
ORIGINAL PAPER

A new training algorithm for long short-term memory artificial neural
network based on particle swarm optimization
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Abstract
Long short-term memory deep artificial neural network is the most commonly used artificial neural network in the literature

to solve the forecasting problem, and it is usually trained with the Adam algorithm, which is a derivative-based method. It

is known that derivative-based methods are adversely affected by local optimum points and training results can have large

variance due to their random initial weights. In this study, a new training algorithm is proposed, which is less affected by

the local optimum problem and has a lower variance due to the random selection of initial weights. The proposed new

training algorithm is based on particle swarm optimization, which is an artificial intelligence optimization method used to

solve the numerical optimization problem. Since particle swarm optimization does not need the derivative of the objective

function and it searches in the random search space with more than one solution point, the probability of getting stuck in

the local optimum problem is lower than the derivative algorithms. When the proposed training algorithm is based on

particle swarm optimization, the probability of getting stuck in the local optimum problem is very low. In the training

algorithm, the restart strategy and the early stop condition are included so that the algorithm eliminates the overfitting

problem. To test the proposed training algorithm, 10-time series obtained from FTSE stock exchange data sets are used.

The proposed training algorithm is compared with Adam’s algorithm and other ANNs using various statistics and statistical

hypothesis tests. The application results show that the proposed training algorithm improves the results of long short-term

memory, it is more successful than the Adam algorithm, and the long short-term memory trained with the proposed training

algorithm gives superior forecasting performance compared to other ANN types.
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1 Introduction

The solution to the forecasting problem can be realized by

many different methods. It is one of the most widely used

scientific methods to obtain forecasts with a model created

over the historical values of the time series using lagged

variables. The models can be linear or non-linear. In par-

ticular, forecasting models created with artificial neural

networks, where nonlinear designs are flexible and can

change based on data thanks to hidden layers, have become

popular in recent years. Although artificial neural networks

are flexible approaches and data-driven methods, they have

problematic aspects in solving the forecasting problem due

to problems such as overfitting problems, local optimum

traps and difficulties in determining hyperparameters. The

most widely used multilayer perceptron has recently been

replaced by deep artificial neural networks. Recurrent deep

artificial neural networks are frequently preferred for

forecasting purposes due to their structure that allows time

dependence by the time series problem. Long short-term

memory (LSTM), which offers a solution to the disap-

pearing and exploding gradient problem encountered in

recurrent deep networks by using gates in its architecture,

is the most commonly used deep recurrent artificial neural

network. While LSTM gets rid of the problems of deriva-

tive-based training algorithms thanks to gates, it invites

overfitting problems by increasing the number of parame-

ters. The literature of LSTM is given below and it is

understood that it is used in solving forecasting problems

that arise in different fields.
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The LSTM artificial neural network, which was first

introduced by Hocreiter and Schmidhuber (1997), is widely

used in forecasting studies. When the studies are examined,

it has been determined that LSTM has started to be used

intensively in fields such as energy, hydrology, economy

and health. Fischer and Krauss (2018), Yao et al. (2018a;

b), Seviye et al. (2018), Zhang and Yang (2019), Cen and

Wang (2019), Vidya and Hari (2020), Yadav et al. (2020),

Liu et al. (2021), Tang et al. (2022), Firouzjaee and Kha-

liliyan (2022), Kumar et al. (2022a, b) and Peng et al.

(2020) used LSTM in their study. Livieris et al. (2020),

Pirani et al. (2022), Ensafi et al. (2022), Freeboroug and

Zyl (2022), Arunkumar et al. (2022), Kumar et al.

(2022a, b), Sirisha et al. (2022) and Singha and Panse

(2022) compared LSTM with different methods in their

studies. In addition, LSTM, classical methods and hybrid

approaches in which they are combined are used to solve

the forecasting problem. A hybrid method was presented

by Quadir et al. (2022). Many studies have been carried out

in the field of engineering using LSTM. Some of these

were proposed by Dong et al. (2017), Zhang et al. (2018),

Weng et al. (2019), Huang et al (2022), Senanayake et al.

(2022) and Silka et al. (2022). In addition, LSTM was

compared with different forecasting methods in the litera-

ture by Barrera-Animas et al. (2022). When the studies are

examined, it is seen that LSTM is used in the field of health

as in many other fields. Chimmula and Zhang (2020) used

LSTM to solve health data. In the field of tourism, there are

many studies in which LSTM is used. The studies of Bi

et al. (2020), Zhang et al. (2021) and Kumar et al.

(2022a, b) can be given as an example of these studies.

Solgi et al. (2021), Du et al. (2022a, b), Kilinc and Yurt-

sever (2022) and Li et al. (2022) used the LSTM method in

the field of hydrology. Jiang and Hu (2018), Gong et al.

(2022), Bilgili et al. (2022) and Karasu and Altan (2022)

used LSTM in the field of energy. Besides, Zha et al.

