0.35, 0.45])

shows the grades given by the three institutions.
(1) The grade matrices are converted into the normal eval-

@ Springer



1812

Granular Computing (2023) 8:1799-1818

Table 7 Bloomberg’s standard

evaluation matrix R®

e

N

8

xi
X2
X3
X4
X5

X6

([0.45, 0.55], [0.45, 0.55]
([0.45, 0.55], [0.45, 0.55]
([0.45, 0.55], [0.45, 0.55]
([0.45, 0.55], [0.45, 0.55]
([0.45, 0.55], [0.45, 0.55]
( [

)
)
)
)
)
[0.45, 0.55], [0.45, 0.55])

([0.90, 0.95], [0.05, 0.05])
([0.90, 0.95], [0.05, 0.05])
([0.35, 0.45], [0.55, 0.65])
([0.35, 0.45], [0.55, 0.65])
([0.55, 0.651, [0.35, 0.45])
([0.05, 0.05], [0.90, 0.95])

([0.35, 0.45], [0.55, 0.65])
([0.80, 0.901, [0.10, 0.201)
([0.90, 0.95], [0.05, 0.05])
([0.65, 0.80], [0.20, 0.351)
([0.65, 0.801, [0.20, 0.35])
([0.55, 0.65], [0.35, 0.45])

Table 8 The aggregation matrix
R

e

N

4

X2
X3
X4
X5

X6

0.61, 0.69], [0.66, 0.71])
0.81, 0.88], [0.26, 0.29])
0.45, 0.55], [0.53, 0.65])
0.76, 0.83], [0.31, 0.37])
0.85, 0.91], [0.24, 0.26])

1 )

(
(
(
(
(
([0.55, 0.611], [0.60, 0.69]

[
[
[
[
[
[

([0.76, 0.82], [0.37, 0.43])
([0.82, 0.90], [0.13, 0.22])
([0.55, 0.611, [0.48, 0.58])
([0.55, 0.611, [0.70, 0.761)
([0.76, 0.83], [0.59, 0.601)
([0.76, 0.82], [0.68, 0.69])

([0.69, 0.76], [0.43, 0.50])
([0.81, 0.88], [0.26, 0.29])
([0.76, 0.82], [0.68, 0.69])
([0.61, 0.69], [0.66, 0.71])
([0.70, 0.81], [0.35, 0.41])
([0.55, 0.63], [0.68, 0.73])

rs = ([0.7818, 0.8555], [0.4455, 0.4636]),

re = ([0.6624, 0.7118], [0.6678, 0.7182]).

(6) The score function in Formula (7) is used to calculate
the scores of r as follows: S(r1) = 0.2302, S(rp) = 0.6016,
S(r3) = 0.0439, S(rg) = 0.1086, S(r5) = 0.4580, S(r¢) =
—0.0085. The ranking of the scores of different institutions
is S(rp) > S(rs) > S(r1) > S(rg) > S(r3) > S(re).

(7) According to the ranking of the scores in (6), the rank-
ing of the institutions is: x > x5 > X1 > X4 > X3 > Xe.

According to step (7), the organization with the best sense
of social responsibility is x;. This institution is the China
Merchants Bank, and the results are consistent with its actual
performance, thereby validating the feasibility of the pro-
posed group decision-making method.

5.1.2 Sensitivity analysis of the IVq-ROFIDPOWA operator

To verify the feasibility and effectiveness of the group
decision-making method, this section changes the parame-
ters p and g of the IVq-ROFIDPOWA operator, and analyzes
the impacts of the changes in p and ¢ on the decision results.

(1) The effect of p changes on the decision results. When
g = 3, p changes within its domain of [0, 1], and the scores
of each alternative are shown in Fig. 1.

It can be seen from Fig. 1 that when the other conditions
remain unchanged, the change in the parameter p of the IVg-
ROFIDPOWA operator within its domain does not affect the
evaluation results of each alternative.

@ Springer

(2) The effect of g changes on the decision results. When
p = 0.8, g changes within the interval [3, 15], and the scores
of each alternative are shown in Fig. 2.

It can be seen from Fig. 2 that when the other conditions
remain unchanged, the change in the parameter ¢ of the IVg-
ROFIDPOWA operator does not affect the evaluation results
of each alternative. In general, when the parameters p and
q of the IVq-ROFIDPOWA operator are changed, the eval-
uation results of each alternative remain unchanged, which
effectively verifies the feasibility and effectiveness of this
decision-making method.

