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Abstract
The study of unclear phenomena has been facilitated by fuzzy sets. Fuzzy set extensions have allowed for a more detailed

investigation of these kinds of research. Finding quantitative measures for ambiguity and other characteristics of these

occurrences thus becomes a challenge. As a fuzzy set extension, several researchers proposed intuitionistic fuzzy (IF) sets

and used them in many contexts since they were first described by Atanassov. One such use is to solve multi-criteria

decision-making issues. This study measure the amount of knowledge linked with an IF-set. An IF-knowledge measure

is proposed. Using numerical examples, its utility and validity are examined. Besides this, the IF-accuracy measure, IF-

information measure, similarity measure, and dissimilarity measure, are the four new measures that are derived from the

proposed IF-knowledge measure. All these measures are checked for their validation and their properties are discussed.

Pattern detection is taken as an application of the proposed accuracy measure. Finally, a modified VIKOR approach

depending upon the proposed similarity and dissimilarity measure is proposed to deal with an MCDM issue in an

intuitionistic fuzzy environment. The efficiency of the proposed approach is demonstrated by using a numerical example. A

comparative study is also provided to assess the feasibility of the proposed approach.

Keywords Intuitionistic fuzzy set � Knowledge measure � Similarity measure � Dissimilarity measure � Accuracy measure �
VIKOR � MCDM

1 Introduction

Based on Zadeh’s fuzzy set (Zadeh 1965), Atanassov

(1986) gave the notion of intuitionistic fuzzy (IF) set. The

requirement that the non-membership degree and mem-

bership degree after adding give one is relaxed by Ata-

nassov’s IF-sets. We can say that an IF-set is a general

form of fuzzy sets as described in Bustince et al. (2015),

Couso and Bustince (2018). For an IF-set, the hesitation

degree is calculated by subtracting the sum of the non-

membership and membership degrees from one. Due to its

benefit in modelling uncertain information systems, Bus-

tince (2000) has given the IF-set theory a lot of attention.

Numerous areas, including decision-making (Ye 2010b;

Xia and Xu 2012) and uncertainty reasoning (Papakostas

et al. 2013) have effectively used the concept of IF-sets.

To quantify the fuzziness of a fuzzy set, Zadeh (1968)

initially established the concept of entropy. In certain ways,

the Shannon entropy idea (Shannon 1948), which was first

introduced in probability theory, is related to the fuzzy

entropy concept proposed for fuzzy sets. Luca and Termini

(1972) developed the axiomatic idea of entropy. The

measure of intuitionistic entropy was first axiomatically

established by Burillo and Bustince (1996), and it was just

based on hesitation degree. The ratio of two distance values

served as the basis for the definition of IF-sets provided

by Szmidt and Kacprzyk (2001); Szmidt et al. (2014a).

Many authors including Wang and Xin (2005), Song et al.

(2017), Garg and Kaur (2018), Garg (2019) etc. gave
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attention to the definition of entropy of an IF-set. Find

entropy of IF-sets and use this in evaluating attribution

weighting vectors have also been focused on by some

researchers. According to Szmidt et al. (2014a), the

entropy cannot properly describe the uncertainty present in

an IF-set. As a result, using an entropy measure alone may

not be sufficient to create an acceptable uncertainty esti-

mate for IF-sets. In computing the uncertainty of IF-sets,

Pal et al. (2013) have underlined the distinction between

entropy and hesitation. Entropy and hesitation together

may provide a useful technique to calculate the entire

quantity of uncertainty associated with an IF-set.

In general, the IF-knowledge measure is connected to

the usable data that an IF-set provides. According to

information theory, having a lot of information means

having a lot of knowledge, which is beneficial for making

decisions. Accordingly, rather than the entropy measure,

the concept of knowledge measure may be seen as a

complementary idea to the total uncertainty measure. (see

Arya and Kumar 2021) This indicates that more knowledge

is always accompanied by less overall uncertainty. Szmidt

et al. (2014a) proposed an IF-knowledge measure by tak-

ing into account both entropy and hesitation of an IF-set to

differentiate between different types of intuitionistic fuzzy

information. In order to resolve challenges with multi-cri-

teria decision-making (MCDM), Das et al. (2016) found

that each attribute’s weight has been estimated by using the

knowledge measure. By calculating the separation between

an IF-set and the most uncertain IF-set, Nguyen (2015) has

created a novel knowledge measure. Guo (2015) offered a

new notion of knowledge measure for IF-set. The model

studied by Guo (2015) has been widely utilized to establish

the intuitionistic fuzzy entropy by calculating the differ-

ence between an IF-set and its complement. A detailed

inspection of the axiomatic definitions of IF-information

measures was also carried out by Das et al. (2017).

In an MCDM issue, we try to find out a particular

alternative from given alternatives that meets the greatest

number of predetermined criteria. Numerous scholars

including Hwang and Yoon (1981), Mareschal et al.