(2022), Yazici et al. (2022) and Ning et al. (2022) used the

LSTM method in the field of energy. Tian et al. (2018), Liu

et al. (2018), Karevan and Kim and Cho (2019), Karevan

and Suykens (2020), Veeramsetty et al. (2021), Yu et al.

(2022) and Du et al. (2022a, b) used hybrid approaches

based on LSTM. Artificial intelligence optimization algo-

rithms have been used in the training of LSTM. Genetic

algorithm (GA) and particle swarm optimization (PSO) is

the most preferred algorithms. Chen et al. (2018), Chung

and Shin (2018) and Stajkowski et al. (2020) used GA as an

optimization technique for the LSTM. Moalla et al. (2017),

Yao et al. (2018a, b), Shao et al. (2019), Qiu et al. (2020)

and Gundu and Simon (2021) used PSO for the training of

LSTM. Bas et al. (2021) PSO used for training of Pi-

Sigma. Liu and Song (2022) used granular neural networks.

Fan et al. (2021), used a deep-learning approach for fore-

casting. Fuzzy inference systems and fuzzy time series are

used for forecasting. Chen and Jian (2017), Chen and Jian

(2017), Zeng et al. (2019), Chen et al. (2019), Bas et al.

(2022a), Egrioglu et al. (2022), Pant and Kumar (2022a)

and Pant and Kumar (2022b) used inference systems and

fuzzy time series in their study.

The motivation of this study is the absence of a training

algorithm in the literature for training an LSTM network

designed for the solution of the forecasting problem, which

reduces the variation due to the initial random weights

based on PSO and is less affected in overfitting problems.

The contributions of this study are given below:

• A training algorithm suitable for the designed LSTM is

proposed for the forecasting problem.

• As the proposed training algorithm is based on PSO, it

is less likely to get caught in local optimum traps.

• In the proposed training algorithm, different from other

algorithms using PSO, the variability due to random

starting weights has been reduced with a strategy called

the restart strategy, and the results have been made

more stable.

• In the proposed training algorithm, a solution to the

overfitting problem is presented by defining the early

stopping condition based on the proportional error,

unlike other algorithms using PSO.

• Since the proposed algorithm does not need derivatives,

it does not have the problem that the derivative cannot

be calculated in certain regions of the search space.

In the second part of the study, the LSTM architecture,

which is specific to the LSTM artificial neural network and

forecasting problem, is given. In the third part of the study,

the proposed new training algorithm is introduced. In the

fourth chapter, application results for the FTSE time series

are given. In the fifth chapter, the results and discussion are

given.

2 LSTM artificial neural network
for forecasting

LSTM is a deep artificial neural network with feedback

connections formed by neurons containing gates. In the

LSTM deep neural network, the first and most important

feature to understand is the structure of an LSTM neuron.

The structure of an LSTM cell is given in Fig. 1. There are

input, forget, cell candidate and output gates in an LSTM

neuron. Each gate in the LSTM cell has its input weights,

recurrent weights and biases. Input gate, forget gate and

cell candidate outputs are calculated as in the following

equations.

it ¼ r Wixt þ Riht�1 þ bið Þ ð1Þ
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ft ¼ r Wfxt þ Rfht�1 þ bfð Þ ð2Þ

gt ¼ r Wgxt þ Rght�1 þ bg
� �

ð3Þ

After calculating the outputs of the input gate, forget

gate and cell candidate gate by using Eqs. (1–3), the cell

state value is calculated as in Eq. (4) using the previous

cell state and the outputs of these gates.

ct ¼ f t � ct�1 þ it � gt ð4Þ

The output of the output gate is calculated with the (5)

formula. Then, the hidden state value is calculated by using

Eq. (6) and the output gate output and the cell state outputs.

ot ¼ r Woxt þ Roht�1 þ boð Þ ð5Þ
ht ¼ ot � tanhðctÞ ð6Þ

As a result, the inputs of an LSTM are inputs of the

model (xt), cell state and hidden state with one step delay

(ct�1, ht�1) while the output of the LSTM cell is cell state

and hidden state (ct, ht). Different LSTM deep neural

networks can be revealed by different designs of LSTM

cells. The architectural structure used in this study for the

single variable time series forecasting problem is given in

Fig. 2. In this architecture created for the forecasting

problem, the inputs of the system are the lagged variables

of the time series ðytÞ.
The input of an LSTM cell is lagged variable of xt ¼

ðyt; yt�1;...;yt�pþ1Þ according to the time step in Fig. 2. For

example, the input for the LSTM cell in the lower right

corner of the architecture is xt�1 ¼ ðyt�1; yt�2;...;yt�pÞ in

Fig. 2. The output of the LSTM deep recurrent artificial

neural network is one step forecast of time series (bytÞ. The
output of the network is calculated with the following

formula and r represents the logistic activation function.

byt ¼ r WFCht þ bFCð Þ ð7Þ

In Eq. (7), ht is the output of the last thick-edged neuron

in the architecture. The architecture in Fig. 2 has m time

steps, n hidden layers and p inputs or features. The number

of neurons in all hidden layers is equal to m. The weight

and bias values of all LSTM cells in the same hidden layer

are taken equally. This parameter sharing both reduces the

number of parameters and enables a common LSTM cell

that presents the same mathematical model in all time

steps. These weights and bias values change in different

hidden layers, that is, increasing the number of hidden

layers increases the number of parameters of the network,

while the number of time steps is not effective on the

number of parameters.