5.1.3 Comparative analysis

In this section, the DBWA operator (Liu et al.2017), the PA
operator (Yager 2001), the Hamacher operator (Hamacher
1975; Wang et al. 2021) and the IVq-ROFIDPOWA operator
are used for comparative analysis. When y = 2 in the DBWA
operator, ¢ = 3 in the Hamacher operator, and p = 0.8 in
the IVq-ROFIDPOWA operator, while ¢ changes within the
range [3, 15], and the scores and rankings of each ESG rating
are obtained, as shown in Fig. 3.

It can be seen from Fig. 3 that the IVq-ROFIDPOWA
operator proposed in this paper has the same ranking results
as the DBWA operator, the PA operator and the Hamacher
operator. With the change in ¢, the ranking results of each
alternative remain unchanged. Moreover, compared with the
other three operators, the IVq-ROFIDPOWA operator has
more obvious score differences between the alternatives, so
itis more conducive to making decisions. This further verifies
the feasibility and effectiveness of the group decision-making
method proposed in this paper.
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Fig. 1 The trends of the scores 0.81
when the parameter p changes
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Fig.2 The trends of the scores
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5.2 Case 2
5.2.1 Case

To evaluate the concentration level of a student in class, 3
classmates are invited to evaluate the concentration of this
student, and their expert weights are w = [0.33, 0.34, 0.33].
The evaluation values, which are represented as the IVq-
ROFNSs, have five attributes, c¢; (eye movement), ¢ (facial
expression), c¢3 (body posture), ¢4 (degree of interaction),
and c¢5 (concentration tune), and the attribute weights are
o = [0.2, 0.2, 0.2, 0.2, 0.2]. Because data normalization
does not require complex calculations and the amount of data
is small, the normal evaluation matrices are directly given in
this paper, as shown in Tables 9, 10, 11.

(1) According to the observations, when g = 2, the ele-
ments in RV, R®, and R® satisfy the condition defined by
the IVq-ROFS.

(2) Using the IVq-ROFIDPOWA operator to preprocess
the normal evaluation matrices R® produced with dif-
ferent parameters p, it is found that the data aggregation
effect is better when the parameter pe[0.9, 1] in the IVg-
ROFIDPOWA operator.

(3) The normal evaluation matrix R® is aggregated using
the IVq-ROFIDPOWA operator with the parameter p found
in step (2) and the expert weights w = (0.33, 0.34, 0.33).
When the parameter p = 0.95, the result of the aggregation
matrix R is as shown in Table 12.

(4) The aggregation matrix R is aggregated using the IVq-
ROFIDPOWA operator with the parameter p found in step
(2) and the attribute weights v = (0.2, 0.2, 0.2, 0.2, 0.2).
When using the parameter p = 0.95, the results of the
attribute values r; for the i-th alternative are shown as fol-
lows.
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Fig. 3 Comparative analysis among different operators

Table9 The normal evaluation matrix R(" given by classmate 1

1.00

0.75

0.50

0.25

0.00

PA(Yager 2001)

-0.25

-0.50

-0.75

-1.00

IVg-ROFIDPOWA

-0.50

-0.75

-1.00

—— x1
—— x2

—=— x3

—— x4
—— x5
—— x6

—— x1
—— x2
—=— X3
—— x4
—— x5
—— x6

1

2

3

c4

cs

X1

X2

X3

X4

X5

([0.20, 0.35],
[0.65, 0.80])

([0.35, 0.45],
[0.55, 0.651)

([0.55, 0.65],
[0.35, 0.451)

([0.80, 0.90],
[0.10, 0.20])

([0.45, 0.55],
[0.45, 0.55])

([0.35, 0.45],
[0.55, 0.65])

([0.45, 0.55],
[0.45, 0.551)

([0.80, 0.901,
[0.10, 0.201)

(10.65, 0.801,
[0.20, 0.351)

([0.20, 0.35],
[0.65, 0.80])

([0.45, 0.55],
[0.45, 0.55])

([0.55, 0.65],
[0.35, 0.45])

([0.55, 0.65],
[0.35, 0.451)

(10.45, 0.55],
[0.45, 0.55])

([0.10, 0.20],
[0.80, 0.90])

([0.35, 0.45],
[0.55, 0.65])

([0.45, 0.55],
[0.45, 0.55])

([0.65, 0.80],
[0.20, 0.351)

([0.45, 0.55],
[0.45, 0.55])

([0.35, 0.45],
[0.55, 0.65])

([0.35, 0.45], [0.55, 0.65])

([0.55, 0.65], [0.35, 0.45])

([0.80, 0.90], [0.10, 0.201)

([0.55, 0.65], [0.35, 0.45])

([0.20, 0.35], [0.65, 0.80])