(1984), Gomes and Lima (1991), Opricovic (1998), Yager

(2020), Dutta and Saikia (2021), Ohlan (2022), Gupta and

Kumar (2022) etc. have looked at various strategies for

selecting a most preferable alternative from all available

alternatives. Every solution to an MCDM issue has a key

term attached to it like criteria weights. By using the jus-

tified criteria weights, we may identify the best alternative.

Therefore, extra attention must be given while evaluating

the weights of each criterion. Criteria weights are calcu-

lated by several approaches. For the evaluation of criteria,

Chen and Li (2010) provided the following two ways-

• Objective Evaluation approach: The criterion weights

in this approach are determined using mathematical

formulas. The most acceptable objective evaluation

approach is the calculation of criterion weights using

information and knowledge measures (see Diakoulaki

et al. 1995; Fan 2002; Odu 2019).

• Subjective Evaluation approach: In this approach,

resource persons directly assess the criteria weights.

Subjective weights are determined by the preferences

indicated by resource persons (see Chu et al. 1979;

Ginevičius and Podvezko 2005; Zoraghi et al. 2013).

When dealing with MCDM issues, Opricovic (1998) sug-

gested an approach, called VIKOR1 approach, which can

offer a compromise solution in an MCDM issue. In this

approach, the precise assessment of ‘‘Closeness’’ to the

positive ideal solution is employed to select the best

alternative. Many researchers extended the traditional

VIKOR approach to finding the solutions of MCDM,

MADM, and MCGDM problems. Chen and Chang (2016)

proposed IF-geometric averaging operator to solve MADM

issues. Wang and Chang (2005) solved the MCGDM

problem by using the VIKOR approach in a fuzzy envi-

ronment. Sanayei et al. (2010) took the problem of supplier

selection and solve it with help of the fuzzy VIKOR

approach. Shemshadi et al. (2011) solved the supplier

selection method by entropy-based fuzzy VIKOR

approach. By using triangular intuitionistic fuzzy numbers,

Wan et al. (2013) extended the Concept of the VIKOR

approach to solving multi-attribute group decision-making

problems. Chang (2014) studied a case to find the best

hospital in Taiwan. By using triangular fuzzy numbers,

Rostamzadeh et al. (2015) found the solution to the green

supply chain management problem by using the VIKOR

approach. Gupta et al. (2016) extended the VIKOR

approach for the selection of plant location. Zeng et al.

(2019) used the novel score function in the VIKOR

approach to finding the best alternative. Ravichandran

et al. (2020) solved the personnel selection problem by

extended VIKOR approach. Hu et al. (2020) gave a rank-

ing to the doctors by using the VIKOR approach. Gupta

and Kumar (2022) proposed VIKOR approach based on IF-

scale-invariant information measure with correlation

coefficients for solving MCDM. Most of the researchers

used the distance measure in calculating maximum group

utility and the minimum individual regret in the VIKOR

approach. But in the proposed approach, we use the pro-

posed similarity as well as dissimilarity measure and find

the results are highly encouraging.

According to the study presented above, there is still

space for debate about IF-knowledge measures. The

1 Vlsekriterijumska Optimizacija I Kompromisno Resenje.
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majority of studies on the IF-knowledge and information

measures primarily concentrate on the distinction between

IF-sets and their complement. Even though Nguyen (2015)

pioneered this novel approach to analysing IF-knowledge

measures, further research is required to enhance this type

of measure and provide a suitable measure that will find the

total amount of knowledge for an IF-set. Some of the

valuable conclusions from the study on IF-information and

knowledge measures cannot fully address some problems

in intuitionistic fuzzy environment and run into different

difficulties, including the following:

U The vast majority of IF-knowledge and information

measures do not follow the order required for lin-

guistic comparison. But, the proposed IF-knowledge

measure fulfils the desired order (see Example 1).

U The bulk of the IF-knowledge and information mea-

sures that are documented in the literature provide

absurd results when calculating the ambiguity

between different IF-sets (see Example 2).

U The majority of IF-knowledge and information mea-

sures compute the same criteria weights for various

alternatives, while the criteria weights calculated by

the proposed IF-knowledge measure are different for

different alternatives (see Example 3).

U The vast majority of similarity and dissimilarity

measures in intuitionistic fuzzy environment are not

able to detect a pattern from the available patterns.

But, the proposed IF-accuracy measure clearly detects

the pattern from the given patterns (see Example 4).

This inspires us to provide a fresh way to gauge one’s

understanding of IF-sets. From these facts, we proposed an

effective IF-knowledge measure in this study. The main

highlights of this study are as follows

U An IF-knowledge measure, together with its proper-

ties, is proposed.

