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Abstract

Hospital performance evaluation is vital for effective hospital management as it provides valuable information about a
hospital’s condition and enables adaptable implementation based on various attributes. In this research, a multi-attribute
group decision-making (MAGDM) method using a 2-tuple linguistic 7-spherical fuzzy set (2TL7-SES) is proposed in the
context of the cognitive information presented in the hospital evaluation process. The T-spherical fuzzy set is the most
advanced generalization of the g-rung orthopair fuzzy set (g-ROFS) which is capable of handling the uncertainty, fuzziness
and ambiguity in terms of four parameters: positivity (yes), negativity (no), impartiality (abstain), and denial (non-
acceptance). The 2-tuple linguistic terminology is used to measure the validity of ambiguous data. We propose the 2TLT7-
SF Hamy mean (2TL7-SFHM) operator, 2TL7-SF weighted Hamy mean (2TL7-SFWHM) operator, 2TL7-SF dual Hamy
mean (2TL7-SFDHM) operator and 2TL7-SF weighted dual Hamy mean (2TL7-SFWDHM) operator by combining the
2TLT-SFS and HM operator. Then, based on the proposed maximizing deviation method, a new optimization model is built
that is able to exploit expert preference to find the best objective weights among attributes. Next, we extend the TOPSIS
(technique for establishing order preference by similarity to the ideal solution) method to the 2TL7-SF-TOPSIS version
which not only accounts for human cognition’s inherent uncertainty but also allows experts a wider context to express their
decision. Finally, we give a case study about the selection of key performance indicators for hospital performance
evaluation to support our proposed method. The findings from parameter analysis and comparative analysis demonstrate
the method’s efficacy and reliability. The outcomes demonstrate that our approach successfully handles the assessment and
choice of key performance indicators for hospital performance evaluation and captures the relationship between any
number of attributes.

Keywords 2-Tuple linguistic 7-spherical fuzzy set - Maximizing deviation - TOPSIS - Key performance indicator -
Hospital performance evaluation

1 Introduction

People are increasingly seeking quality medical resources
as the US economy continues to grow quickly. In this
scenario, prestigious hospitals are overloaded with patients,
registration is challenging, primary healthcare facilities are
understaffed and wasting medical resources. Therefore, it
is essential to use cutting-edge hospital administration
technologies to raise the general medical standards of
public hospitals. Hospital performance evaluation (HPE) is

Extended author information available on the last page of the article

an effective technique used by hospital managers to assess
and supervise hospital activities (Mohammadkarim et al.
2011). Hospitals can analyze their strengths and weak-
nesses to improve medical standards based on key perfor-
mance indicators (KPIs) for the HPE. KPIs for HPE will
serve as a kind of feedback for US medical reform. It is a
guideline to improve the performance of hospital/medical
departments if the performances of a hospital in different
periods are different. There are diverse KPIs that should be
considered in HPE, for example, hospital equipment, ser-
vice attitude, medication and pharmaceutical, hospital
sanitation, and environment. In this regard, it is difficult to
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select the best hospital that outperforms the competition in
every way. Although several models have been developed
to assess hospital performance but the majority of them
either have limited application or assess performance in
various ways. Few hospital performance assessment sys-
tems contain a balanced review of the inputs, processes,
and outputs. Some of these models have a stronger
emphasis on structural components or inputs, while others
are more concerned with process evaluation and some of
them with results. As a result, different studies have uti-
lized different models. The identification of performance
evaluation objectives, the assessment of various aspects of
hospital performance, and the involvement of stakeholders
in the design and development of the performance evalu-
ation system are some of the difficulties in the design of a
hospital performance evaluation system (Taslimi and
Zayandeh 2013). Hospitals are large users of health system
expenditures and resources; therefore, it is not surprising
that scholars and policymakers pay particular attention to
them (Sadeghifar et al. 2011).

Multi-attribute decision-making (MADM) is a crucial
part of decision sciences that can provide ranking results
for finite alternatives based on the attribute values of var-
ious alternatives. MAGDM, also known as multiple criteria
group decision making (MCGDM), has become a popular
study topic in recent years due to the ambiguity and
fuzziness of human thought and objective matter (Akram
and Bibi 2023; Akram et al. 2023; Alahmadi et al. 2023;
Chang et al. 2014; Kumar and Chen 2022a, b; Liu et al.
2020a, b; Salsabeela et al. 2023). In general, the develop-
ment of enterprises and social decision-making (DM) has
been linked to the issue of MADM in recent years which
has been widely used in a variety of fields (Akram et al.
2021; Garg etal. 2021; Liu etal. 2022; Naz et al.
2022a, b, ¢, d, e). A significant difficulty in the real-world
DM process is expressing attribute values more efficiently
and accurately. It is not enough to express the attribute
values of alternatives with exact values due to the fuzziness
of DM environments and the complexity of DM problems.
Zadeh (1965) was the first to propose the fuzzy set theory
which is the most effective DM environment for dealing
with imprecise, vague, or incomplete information. As a
generalization of the concept of a fuzzy set (FS), Atanassov
(1999) introduced the concept of an intuitionistic fuzzy set
(IFS) characterized by a membership degree (MD) and a
non-membership degree (NMD) whose sum of MD and
NMD is less than or equal to 1. Pythagorean fuzzy set
(PFS) (Yager 2013) has recently emerged as a helpful and
effective tool for representing uncertainty in MAGDM
problems (Zeb et al. 2019). The sum of squares of MD and
NMD is less than or equal to 1, a feature of the PFS that
makes it more generic than the IFS. Yager (2016) proposed
the g-ROFS based on IFS and PFS in which the sum of the
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qth power of the MD and the gth power of the NMD is
limited to one. All of the aforementioned sets, nevertheless,
contain duplet forms (such as MD and NMD), which
makes it challenging for them to account for the various
degrees of abstinence and refusal.

To resolve the limitations of the above-mentioned sets,
Mahmood et al. (2019) presented the 7-SFS, a general-
ization of the g-ROFS with a high capacity to cope with
uncertainty. The 7-SFS is constructed by three different
functions known as MD, abstention degree (AD), and
NMD, with the condition that the total of the three degrees’
qth powers does not exceed 1. 7-SFS has a variety of
structures, but they are comparable to g-ROFS as it has a
better ability to solve MAGDM scenarios than g-ROFS,
when there is ambiguity as illustrated in the prior discus-
sion. 7-SF Hamacher aggregation operators (AOs) were
developed by Ullah et al. (2020) to evaluate investment
performance. Guleria and Bajaj (2020) developed two
algorithms for solving supply chain management and ser-
vice center evaluation problems using the 7-SF graph
concept. Ullah et al. (2018) developed 7-SFSs similarity
measures and utilized them for pattern recognition. Quek
et al. (2019) introduced generalized 7-SF weighted AOs.
Vagueness and imprecision might make it difficult for
experts to express their opinions clearly while maintaining
a steady and accurate DM process. In general, experts
involved in these issues employ linguistic descriptors to
deal with imprecision.

There have been many breakthroughs in research on
linguistic MAGDM issues, since Zadeh (1975) proposed
the notion of linguistic variables (LVs), specifically to
solve linguistic MAGDM concerns. In many domains and
applications, the fuzzy linguistic approach has provided
excellent results. In recent literature, various scholars have
investigated the difficulties of group DM in which both
attribute and decision expert weights are expressed as lin-
guistic terms. They defined linguistic assessment opera-
tional principles, established a few new operators and
proposed an MAGDM-based method that focuses on actual
linguistic knowledge. Herrera and Martinez (2000a); Her-
rera and Martinez (2000b) proposed 2TL computational
model, 2TL AOs, and DM methodologies. Wang (2009)
proposed the evaluation model for selecting an appropriate
agile manufacturing system. Novel 2TLPF Heronian mean
AOs were examined by Deng et al. (2019) by combining
the generalized and geometric Heronian mean AOs with
their weighted forms in the context of 2TLPFNs. Ju et al.
(2020) proposed the g-ROFTL weighted averaging and
weighted geometric operators. They also demonstrated the
q-ROFTL Muirhead mean and dual Muirhead mean oper-
ators. The complex g-ROFTL Maclaurin symmetric mean
(MSM) and the complex g-ROFTL dual MSM operators
were introduced by Rong et al. (2020) along with other
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appealing aspects of the proposed operators. Wang et al.
(2021) proposed the interval 2TLIF numbers to more
accurately depict the fuzziness of human thoughts and to
prevent information loss/distortion during information
aggregation phases. The payoffs of the matrix game were
represented by Verma and Aggarwal (2021) using 2TIFL
values.

Many different types of studies have been conducted to
become aware of the correlation between arguments which
is an important feature of aggregated data. The HM (Hara
et al. 1998) and DHM (Wu et al. 2018) operators are well-
known for depicting interrelationships between any number
of parameters assigned via variable vector. One of the most
all-encompassing, adaptive, and prevalent notions is the
HM operator which is utilized by certain academics to
operate problematic and contradicting data in a variety of
settings to determine the relationship between various
properties. As a result, the HM and DHM operators can
provide a reliable and adaptable technique for solving
information fusion challenges in MAGDM problems.
Liang (2020) also initiated the HM operators for IFSs. Li
et al. (2018a, 2018b) proposed the Dombi HM operators
for IFSs. Wu et al. (2019) initiated and developed the
Dombi HM operators for interval-valued IFSs. Li et al.
(2018a) investigated the HM operators for PFS. Wang
et al. (2019) investigated the HM operators under the g-
ROFSs.

Various methods such as PROMETHEE (Chen et al.
2015), MULTIMOORA (Gou et al. 2017), VIKOR (Opri-
covic and Tzeng 2004), and KEMIRA (Krylovas et al.
2014) have been proposed in recent years to handle
MAGDM problems. Attribute weighting and alternative
ranking were the two steps of MAGDM. There are multiple
approaches for calculating the weights of various attributes.
Some of these strategies are based on data, while others are
based on the expertise and understanding of the designers
or engineers. The maximizing deviation method is one of
the most frequently utilized methods for weighing attri-
butes based on expert judgements.Furthermore, TOPSIS is
an alternate ranking method for determining the best
alternative with the least and largest distances from the
positive ideal solution (PIS) and negative ideal solution
(NIS), respectively. This method is slightly less difficult
than previous weight-measurement methods. Various
MAGDM breakthroughs have been integrated into studies
throughout the years, which have been developed by pre-
vious studies to tackle increasingly tough decision dilem-
mas in our daily lives. The following are essential
components of every evaluation: (a) alternatives; (b) at-
tributes; (c) relative relevance (importance/value) of each
attribute; (d) measurement of the quality of the alternatives
with the attribute; and (e) means of distinguishing between
distinct alternatives. The goal of the MAGDM strategy is to

choose the best alternative among several reasonable
alternatives, all subject to varying degrees of competi-
tiveness. Hwang and Yoon (1981a, 1981b) strategy for
establishing the TOPSIS method is one of the most effec-
tive and desirable DM techniques. Many researchers
extended this method with different operators. Liang and
Xu (2017) extended the TOPSIS method to a hesitant
Pythagorean fuzzy environment. There is considerable lit-
erature devoted to the study and application of TOPSIS
theory to a wide range of MAGDM problems. As the
limitations of classical data in real applications became
apparent, some specialists began to design a new TOPSIS
method in a variety of contexts (fuzzy environment, IF
environment, PF environment, and so on). Few researchers
have extended the TOPSIS method in diverse contexts.