Stochastic gradient descent algorithms can be used for

training the LSTM given in Fig. 2. In stochastic gradient

descent algorithms, the actual gradient is estimated by

sampling. The real gradient is estimated by calculating the

gradient over a random subgroup selected from the training

data. One of the most commonly used stochastic gradient

algorithms is Duchi et al. It is the AdaGrad algorithm

proposed in (2011). In this algorithm, a scaling factor

obtained from the outer product of the gradient vector is

used. Another algorithm that can be used in the training of

LSTM is the RMSROP algorithm. This algorithm is the

minibatch version of the RROP algorithm that works using

the sign of the gradient. The most frequently used training

algorithm of LSTM, which is included in many packages,

is the Adam algorithm given in Kingma and Ba (2014).

The Adam algorithm is an algorithm with fast convergence

properties. There are also more advanced versions of this

algorithm in the literature. The Adam algorithm is imple-

mented with the following steps.

Algorithm 1. Adam Algorithm

Step 1. Algorithms’ initial parameter values are deter-

mined. The initial parameter values can be used

as the default values of the Matlab package

Fig. 1 The structure of the

LSTM cell
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programme Neural Netwrok toolbox as in other

studies in the literature. a: Step sizeb1 and b2:
Exponential decay rates for the moment esti-

matese: Correction term

Step 2. Initial values are set as zero.

m0 ¼ v0 ¼ t ¼ 0

Step 3. Initial weight and bias values (h0Þ are deter-

mined. These values are realised by generating

random numbers within a certain range.

Step 4. Do t ¼ t þ 1. The iteration counter is incre-

mented by one.

Step 5. Calculate the following equations:

gt ¼ rf ð8Þ
mt ¼ b1mt�1 þ ð1� b1Þgt ð9Þ

vt ¼ b2vt�1 þ ð1� b2Þg2t ð10Þ

bmt ¼ mt=ð1� bt1Þ ð11Þ

bvt ¼ vt=ð1� bt2Þ ð12Þ

ht ¼ ht�1 � a bmt=ð
ffiffiffiffi
bvt

p
þ eÞ ð13Þ

In Eq. (10), g2t is a vector containing diagonal elements

of the Hessian matrix. The calculations are performed

sequentially and in order.

Step 6. Repeat Steps 4–5 until convergence is achieved.

Convergence is achieved by resetting the gradient

vector to zero.

3 A new training algorithm for LSTM based
on particle swarm optimization

The common point of AdaGrad, RMSROP and Adam

algorithms is that they work with derivative information

and operate with a single initial parameter vector set. This

situation increases the possibility of the methods being

caught in local optimum traps and the methods can be

greatly influenced by the selection of initial parameters. In

this study, a new training algorithm based on particle

swarm optimization is designed, which has a lower risk of

Fig. 2 The architecture of

LSTM deep recurrent artificial

neural network for forecasting

problem
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getting caught in local optimum traps and reduces the

originating variance in determining the initial random

weights. The Proposed algorithm works with two strategies

called restarting and early stopping. The restarting strategy

reduces the variance calculated for the change in the results

caused by the random variation of the initial parameter

values. The early stop condition can provide a solution to

the overfitting problem by working with a proportional

error. With these strategies, Bas et al. (2022), successful

training results were obtained for the simple deep recurrent

neural network. Moreover, since the proposed training

algorithm is based on particle swarm optimization, it

explores the search space with a set of these sets instead of

a single initial parameter set, increasing the chance of

avoiding the local optimum trap. The proposed training

algorithm is presented below in steps.

Algorithm 2. A new training algorithm for LSTM

Step 1. The parameters of the PSO algorithm are

selected according to the handled network.

cinitial1 : The starting value of the cognitive

coefficient, the default value is 1.

cfinal1 : The ending value of the cognitive

coefficient, the default value is 2.

cinitial2 : The starting value of the social coeffi-

cient, the default value is 2.

cfinal2 : The ending value of the social coeffi-

cient, the default value is 1.

winitial : The starting value for inertia weight,

the default value is 0.4.

wfinal : The ending value for inertia weight, the

default value is 0.9.

vmaps: The bound value for the velocities, the

default value is 1.

limit1 : The limit value for the re-starting

strategy, the default value is 30.

limit2 : The limit value for the early stopping

rule, the default value is 20.

maxitr : The maximum number of iterations,

the default value is 1000.

pn: The number of particles, the default value

is 30.