U We provide numerical examples to show how the

proposed IF-knowledge measure overcomes the

drawbacks of some current IF-knowledge and infor-

mation measures.

U Based on the proposed knowledge measure, we

derived a new accuracy measure, information mea-

sure, similarity measure, and dissimilarity measure in

intuitionistic fuzzy environment. Some properties are

also discussed.

U The proposed accuracy measure is used in pattern

detection. A comparison with various measures is

provided to demonstrate the efficacy of the proposed

accuracy measure in pattern detection.

U To address an MCDM issue, a modified VIKOR

approach is presented. In the proposed approach, we

use proposed IF-similarity and dissimilarity measures

in place of the distance measure.

U We also show how effective the proposed approach is

for selecting the best university for a student in the

MCDM issue.

This study’s primary points are as follows: Sect. 1

covered the primary objective of this article and related

literature. The requirement and main contribution of this

study are discussed. In Sect. 2, some of the basic defini-

tions are discussed. In Sect. 3, an IF-knowledge measure is

suggested and is checked for validation. Some of its

properties are mentioned and a comparison with some

other measures is given. In Sect. 4, we developed four

additional measures based on the proposed IF-knowledge

measure: accuracy measure, information measure, simi-

larity measure, and dissimilarity measure in intuitionistic

fuzzy environment. They are validated, and it is discussed

what properties they have. The proposed accuracy measure

is used in pattern detection and is compared with some

existing measures for detecting patterns. Section 5 dis-

cusses a modified VIKOR approach depending upon pro-

posed similarity and dissimilarity measures to solve

MCDM issues. By employing a numerical example to

tackle the MCDM issues, the proposed approach is com-

pared with previously published approaches in the litera-

ture. The conclusion and recommendations for more study

are given in Sect. 6.

2 Preliminaries

In the present section, we quickly recap a few pieces of

background information on IF-sets to make the upcoming

exposition easier.

Assume that

Xt ¼ K ¼ ðk1; k2; k3; . . .; ktÞj
Xt

i¼1
ki ¼ 1

(

where 0� ki� 18i ¼ 1; 2; . . .t

)
;

ð1Þ

is the collection of total probability distributions for t � 2.

Shannon’s definition of the information measure is

EðKÞ ¼ �
Xt

i¼1
ki log ki; ð2Þ

where K 2 Xt. There are many generalizations of Shannon

entropy (Shannon 1948) given by many researchers

including Rényi (1961), Havdra and Charvat (1967),
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Tsallis (1988), Boekee and Vander Lubbe (1980) etc. The

r-norm entropy explored by Boekee and Vander Lubbe

(1980) is provided by

ErðKÞ ¼
r

r � 1
1�

Xt

i¼1
kri

 !1
r

2

4

3

5; r 2 0;1ð Þ; r 6¼ 1: ð3Þ

Furthermore, the r-norm entropy is equivalent to the

Shannon entropy when r ! 1 and ErðKÞ ! ð1�maxðkiÞÞ
when r !1. The r-norm entropy was further generalized

by Hooda (2004), Kumar (2009), Kumar et al. (2014),

Joshi and Kumar (2018).

Now, we provide the necessary background information

on IF-sets and their generalizations.

Definition 1 (Zadeh 1965) Let D( 6¼ /) be a finite set. A

Fuzzy set �R defined on D is given by

�R ¼ hdi; l �RðdiÞi : di 2 Df g; ð4Þ

where l �R: D ! 0; 1½ � represents membership function for

the fuzzy set �R.

Definition 2 (Atanassov 1986) Let D( 6¼ /) be a finite set.

An IF-set R defined on D is given by

R ¼ hdi; lRðdiÞ; mRðdiÞi : di 2 Df g; ð5Þ

where lR: D! 0; 1½ � is membership function and mR: D!
0; 1½ � is non-membership function with condition that

0� lRðdiÞ þ mRðdiÞ� 1; 8di 2 D: ð6Þ

For an IF-set R described on D, the hesitation degree (pR)
is computed by the formula given below

pRðdiÞ ¼ 1� lRðdiÞ � mRðdiÞ; 8di 2 D: ð7Þ

Clearly, pRðdiÞ 2 [0,1]. Hesitation degree can also be

regarded as an intuitionistic index and is used to represent

the degree of the hesitance of the element di 2 D in IF-set

R. Higher value of pRðdiÞ corresponds to high vagueness.

Also, when pRðdiÞ ¼ 0, then the IF-set R decays into a

simple fuzzy set. The most IF-set is an IF-set in which the

membership and non-membership function values are

identical for every element of the set. Every element of

most IF-set is called a crossover element.

Note: From this point forward, the term IFS(D) shall

refer to the collection of all the IF-sets.