Table 10 The normal evaluation matrix R® given by classmate 2

1 2 c3 cy cs

X1 ([0.20, 0.35], ([0.35, 0.45], ([0.10, 0.20], ([0.25, 0.35], ([0.20, 0.35], [0.65, 0.801)
[0.65, 0.80]) [0.55, 0.65]) [0.80, 0.90]) [0.65, 0.80])

2 ([0.45, 0.55], ([0.45, 0.551, ([0.35, 0.45], ([0.35, 0.45], {[0-55, 0.651, [0.35, 0.45])
[0.45, 0.55]) [0.45, 0.55]) [0.55, 0.65]) [0.55, 0.65])

X3 ([0.80, 0.90], ([0.65, 0.801, ([0.55, 0.651, ([0.65, 0.80], ([0.45, 0.55], [0.45, 0.55])
[0.10, 0.20]) [0.20, 0.351) [0.35, 0.451) [0.20, 0.351)

X4 ([0.65, 0.80], ([0.55, 0.65], ([0.45, 0.55], ([0.55, 0.65], ([0.35, 0.45], [0.55, 0.65])
[0.20, 0.351) [0.35, 0.45]) [0.45, 0.551) [0.35, 0.45])

X5 ([0.35, 0.45], {[0.35, 0.45], {[0.20, 0.35], ([0.35, 0.45], {[0.10, 0.201, [0.80, 0.901)
[0.55, 0.65]) [0.55, 0.65]) [0.65, 0.80]) [0.55, 0.65])
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Table 11 The normal evaluation matrix R® given by classmate 3

C1

2

3

c4 (&}

([0.55, 0.60], [0.35, 0.45])

X1 ([0.55, 0.60], ([0.45, 0.55], ([0.45, 0.55], ([0.35, 0.45],
[0.35, 0.45]) [0.45, 0.55]) [0.45, 0.55]) [0.55, 0.65])

X2 ([0.65, 0.80], ([0.55, 0.651, ([0.55, 0.65], ([0.45, 0.55], ([0.65, 0.80], [0.20, 0.35])
[0.20, 0.35]) [0.35, 0.45]) [0.35, 0.45]) [0.45, 0.55])

X3 ([0.55, 0.65], ([0.80, 0.90], (10.45, 0.55], ([0.65, 0.801, ([0.65, 0.80], [0.20, 0.35])
[0.35, 0.45]) [0.10, 0.201) [0.45, 0.55]) [0.20, 0.351)

X4 ([0.45, 0.55], ([0.45, 0.55], ([0.35, 0.45], ([0.55, 0.65], (0.55, 0.65], [0.35, 0.45])
[0.45, 0.55]) [0.45, 0.55]) [0.55, 0.60]) [0.35, 0.45])

X5 ([0.10, 0.20], ([0.10, 0.20], (10.20, 0.35], ([0.20, 0.35], ([0.20, 0.35], [0.65, 0.80])
[0.80, 0.90]) [0.80, 0.90]) [0.65, 0.80]) [0.65, 0.80])

Table 12 The aggregation matrix R
1 2 c3 Cc4 Cs5

X1 ([0.38, 0.46], (10.39, 0.49], (10.39, 0.48], ([0.32, 0.42], ([0.41, 0.48], [0.52, 0.65])
[0.56, 0.71]) [0.52, 0.62]) [0.59, 0.70]) [0.59, 0.71])

X2 ([0.51, 0.64], (10.49, 0.59], (10.50, 0.60], ([0.42, 0.52], (059, 0.71], [0.31, 0.41])
[0.41, 0.51]) [0.42, 0.52]) [0.42, 0.52]) [0.48, 0.58])

X3 ([0.66, 0.77], ([0.76, 0.87], ([0.52, 0.62], ([0.65, 0.801, ([0.67, 0.801, [0.26, 0.35])
[0.27, 0.35]) [0.13, 0.25]) [0.38, 0.48]) [0.20, 0.35])

X4 ([0.67, 0.80], (0.56, 0.69], ([0.42, 0.52], (10.52, 0.62], (050, 0.601, [0.42, 0.52])
[026, 0.35]) [0.34, 0.44]) [0.48, 0.57]) [0.38, 0.48])

r1 = ([0.3784, 0.4662], [0.5573, 0.6785]),

ry = ([0.5052, 0.6194], [0.4102, 0.5069]),

r3 = ([0.6640, 0.7898], [0.2532, 0.3494]),

r4 = ([0.5462, 0.6635], [0.3792, 0.4673]),

rs = ([0.2840, 0.3737], [0.6593, 0.7842]).

(5) The score function is used to calculate the scores of r;

as S(r;) = —0.2052, S(r2) = 0.1069, S(@r3) = 0.4392,
S(rq) = 0.1883, S(rs) = —0.4171. The ranking of the
scores of the different alternatives is S(r3) > S(r4) >
S(r) > S@ry) > S(rs).