Counters for restarting and early stopping strategies and

iteration counter are reset (rsc ¼ 0, esc ¼ 0; t ¼ 0Þ: It is
also possible to use alternative values for selecting the

initial parameters.

Step 2. Initial position values and initial velocity values

in particle swarm optimization are created.

The positions of a particle constitute all the weights and

bias values of an LSTM network. The total number of

weights and biases is 4m pþ mþ 1ð Þ þ mþ 1 in an LSTM

cell because the dimensions of weights and biases are

Wi : p� m, Ri : m� m, bi : 1xm, Wf : p� m, Rf : m� m,

bf : 1xm, Wg : p� m, Rg : m� m, bg : 1xm, Wo : p� m,

Ro : m� m, bo : 1xm, WFC : m� 1 and bFC : 1� 1). For

the LSTM network given in Fig. 2, the total weight and

number of biases vary according to the number of hidden

layers. This number is

4m pþ mþ 1ð Þ þ 4 n� 1ð Þm 2mþ 1ð Þ þ mþ 1. For exam-

ple, for n ¼ 2;m ¼ 3; p ¼ 4, the total number of weights

and biases is 184 in the LSTM network. The weights and

biases are generated from ½0; 1� intervals. All velocities are
generated from ½�vmaps, vmaps� interval. P

ðtÞ
i;j is the jth

position of the ith particle at the tth iteration. V
ðtÞ
i;j is the jth

velocity of ith particle at the tth iteration.

Step 3. As the fitness function to be used for the mini-

mization of the PSO, the mean square error cri-

terion given below is chosen. At this stage, it is

possible to choose a different criterion, different

choices will not affect the operation of the algo-

rithm, but may affect the results. ‘‘vmaps’’ can

also be a value that controls whether parameters

are changed too much or too little.

MSEt
j ¼

1

ntrain

Xntrain

t¼1

yt � bytð Þ2; j ¼ 1; 2; . . .; pn

ð14Þ

Step 4. The iteration counter is increased t ¼ t þ 1.

Step 5. Pbest and gbest are constituted. Pbest is a

memory of all particles in the solution set, equal

to their initial positions in the first step. Pbest is

checked at each iteration, and the positions of the

developing particles are memorized in Pbest. In a

given iteration, the elements of Pbest represent

the best individual memories of all particles so

far. ‘‘gbest’’ is the memory of the swarm and is

the best particle of Pbest. In this step, gbest and

pbest vectors are generated only for the first

iteration. In subsequent iterations these vectors

are updated.

Step 6. The values of the cognitive, social coefficients

and inertia weight parameters are calculated by

the Eqs. (15–17).

wðtÞ ¼ ðwinitial � wfinalÞmaxitr � t

maxitr
þ wfinal ð15Þ

c
ðtÞ
1 ¼ ðcfinal1 � cinitial1 Þ t

maxitr
þ cinitial1 ð16Þ

c
ðtÞ
2 ¼ ðcinitial2 � c

final

2 Þmaxitr � t

maxitr
þ cfinal2 ð17Þ

Granular Computing (2023) 8:1645–1658 1649

123



Equations (15–17) are used to linearly decrease or

increase the coefficients. These equations allow the

strengthening of global search by focusing on the strength

of local search at the beginning and the final point on one

point.

Step 7. The new velocities and positions are calcu-

lated by using the Eqs. (18–20). The r1 and r2
random numbers are generated from ½0; 1�
intervals. In addition, Eq. 3 ensures that the

velocities are fixed within a certain range.

V
ðtÞ
i;j ¼ wðtÞV

ðt�1Þ
i;j þ c

ðtÞ
1 r1 Pbest

ðtÞ
i;j � P

ðtÞ
i;j

� �

þ c
ðtÞ
2 r2 gbest

ðtÞ
j � P

ðtÞ
i;j

� �

ð18Þ

V
ðtÞ
i;j ¼ minðvmaps;max �vmaps;V

tð Þ
i;j

� �
Þ

ð19Þ

P
ðtÞ
i;j ¼ P

ðt�1Þ
i;j þ V

ðtÞ
i;j ð20Þ

Step 8. Using Eq. (14), the fitness functions of all

particles are calculated. A different function

could have been selected as fitness function.

Step 9. Pbest and gbest are updated. The fitness

values calculated for the new positions of the

particles are compared with the corresponding

fitness value of Pbest, and if there is a new

particle that lowers the fitness value according

to its memory in Pbest, the relevant line of

Pbest is replaced with new positions. Other-

wise, no changes are made. After Pbest, the

fitness value of the line with the best fitness

value of the current Pbest is compared with

the fitness value of ‘‘gbest’’. If an improve-

ment is achieved, ‘‘gbest’’ is changed, other-

wise, it is not changed.

Step 10. The restarting strategy counter is increased

(rsc ¼ rscþ 1) and checked. If the

rsc[ limit1 then all positions and velocities

are re-generated and the rsc is taken as zero

but ‘‘Pbest’’ and ‘‘gbest’’ are saved in this

step.