Definition 3 Consider two IF-sets R; S 2 IFS(D) defined

by

R ¼ hdi; lRðdiÞ; mRðdiÞi : di 2 Df g;

S ¼ hdi; lSðdiÞ; mSðdiÞi : di 2 Df g;

then following are the basic operations on IF-sets:

R[S¼ hdi;max lR dið Þ;lS dið Þð Þ;f

min mR dið Þ;mS dið Þð Þi :di2Dg;

R\S¼ hdi;min lR dið Þ;lS dið Þð Þ;f

max mR dið Þ;mS dið Þð Þi :di2Dg;

Rc¼ hdi;mRðdiÞ;lRðdiÞi :di2Df g;

R�S,
lR dið Þ�lS dið Þand mR dið Þ�mS dið Þ if lRðdiÞ�mSðdiÞ

lR dið Þ�lS dið Þand mR dið Þ�mS dið Þ if lRðdiÞ�mSðdiÞ

(
;8di2D;

R¼S,S�R andR�S:

ð8Þ

Definition 4 (Szmidt and Kacprzyk 2001) To define a

function E: IFS(D) ! 0; 1½ � as an IF-information measure,

it must satisfy the following four axioms:

(E1) E(R)=1 , lRðdiÞ ¼ mRðdiÞ 8 di 2 D, i.e., R is most

IF-set.

(E2) E(R)=0 , lRðdiÞ ¼ 0, mRðdiÞ ¼ 1 or lRðdiÞ ¼ 1,

mRðdiÞ ¼ 0 8 di 2 D, i.e., R is a crisp set.

(E3) E(R) � E(S) , R � S.

(E4) If Rc represents complement of a fuzzy set R, then

EðRÞ ¼ EðRcÞ.

The fuzzy entropy calculates the Fuzziness of a fuzzy

set. In addition, a knowledge measure determines the total

quantity of knowledge. According to Singh et al. (2019),

these two theories are complimentary to one another.

Definition 5 (Singh et al. 2019) The following four

axioms must be met to define a function K: IFS(D)! 0; 1½ �
as an IF-knowledge measure:

(K1) K(R)=1 , lRðdiÞ ¼ 0, mRðdiÞ ¼ 1 or lRðdiÞ ¼ 1,

mRðdiÞ ¼ 0 8 di 2 D, i.e., R is a crisp set.

(K2) K(R)=0, lRðdiÞ ¼ mRðdiÞ 8 di 2 D, i.e., R is most

IF-set.

(K3) K(R) � K(S) , R � S.

(K4) If Rc represents complement of a fuzzy set R, then

KðRÞ ¼ KðRcÞ.

Definition 6 (Hung and Yang 2004; Chen and Chang

2015) Let R; S; T 2 IFSðDÞ. A mapping Sm : IFSðDÞ �
IFSðDÞ ! ½0; 1� is considered to be an IF-similarity mea-

sure if it meets the four axioms listed below:

(S1) 0� SmðR; SÞ� 1.

(S2) SmðR; SÞ ¼ SmðS;RÞ.
(S3) SmðR; SÞ ¼ 1 , R ¼ S.

(S4) If R � S � T , then SmðR; SÞ� SmðR; TÞ &
SmðS; TÞ� SmðR; TÞ.
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Definition 7 (Wang and Xin 2005) Let R; S; T 2 IFSðDÞ.
A mapping Dm : IFSðDÞ � IFSðDÞ ! ½0; 1� is considered

to be a dissimilarity/distance measure if it meets the four

axioms listed below:

(D1) 0�DmðR; SÞ� 1.

(D2) DmðR; SÞ ¼ DmðS;RÞ.
(D3) DmðR; SÞ ¼ 0 , R ¼ S.

(D4) If R � S � T , then DmðR; SÞ�DmðR; TÞ &
DmðS; TÞ�DmðR;TÞ.

Definition 8 Let R; S 2 IFSðDÞ. A mapping Am :

IFSðDÞ � IFSðDÞ ! ½0; 1� is said to be accuracy measure

in S w.r.t. R, if it fulfils the following four axioms:

(A1) AmðR; SÞ 2 ½0; 1�.
(A2) AmðR; SÞ ¼ 0 , lRðdiÞ ¼ mRðdiÞ.
(A3) AmðR; SÞ ¼ 1 if lRðdiÞ ¼ lSðdiÞ ¼ 0, mRðdiÞ ¼

mSðdiÞ ¼ 1 or lRðdiÞ ¼ lSðdiÞ ¼ 1,

mRðdiÞ ¼ mSðdiÞ ¼ 0, i.e., Both R and S are equal and

crisp IF-sets.

(A4) AmðR; SÞ ¼ KðRÞ if R ¼ S, where K(R) is knowl-

edge measure.

As briefly described below, Szmidt and Kacprzyk

(1998) provided a technique for converting IF-sets into

fuzzy sets.