TOPSIS is a valuable tool, since it determines the dis-
tance between each alternative to the PIS and NIS. Fur-
thermore, the TOPSIS method has numerous advantages,
including: (1) the computing results are consistent; (2)
calculating equations is not difficult; (3) the model can be
used in conjunction with other methodologies. As a con-
sequence, we may conclude that the TOPSIS framework is
an important tool in today’s DM context. According to the
aforementioned study, there is no published information
concerning the 2TLT7-SF-TOPSIS method based on HM
operators. The goal of this research is to utilize the concept
of 2TLT-SFS. Furthermore, because information AQOs are
important in DM techniques, we propose that the HM AOs
can be used in a 2TL7-SF environment to better reflect the
assessed values than other methods. The following are
some of the objectives and novelties of this study article
that are unique:

— The 2TL7-SES is utilized for communicating data
complexity. The 2TL7-SFS combines the benefits of
both the 2TL terms and 7-SFSs which also increases the
T-SFS’s effectiveness.

— To cope with group DM problems in which the
attributes have interrelationships, we design a family
of HM AOs of 2TLT-SFS, such as the 2TL7-SFHM
operator, the 2TL7-SFWHM operator, the 2TL7-
SFDHM operator, and the 2TL7-SFWDHM operator.

— Certain theorems, properties, and formal definitions of
the suggested information AOs are discussed under the
current circumstances.

— In this paper, we propose a new maximizing deviation
method for objectively determining attribute weights
under 2TLT-SF environment.

— To rank the alternatives, the 2TL7-SF-TOPSIS method
is proposed which is based on the 2TL7T-SFWHM and
2TLT-SFWDHM operators. The evaluation preferences
of experts are fused using a unique MAGDM model.
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— To present the usefulness and effectiveness of the
proposed method, we give an illustrative example of the
selection of KPIs for HPE.

To the best of our knowledge, the above-mentioned dis-
cussions have never been done before, which adds to the
distinctiveness of our research work. The following is the
structure of the paper: Sect. 2 covers various key ideas,
including the 2TL representation model, a description of 7-
SFS, the HM operator, and the dual HM operator. It also
introduces the notion of 2TLT7-SFSs, as well as its opera-
tional laws. The 2TL7-SFHM, 2TL7-SFDHM, 2TLT-
SFWHM, and 2TL7-SFWDHM aggregation operators with
the optimal properties are developed in Sect. 3. In Sect. 4,
a MAGDM strategy is constructed using the 2TLT-
SFWHM and 2TL7-SFWDHM operators in the 2TL7-SF
environment. Section 5 provides a numerical example,
parameter influence, comparison analysis, and benefits to
illustrate the usefulness and superiority of the established
method. Finally, Sect. 6 summarizes the research study and
suggests future directions.

2 Preliminaries

Definition 1 (Herrera and Martinez 2000a, b) Let S =
{s;J7=0,1,...,7} be a linguistic term set (LTS) and ¢ €
[0, 7] be a numeric value expressing the linguistic symbolic
aggregation result. The function A for obtaining the 2-tuple
linguistic information comparable to ¢ is thus defined as
follows:

A:]0,7] — S x [-0.5,0.5),

{85, =round(g)
Ao = {vzg—j, v € [-05,0.5), (1)

where round (.) is the usual round operation and s, has the
closest index label to g.

Definition 2 (Herrera and Martinez 2000a, b) Let S =
{s;J7=0,1,...,7} be a LTS and (s,,v,) be a 2-tuple, there

exists a function A~! that restore the 2-tuple to its equiv-
alent numerical value ¢ € [0,7] C R, where

A" S x [-0.5,0.5) — [0,1],

A (s,0) =g+ v=0. @)

Mahmood et al. (2019) defined the T-spherical fuzzy set
as an extension of g-ROFS and SFS (spherical fuzzy set) as
follows:

Definition 3 (Mahmood et al. 2019) For any universal set
L, a T-SFS is of the form

@ Springer

T = {4 (p(2), h(2),r(A))|4 € L},

where p,h,r : L — [0, 1] represent the MD, AD and NMD,
respectively, with the condition 0< (p(4))? + (h(4))? +
(r(2))?<1 for positive number g>1 and =(4)=
Y11= (pONT+ (h(2)T + (r(2)?) is known as the
degree of refusal of 4 in 7. To express information con-
veniently, the triplet (p, &, r) is known as a T-SFN.

A T-SFN is a generalized form of existing fuzzy
framework and it reduces to:

(i) Spherical fuzzy number; by taking g as 2.
(i)  Picture fuzzy number; by taking ¢ as 1.
(iii) g-Rung orthopair fuzzy number; by taking & as

Zero.

(iv) Pythagorean fuzzy number; by taking s as zero
and g as 2.

(v) Intuitionistic fuzzy number; by taking h as zero
and g as 1.

(vi)  Fuzzy number; by taking % and r as zero and g as
1.

Inspired by the ideas of 2TL terms and 7-SF sets, Naz
et al. (2022a) proposed the new concept of 2TLT-SFSs by
combining both the advantages of 2TL terms and 7-SFSs.
The newly proposed set has flexibility due to the gth power
of MD, AD and NMD. The mathematical representation of
2TLT-SFS is described as follows:

Definition 4 (Naz et al. 2022a) A 2TL7-SFS F in L
F = {(2 ((sp(2), 9(2); (s(2), n(2)), (s:(A), L)) [ 2 € L}, (3)

where (s,(4), 9(4)), (sa(4),n(4)), and (s(4),{(4)) repre-
sent the positive, neutral and negative membership degrees,
respectively, with the conditions s,(2),s4(4),s.(1) € F,
p(4),n(2),{(2) € [-0.5,0.5),  0<AT(5,(4), (1) <7,
0<A 'sp(A),n(A)<t, 0<A'(s,(1),{(2))<t and
0.< (A7 (s5p(4), ()" + (A7 (sn(2), (2))) "+ (a7
(s,(4), ¢(2))?<74. For convenience, we say F =
((S[% p)a (Sha ’1)) (sr» C))’ is a 2TLT-SFN.

To compare any two 2TLT7-SFNs, their score function
and accuracy function are defined as follows:

Definition 5 (Naz et al. 2022a) Let F=
(($p, ), (sn,1), (8r,()) be a 2TLT-SEN. Then, the score
function F can be represented as

FP) = A(s (1+ (22) - (A P e 0,9, (4)

and its accuracy function 3 is defined as
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AF) = A(f((A l(sp,@)) +<A 1(&_,;))4))7 2F) € [0, 1] Definition 7 (Naz etal. 2022a) Let F
((Splﬂ@1)7(sh177ll)a(Srlaél)) and F, =

Here, we will put forward the novel operational laws
based on the 2TL7-SFNs, such as addition, multiplication,
scalar multiplication and power rule.

Definition 6 (Naz et al. 2022a) Let F=
((sw p), (sh7 7])7 (sr’ C))’ Fi = ((spl ) @l), (sh] ) 7]1)’ (Srl ) Cl))

and
F> = (($p,,02), (Shys M2), (8r,, (2)) be three 2TLT-SFNE,
g > 1, then

((Spy> 2), (Shy>12), (51,5 (2)) be two 2TLT-SFNs, then these
two 2TL7-SFNs can be compared according to the fol-
lowing rules:

(1) If F(Fy) > F(F,), then F; > F>;
(2) If F(Fy) = F(F3), then
- If D(Fl) > j(Fz), then F| > F»;
- If :(Fl) ::(Fg), then F| ~ F5.

. Al z! 1—<1—(W>q> <1_<W>q> |
FloF, — A<T (Al(sh”m)> (A1(5h27n2>>>7A(‘C (Al(srl,&)) (Al(smCz)))
) A< <A—‘(sp,,p1)> A"(sz,m)>>’
FloF=| Mt <1 - (A_I(S:”m)y) <1 <A_ (s:zm))q) |

INEXNIE <1_ (M)j (1 - (My)

3 The 2TLT7T-SF Hamy mean aggregation
operators

Hara et al. (1998) proposed the concept of Hamy mean
aggregation operator. In this section, the 2TL7-SFHM,
2TLT-SFWHM, 2TL7-SFDHM and 2TL7-SFWDHM
operators are proposed for aggregating the 2TL7-SFNs by
extending the HM AOs to the 2TL7-SF environment. Since
2TLT-SFS is a useful technique for expressing ambiguous
data in a real-world DM context. Core properties of AOs
are idempotency, monotonicity and boundedness.

Here, we introduce the new concept of the 2TL7-SFHM
operators for aggregating 2TL7-SFNs, and examine its
distinctive and preferred properties by generalizing the HM
operator with 2TLT-SFS.
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Definition 8 Let F, = ((sp,.4,), (sn,,1,), (5,8,)) (7 =
1,2,...,n) be a collection of 2TLT-SFNs. The 2TLT-
SFHM operator is a mapping 7" — T, such that

D <n<..<i;<n <®Z: Fz/>;
aFﬂ): S <C<‘Z = ! (6)

n

2TLT-SFHM@ (F, F;, ...

Theorem 1 Utilizing the 2TLT-SFHM operator, the
aggregated value is also a 2TLT-SFN, where

2TLT-SFHM@(F\, F,, ..., F,)

q 4 Ail s % “
A IJI— I (1— (Hi(s””m)) )
1<y<..<i,<n =1 T

I1 11—

z L (2 Gnomy)
]<1|< <1 <n =1
N &
2 A—I s, L N\ "
171—[ - (sr,,8)
l<z|< <1.<n =1 T

:1

Proof By utilizing Definition 6, we get

<T lill (SPI’ p])) ,
z A (s, !
@ F, = A T, 1@(1(2’1"’))) :

Thus,

| o[ (- () ) )

Therefore
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1

D1 <y<..<w<n (®j:]Fz,>:

‘ < A s 00\
Al 271 = I 11 (51/,KJJ)
1<y<..<w:<n =1 T
q 2z A l
; ( n e (e )),
1<py<..<w.<n =1
( n i
1<py<..<i;<n 7

Sh/ ) ’71))
A (L)
T
Furthermore

~——
.
S———
N~ —

q
q

,1(
A'(Smg]) > )

2TLT-SFHM® (F\, F;, ..., F,)

q z A > : G
A 1J1 I (1<HW>> )
1<y<..<i;<n =1 T
. -1 N g
1<y<.. <L<n =1 T

a z Afl(SmC]) nN”
( 1<z|<lj<zj<n¢1_(/1<l_< T > ))

O

The desirable properties of the 2TLT-SFHM operator,
such as idempotency, monotonicity and boundedness, are
also described below.

Property 1 (Idempotency). If all F, =
((s,,j, ©,), (5n,,1,), (1, C]))(j =1,2,...,n) are equal, for
all 5, then 2TLT-SFHM@ (F|,F,,... F,) = F.
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Proof

2TLT-SFHM(F|, F,,. .., F,)

A(Tj - 11 (1 - (ﬁ_“@,,,m)’) )
1<py<..<i.<n =1 T

z Afl(%ﬂ) ! l

(1<11<H<1 <n : __/1<1 B ( T > > )

1<y<..<i; <n

{

( T
[ |
{fr

( Sps KJ ‘/17 =

O
Property 2 (Monotonicity). Let F, = ((sp,, ), (sn,,7,),
(50,8))  and  Fy = (5,0, (55,1, (5, 8)) (=
1,2,...,n) be two sets of 2TLT-SFNs, if F, < F;, for all 3,
then 2TLT-SFHM®) (F|,F,, ... F,) <
2TLT-SFHM© (F|, F}, ..., F.).
Proof Let  F, = ((s5,,9)), (s, 1) (s,,()))  and

F :((s;,_], EANCA ] @;,4))@ = 1,2,...,n)
sets of 2TLT-SFNs, let

. A s
o) =A|z|1- ] <H (5 K‘”)
1<y <..<w.<n 7=1

(Slu Vl) =Alr< H

be two

(s-0) =A|7 H

given that (s,,, 0,) < (s, , ¢); then

7 A— ¢ —1 ¢
<HA l(spj,p])> < <13[A (S;Ja@;)> .
J=1 T =1 T
Moreover

H 1— (ﬁA_l(s:p@J)>_ ’

1<y <..<1;<n

c AT(s, o)) )
11 1-(1‘[71 ) .