Step 11. The early stopping rule is checked. The esc

counter is increased depending on the follow-

ing condition.

esc ¼ escþ 1; if
MSEbest tð Þ �MSEbest t�1ð Þ

MSEbest tð Þ \10�3

0; otherwise

8
<

:

ð21Þ

The early stopping rule is esc[ limit2: If the rule is

satisfied, the algorithm is stopped otherwise go to Step 4.

Step 12. The state of reaching the maximum number

of iterations is checked. If t[maxitr, the

algorithm is stopped and the best solution is

taken as ‘‘gbest’’. Otherwise, it returns to Step

6.

A flowchart is given in Fig. 3 for a better understanding

of the proposed new training algorithm.

Another important problem of LSTM given in Fig. 2 is

hyperparameter selection. The properties of the analyzed

data set may be important for the selection of hyperpa-

rameters. In general, it is preferred to select the hyperpa-

rameter values from a determined set by trial and error. In

this method, determining the possible values of the

hyperparameters is important in terms of determining the

optimum calculation time. In this study, possible values of

hyperparameters are determined by considering the obser-

vation frequency of the time series of interest. The fol-

lowing algorithm based on data partition is used for

hyperparameter selection. The hyperparameters of the

LSTM are considered as m, n and p.

Algorithm 3. Hyperparameter selection processes

Step 1. The possible values of the hyperparameters are

determined. These values are lower and upper

bound values for the hyperparameter values. The

possible range of these values can be chosen

according to the components contained in the

time series. For example, in time series with

seasonality, the possible values for the number of

inputs of the model can be taken to include the

period of the series.

m 2 ½m1;m2�
n 2 ½n1; n2�
p 2 ½p1; p2�

Step 2. Learning samples are divided into three parts

training, validation and test set in a block

structure. The reason for using the block structure

is to ensure that the test set consists of more up-

to-date data due to time dependence in the time

series. While the LSTM is being trained with the

training data, the hyperparameters are selected

with the validation set. The test set is used to

compare the performance of LSTM with other

methods. The data fragmentation method is given

in Fig 4. In Fig. 4 ntrain; nval and ntest are the

number of observations for training, validation

and test sets, respectively.
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The lengths of the validity and test sets are determined

by the frequency of observation of the time series. For

example, for a five-day series, both the validation and test

set can be taken as 20 to cover one month.

Step 3. Using Algorithm 2, train the LSTM using the

training data for all possible hyperparameter

values and calculate the root of mean square

error values for the validation set.

Algorithm 2 is repeated ðm2 � m1 þ 1Þ � ðn2 � n1 þ
1Þ � ðp2 � p1 þ 1Þ times in total according to possible

parameter values.

RMSEval ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

nval

Xntrainþnval

k¼ntrainþ1

yt � bytð Þ2
vuut ð22Þ

The error measure in this step can be chosen as a dif-

ferent error measure instead of RMSE.

Step 4. The best hyperparameter values are selected. The

best hyperparameter values (mbest; nbest; pbest)

are the hyperparameter values that give the

lowest RMSEval value.

The flow diagram of the hyperparameter selection

algorithm is given in Fig. 5.

4 Applications

The performance of the proposed new training algorithm in

this study is investigated over ten-time series randomly

selected from the closing prices of the FTSE 100 index.

The FTSE 100 index is a market-capitalization-weighted

index of UK-listed blue-chip companies. The index is part

of the FTSE UK Series and is designed to measure the

performance of the 100 largest companies traded on the

London Stock Exchange. The information of the randomly

selected time series is given in Table 1 and their graphs are

given in Fig. 6. The random selection of the time series

allows the closing values of different periods of the year to

be included in the training, validation and test set each time

and to make a more comprehensive and general

comparison.

In the application, the performance of the proposed

method is compared with the LSTM artificial neural

Fig. 3 Flowchart for the proposed training algorithm

Test

− +1, − +2,… ,

Validation

+1, +2,… , +

Train

1, 2,… ,

Fig. 4 The data partition for the hyperparameter selection
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network trained with the Adam algorithm. When the most

frequently used LSTM training algorithm in the literature is

the Adam algorithm, the main success criterion of this

study is to be able to reveal a more successful training

algorithm than this algorithm. In addition, the performance

of the proposed training algorithm is compared with Pi-

Sigma, a high-order artificial neural network, and a simple

recurrent deep artificial neural network (SRNN), which is a

deep artificial neural network. Pi-Sigma and SRNN artifi-

cial neural networks are also trained with a training algo-

rithm based on the PSO algorithm, similar to the proposed

method.

In the implementation of all methods, the hyperparam-

eter selection problem is performed with the hyperparam-

eter selection algorithm used for the proposed method,

ensuring a fair comparison. In the applications, the vali-

dation and test set lengths are taken as 60 for all series and

all methods.