Definition 9 (Szmidt and Kacprzyk 1998) Let R 2 IFS(D),

then the fuzzy membership function l �RðdiÞ corresponding
to fuzzy set �R is given as follow

l �RðdiÞ ¼ lRðdiÞ þ
pRðdiÞ

2
;

¼ lRðdiÞ þ 1� mRðdiÞ
2

;8di 2 D:

ð9Þ

In the next section, we proposed an IF-knowledge

measure.

3 Proposed intuitionistic fuzzy knowledge
measure

3.1 Definition

Let R 2 IFS(D). Based on the concept of r-norm infor-

mation measure proposed by Hooda (2004), Verma and

Sharma (2011), and Bajaj et al. (2012), we define a new IF-

knowledge measure for IF-set R as follow

KA
I ðRÞ ¼

ffiffiffi
2
p
� 1

� ��1

t

Xt

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2
lRðdiÞ þ 1� mRðdiÞ

2

� �2

þ mRðdiÞ þ 1� lRðdiÞ
2

� �2
 !vuut � 1

2
4

3
5;

ð10Þ

for some R 2 IFS(D). Further on solving, we can write

Eq. (10) as follows

KA
I ðRÞ ¼

ð
ffiffiffi
2
p
� 1Þ�1

t
Xt

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ lRðdiÞ � mRðdiÞð Þ2

q
� 1

� �
:

ð11Þ

Further, if mRðdiÞ ¼ 1� lRðdiÞ; 8di 2 D then Eq. (11)

becomes a fuzzy knowledge measure which is studied by

Joshi (2023) and is slightly different from the knowledge

measure studied by Singh and Kumar (2023). Figure 1

represents the total quantity of the knowledge passed by the

proposed IF-knowledge measure.

Now, we test the validity of the proposed IF-knowledge

measure KA
I .

Theorem 1 Let R ¼ hdi; lRðdiÞ; mRðdiÞi : di 2 Df g and

S ¼ hdi; lSðdiÞ; mSðdiÞi : di 2 Df g are two members of

IFS(D) for a finite set D 6¼ /ð Þ. Define a mapping

KA
I :IFS(D) ! 0; 1½ � given in Eq. (11). Then, KA

I is a valid

IF-knowledge measure if it fulfils the following axioms,

(K1)-(K4):

(K1) KA
I ðRÞ ¼ 1, lRðdiÞ ¼ 0, mRðdiÞ ¼ 1 or lRðdiÞ ¼ 1,

mRðdiÞ ¼ 0 8 di 2 D, i.e., R is a crisp set.

(K2) KA
I ðRÞ ¼ 0, lRðdiÞ ¼ mRðdiÞ 8 di 2 D, i.e., R is

most IF-set.

(K3) KA
I ðRÞ�KA

I ðSÞ , R � S.

(K4) If Rc represents complement of a fuzzy set R, then

KA
I ðRÞ ¼ KA

I ðRcÞ.

Proof (K1). First, we consider

KA
I ðRÞ ¼ 1, ð

ffiffiffi
2
p
� 1Þ�1

t

Xt

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ lRðdiÞ � mRðdiÞð Þ2

q
� 1

� �
¼ 1;

,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ lRðdiÞ � mRðdiÞð Þ2

q
¼

ffiffiffi
2
p

; 8di 2 D;

, lRðdiÞ � mRðdiÞð Þ2¼ 1; 8di 2 D;

, lRðdiÞ ¼ 0; mRðdiÞ ¼ 1 or lRðdiÞ ¼ 1;

mRðdiÞ ¼ 0; 8di 2 D:

This proves axiom K1.
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(K2). Let us take KA
I (R)=0. Then, from Eq. (11), we

have

ð
ffiffiffi
2
p
� 1Þ�1

t

Xt

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ lRðdiÞ � mRðdiÞð Þ2

q
� 1

� �
¼ 0;

which gives
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ lRðdiÞ � mRðdiÞð Þ2

q
¼ 1; 8di 2 D;

i.e.,

lRðdiÞ � mRðdiÞð Þ2¼ 0; 8di 2 D:

Thus, we get lRðdiÞ ¼ mRðdiÞ 8 di 2 D:

Conversely, Let lRðdiÞ ¼ mRðdiÞ 8 di 2 D; then Eq. (11)

implies KA
I (R)=0.

This proves axiom K2.

(K3). To prove this axiom, first, we prove that function

f ðs; tÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ s� tð Þ2

q
� 1; ð12Þ

is an increasing function w.r.t. t and decreasing function

w.r.t. s, where s; t 2 ½0; 1�. Partially differentiate function f

w.r.t. s, we have

of ðs; tÞ
os

¼ s� tffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ s� tð Þ2

q : ð13Þ

Now, critical points of s can be found by putting

of ðs; tÞ
os

¼ 0;

which gives s ¼ t.
Here, two cases arise given below:

of ðs; tÞ
os

¼
Positive if s� t

Negative if s� t

	
ð14Þ

i.e., function f is increasing function for s� t and is

decreasing function for s� t.