(6) According to the score ranking results in step (5), the
alternative ranking is x3 > x4 > x2 > x| > X3.

According to step (6), the optimal alternative is x». This
alternative is “average-focused” and consistent with the
student’s performance in the class, thereby validating the fea-
sibility of the proposed group decision-making method.

5.2.2 Sensitivity analysis of the IVq-ROFIDPOWA Operator

To verify the feasibility and effectiveness of the group deci-
sion method, this section changes the parameters p and g of
the IVq-ROFIDPOWA operator, and analyzes the impacts of
the changes in p and g on the decision results.

(1) The effect of p changes on the decision results. When
q = 2, p changes within its domain of [0, 1], and the scores
of each alternative are shown in Fig. 4.

It can be seen from Fig. 4 that when the other conditions
remain unchanged, the change in the parameter p of the [IVq-
ROFIDPOWA operator within its domain does not affect the
evaluation results of each alternative.

(2) The effect of g changes on the decision results. When
p = 0.95, g changes within the interval [2, 15], and the
scores of each alternative are shown in Fig. 5.

It can be seen from Fig. 5 that when the other conditions
remain unchanged, the change in the parameter g of the IVg-
ROFIDPOWA operator does not affect the evaluation results
of each alternative. In general, when the parameters p and
q of the IVq-ROFIDPOWA operator are changed, the eval-
uation results of each alternative remain unchanged, which
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Fig.4 The trends of the scores
when the parameter p changes 061
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effectively verifies the feasibility and effectiveness of this
decision-making method.

5.2.3 Comparative analysis

In this section, the DBWA operator (Liu et al.2017), the PA
operator (Yager 2001), the Hamacher operator (Hamacher
1975; Wang et al. 2021) and the IVq-ROFIDPOWA operator
are used for comparative analysis. When y = 2 in the DBWA
operator, ¢ = 3 in the Hamacher operator, and p = 0.95 in
the IVq-ROFIDPOWA operator, while g changes within the
range [2, 15], and the scores and rankings of each alternative
rating are obtained, as shown in Fig. 6.

It can be seen from Fig. 6 that the IVq-ROFIDPOWA oper-
ator proposed in this paper has the same ranking as the DBWA
operator, the PA operator and the Hamacher operator. With
the change in g, the ranking results of each alternative remain
unchanged. Moreover, compared with the other three opera-
tors, the IVqQ-ROFIDPOWA operator has more obvious score
differences between the alternatives, so it is more conducive

@ Springer

to making decisions. This further verifies the feasibility and
effectiveness of the group decision-making method proposed
in this paper.

6 Conclusion

Based on the t-norm and t-conorm operations of the Dubois
and Prade operator, this paper defines the IVq-ROFDP
operations and introduces the IVqQ-ROFDPOWA operator.
At the same time, we find that the interactions between
the membership and nonmembership degrees in the IVg-
ROFDP operations and the [Vq-ROFDPOWA operator are
not considered. To address this issue concerning the IVq-
ROFDP operations, the IVq-ROFIDP operations and the
IVq-ROFIDPOWA operator are proposed, and we study
the IVqQ-ROFIDPOWA operator’s idempotency, permutation
invariance, monotonicity and boundedness. Then, this paper
proposes a group decision-making method based on the
IVq-ROFIDPOWA operator. Finally, this paper verifies the



Granular Computing (2023) 8:1799-1818

1.00

075

=
0.50
~ ——
o
N .25 M
©
© 0.00
S
2
<025
=
5]
0 050
0.75
-1.00

2 3 4 5 6 7 8 9 10 1 12 13 14 15

q

1.00
0.75 .

e —
0.50 7;&,;*

——

0.25

0.00

o
N
&

o
a
3

o
3
o

Hamacher(Hamacher 1975; Wang et al. 2021)

-1.00

Fig. 6 Comparative analysis among different operators

proposed group decision-making method with two cases. The
decision-making results are consistent with those of practi-
cal applications and the results of existing operators, thus
confirming the feasibility and effectiveness of the improved
operator with interactivity and the group decision-making
method proposed in this paper. The further comparative anal-
ysis shows that the group decision-making method proposed
in this paper can better reflect the differences between alter-
natives.

The proposed group decision-making method can be used
to select the optimal alternative using the IVq-ROFIDPOWA
operator when the attribute weights and expert weights are
known in advance. The unknown attribute weights and expert
weights of group decision-making methods are the main
focus of our research. Moreover, the fusion of big data using
aggregation operators will also be the focus of our future
research.
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