For the best hyperparameters, all methods are trained 30

times using different random initial weights, and the mean,

standard deviation, and minimum and maximum statistics

of the RMSE values obtained for the test set are calculated

for these 30 replicates. In addition, the performance of the

proposed method over these 30 replicates is compared with

all methods separately using Wilcox’s Signed Rank Test,

and the p-values obtained for the significance obtained are

given in the last column of the table. P-values less than the

probability of type 1 error ðaÞ determined in the last col-

umn indicate a statistically significant difference. All these

results are presented in Table 2 for all series. In addition,

the best hyperparameter values selected on the validation

set for all methods are given in Table 3. Since Pi-Sigma

ANN is not a deep artificial neural network, the number of

hidden layers is fixed and 1.

When Table 2 is examined, it is seen that the most

successful method for Series 1 is Pi-Sigma. For Series 1, it

is seen that LSTM-ADAM produces lower mean RMSE

values than the proposed method. It is also seen that

LSTM-ADAM has a lower standard deviation and maxi-

mum statistics. When the proposed method is compared

with LSTM-ADAM, it is understood that LSTM-ADAM

has a statistically significant difference from the proposed

Fig. 5 The flowchart of the hyperparameter selection algorithm

Table 1 The information about the randomly selected time series from FTSE 100 closing prices

Series Number of observations Training set dates Validation set dates Test set dates

Series 1 500 01.11.2019–05.05.2021 06.05.2021–27.07.2021 28.07.2021–20.10.2021

Series 2 500 22.05.2020–12.11.2021 15.11.2021–07.02.2022 08.02.2022–05.02.2022

Series 3 500 01.10.2015–27.03.2017 28.03.2017–21.06.2017 22.06.2017–15.09.2017

Series 4 500 09.06.2020–30.11.2021 01.12.2021–23.02.2022 24.02.2022–23.05.2022

Series 5 500 01.10.2018–02.04.2020 03.04.2020–29.06.2020 30.06.2020–22.09.2020

Series 6 500 31.07.2015–24.01.2017 25.01.2017–19.04.2017 20.04.2017–14.07.2017

Series 7 500 26.08.2016–20.02.2018 21.02.2018–17.05.2018 18.05.2018–10.08.2018

Series 8 500 28.03.2018–27.09.2019 30.09.2019–19.12.2022 20.12.2019–20.03.2020

Series 9 500 09.09.2020–04.03.2022 07.03.2022–30.05.2022 31.05.2022–24.08.2022

Series 10 500 25.09.2020–22.03.2022 23.03.2022–15.06.2022 16.06.2022–09.09.2022
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Fig. 6 The randomly selected

ten time series graphs from

FTSE 100 Closing Prices
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method according to the Wilcoxon signed rank test and

produces better forecasting results. Besides, it is seen that

the proposed method for Series 1 and the results of SRNN

have statistically equivalent performance according to

Wilcoxon signed rank test.

When the results given for Series 2 in Table 2 are

examined, it is understood that the proposed method has

more successful RMSE statistics than all methods and

these differences are statistically significant according to

Wilcox’s signed rank test. When the results for Series 3 are

examined in Table 2, it is seen that the most successful

Table 2 The RMSE statistics for methods

Data Sets Methods Mean Std. Dev Minimum Maximum Wilcoxon test p-value

Series 1 LSTM-ADAM Hocreiter and Schmidhuber (1997) 0.008966 0.000005 0.008956 0.008973 0.000002

Pi-Sigma Shin and Gosh (1991) 0.008857 0.000017 0.008827 0.008901 0.000002

SRNN Bas et al. (2022b) 0.009131 0.000186 0.008896 0.009668 0.298944

Proposed Method 0.009120 0.000095 0.008950 0.009368

Series 2 LSTM-ADAM Hocreiter and Schmidhuber (1997) 0.021159 0.000116 0.020910 0.021366 0.000002

Pi-Sigma Shin and Gosh (1991) 0.020419 0.000284 0.020089 0.021380 0.000002

SRNN Bas et al. (2022b) 0.020426 0.000289 0.020032 0.021322 0.000005

Proposed Method 0.020068 0.000035 0.020000 0.020150

Series 3 LSTM-ADAM Hocreiter and Schmidhuber (1997) 0.007970 0.000039 0.007898 0.008052 0.025637

Pi-Sigma Shin and Gosh (1991) 0.007856 0.000177 0.007671 0.008404 0.024308

SRNN Bas et al. (2022b) 0.007828 0.000045 0.007747 0.007929 0.000005

Proposed Method 0.007937 0.000089 0.007788 0.008153

Series 4 LSTM-ADAM Hocreiter and Schmidhuber (1997) 0.022075 0.000296 0.021357 0.022650 0.000002