Similarly, we have

of ðs; tÞ
ot

¼
Negative if s� t

Positive if s� t

	
ð15Þ

i.e., function f is decreasing function for s� t and is

increasing function for s� t.

Now, take R,S 2 IFS(D) s.t. R � S. Let D1 and D2 are

two partitions of D s.t. D ¼ D1 [ D2 and

lRðdiÞ� lSðdiÞ� mSðdiÞ� mRðdiÞ 8di 2 D1

lRðdiÞ� lSðdiÞ� mSðdiÞ� mRðdiÞ 8di 2 D2

	

Thus, from the monotonic behaviour of function f and from

Eq. (11), it is easy to prove that KA
I ðRÞ � KA

I ðSÞ. This
proves axiom (K3).

(K4). It is easy to see that

Rc ¼ hdi; mRðdiÞ; lRðdiÞi : di 2 Df g,
i.e.,

lRcðdiÞ ¼ mRðdiÞ and mRcðdiÞ ¼ lRðdiÞ; 8di 2 D:

Fig. 1 Knowledge passed by proposed IF-knowledge measure
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Thus, from Eq. (11), we get KA
I ðRÞ ¼ KA

I ðRcÞ. This proves
axiom (K4).

Thus, KA
I (R) is a valid IF-knowledge measure. h

3.2 Properties

Now, we study about some of the characteristics of the

suggested knowledge measure KA
I (R).

Theorem 2 Some following properties are fulfilled by the

proposed IF-knowledge measure KA
I :

(1) For an IF-set R, KA
I (R) 2 [0,1].

(2) KA
I ðRÞ ¼ KA

I ðRcÞ.
(3) KA

I ðR [ SÞ þ KA
I ðR \ SÞ ¼ KA

I ðRÞ þ KA
I ðSÞ for any

two arbitrary IF-sets R, S.

(4) KA
I ðRÞ attains its highest value for crisp set R and

attains its lowest value for most IF-set R.

Proof (1). Since, lRðdiÞ, mRðdiÞ 2 0; 1½ � 8di 2 D, therefore,

�1� lRðdiÞ � mRðdiÞ� 1 8di 2 D:

) 0� lRðdiÞ � mRðdiÞð Þ2� 1 8di 2 D,

) 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ lRðdiÞ � mRðdiÞð Þ2

q
�

ffiffiffi
2
p
8di 2 D,

) 0�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ lRðdiÞ � mRðdiÞð Þ2

q
� 1�

ffiffiffi
2
p
� 1 8di 2 D,

) 0� ð
ffiffi
2
p
�1Þ�1
t

Pt
i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ lRð

p


ðdiÞ � mRðdiÞÞ2 � 1� � 1,

) 0�KA
I ðRÞ� 1.

) KA
I ðRÞ 2 ½0; 1�.

(2). Proof is obvious from axiom (K4).

(3). Let R, S 2 IFS(D). We take the partition of D as

follows:

D1 ¼ di 2 DjR � Sf g;

D2 ¼ di 2 DjS � Rf g;
ð16Þ

i.e.,

lR dið Þ� lS dið Þ and mR dið Þ� mS dið Þ 8di 2 D1

lR dið Þ� lS dið Þ and mR dið Þ� mS dið Þ 8di 2 D2

	

where lRðdiÞ and lSðdiÞ are the membership functions and

mRðdiÞ and mSðdiÞ are the non-membership functions for the

IF-set R and S, respectively.

Now, 8di 2 D,

KA
I ðR [ SÞ þ KA

I ðR \ SÞ

¼ ð
ffiffiffi
2
p
� 1Þ�1

t

Xt

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ lR[SðdiÞ � mR[SðdiÞð Þ2

q
� 1

� �

þ ð
ffiffiffi
2
p
� 1Þ�1

t

Xt

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ lR\SðdiÞ � mR\SðdiÞð Þ2

q
� 1

� �
;

which gives

KA
I ðR [ SÞ þ KA

I ðR \ SÞ

¼
ffiffiffi
2
p
� 1

� ��1

t

X

D1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ lSðdiÞ � mSðdiÞð Þ2

q
� 1

� �

þ
ffiffiffi
2
p
� 1

� ��1

t

X

D2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ lRðdiÞ � mRðdiÞð Þ2

q
� 1

� �

þ
ffiffiffi
2
p
� 1

� ��1

t

X

D1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ lRðdiÞ � mRðdiÞð Þ2

q
� 1

� �

þ
ffiffiffi
2
p
� 1

� ��1

t

X

D2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ lSðdiÞ � mSðdiÞð Þ2

q
� 1

� �
:

On solving, we get

KA
I ðR [ SÞ þ KA

I ðR \ SÞ ¼ KA
I ðRÞ þ KA

I ðSÞ: ð17Þ

(4). Proof is obvious from axioms (K1) and (K2). h

3.3 Comparative study

Now, we contrast the suggested IF-knowledge measure

with the other measures that are already in use. The ben-

efits of new knowledge measure are explored by this

comparison. We examine these benefits in relation to the

estimation of ambiguity content of IF-sets, the estimation

of attribute weights in MCDM issues, and the manipulation

of structured linguistic variables. Among the available

measures in the literature are

EZLðRÞ ¼1�
1

t

Xt

i¼1
jlRðdiÞ � mRðdiÞj;

ðZeng and Li 2006Þ:
ð18Þ

EBBðRÞ ¼
1

t

Xt

i¼1
ð1� lRðdiÞ � mRðdiÞÞ;

ðBurillo and Bustince 1996Þ:
ð19Þ

ESKðRÞ ¼
1

t

Xt

i¼1

min ðlRðdiÞ; mRðdiÞÞ þ pRðdiÞ
max ðlRðdiÞ; mRðdiÞÞ þ pRðdiÞ

;

ðSzmidt and Kacprzyk 2001Þ:
ð20Þ
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EHYðRÞ ¼
1

t

Xt

i¼1
ð1� l2RðdiÞ � m2RðdiÞ � p2RðdiÞÞ;

ðHung and Yang 2006Þ:
ð21Þ

EZJðRÞ ¼
1

t

Xt

i¼1

min ðlRðdiÞ; mRðdiÞÞ
max ðlRðdiÞ; mRðdiÞÞ

;

ðZhang and Jiang 2008Þ:
ð22Þ

Ep
ZðRÞ¼1�

1

2t

Xt

i¼1
jlRðdiÞ�mRðdiÞjpþjlRðdiÞ�mRðdiÞj3p
� �

;

p[0;ðLi etal. 2012Þ: ð23Þ

Er
BðRÞ ¼

r

tð1� rÞ
Xt

i¼1
ð1� lrRðdiÞ þ mrRðdiÞ þ prRðdiÞ

� �1
rÞ;

ðBajaj etal. 2012Þ: ð24Þ

KSðRÞ¼1�
1

2t

Xt

i¼1

minðlRðdiÞ;mRðdiÞÞþpRðdiÞ
maxðlRðdiÞ;mRðdiÞÞþpRðdiÞ

þpRðdiÞ
� �

;

ðSzmidt etal. 2014bÞ: ð25Þ

KNðRÞ¼
1

t
ffiffiffi
2
p
Xt

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2RðdiÞþ m2RðdiÞþ lRðdiÞþ mRðdiÞð Þ2

q
;

ðNguyen 2015Þ: ð26Þ

KGðRÞ ¼1�
1

2t

Xt

i¼1
1� jlRðdiÞ � mRðdiÞjð Þ 1þ pRðdiÞð Þ;

ðGuo 2015Þ: ð27Þ

KA
I ðRÞ ¼

ð
ffiffiffi
2
p
� 1Þ�1

t

Xt

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ lRðdiÞ � mRðdiÞð Þ2

q
� 1

� �
;

(Proposed one) ð28Þ

3.3.1 Structured linguistic computation

The idea of an IF-set is utilized to represent linguistic

variables, and the linguistic hedges are used to represent

the operations on an IF-Set. The linguistic hedges, which

are used to reflect linguistic variables, include ‘‘MORE’’,

‘‘LESS’’, ‘‘VERY’’, ‘‘FEW’’, ‘‘SLIGHTLY’’ and ‘‘LESS’’.

In this situation, we investigated these linguistic hedges

and compared the suggested IF-knowledge measure’s

performance to existing measures.

Let us take an IF-set R ¼ hdi; lRðdiÞ; mRðdiÞi : di 2 Df g
defined on a finite set D( 6¼ /) and treat this IF-set as

‘‘Wide’’ on D. For k[ 0, De et al. (2000) define the

modifier of IF-set R as follow

Rk ¼ hdi; lRðdiÞð Þk; 1� 1� mRðdiÞð Þki : di 2 D
n o

: ð29Þ

De et al. (2000) define the concentration and dilatation for

an IF-set R as follow

CONðRÞ ¼ R2;

DILðRÞ ¼ R0:5:
ð30Þ

Concentration and dilatation are used for modifiers. For the

sake of clarity, we shorten the following terms: W stands

for WIDE, V.W. stands for VERY WIDE, M.L.W. stands

for MORE/LESS WIDE, Q.V.W. stands for QUITE VERY

WIDE and V.V.W. stands for VERY VERY WIDE.