I1<p<..<i;<n =1

Y

Furthermore

q

- <ﬁ A-'<s:,,pj>>z

J=1

. <ﬁ A (ST;_,, @3))g

J=1

<
=2

Alt |1-— H

1<y <..<i;<n

<

<Alz |1- H

I<y<..<y;<n

Therefore, (sp, ) < (s),,¢'). Similarly, we can show that
(sn, 1) = (53,,") and (s, ) > (s, ).
Hence, 2TLT-SFHM®) (F|, F,, .. ., F,)

2TLT-SFHM® (F! | F}, ... F").

n

<
O
Property 3 (Boundedness). Let F, = ((sp, ),
(sn,51,)5 (51,,;)) (9 =1,2,...,n) be a collection of 2TLT-
SFNs and let F~ = rrbin((spj, ), (sn,,1,), (sn,,1,)) and
Fr= max((sp,, ©3): (,51,): (51, 11,)): F <
2TLT-SFHM® (F\,F,,...,F,) <F".. From Property 1,
2TLT-SFHM© (F;  Fy .. . F;)

= F~, 2TLT-SFHMY(F|  F},.. ,F[) = F".

then

From Property 2,

F~ <2TLT-SFHMY(F| F,,... F,) <F".

3.1 2TLT-SFWHM aggregation operator

The 2TL7-SFHM AO does not show the weighting values
of attributes in Theorem 1. To solve MAGDM issues,
attribute weights, expert weights and attribute evaluation
values are all crucial components. To overcome the
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constraints of the 2TL7-SFHM operator, we shall introduce
the 2TL7-SFWHM operator with certain preferred
properties.

Definiton 9 Let F,= ((s,,J, ©) (shj, 11]), (s,}, (N =
1,2,...,n) be a collection of 2TLT-SFNs with weight
vector &, = (&1,&,. ., fn)T, thereby satisfying ¢, € [0, 1]
and Z;':l ¢, = 1. The 2TLT-SFWHM operator is a map-
ping 7" — T, such that

s\ %
Di<y <...<;:§n(®]1:l(FU)<,,/)«
C: .

n

2TLT-FWHMY (F1, Fy, ... F,) =

Theorem 2 Using the 2TLT-SFWHM operator, the
aggregated value is also a 2TLT-SFN, where

2TLT-SFWHMY (F\, F», ..., F,,)
I.

q z A—] ) &\ ¢ Cn
Al |1- II (1( ( (Sﬂ/@./)> )) ’
1<y<..<i;<n = T
.
1 q\ &\ =
- ( 1(z<l<A <shj,nj>>> )) |
1<z,< .<i;<n =1 T
z A (s, 0) R
1_ <1_< ‘r77 ‘/>>
1<:.< <1, <u =1 T

©)

Proof By utilizing Definition 6, we get

. :,
Al A I(Spja@]) !
‘L' )
_ q\ &
Al (1o (A
T )
_ a\ &,
Al - <1_ (A 1“@7@) ) |
T

Then,
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®(F,)% = A(rdl <1 (Al(sh”"-’)> ) )
=1 T
{4 C5))
Thus,

Therefore

SDr<iy<..<,<n (®;:1 (Ft,‘)gr’):

Al'1- 11 (1 - ( - (AI(Sn,v@J))JI)J) 7
I<y<..<i<n =1 T

= A(I 11 jl_ ( z (1_ (AW%»",)) >”>>>7
1<py<..<i;<n =1 T

o ot £597)

Furthermore

2TLT-SFWHMY (i, F, ..., Fy)

AN
Al 0 A™ ' s,,J,gJJ)
1<p<..<.<n =1 T ’
. Afl(Y ) q qu l B
_ ] _ - 1— lll,vylj ,
1<11< A <n J=1 T

B 1. q\ &, 7\
' ( (17 <A 1<a,/,c_,>> ) ) )
l<l|< <i.<n =1 T

Property 4 (Monotonicity). — Let  F, = ((sp,,,),
(5151,)s (5, 5,)) and FL = (5}, 90), (s 1), (51, £) 5 =
1,2,...,n) be two sets of 2TLT-SFNs, if F, < F;, for all 3,
then
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2TLT-SFWHMY (Fy, F, ..., F,) 2TLT-SFDHMY)(Fy,Fs, ..., F,) = F.
<2TLT-SFWHMY(F|, F}, ..., F.).

Property 7 (Monotonicity). — Let  F, = ((sp,,,),

Property 5 (Boundedness). Let F, = ((sp, ;)
(su,>1,), (sr,,(,)) (7 =1,2,...,n) be a collection of 2TLT-
SENs and let F~ = min,((sp, ), (sn,,1,), (s,,,{;)) and
Fr= max]((sp]a ©;); (sh‘ya 77])7 (Sr,a C])); then

F~ <2TLT-SFWHMY(F|, F,, . ..

¢

JF,)<F*.

Idempotency is obviously not a property of the 2TL7-
SFWHM operator.

3.2 2TLT-SFDHM aggregation operator

In this subsection, we will augment the DHM operator with
2TLT-SFS to propose the 2TLT-SFDHM operator for
aggregating 2TLT-SFNs and also examine its desirable
properties.

Definition 10 Let F, = ((sp,,9,), (sn,, 11]), (50, )0 =
1,2,...,n) be a collection of 2TLT-SFNs. The 2TLT-
SFDHM operator is a mapping 7" — T, such that

) & F\\&
2TLT-SFDHM©)(Fy, Fs, ..., F,) = (®,§z.<___<,:gn(¥>> .
Z

(10)

Theorem 3 The aggregated value by utilizing 2TLT-
SFDHM operator is also a 2TLT-SFN, where

2TLT-SEDHM® (F|, F,, ..., F,)

A ‘c( I1 Jlﬂ<1 <Al(srpﬂpj)> >) )

= A(rj 1 - 11 (1 - ( - A](S”f’”.»)) h>\,
1<y<..<w.<n 7
A(zj - ] (1 _ < : AI(“‘r,vC.y)>?> )

Property F,=

((Sp,7 pj)a (shja 17‘7)7 (Srja C]))(] =12,.., n) are equal, for
all y, then

I
Q

Il
Q

6 (Idempotency). If all

(Shila 7].])7 (Srjv é/])) and F; = ((S;)J, p;)a (S;ljv ]7;)7 (S;], C;))(] -
1,2,...,n) be two sets of 2TLT-SFNs, if F, < F;, for all 3,
then

2TLT-SEDHM® (F|, F;, ..., F,)
<2TLT-SFDHM® (F| F}, ..., F!).

n

Property 8 (Boundedness). Let F,=
((sp,85)s (sm,5m,)5 (57, (,)) (9 = 1,2,...,n) be a collection
of  2TLT-SFNs  and  let  F~ = min,((sp,, ),
(5n,,1,)5 (s1,,8)))  and F" = maxy((sp,, ©,); (sn,: 1)),
(s,,(,));  then F~ <2TLT-SFDHMY (F|,F,, .. .,
F,) <F*.

3.3 2TLT-SFWDHM aggregation operator

The value of the aggregated arguments is not taken into
account by the 2TL7-SFDHM operator, as demonstrated in
Theorem 3. However, in many real-life situations, partic-
ularly in MAGDM, attribute weights play an important role
in the aggregation process. The 2TL7-SFDHM operator
does not consider the attribute values. The 2TLT7-
SFWDHM operator is proposed to overcome the con-
straints of 2TLT7-SFDHM.

Definition 11 Let F,= ((sp_,,p,),(sh/,r/]),(s,],ﬁj))(j:
1,2,...,n) be a collection of 2TL7-SFNs with weight
vector &, = (&1, &, .., 5,1)T, thereby satisfying &, € [0, 1]

n
and ) &, = 1. The 2TLT-SFWDHM operator is a mapping
=1
T" — T, such that

2TLT-SFWDHMY (F\, F,, .. ., F,)
EBﬁ;:lél/Fll CL” (]2)
= (®1§zl<.“<zz§n<'7' ) .

Z

Theorem 4 Using the 2TLT-SFWDHM operator, the
aggregated value is also a 2TLT-SFN, where
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2TLT-SFWDHM( (F), F»,.

Alt
]<11< <i<n )= ]
i N\ f\ G
A Y,I,’ﬂj)) />

= Al
! 1<r,< .<i,<n /:
1
| NG
A (s, s)
A ‘L' = N\ sy
l<u< <1, <n j:l

)

1

(13)

Property 9 (Monotonicity). Let F,=
((SPJ’ @])7 (sh,,v 77,7)7 (Sw C])) and F; = ((S;)jv p;)a (s;’lj7 173)7
(5,,0)): (7=1,2,...,n) be two sets of 2TLT-SFNs, if
F, SF,{/’ for all 3, then

2TLT-SFWDHMY (Fy, F, ..., F,)
<2TLT-SFWDHMY (F}, F), ..., F}).

Property 10 (Boundedness). Let F,=

((sp,, 9,), (sh‘},n]) (s:,(,))(9=1,2,...,n) be a collection
of 2TLT-SFNs and let F~ =min,((s,,,), (sx,1,),

(
(Srja C])) and F+ = max)((spm p])v (shjy 7]]) (srjv g])); then

F~ <2TLT-SFWDHM!(F|,F5,...,F,) <F*.

Idempotency is obviously not a property of the 2TL7-
SFWDHM operator.

4 The proposed methodology

red This section gives a framework for calculating attri-
butes weight and the ranking results with completely
unknown weight information and incomplete weight
information on attributes weight for all the alternatives
under the 2TLT7-SF environment.

Consider an MAGDM issue where there is a set of e
alternatives 2 = {E,8,,...,5,}, a set of n attributes [ =
{li,br,...,1,} and a set of r experts £ = {R;,RN>,..., R}
and let & = (&1,&,...,¢,) and &' = (&],8&,...,&) be the
weighting vectors of the attributes and the experts satis-
fying & € [0,1), & € [0, 1), 320, &, = land ), & = 1,
respectively. For attributes /,(y = 1,2,...,n), the evalua-
tion values of each alternative Z,(1 = 1,2,...,¢) given by

@ Springer

each decision maker $,(¢ = 1,2, .. .,t) are expressed in the

form of the 2TLT-SF decision matrices F) = (F\})),. .
4.1 Computation of optimal weights using
maximizing deviation method

Case I: Completely unknown information on attribute
weights

We build an optimization model based on the maximizing
deviation method to find the best relative weight for attri-
bute /, € [in a 2TLT-SF environment. The deviation of the
alternative &, to all other alternatives for each attribute /,
can be expressed as:

D,(&) = Z(:;)d(F,],FkJ), 1=1,2,...e, 7=12,...n
k=1

(14)
where
Ail(sﬂmg)u) q_ Ail(spkw%) ! q+ !
T T
—1/. q 1 q14
d(Fz]-,ij):A % (A (5:,/,’7,_1)> —(A (S:”’r]k‘y)> +
A (s G\ (A (G )|
T T
(15)

denotes the 2TLT-SF Euclidean distance between the
2TLT-SENs F,,, Fy,.
Let

D](é*) = ze:DlJ = i:
=1

e

< ) (FFi)y 7=1,2,...n
(16)

D, (&) represents the deviation value of all alternatives to
other alternatives for the attribute /, € I.