Pi-Sigma Shin and Gosh (1991) 0.019593 0.000210 0.019122 0.020083 0.000160

SRNN Bas et al. (2022b) 0.019532 0.000123 0.019373 0.019805 0.000148

Proposed Method 0.019422 0.000061 0.019361 0.019649

Series 5 LSTM-ADAM Hocreiter and Schmidhuber (1997) 0.013290 0.000016 0.013244 0.013317 0.000002

Pi-Sigma Shin and Gosh (1991) 0.013166 0.000007 0.013146 0.013178 0.002105

SRNN Bas et al. (2022b) 0.013167 0.000090 0.012941 0.013328 0.557743

Proposed Method 0.013153 0.000033 0.013085 0.013286

Series 6 LSTM-ADAM Hocreiter and Schmidhuber (1997) 0.010800 0.000005 0.010791 0.010816 0.000006

Pi-Sigma Shin and Gosh (1991) 0.010690 0.000042 0.010578 0.010829 0.688359

SRNN Bas et al. (2022b) 0.010660 0.000055 0.010558 0.010866 0.228880

Proposed Method 0.010684 0.000089 0.010538 0.010843

Series 7 LSTM-ADAM Hocreiter and Schmidhuber (1997) 0.012468 0.000104 0.012296 0.012642 0.000010

Pi-Sigma Shin and Gosh (1991) 0.012228 0.000102 0.012057 0.012567 0.003854

SRNN Bas et al. (2022b) 0.012327 0.000042 0.012219 0.012439 0.040702

Proposed Method 0.012295 0.000072 0.011998 0.012394

Series 8 LSTM-ADAM Hocreiter and Schmidhuber (1997) 0.034638 0.000038 0.034496 0.034654 0.000008

Pi-Sigma Shin and Gosh (1991) 0.034349 0.000008 0.034342 0.034378 0.000002

SRNN Bas et al. (2022b) 0.034580 0.000019 0.034516 0.034601 0.012453

Proposed Method 0.034563 0.000021 0.034523 0.034617

Series 9 LSTM-ADAM Hocreiter and Schmidhuber (1997) 0.016315 0.000010 0.016305 0.016342 0.000097

Pi-Sigma Shin and Gosh (1991) 0.016339 0.000057 0.016209 0.016412 0.958990

SRNN Bas et al. (2022b) 0.016331 0.000015 0.016307 0.016386 0.404835

Proposed Method 0.016341 0.000028 0.016303 0.016397

Series 10 LSTM-ADAM Hocreiter and Schmidhuber (1997) 0.014149 0.000064 0.014002 0.014252 0.000771

Pi-Sigma Shin and Gosh (1991) 0.014354 0.000243 0.014021 0.015187 0.000007

SRNN Bas et al. (2022b) 0.014116 0.000000 0.014116 0.014117 0.001114

Proposed Method 0.014100 0.000027 0.014029 0.014155
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method is SRNN and it produces statistically more suc-

cessful forecasting results than the proposed method. In

addition, it is seen that the proposed method produces more

successful forecasting results than the LSTM-ADAM

method and this difference is statistically significant

according to the Wilcoxon signed-rank test. When the

results for Series 4 are examined in Table 2, it is seen that

the most successful method is the recommended method

according to the mean, standard deviation and maximum

statistics, only the pi-sigma method produces a lower

RMSE than all other methods according to the minimum

statistics. However, it is understood that the results pro-

duced by the proposed method have a statistically lower

median than all other methods according to the Wilcoxon

signed-rank test.