S S(Ed(F,, Fiy)

=li=1k=1

max D(&") =
(M—1)
st E20,7=1,2,...

To solve the above model, we consider

SRR ICTLEEE])SE)
g=1 1=1 k= J=1
(17)

which represents the Lagrange function of the constrained
optimization problem (M-1), where J is a real number
denoting the Lagrange multiplier variable. Then, the partial
derivatives of L are computed as:
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aL e e
55 = 2 2 d(Fy Fiy) +38 = 0. (18)
6‘7 =1 k=1

O 1[0

5:5<25] —1> =0. (19)
=

It follows Eq. (18)

gk Zf:l ZZ:I d(Fl.J7Fk.])

& 3 . J=1,2,...n (20)

Putting Eq. (20) into (19)

1= _\/Zjl (Zle:1 ZZ:I d(F’J’FkJ))2’ 1)

Obviously, 3<0,> 7 |, >, d(F,;, Fi,) denotes the sum of
all the alternatives’ deviations from the jth attribute and

\/Z’;:l (> > d(Fy, Fk]))2 denotes the sum of all

of the alternatives’ deviations with respect to all the
attributes.
Then utilizing Eq. (20) and (21)

Ef:l kZ: d(FlJ7 Fk.y)
=TT - 5 (22)
;(Zle Zlec:1 d(Fw ij))

For the sake of simplicity,

L= > dFyFiy), g=1,2,....n (23)
then Eq. (22) becomes:
sk X]

9! :Tv
V EJ:I %

It is simple to verify that {7(7=1,2,...,n) are positive
and satisfy the constrained conditions in the model (M-1)
and that the solution is unique using Eq. (24).

Normalize 5;‘ (y=1,2,...,n) to make the sum of é;‘ into

]:172,...7}1. (24)

a unit, we have

4 57* X]

G=w=r === —> J=12,..
YL Yl

Case II: Partly known information on attribute weights

L. (25)

In some cases, the weight vector information is only par-
tially known rather than completely known. In these cases,
based on the set of known weights information N, the
constrained optimization model can be designed as
follows:

n

max D(¢) =5 ze: > ":yd(szaFk])

=li=1k=1

(M -2) ;
st CeR, £>0,9=1,2,...,n, Y & =1
J=1

where R also refers to a collection of restriction constraints

that the weight value f; should satisfy in order to fulfil the
requirements in real-world scenarios. A linear program-
ming model (M — 2) is used. We acquire the best answer
E=(&,6,. .., in)T by solving this model, which can be
used as the weight vector for the attributes.

4.2 Basic description of the MAGDM algorithm

TOPSIS (Xu and Zhang 2013), TODIgM (Wei et al. 2015),
VIKOR (Opricovic and Tzeng 2004), MULTIMOORA
(Gou et al. 2017) and the minimum deviation method
(Zhao et al. 2017) are few of the recently developed
MAGDM methods. TOPSIS is a well-known and simple
method for assisting an expert in selecting the best alter-
native based on the minimum distance from the PIS and the
maximum distance from the NIS. This study employs the
TOPSIS method developed by Hwang and Yoon
(1981a, 1981b) red We develop a 2TLT-SF-TOPSIS
method to successfully manipulate the aforementioned
MAGDM problem with 2TL7-SFNs, which is based on the
idea that the best alternative should be at the shortest dis-
tance from the 2TL7-SF-PIS and the farthest distance from
the 2TL7-SF-NIS.

4.3 Calculation steps of the MAGDM algorithm

In general, after obtaining the attribute weight values based
on the maximizing deviation method, as per the literature,
we should use a specific type of operator to aggregate the
provided decision information to obtain the overall pref-
erence value of each alternative, rank the alternatives, and
choose the most desirable one(s). However, the complexity
of the aggregation process used by 2TL7-SF aggregation
operators leads in the loss of too much information, which
demonstrates a lack of accuracy in the findings. Conse-
quently, to address this drawback, in this subsection, an
MAGDM issue is described with the elements indicating
the value of all alternatives relative to each attribute under
the 2TL7-SF environment. The detailed algorithm of the
2TLT-SF-TOPSIS method as shown in Fig. 1 is explained
in the following:
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Fig. 1 Scheme of the developed
approach for MAGDM

Problem Description

The alternative set The attribute set The decision makers
{E1,82, -, e} {11, Ly i b} {R, Ry, . R}

Determine the weights of attributes
by maximizing deviation

Construct the 2TLT-SF decision
matrices

Ft ( )E Xn

\

Knowledge
based

Utilize the 2TLT-SFWHM
(2TLT-SFWDHM) operator to
fuse the
individual decision matrices into

\_ a collective one

TOPSIS Method
(Model Based)

Main steps of Compute the weighted
our proposed aggregated matrix f} F,, by using
attribute weights

Calculate the relative closeness
index (W)

Ve

Rank the alternatives and select
the best one

I

1

i

li

i

i \.

1

E Compute the PIS (F*) and NIS
i (F)

1

i

! e

: Compute the distances between
i alternatives and PIS (d,") and
1

: NIS (d,”

i S (d,"}

i ' ?
!

1

i

i

i

1

i

i

i

H

1

1
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Step 1. Utilize 2TL7-SFWHM operator or 2TL7-
SFWDHM operator from Eqgs. (9) or (13) to fuse
2TLT-SF decision matrices F(") = (F,(y)exn into
a collective one F = (Fy)),,,,-
2TLT-SFWHM§) (F\,Fs,...,F,)

1
@lgzl<...<z,§n(®§:1(sz)§”) (26)
= c ,
2TLT-SFWDHM{ (Fy, Fy, ..., F,)
69;:1 fl]FlJ é (27)
= | ®i<y<<p<n| = .
b4

Step 2. Obtain  the  attributes  weights ¢, =
(é1,&,,...,&,)" by maximizing deviation using
Eq. (25) (if the attribute weights are completely
unknown) or model (M —2) (if the attribute
weights are partially known).

Step 3. The weighted aggregated 2TLT7-SF decision
matrix (Fl’]) can be constructed using the

exn
multiplication operator.
F,=¢®F, (28)
where FIIJ = ((Spéua @t]) ) (Shé,ﬂ ’71])7
(Sré,]a gz;)) .
Step 4. Calculate the PIS (F7) and the NIS (F~) using

2TLT-SFENs’ score and accuracy functions (if the
score functions are equal, the accuracy functions
are used to rank the 2TL7-SFNSs).

Ft= {)”m[aX(Fl/j)U = 1121 . .,I’L} = [FJ+} Ixn
(29)

F = {)L,mln(F' )|j L,2,..., n} = [F.77] I1xn"
(30)

Step 5.

Step 6.

Step 7.

To determine the distances of each alternative
from both the 2TL7-SF-PIS and the 2TL7-SF-
NIS, we start by defining a separation measure.
To accomplish this, use the following normal-
ized Euclidean distance between two 2TLT-
SFNs:

Zd (F,, F)¢, (31)

A l Vp,v K’l? Ail (SFA'M Kka)+ /I
T
— q
A™ ] Y/m’h, > (A ](Shrk,ankj)Jr)q +
(S'ﬂ &) !17 AT (S’k/’ Ckv7)+ !
T T

d; = Zd(FwF )¢ (33)

AT v,;,,m B A (sps 00) !
T

A7Y( Sh/JIH (A nm) !
T

(Srjygt/) l_ A_I(S,<‘/,Cu)7 !
T T

The formula for calculating the relative closeness
(RC) coefficient of an alternative E, relative to
2TLT-SF-PIS is:
d
d+ +d-’ T

+

dF =A| =

N A

q

(32)

q g

+

q
+

q

(34)

RC, = e (35)

The RC coefficient can be used to determine the
preferred ranking of alternatives and the optimal
alternative. On the other hand, Hadi-Vencheh
and Mirjaberi (2014) claimed that in some cases,
RC may be unable to produce an optimal alter-
native that is both closest to the PIS and farthest
from the NIS at the same time. They devised the
revised closeness index (W,) to address this
shortcoming:

d; dr
Y, = L 1=1,2,...e (36)
d;max dl-‘rmll'l
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5 Literal depiction

5.1 The selection of key performance indicators
(KPIs) for HPE

A framework of KPIs for HPE is built through a literature
review and interviews with people involved in HPE, such
as doctors, patients, medical officers, and clinical experts,
and is based on previous studies. The framework, which
consists of five main attributes and 20 sub attributes, as
well as the reasons for including these main attributes in
the KPI framework are described below. Hospital equip-
ment main attribute has been created to determine how
advanced the hospital’s equipment are. It is critical to use
high-tech clinical equipment to provide high-quality
health-care services. Additional diagnostic and therapeutic
procedures will be made feasible by advanced hospital
equipment due to high clinical quality. As a result, hospital
equipment has a substantial impact on hospital perfor-
mance, which is why these attributes are included in our
framework. The service attitude contains an attribute for
describing the performance of hospital support services.
Patient satisfaction is considerably affected by the attitude
of hospital support services. According to a multi-site study
of medical-surgical units in 146 hospitals across the United
States, a favorable attitude towards support services helps
patients stay in a good mood, which helps patients and
medical staff communicate more effectively As a result, we
included an attribute for this essential factor in our KPI
system. The pharmacy and medical treatment dimensions
include an attribute that describes the hospital’s ability to
treat patients and shows the hospital’s dependability. Good
treatment outcomes, comprehensive medication instruc-
tions, and extensive patient information provided by doc-
tors can bring physical and psychological relief to patients,
as well as inspire trust in the hospital. As a result, in light
of the importance of pharmacy and medical treatment, we
have included attributes in our KPI framework. The traits
relating to the abilities and knowledge of the hospital’s
medical professionals are defined by the professional
capability. When evaluating hospital performance, profes-
sional skill plays a crucial role in patient satisfaction. It
should be included in the KPI framework, since patients
who view medical professionals as competent will feel
cared for and give the hospital a positive rating. As a result,
we should include these requirements in our KPI frame-
work for these main attributes. The hospital sanitation and

@ Springer

environment component includes attributes for assessing
the hospital’s ventilation, sanitation and cleanliness. The
relevance of hospital sanitation and environment is
demonstrated through a proposed tool for measuring
patient perceptions of hospital performance. In hospitals,
infections can occur if sanitation standards are poor, put-
ting patients’ health at risk and lowering their hospital
ratings. We incorporate this essential attribute into our KPI
system.

5.2 The application of 2TLT-SF-TOPSIS

This study offers a numerical example of measuring hos-
pital performance by 2TLT7-SF-TOPSIS method and the
KPI framework. In this study, seven hospitals = =
{81, 8,,...,27} needed to be evaluated. An expert shows
the evaluation values for 2TL7-SFNs based on 20 attri-
butes, as shown in Fig. 2. Suppose, seven hospitals are
evaluated by four experts & = {R, R, R3, R4} (doctor,
patient, medical officer and clinical expert) with weighting
vector & = (0.2,0.4, 0.3,0.1)T for choosing the best hos-
pital. Based on the LTS § = (so = Extremely critical, s; =
Highly important, s, = very important, s3 = important,
s4 = moderately important, ss = less important, s¢ = un-
important, s; = absolutely un-important, sg = extremely
un-important) four experts provide their opinions. Each
decision expert has an opinion on the selection of the best
hospital based on their experience. These hospitals are:

— Hospital A (
— Hospital B
— Hospital C
— Hospital D
— Hospital E
— Hospital F
— Hospital G (

[1]

o — — —

1
2

[x1 [

)

4
5

7).

Decision matrices after evaluating each hospital’s capacity
using the 2TL7-SFNs for selecting the best hospital are
listed in Tables 1, 2, 3, 4 based on the experts’ suggestions.

[0 m

~—

[1]

5.3 Decision-making procedure based
on the 2TLT-SFWHM operator

We now apply the developed method to choose the best
KPI for HPE, which includes the following two cases:
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Main Attributes Sub-Attributes Alternatives
Well-stocked medical equipment ] \
Signs are very clear ]
Hospital
SwpIen Best personnel services for exact locations ]
Warm and welcoming atmosphere ]
M Clini
Service employees is well-dressed ] e = e
Outstanding communication abilities ]
Service attitude ﬁ Cleveland Clinic
Service personnel is very patient ]
)
Ward staff is courteous and helpful ] -
- UCLA Medical Center
o
é ; (9[ Sound guidance on how to use medications ]
25 |
§ ;_/T Medications.and Describe patients’ physical problems in detail ] Johns Hopkins Hospital
g £ pharmaceutical :
w
ks § BI Drug-picking services are available ]
S8 .
£ 3
% = \_)[ Patients feel secure from hospital services ] N 5 Massachusetts general
@ Hospital
\
\ ) r—>[ High level of professional expertise ]
( B
\ Cedars-Sinai Medical
Capability as a 4 al Personnel is trustworthy and dependable ] § Center |
professional
\—9[ Service professionals are well-equipped ] . \
\ New-York
> I Personnel has leadership skills ] L IO L )
Ward bed-linen is clean ]
Hospital Ward lighting is adequate ]
sanitation and
environment Ward is well ventilated and sanitary ]
Information about available facilities is accessible. ] j

Fig. 2 Model of literal depiction

Case I: The following stages are included in the
MAGDM approach for choosing the appropriate KPI for
HPE if the attribute weights information is unknown:

Step 1. Utilize Eq. (26) to fuse decision matrices into a
collective one based on 2TLT-SFWHM operator

by taking ¢ = 4 and z = 3, as shown in Table 5.

Step 2.

Step 3.

Obtain optimal weight vector using Eq. (295).
¢ = (0.1485,0.0857,0.1660, 0.1807,0.4191)".

Calculate the weighted aggregated decision
matrix of 2TL7-SFNs utilizing Eq. (28), as
shown in Table 6.
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Table 1 2TLT-SF decision matrix provided by doctor
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Table 2 2TLT7-SF decision matrix provided by patient
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Table 3 2TL7-SF decision matrix provided by medical officer
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Table 4 2TLT7-SF decision matrix provided by clinical expert
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Table 5 Fused matrix of 2TL7-SFNs based on weighted Hamy mean operator

b 3

5]

((s7,—0.3104), (s, —0.0406), (s, —0.0382)) ((
((s6, —0.2839), (s, —0.0149), (s3,0.3409))  ((s6,0.0563), (52, —0.3614), (54, —0.0557))
((s5,0.3925), (s1,0.4107), (s4,0.0508)) ((s6,0.2948), (s1,0.1343), (53, —0.3340))

((s6,0.2544), (55, —0.3423), (53, —0.0582))  ((s6,0.1255), (51, —0.0406), (s2,0.3528))
((s5,0.4975), (s1,0.3726), (s3,0.2331)) ((s6,0.3220), (s1,0.4646), (s3,0.3956))
(( ) ( ) ((
(( ) ( ) ((

56, —0.0208), (53, —0.2063), (s3,0.0796))

[N]

w

)

56,0.2116), (52, —0.4575), (53, —0.0428)) 56, —0.3603), (52, —0.3003), (s5, —0.4428))
56,0.1986), (52, —0.4270), (s3,0.1621)) 57,0.3030), (51, —0.0406), (s1,0.4004))

=N

0 [ [ [ [0l [ol [n
&

=

((s6,0.3266), (s1,0.3319), (s,,0.2748))
((s6,0.3676), (s1,0.2730), (s4,0.0423))
((s6, —0.1807), (s1,0.2893), (s4, —0.1021))
((s7,—0.3035), (s1,0.0149), (s,, —0.2046))
((s7,0.0774), (s1,0.0149), (s1,0.2348))
((s3,0.2141), (s1,0.1583), (s7, —0.1449))
(( ) )

.
s6, —0.1226), (s1,0.3748), (53, —0.1990))

Iy

((s6, —0.1242), (55, —0.4707), (54, —0.4738))
((ss,—0.3311), (s;, —0.1622), (s1,0.0515))
((s6,0.0344), (s1,0.0546), (s3,0.1788))

((s6, —0.0230), (55, —0.0384), (54, —0.2618))
(( )

(( )

(( (

[N]

w

56, —0.0097), (s1,0.3363), (s3, —0.4016))
56, —0.1013), (s1,0.2498), (s,,0.3216))
56,0.0958), (52, —0.3170), (s4, —0.3588))

[

o] [ [ [ [l [0l [
&

=

(( (
(( ),
(( )
((s3,0.0558), (s1,0.0028), (s7,0.1538))
(( (52,
(( )
(( (

57,0.1393), (s1,0.1695), (51, —0.1248))

57, —0.2354), (s1,0.0149), (55, —0.1706))

56, —0.4508), (s1,0.3745), (53, —0.2545))
(

56,0.2583), (53, —0.3082), (s4, —0.4412))
56, —0.3304), (52, —0.3986), (s4, —0.4360))
56,0.0823), (51,0.4107), (s3,0.2167))

Table 6 Weighted aggregated decision matrix of 2TL7-SFNs

ll 12

((s4,0.4399), (56, —0.1614), (s5,0.4929))  (( (

((s4,—0.3391), (s6, —0.1124), (57,0.0271))  ((s3,0.4238), (s7, —0.0165), (55, —0.4704))
((s3,0.4291), (s6,0.1826), (s7,0.2310)) ((s3,—0.4093), (s7, —0.2331), (s7,0.2810))
((s4,0.0716), (s6,0.3325), (s7,—0.1044))  ((s3,0.4713), (57, —0.3296), (s7,0.2035))
((s4, —0.4967), (s6,0.1575), (57, —0.0071))  ((s4,—0.3898), (57, —0.0833), (s7,0.4335))
(( ( ( (( (

(( ( ( (( (

53,0.3715), (s7,0.0379), (s7,0.3716))

[S R SR

O

54,0.0375), (s6,0.2652), (57, —0.0991)) 53,0.1494), (57,0.0055), (53, —0.3766))
54,0.0272), (s6,0.2834), (57, —0.0301)) 54,0.4603), (57, —0.3296), (57, —0.1098))

[=

[ [ [ [0 [l [ [
B

=

(( (
(( (
(( )
((s5, —0.4350)
(( )
(( )
(( )

54,0.2421), (s6, —0.0593), (s6,0.4927))
54,0.2764), (s6, —0.1037), (s7,0.1429))
54, —0.1603), (s6, —0.0912), (s7,0.0999))
, (56, —0.3213), (55, 0.2426))
55, —0.0580), (56, —0.3213), (55, —0.1335))
53, —0.2877), (56, —0.1954), (53, —0.2025))
54, —0.1160), (sg, —0.0279), (s7, —0.2791))

Iy

Is

54, —0.0365),
56, —0.1519),
54,0.0889), (s, —0.4528), (57, —0.2289))

( 56, —0.0675
(«

(« (
((s4,0.0432), (s6,0.2055), (s7, —0.0276))
(¢ (
((

(«

55,0.3213),

(s7,—0.1008))
56, —0.4558))

[N}

( );
( (s6;

w

[

54,0.0537), (55, —0.2103), (s7, —0.4711))
54, —0.0186), (s5, —0.2800), (s5,0.3974))
54,0.1383), (56,0.0361), (s7, —0.0607))

=

[l [ [ [0 [0l [ [
B

=

((s6,0.1266), (s4, —0.4264), (s3,0.1648))
((s6, —0.2919), (s3,0.3675), (s4,0.3106))
((ss,0.3876), (s4, —0.1761), (s5,0.1101))
((s2,0.4625), (s3,0.3505), (s3, —0.3662))
((s5,0.2001), (s4,0.1716), (s6, —0.3029))
((ss, —0.3443), (s4,0.0767), (6, —0.2993))
((s5,0.0334), (s4, —0.1342), (s5,0.4608))

Table 7 Separation measures of

alternatives Separatlon measures =1 =) =3 =4 =5 =6 =7
d(E, FY) 0.5072 0.6340 0.8923 1.1414 0.6481 1.1689 0.7116
(B, F) 1.2745 1.1391 0.9272 0.6239 1.1315 0.6524 1.0810
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Table 8 Revised closeness
index for alternatives and

ranking

Step 4.

Step 5.

[
[
[~}

[11
[1]
[11
=2

5 E6

3 Ey

(V) 0 —0.3561
Ranks 1 2

—1.0316 —1.7608 —0.3900 —1.7926 —0.5547
5 6 3 7 4

Utilize Eqgs. (29) and (30) to calculate the 2TLT-
SF-PIS and the 2TL7-SF-NIS, respectively, as
follows:

F* ={{(s4,0.4399), (56, —0.1614), (s6,0.4929)},
{(s4,0.4603), (s7, —0.3296), (s7, —0.1098)},
{(ss5,—0.0580), (s5, —0.3213), (s, —0.1335)},
{(s6,0.1519), (s5,0.3213), (s6, —0.4558)},
{(s6,0.1266), (s4,0.4264), (s3,0.1648)} }

F~ ={{(s3,0.4291), (s6,0.1826), (s7,0.2310)},
{(s3,0.1494), (s,0.0055), (s3, —0.3766)},
{(s3,—0.2877), (s6, —0.1954), (s5, —0.2025)},
{(s4,0.0432), (s6,0.2055), (s7, —0.0276)},
{(s2,0.4625), (s3,0.3505), (s5, —0.3662)} }

Utilize Eq. (32)and (34) to calculate the separa-
tion measures d;” and d, of each alternative E,
from the 2TL7-SF-PIS and the 2TL7-SF-NIS,
respectively, as shown in Table 7.

Table 9 Weighted aggregated matrix of 2TL7-SFNs

Step 6. Utilize Eq. (35) to calculate the RC, coefficient
of each alternative Z, relative to the 2TLT-SF-
PIS F.

RC, = 0.7153, RC, = 0.6424, RC; = 0.5096,
RCy = 0.3534, RCs = 0.6358, RCs = 0.3582,
RC; = 0.6030.

Step 7. Utilize Eq. (36) to calculate the revised closeness
index ¥, (1=1,2,...,¢) and rank the alterna-
tives in the descending order of ¥, as shown in
Table 8.

Case II: The weights of attributes are partly known and
the information of known weights is as follows:

N={0.15<¢<0.2,0.16<¢&,<0.18,0.3<
£3<0.35,0.2<¢4,<0.45,0.09 < &5 <0.23, ijl & =1}

Step 1. Utilize Eq. (26) to fuse decision matrices into a
collective one based on 2TLT-SFWHM operator
by taking ¢ = 4 and z = 3, as shown in Table 5.