Table 3 The best

hyperparameter values for all

methods

Data sets Methods pbest nbest hbest

Series 1 LSTM-ADAM Hocreiter and Schmidhuber (1997) 5 1 5

Pi-Sigma Shin and Gosh (1991) 1 1 4

SRNN Bas et al. (2022b) 3 1 3

Proposed Method 4 1 3

Series 2 LSTM-ADAM Hocreiter and Schmidhuber (1997) 5 5 5

Pi-Sigma Shin and Gosh (1991) 3 1 5

SRNN Bas et al. (2022b) 4 1 3

Proposed Method 4 3 2

Series 3 LSTM-ADAM Hocreiter and Schmidhuber (1997) 5 5 5

Pi-Sigma Shin and Gosh (1991) 4 1 5

SRNN Bas et al. (2022b) 3 1 1

Proposed Method 4 1 2

Series 4 LSTM-ADAM Hocreiter and Schmidhuber (1997) 1 5 1

Pi-Sigma Shin and Gosh (1991) 3 1 2

SRNN Bas et al. (2022b) 4 1 3

Proposed Method 2 2 1

Series 5 LSTM-ADAM Hocreiter and Schmidhuber (1997) 4 2 4

Pi-Sigma Shin and Gosh (1991) 1 1 4

SRNN Bas et al. (2022b) 5 1 2

Proposed Method 5 2 2

Series 6 LSTM-ADAM Hocreiter and Schmidhuber (1997) 5 1 5

Pi-Sigma Shin and Gosh (1991) 3 1 3

SRNN Bas et al. (2022b) 3 1 1

Proposed Method 3 1 2

Series 7 LSTM-ADAM Hocreiter and Schmidhuber (1997) 4 5 4

Pi-Sigma Shin and Gosh (1991) 5 1 2

SRNN Bas et al. (2022b) 3 1 1

Proposed Method 3 1 3

Series 8 LSTM-ADAM Hocreiter and Schmidhuber (1997) 1 1 1

Pi-Sigma Shin and Gosh (1991) 1 1 4

SRNN Bas et al. (2022b) 1 3 2

Proposed Method 3 5 1

Series 9 LSTM-ADAM Hocreiter and Schmidhuber (1997) 2 1 2

Pi-Sigma Shin and Gosh (1991) 1 1 4

SRNN Bas et al. (2022b) 5 5 2

Proposed Method 2 2 3

Series 10 LSTM-ADAM Hocreiter and Schmidhuber (1997) 3 4 3

Pi-Sigma Shin and Gosh (1991) 5 1 3

SRNN Bas et al. (2022b) 3 5 2

Proposed Method 2 1 3
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When the results for Series 5 are examined in Table 2, it

is seen that the most successful method is the recom-

mended method according to the mean, minimum and

maximum statistics, only the Pi-sigma method is lower

than all other methods according to the standard deviation

statistics. However, it is understood that the results pro-

duced by the proposed method have a statistically lower

median than all other methods except SRNN according to

the Wilcoxon signed-rank test. It is understood that the

forecasting performance of the proposed method and the

SRNN method are equivalent according to the Wilcoxon

signed-rank test.

When the results for Series 6 are examined in Table 2, it

is seen that the most successful method is SRNN according

to the mean, minimum and maximum statistics. However,

it is understood that the forecasting performance produced

by the proposed method is statistically equivalent to

SRNN, Pi-sigma. In addition, it is seen that the proposed

method produces more successful and statistically signifi-

cant results than the LSTM-ADAM method.

When the results for Series 7 are examined in Table 2, it

is seen that the most successful method is the recom-

mended method according to the standard deviation, min-

imum and maximum statistics. Pi-sigma ANN produced

lower mean statistics. In addition, Pi-sigma ANN produces

forecasting results with a lower median according to Wil-

cox’s signed rank test. In addition, it is seen that the pro-

posed method produces more successful and statistically

significant results in all statistics than LSTM-ADAM and

SRNN methods according to the Wilcoxon signed-rank

test. When the results for Series 8 are examined in Table 2,

a situation similar to the results obtained for Series 7.

When the results for Series 9 are examined in Table 2, it

is seen that the best results are obtained from the LSTM-

ADAM algorithm. Besides, it is understood that the per-

formance of the proposed method is equivalent to Pi-sigma

and SRNN according to Wilcox’s signed rank test. Finally,

when the results for Series 10 in Table 2 are examined, it is

seen that the best mean and maximum statistics results are

obtained from the proposed method. In addition, it is

understood that the SRNN method produces the best results

according to the minimum and standard deviation statistics.

It is understood that the method with the lowest median

according to Wilcox’s signed rank test is the recommended

method and produces RMSE statistics with a statistically

significant difference and a lower median. When Table 3 is

examined, it is understood that the best hyperparameter

values vary considerably according to the series and the

applied method. Although the proposed method and

LSTM-ADAM methods have the same artificial neural

network structure, different training algorithms may cause

different hyperparameter selections.

5 Conclusion and discussions

In this study, an LSTM architecture for solving the fore-

casting problem with LSTM and a new PSO-based training

algorithm for solving LSTM in this architectural structure

is proposed. The proposed training algorithm has superior

features compared to the Adam algorithm, which is the

most frequently used and derivative-based training algo-

rithm in the literature. Since the proposed training algo-

rithm is based on PSO and does not require derivatives,

there is no problem in the search space regions where the

error function, which is possible for the Adam algorithm,

cannot be differentiated.

In addition, the restart strategy in the proposed method

reduces the variation caused by the differences in the

random selection of the starting weights and ensures the

homogeneity of the results. It was expected and observed

that the early stopping condition could cure the overfitting

problems. All these findings are supported by the results

obtained in the application. While the success of the pro-

posed method in practice is 50%, Pi-Sigma 30%, SRNN

10% and LSTM-ADAM 10%. In addition, when the pro-

posed method is compared with LSTM-ADAM, it is seen

that the proposed method produces more successful fore-

casting results in the LSTM-ADAM method in 80% of all

series. All these findings are supported by the results

obtained using Wilcox’s signed rank test. As a result, an

effective and new training algorithm has been introduced

for the solution of the univariate time series forecasting

problem.

In future studies, it is planned to improve the results

further by making adjustments in the LSTM architecture

that will positively affect the forecasting performance. In

addition, the use of different artificial intelligence opti-

mization algorithms in the training algorithm is included in

the plans of our future studies as another subject that

should be investigated.
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