I

W =

[

=

[ [ [ [l [ [mo[m
B

=

((
((
((
((
((
((
((

I I3
54,0.4506), (56, —0.1799), (s6,0.4792)) (54, —0.0725), (s6,0.2979), (s7, —0.1332)) (55, —0.1214), (55, —0.3280), (55, 0.4858))
54, —0.3301), (s6, —0.1306), (57,0.0179))  ((s4, —0.0126), (s6,0.2074), (s7,0.1442))  ((s5,—0.0833), (55, —0.3910), (57, —0.4815))
53,0.4376), (s5,0.1666), (s7,0.2237)) ((54,0.1786), (5, —0.1473), (57, —0.2898))  ((s4,0.4278), (55, —0.3733), (56, 0.4478))
54,0.0815), (s5,0.3176), (57, —0.1148))  ((s4,0.0420), (55, —~0.3021), (s7, —0.4227))  ((s5,0.2350), (s1,0.3062), (s5,0.1099))
514, —0.4881), (55, 0.1413), (57, —0.0166))  ((s4,0.2010), (s5,0.0969), (57, ~0.0250))  ((s6, —0.3570), (s4,0.3062), (55, —0.4329))
54,0.0473), (56,0.2497), (57, —0.1094))  ((s4,—0.3283), (s6,0.2439), (s7,0.3112))  ((s3,0.1406), (52, 0.4804), (s5, —0.3622))
54,0.0370), (s6,0.2681), (s7, —0.0398))  ((s5,0.1580), (55, —0.3021), (s6,0.0534))  ((sa,0.4778), (s5, —0.2833), (56, —0.1608))

Iy

Is

[ R ST

S

[ [ [ [ [ [ [
B

=

54,0.0620), (s5, —0.2539), (57, —0.2090))

(( )

((s6, —0.0270), (s5,0.0945), (s5,0.3313))
((54,0.1900), (s5,0.3344), (s7, —0.3484))
((s4,0.1433), (s6,0.0394), (s7, —0.1292))
((s4,0.1541), (s, —0.4069), (s6,0.3887))
((s4,0.0803), (s, —0.4813), (s6,0.2464))
((s4,0.2405), (s6, —0.1428), (

57,—0.1653))

((s5,0.1665), (56, —0.4483), (s5,0.2542))
((s5,—0.2227), (s5,0.4041), (s6,0.0442))
((s4,0.4890), (56, —0.2753), (s7, —0.4711))
((52,0.0219), (s5,0.3918), (55, —0.1681))
((s3,0.3233), (56, —0.0449), (57, —0.1412))
((s4,—0.1483), (s, —0.1067), (s7, —0.1392))
((

54,0.1775), (s6, —0.2470), (s7, —0.2716))
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Table 10 Separation measures

of alternatives Separation measures = = =3 Ey Es Eg By
d(E, FT) 0.5358 0.7207 0.9846 1.1043 0.7808 1.3995 0.7720
d(E, F) 1.3617 1.1360 0.9252 0.7789 1.1030 0.5086 1.1147

Table 11 Revised closeness = = = = = = =

index of alternatives and ~! =2 = 4 = =6 =7

ranking (¥, 0 —0.5170 —1.1581 —1.4889 —0.6472 —2.2384 —0.6221
Ranking 1 2 5 6 4 7 3

Table 12 Fused matrix of 2TL7-SFNs utilizing weighted dual Hamy mean

[ b I
E (s, —0.4340), (55,0.0099), (55, ~0.3055)) (s, —0.1664), (55, —0.2236), (s7, ~0.3761)) ((s3, —0.3167), (s5,0.4975), (s5, —0.3961))
2, ((s3,-0.0693), (55,0.0851), (s5,0.4139))  ((s2,0.2950), (s6, —0.3282), (s7, —0.4212)) (s, —0.2802), (s5,0.1271), (s7, —0.4501))
S5 ((51,0.2841), (s6, —0.3026), (57,0.2253)) (53, —0.4011), (55, —0.0212), (56,0.4157))  ((s2,0.0265), (s5,0.4281), (55, 0.2369))
Sy ((53,0.4253), (s, —0.3836), (5,0.2972))  ((s2,0.4066), (s5,0.0099), (5, 0.2002)) ((s4,0.3665), (s5,0.0851), (55, 0.4966))
S5 ((51,0.3319), (s6, —~0.4109), (s7,0.3938))  ((55,0.2966), (s, 0.4646), (55, ~0.4324)) (s, —0.2241), (s5,0.0851), (s5,0.3231))
S ((52,0.4746), (s5,0.4463), (57, —0.4629))  ((s2,—0.3003), (55, —0.3606), (s7,0.4348))  ((s2,0.2976), (54, —0.2890), (s5,0.4522))
S0 ((s3,—0.3005), (55, —0.4282), (57, —0.4206)) ((s5, —0.1272), (s5,0.0099), (s5,0.0214))  ((s3,0.0604), (s5,0.2935), (55, 0.3523))

Iy Is

z, (52, —0.3082), (s5,0.4599), (s7,0.0132)) (55, —0.4518), (55, 0.2323), (55, —0.00801))
5, ((57,0.0484), (s4, —0.3797), (54, —0.1953)) (54, —0.3975), (s5,0.0851), (s6, —0.4671))
g (53, —0.0238), (55, 0.1309), (56, 0.2998)) ((s3,0.4202), (s5,0.2315), (s6,0.1273))
& (52, —0.0529), (s6, —0.0890), (s7,0.1511)) ((s1, —0.3153), (s3,0.2839), (s5, —0.4934))
Es ((s3,0.4398), (s5,0.2499), (s6,0.2617)) ((52,0.3178), (55, —0.1242), (s5, 0.4968))
B ((s2,0.0166), (s5,0.3888), (s5, —0.0633)) ((52,0.1016), (55, —0.2872), (s7, —0.0850))
5, ((s2,0.4656), (56, —0.2886), (57, —0.1256)) ((s2,0.1189), (56, —0.3026), (s, —0.0512))

Step 2. Utilize the model (M-2) to construct the single- Step 4. Utilize Egs. (29) and (30) to calculate the 2TLT-

objective model as follows: SF-PIS and the 2TL7-SF-NIS, respectively, as
max D(¢) = 3.1240¢, + 4.2952¢, follows:
+7.9312&5 + 4.1606&, + 8.2658&5 F* ={{(54,0.4506), (56, —0.1799), (56,0.4792)},
(M—2){ st. €€3,¢,>0,7=1,2,3,45, {(s5,0.1580), (56, —0.3021), (55,0.0534) },
5 {(s6,—0.3570), (s4,0.3062), (55, —0.4329)},
> & =1 {(s5, —0.0270), (s5,0.0945), (s5,0.3313)},
- {(s5,0.1665), (g, —0.4483), (s5, —0.2542)}}
F~ ={{(s3,0.4376), (6, 0.1666), (s7,0.2237)},
By solving this model obtain the optimal weight {(s4,—0.3283), (s6,0.2439), (s7,0.3112)},
vector as follows: {(s3,0.1406), (54,0.4804), (s5, —0.3622) },
- {(54,0.1433), (s6,0.0394), (s7, —0.1292)},
& = (0.1500,0.1600, 0.3000, 0.2000, 0.1900)" . {(52,0.0219). (55, —0.3918). (5, ~01681)})

Step 3. Calculate the weighted aggregated decision
matrix of 2TL7-SFNs utilizing Eq. (28), as
shown in Table 9.
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Table 13 Weighted aggregated matrix of 2TLT-SFNs

I ) hy
Z1 ((s7,0.0955), (s3,0.1649), (54, —0.3549)) ((s7,0.0512), (s3,0.2374), (s4, —0.1623)) ((s7,—0.3268), (s4,—0.3997), (54, —0.3217))
Z  ((s7,—0.1083), (s3,0.2161), (s4,0.2018)) ((s7,0.1881), (s3,0.1699), (s4, —0.1976)) ((s7,0.0450), (s3,0.3351), (s4,0.4331))
25 ((s6,0.0969), (s4, —0.3528), (55, —0.0210))  ((s7,0.2651), (s3, —0.2564), (54, —0.3212)) ((s6,0.3694), (54, —0.4501), (s54,0.1681))
Zs  ((s7,0.0532), (s4,—0.4115), (s4,0.1062)) ((s7,0.2174), (s3, —0.2379), (54, —0.4765)) ((s7,0.2350), (s3,0.3056), (54, —0.4004))
s ((s6,0.1301), (54, —0.4312), (s4,0.3659)) ((ss, —0.2778), (s2,0.4437), (s3,0.1036)) ((s7,0.0626), (s3,0.3056), (s3,0.4743))
Z6  ((s7,—0.2793), (s3,0.4670), (s4,0.3059)) ((s7,0.0055), (s3,0.1494), (55, —0.3844)) ((s7,—0.4965), (s52,0.3804), (s4,0.3483))
Z7  ((s7,—0.1952), (54, —0.4436), (s4,0.3425)) ((s3,—0.3328), (s3,—0.2379), (s3,—0.2311)) ((s7,—0.1795), (s3,0.4531), (s4,0.2635))
N Is

= ((s6,0.0418), (54, —0.3521), (55, —0.0294)) ((s6,0.3140), (s54,0.2706), (s4,0.0024))
=73 ((ss, —0.1810), (s2,0.3707), (s2,0.4939) (s6, —0.2737), (s4,0.1436), (s5, —0.4660))
3 ((s7,—0.3090), (s3,0.4082), (s4,0.3065) (86, —0.3969), (s4,0.2700), (s5,0.0756))
=N ((s6,0.1972), (s54,0.1328), (s55,0.1212) (s3,—0.1446), (s3, —0.3523), (s7, —0.3937))
Es ((s7,—0.1317), (s53,0.4941), (s4,0.2746)) ((ss,—0.2400), (s5, —0.1577), (s5,0.4352))
He ((s6,0.2366), (54, —0.4046), (s4,0.0113)) ((ss,—0.4314), (55, —0.3055), (s6, —0.1297))
= ((s6,0.4673), (s4,—0.1632), (55, —0.1715)) ((ss,—0.4156), (55, —0.3194), (s5,—0.0907))
Table 14 Separation measures Separation measures g =73 Hs Hy Hs Ze =7
of alternatives

d(E,FT) 0.7881 0.3682 0.9999 0.9485 0.7405 1.1285 0.7814

d(E,F7) 0.6724 1.1055 0.4456 0.5022 0.7779 0.3588 0.7573

Step 5. Utilize Egs. (32) and (34) to calculate the sepa- 5.4 Decision-making procedure based
ration measures d," and d;” of each alternative Z, on the 2TLT-SFWDHM operator
from the 2TL7-SF-PIS and the 2TL7-SF-NIS,
respectively, as shown in Table 10. Case I: The phases of the MAGDM technique to select the

Step 6. Utilize Eq. (35) to calculate the RC, coefficient best KPI for HPE are as follows: The following stages are
of each alternative E, relative to the 2TLT7-SF- included in the MAGDM approach for choosing the
PIS F+. appropriate KPI for HPE if the attribute weights informa-

tion is unknown:
RC; =0.7176, RC, = 0.6119, RC3 = 0.4844,
RC, = 0.4136, RC5 = 0.5855, RCs = 0.2665, Step 1. Utilize Eq. (27) to fuse decision matrices into a
collective one based on 2TLT-SFWDHM oper-
RC7 = 0.5908. ator by taking ¢ =4 and z =3, as shown in
Table 12.

Step 7. Utilize Eq. (36) to calculate the revised closeness Step 2. Obtain optimal weight vector using Eq. (25).
index ¥, (1=1,2,...,e) and rank the alterna- ¢ =(0.1485,0.0857,0.1660, 0.1807,0.4191)T.
tives in the descending order of W(E,), as shown
in Table 11.

Table 15 Revised closeness = = = = = = =

index of alternatives and —! = = — - —¢ ~7

ranking (¥, 15321 0 23124 -2.1217  —1.3075  -2.7402  —1.4372

Ranking 4 1 6 5 2 7 3
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Table 16 Weighted aggregated matrix of 2TLT-SFNs

[ 1) 1]
S ((s7,0.0869), (s3,0.1728), (s4, —0.3459))  ((s5,0.3201), (54, —0.2268), (s4,0.4599)) (s, —0.2355), (54, 0.1569), (54, 0.2454))
S ((s7,—0.1187), (53,0.2241), (55,0.2120))  ((s7,—0.4488), (s, —0.3046), (5,0.4198))  ((s6,0.3580), (s, —0.1449), (s5,0.0901))
2y ((s6,0.0802), (ss,—0.3438), (55, ~0.0095))  ((s7,—0.3171), (s3,0.2022), (s4,0.2792)) ((s5,0.2989), (ss,0.0997), (s5, —0.2038))
Sy ((57,0.0442), (51, —0.4027), (s,0.1161)) (s, —0.3988), (s3,0.2237), (55,0.1017))  ((57, —0.3288), (s, —0.1786), (s4,0.1561))
S5 ((56,0.1136), (51, —0.4224), (s,0.3764))  ((s7,0.4892), (53, —0.1462), (51, —0.3811))  ((s6,0.3866), (54, —0.1786), (51, 0.0137))
S5 ((s7,-0.2911), (s3,0.4756), (s4,0.3163))  ((s6,0.2439), (s, —0.3283), (s5,0.3200)) (s, —0.4977), (s3, —0.2422), (55, —0.0036))
S ((s7,—0.2064), (54, —0.4349), (s4,0.3529))  ((s7,0.3899), (s3,0.2237), (s3,0.2316)) ((s6, —0.0035), (s, —0.0105), (s3, —0.0976))
s Is
. 56 —0.1367), (51, —0.2606), (s5,0.0877)) ,0.1861), (54, —0.4756), (s3,0.2986))
X 55, —0.2001), (52, 0.4314), (53, —0.4423)) 57, -0.1252), (53, 0.4173), (54, —0.2522))
; 57, —0.4355), (53, 0.4942), (s4,0.4121)) 57,-0.1927), (54, —0.4761), (s1,0.2143))
~0.3607))

[

o] [ [ [ [l [0l [
&

=

57, —0.2426), (54, —0.4179), (s4,0.3795))
56,0.0729), (s4, —0.3142), (54,0.1108))

(( )
(( )
(( )
((56,0.0304), (s4,0.2349), (s5,0.2404))
(( )
(( (
((56,0.3220), (s4, —0.0675), (s5, —0.0566))

((s7

((

((
((s5,0.0148),

((s6,0.3222), (54,0.0120), (55, —0.4687))
((s6,0.2056), (54, —0.1150), (55, —0.0738))
(( ) )

(

)

)

(52,0.1744), (s6,

(

(

56,0.2153), (s4, —0.1269), (s4,0.0699))

Step 3.

Step 4.

Table 17 Separation measures
of alternatives

Calculate the weighted aggregated decision
matrix of 2TL7-SFNs utilizing Eq. (28), as
shown in Table 13.

Utilize Egs. (29) and (30) to calculate the 2TLT-
SF-PIS and the 2TLT7-SF-NIS, respectively, as
follows:

* = {{(s7,0.0955), (s3,0.1649), (s5, —0.3549)},
{(ss, —0.2778), (s2,0.4437), (s3,0.1036)},
{(s7,0.2350), (s3,0.3056), (54, —0.4004)},
{(ss,—0.1810), (s2,0.3707), (s2,0.4939)},
{(s6,0.3140), (s4,0.2706), (s4,0.0028)}}

= {{(s6,0.0969), (54, —0.3528), (55, —0.2010)},
{(s7,0.0055), (s3,0.1494), (55, —0.3844)},
{(56,0.3694), (54, —0.4501), (s4,0.1681)},
{(s6,0.0418), (54, —0.3521), (55, —0.0294) },
{( ), (s3,—0.3523), (s7, —0.3937)} }

53, —0.1446),

Step 5.

Step 6.

Step 7.

Utilize Eq. (32) and (34) to calculate the sepa-
ration measures d;” and d;” of each alternative Z,
from the 2TL7-SF-PIS and the 2TL7-S-NIS,
respectively, as shown in Table 14.

Utilize Eq. (35) to calculate the RC, coefficient
of each alternative E, relative to the 2TLT-SF-
PIS F.

RCy = 0.4604, RC, = 0.7502, RC; = 0.3083,
RCy = 0.3462, RCs = 0.5123, RCs = 0.2412,
RC; = 0.4922.

Utilize Eq. (36) to calculate revised closeness
index ¥, (1=1,2,...,¢) and rank the alterna-
tives in the descending order of ¥,, as shown in
Table 15.

Case II: The weights of attributes are partly known and
the information of known weights is as follows:
N={0.15<¢ <0.2,0.16< ¢, <0.18,0.3 <& <0.35,

Separation measures = =, =3 Z4 Bs E6 =
d(E,FT) 0.9181 0.4545 1.0895 1.0756 0.7662 1.2489 0.8412
d(E, F) 0.7336 1.1743 0.5147 0.5582 0.8663 0.3986 0.7653

@ Springer
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02<&,<045,009<¢5<023,50 ¢ =1}

Step 1. Utilize Eq. (27) to fuse decision matrices into a
collective one based on 2TL7-SFWDHM oper-
ator by taking ¢ =4 and z =3, as shown in
Table 12.

Utilize the model (M-2) to construct the single-

objective model as follows:

max D(&) = 3.1240¢, + 4.2952¢,
+7.9312&5 + 4.1606&, + 8.2658¢5
st. £€$,8,>20,7=1,2,3,4,5,

5
Y¢ =1
=1

Step 2.
(M —2)

By solving this model obtain the optimal weight
vector as follows:

& = (0.1500, 0.1600, 0.3000, 0.2000, 0.1900) .

Step 3. Calculate the weighted aggregated decision
matrix of 2TLT7-SFNs utilizing Eq. (28), as
shown in Table 16.

Utilize Eqgs. (29) and (30) to calculate the 2TLT-
SF-PIS and the 2TL7-SF-NIS, respectively, as

follows:

Ft ={{(s7,0.0869), (s3,0.1728), (54, —0.3459)},
{(57,0.4892), (53, —0.1462), (54, —0.3811)},
{(s7,—0.3288), (54, —0.1786), (54,0.156 1)},
{(ss, —0.2001), (52, 0.4314), (53, —0.4423)},
{(s7,0.1861), (s, —0.4756), (s3,0.2986)} }

F~ = {{(s6,0.0802), (s4,0.3438), (s5, —0.0095)},
{(s6,0.2439), (54, —0.3283), (s5,0.3290)},
{(55,0.2989), (s4,0.0997), (s5, —0.2038)},

(s, —0.1367), (54, —0.2606), (s5,0.0877)},

(

(
55,0.0148), (5,0.1744), (s6, —0.3607) } }

Step 4.

{
{
Step 5. Utilize Eq. (32) and (34) to calculate the sepa-
ration measures d," and d;” of each alternative Z,

from the 2TLT-SF-PIS and the 2TLT7-SF-NIS,
respectively, as shown in Table 17:

Step 6. Utilize Eq. (35) to calculate the RC, coefficient
of each alternative E, relative to the 2TL7-SF-
PIS F*.
RC; =0.4442, RC, = 0.7210, RC3 = 0.3209,
RC4 = 0.3417, RCs = 0.5307, RCs = 0.2419,
RC; = 0.4764.

Step 7. Utilize Eq. (36) to calculate the revised closeness

index ¥, (1=1,2,...,¢) and rank the alterna-
tives in the descending order of W(Z,), as shown
in Table 18.

5.5 Sensitive analysis

A sensitivity analysis has been performed in this section to
examine the impact of various conditions on hospitals’
rankings. We investigated seven distinct scenarios based on
various parameters. While aggregating data, it’s worth
noting that the 2TLT-SFWHM operator’s parameters z and
q play a crucial role in determining the results, and the
variation of these parameters also effects the ranking
results. The variation of parameters z and g enables deci-
sion makers to extend their decision assessment space
based on the 2TL7-SFWHM and 2TL7-SFWDHM opera-
tors as well as the influence of parameters on the ranking
results is analyzed to check the validity and effectiveness
of the proposed approach. We deal with the variation of
these two factors to determine how they effect the results:
(1) Let z=1,2,3,4 and g = 4, the influence of z and ¢ on
the ranking results is investigated. (2) Let z=3 and
qg=1,3,57,9,11,13,15,17,19, the influence of z and
g on the ranking results is investigated.

To reflect the influence of the different values of the
parameter z by utilizing the 2TLT-SFWHM operator, we
perform a sensitivity analysis by varying the values of
parameter z (Suppose g =4). By changing parameter
z values from 1 to 4, we can obtain the changed ranking
results of alternatives, which are listed in Table 19. The
influence of different values of the parameter z by utilizing
the 2TLT-SFWDHM operator is shown in Table 20.

We can also see that the alternatives are ranked in order
of importance when ¢ =1,3,5,7,9,11,13,15,17,19 by

Table 18 Revised closeness -
index of alternatives and

=

3 2y s 26 =7

[1]

ranking results (¥,
Ranking 4 1

—1.9589 —1.8914 —0.9483 —2.4086 —1.1992
6 5 2 7 3
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Table 19 Closeness index (‘P;) and ranking results by 2TL7-SFWHM operator (g = 4)

Parameter W, Y, Y; Y, Y5 Ye ¥, Ranking

z=1 —-1.0613 —0.1629 —1.5894 —1.8259 O —1.4984  —1.4526 Vs>V, >¥Y >V > >V >,
z=2 0 —0.3346 —1.0025 —1.6306 —0.4855 —1.4700 —0.6406 Yi>¥,>¥Y>¥>Y;>¥ >V,
z=3 0 —-0.3561 —1.0316 —1.7608 —0.3900 —1.7926 —0.5547 Y >¥,>¥s >V >Y; >V > Y
z=4 0 —-0.3136  —0.9563 —1.9644 —0.2975 —1.8590 —0.4839 Yi>¥s >V > >V >% > Yy
Table 20 Closeness index (‘) and ranking results by 2TL7-SFWDHM operator (g = 4)

Parameter ¥, Y, Y; Yy Y5 Yo ¥, Ranking

z=1 —-0.3082 O —1.2944 23619 —-09122 —-29217 —0.9165 Y, >¥, >¥s >V >Y; >V > Y
z=2 -09216 O —-1.9901 —1.8655 —1.1717 —=2.2177 —1.1482 YVo>¥, > >¥s > >V > Y
z=13 —-1.5321 O —-2.3124 —2.1217 —-1.3075 —2.7402 —1.4372 Y, >¥s>Y¥Y >Y¥ >Y >V > Y
z=4 —1.7924 0 —2.2326 —2.0425 —1.2010 —2.7748 —1.4670 Yo>¥Ys >V >Y >V¥s>¥; >
Table 21 Closeness index (¥,) and ranking results by 2TL7-SFWHM operator (z = 3)

Parameter ¥, ¥, Y, Y, Y5 Y ¥, Ranking

g=1 —-0.1729 0 —1.0649 —2.4252 —-0.7187 —1.9815 —0.8612 YVo>¥, > >V > >¥ >,
qg=3 0 —0.2525 —1.0219 —1.8829 —0.4790 —1.8174 —0.6307 Yi>¥,>¥Y>¥>Y;>¥ > Y,
qg=>5 0 —0.4310 —1.0334 —1.6565 —0.3126 —1.7537 —0.4819 Y >¥s>¥ >V >Y; >V > Y
q="17 0 —0.5585 —1.0629 —1.5125 —0.2204 —1.7248 —0.3686 Y >¥s>¥Y >¥, >V >V > Y
q=9 0 —0.6804 —1.1088 —1.4323 —0.1929 —-1.7627 —0.2867 Y >¥s>¥>¥,>¥; >V, > Y
qg=11 0 —-0.7975 —-1.1656 —1.3790 —-0.2013 —1.8422 —0.2311 Yi>¥s>Y >V, >Y; >V > Y
g=13 0 —-0.9205 —-1.2129 —-1.3709 —-0.2424 —1.9586 —0.1788 Y >¥7>¥s >V, >Y; >V > Y
g=15 0 —1.0431 —-1.2754 —1.3695 —0.2993 —2.1000 —0.1231 Y >¥7>¥s >V, >Y; >V > Y
q=17 0 —1.1604 —1.3149 —1.3963 —0.3594 —2.2577 —0.0854 Y >¥Ys>Y >V, >Y; >V > Y
qg=19 —0.2787 —-1.4910 —1.5630 —1.6361 —0.6822 —2.5878 0 Y:>¥, >¥Y:s>¥, >V > > ¥
Table 22 Closeness index (¥,) and ranking result by 2TL7-SFWDHM operator (z = 3)

Parameter ¥, Y, ¥ Y, Ys Y ¥, Ranking

qg=1 —-09862 0 —-1.8166 -3.0172 —-1.1028 —2.6356  —1.5850 YV, >¥, >¥Ys>¥>¥;>¥ > Y,
qg=3 —-13595 0 —2.2127 —22843 —-1.2922 —-2.6997 —1.4538 Y, >¥s>Y >V >Y; >V, > Y
qg=>5 —-1.6197 0 —2.3499 —19686 —1.2738 —2.7140 —1.3922 Y, >¥s >, >¥ >Y >V > Y
q="7 —-1.7098 0 —2.3832 —1.7566  —1.2254 —-2.6762 —1.3069 Y >¥s >, >Y >Y >V > Y
qg=9 -1.7076 0 —2.3257 —1.5866  —1.0821 —2.5860 —1.2051 Yo>¥s >V >V > >V > Y
g=11 —-1.6920 O —2.2657 —1.4691 —-0.9672 —-2.5117 —1.1264 Yo>¥Ys > >V > >V > Y
g=13 —-1.6733 0 —2.2087 —1.3846  —0.8808  —2.4485 —1.0645 Yox>¥s >V >V >, >¥; > ¥
qg=15 —-1.6559 0 —-2.1572 —1.3230 —-0.8106 —2.3944  —1.0150 YV, >¥s>¥Y;, >¥y>Y >V > Y
q=17 —-1.6415 0 —-2.1122  —1.2781 —0.7548  —2.3480  —0.9748 Y >¥s >V >V, >Y >¥; > Y
qg=19 —-1.6308 O —-2.0738 —1.2461 —-0.7119 —-2.3082 —0.9416 Y >¥s >V, >Wy > >V > Y
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Table 23 Ranking results

utilizing different methods Methods

Score values Ranking

based on WHM operator EDAS method based on
2TLT-SFNs (Naz et al. 2022a)

CODAS method based on
2TLT-SFNs (Akram et al. 2022)

MABAC method based on
2TLT-SENs (Liu et al. 2020a, b)

The proposed method

-

m M

0 [ [M [ ol [l [
L2

Il
o oo o o o o

_

o

—

=

=
A~ N S S S S

B >8,>85>E,>E; >E¢ > 5y

M T

F(E,) = 4.1232

F(8,) = 29151

F(85) = —0.7936

F(E4) = —=5.0187 I >E>Es>E >8> 8 > 54
F(E5) = 2.1305

F(8) = —4.6777

F(2;) = 1.3212

F(E;) = 0.4040

F(E,) = 0.3425

F(E5) = 0.0299

F(E4) = —0.1565 I >E>Es>E >8> 8 > 54
F(Es) = 0.2833

F(Zs) = —0.1233

F(2;) = 0.2446

F(E)=0

F(8,) = —0.3561

F(&;) = —1.0316

F(E4) = —1.7608 E1>E,>8s>5 >8> 5, > &g
F(Es5) = —0.3900

F(Eg) = —1.7926

F(2;) = —0.5547

utilizing 2TL7-SFWHM and 2TL7-SFWDHM operator, as
shown in Tables 21 and 22 (Suppose z = 3), respectively.
From the above discussion, it is noted that for different
values of the parameter the optimal alternative remains the
same. However, there is a slight difference in the ranking
of the remaining alternatives. The summary of the results
shows that the maximum revised closeness index value
corresponds to alternative E; or Z,.

@ Springer

5.6 Comparative analysis

Here, we perform a comparative analysis of the suggested
methodology with other methods to demonstrate the
acceptability and effectiveness of the 2TLT7-SF-TOPSIS
method. We adapt the EDAS, CODAS and MABAC
methods for the 2TL7-SF environment and analyze them
with our suggested method. For the selection of KPIs for
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Table 24 Ranking results

utilizing different methods Methods

Score values Ranking

based on WDHM operator EDAS method based on

2TLT-SFNs (Naz et al. 2022a)

CODAS method based on
2TLT-SFNs (Akram et al. 2022)

MABAC method based on

2TLT-SFNs (Liu et al. (2020a, b))

The proposed method

F(Z) =0.7819

F(Z,) = 0.9605

F(Z3) = 0.5018

F(E4) = 0.0794 E>E8 >8s>5;>8; >E¢> 5y
F(Es) = 0.6204

F(Z6) = 0.2902

F(27) = 0.5809

F(Z;) = 0.5702

F(Z,) = 6.1908

F(Zs) = —2.7137

F(E4) = —2.6432 HE,>E8s>5;>E8 >8> E; > 5
F(Bs) = 1.5442

F(Z6) = —4.0373

F(27) = 1.0890

F(Z,) = —0.0348

F(Z,) = 0.3259

F(Z3) = —0.2362

F(E4) = —0.3283 >8> 85>5; >5; >Ey > 5
F(2s) = —0.0507

F(26) = —0.4153

F(87) = —0.1129

F(E) = —1.5321

F(E) =0

F(53) = —2.3124

F(E4) = —2.1217 E,>E8s>5;>E8 >8> E; > 5
F(2s5) = —1.3075

F(Z6) = —2.7402

F(87) = —1.4372

the HPE, we carefully calculate the decision results using
these methodologies. Tables 23 and 24 illustrate the
ranking results obtained by the various methods based on
2TLT-SFWHM and 2TL7-SFWDHM operators, respec-
tively. Due to the fundamental behaviour of the multiple
aggregation methods, there are some variations in the
ranking results of alternatives. However, although the
revised closeness index used to compare the alternatives
differs, the final rankings of the KPIs for HPE are the
same.From the decision results, it can be observed that the
best alternative according to all methods is Z; or Z;. Our
suggested approach is better than existing approaches,

because it not only captures the relationships between the
several input arguments but also gives experts the flexi-
bility to represent their fuzzy knowledge in a broad area.
Moreover, the proposed method allows experts to select
their risk preferences based on the variation of parameters.

Now, we compare the effects of different sets on our
proposed method. Our method is based on 2TL7-SFS
which has the effect of both 2TL term and 7-SFS. The
2TLT-SFS can provide more useful information and can be
applied in a wider range of DM circumstances. When we
compare it with the picture fuzzy set and spherical fuzzy
set there is a minor change in the ranking results of
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Table 25 Ranking results utilizing different sets based on WHM operator

Sets Parameters Score values Ranking
2TL picture fuzzy set
F(E,) =-0.1729
F(E)=0
F(Z;) = —1.0649
g=1 F(E4) = —2.4252 By >E >Es>E >3 >8> 5y
z=3 F(Es) = —0.7187
F(Z¢) = —1.9815
F(Z7) = —0.8612
2TL spherical fuzzy set
F(E)=0
F(Z,;) = —0.0820
F(Z3) = —0.9647
=2 F(E4) = —1.9999 B >E,>Es>E;>E;3 > E¢ > 5y
z=3 F(Es5) = —0.5348
F(Ze) = —1.7756
F(Z7) = —0.6762
2TLT-spherical fuzzy set (The proposed)
F(E)=0
F(Z;) = —0.9205
F(Z;) = —1.2129
=4 F(E4) = —2.1217 1 >E7>85>E5, >8> E¢ > &y
z=3 F(Es5) = —0.2424
F(Z6) = —1.9586
F(Z7) = —0.1788

alternatives but the best alternative is Z; and =, same as in
2TLT-SFS which is shown in Tables 25 and 26.

6 Conclusions and future work

TOPSIS is a classical MAGDM methodology that uses
crisp information to rank the preference orders of feasible
alternatives and allocate the optimal choice. In the DM
process, the collective opinion of a group of experts boosts
the credibility of the results. Many real-world MAGDM
problems occur in a complex environment and are fre-
quently based on imprecise data and uncertainty. The
2TLT-SFS is appropriate for dealing with the ambiguity of
decision makers’ judgment over alternatives concerning
attributes. This paper introduced a novel theory on 2TLT-
SES as well as the principles of the theory, which included
arithmetic operations and AOs. We proposed a DM

@ Springer

methodology known as the maximizing deviation method
using 2TLT7-SFS to determine the attribute’s optimal rela-
tive weights. A MAGDM method, namely, 2TLT-SF-
TOPSIS, based on the novel theory has been developed.
The developed 2TLT-SF-TOPSIS method considers nor-
malized Euclidean distances and calculates the closeness
ratios to ideal solutions based on these distances. We have
used the suggested approach to solve a real-world issue
involving hospital performance evaluation. In this paper,
we have concluded that hospital A (F;) and hospital B (F)
are the best among seven hospitals based on the KPIs for
HPE. The comparative analysis shows that the 2TL7-SF-
TOPSIS method is successful and practicable when com-
pared to other methods. Our method appears to be simple,
has less information loss, and can be easily applied to other
organizational DM problems in a 2TL7-SF environment.
We have evolved to the conclusion that the established
technique is a more precise, general, and flexible, since it
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Table 26 Ranking results utilizing different sets based on WDHM operator
Sets Parameters Score values Ranking
2TL picture fuzzy set
F(ZE;) = —0.9862
F(E)=0
F(E;) = —1.8166
g=1 F(E4) = —3.0172 By >E >Es>E >3 >8> 5y
=3 F(Es) = —1.1028
F(Z) = —2.6356
F(Z7) = —1.5850
2TL spherical fuzzy set
F(E)) = —1.0740
F(E)=0
F(Z3) = —1.9668
=2 F(E4) = —2.4970 B >E >8s>E;>E; > E; > &
z=3 F(Es5) = —1.1959
F(Z) = —2.6203
F(Z27) = —1.4460
2TLT-spherical fuzzy set (The proposed)
F(E|) = —1.5321
F(E)=0
F(E;) = —2.3124
=4 F(E4) = —2.1217 E,>E;>E,>E >Ey>E; > &
z=3 F(Es) = —1.3075
F(Ze) = —2.7402
F(E7) = —1.4372

offers DMs greater latitude to assess the alternatives using
linguistic criteria. In the future, our established method can
be successfully applied to any group DM problem, such as
industrial engineering, medical sciences, company man-
agement, and so forth.
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