Hedges for the IF-set R are defined as follows:

M:L:W : stands for R0:5

W stands for R

V :W : stands for R2

Q:V:W : stands for R3

V :V:W : stands for R4

8
>>>>>><

>>>>>>:

ð31Þ

It makes intuitive sense that as we move from set R0:5 to set

R4, the uncertainty concealed in them decreases and the

knowledge amount they express grows. For top perfor-

mance, the information measure E(R) of an IF-set R must

match the following criteria:

EðV:V :W :Þ\EðQ:V:W :Þ\EðV :W :Þ
\EðWÞ\EðM:L:W :Þ;

ð32Þ

where E(R) is the information measure of an IF-set R. On

the other hand, a knowledge measure must adhere to the

following criteria:

KðV :V:W :Þ[KðQ:V :W :Þ[KðV:W :Þ
[KðWÞ[KðM:L:W :Þ;

ð33Þ

where KA(R) is knowledge measure of IF-set R.

Now, to assess the efficacy of the suggested knowledge

measure KA
I (R), consider the following example:

Example 1 Let us consider a set D ¼ di; 1� i� 5f g and let
R is an IF-set defined on D defined as follows:

R ¼ d1; 0:105; 0:809ð Þ; d2; 0:297; 0:492ð Þ;f
d3; 0:509; 0:482ð Þ; d4; 0:906; 0:005ð Þ;
d5; 0:997; 0:001ð Þg:

ð34Þ

Considering an IF-set ‘‘R’’ on D as ‘‘WIDE’’ and assuming

the linguistic variables according to Eq. (31). Using

Eq. (29), we may produce the following IF-sets:
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R0:5 ¼ d1; 0:3240; 0:5630ð Þ; d2; 0:5450; 0:2873ð Þ;f
d3; 0:7134; 0:2803ð Þ; d4; 0:9518; 0:0025ð Þ;

d5; 0:9985; 0:0005ð Þg;

R ¼ d1; 0:1050; 0:8090ð Þ; d2; 0:2970; 0:4920ð Þ;f
d3; 0:5090; 0:4820ð Þ; d4; 0:9060; 0:0050ð Þ;

d5; 0:9970; 0:0010ð Þg;

R2 ¼ d1; 0:0110; 0:9635ð Þ; d2; 0:0882; 0:7419ð Þ;f
d3; 0:2591; 0:7317ð Þ; d4; 0:8208; 0:0100ð Þ;

d5; 0:9940; 0:0020ð Þg;

R3 ¼ d1; 0:0012; 0:9930ð Þ; d2; 0:0262; 0:8689ð Þ;f

d3; 0:1319; 0:8610ð Þ; d4; 0:7437; 0:0149ð Þ;

d5; 0:9910; 0:0030ð Þg;

R4 ¼ d1; 0:0001; 0:9987ð Þ; d2; 0:0078; 0:9334ð Þ;f

d3; 0:0671; 0:9280ð Þ; d4; 0:6738; 0:0199ð Þ;

d5; 0:9881; 0:0040ð Þg:

ð35Þ

Now, we compared the suggested IF-knowledge measure’s

performance to existing measures described in the litera-

ture. The values of the existing measures and the proposed

IF-knowledge measure are compared and shown in

Table 1.

Following observations are made from Table 1:

EZLðV :V :W :Þ\EZLðQ:V:W :Þ\EZLðV :W :Þ

\EZLðWÞ[EZLðM:L:W :Þ;

EBBðV :V :W :Þ[EBBðQ:V:W :Þ\EBBðV:W :Þ

\EBBðWÞ[EBBðM:L:W :Þ;

ESKðV :V :W :Þ\ESKðQ:V:W :Þ\ESKðV:W :Þ

\ESKðWÞ[ESKðM:L:W :Þ;

EHYðV :V :W :Þ\EHYðQ:V :W :Þ\EHYðV:W :Þ

\EHYðWÞ\EHYðM:L:W :Þ;

EZJðV :V :W :Þ\EZJðQ:V :W :Þ\EZJðV :W :Þ

\EZJðWÞ[EZJðM:L:W :Þ;

E3
ZðV :V :W :Þ\E3

ZðQ:V :W :Þ\E3
ZðV :W :Þ

\E3
ZðWÞ[E3

ZðM:L:W :Þ;

E5
BðV :V :W :Þ\E5

BðQ:V :W :Þ\E5
BðV:W :Þ

\E5
BðWÞ[E5

BðM:L:W :Þ;

KSðV :V :W :Þ[KSðQ:V:W :Þ[KSðV :W :Þ

[KSðWÞ\KSðM:L:W :Þ;

KNðV :V :W :Þ[KNðQ:V:W :Þ[KNðV :W :Þ

[KNðWÞ\KNðM:L:W :Þ;

KGðV :V :W :Þ[KGðQ:V:W :Þ[KGðV :W :Þ

[KGðWÞ\KGðM:L:W :Þ;

KA
I ðV :V :W :Þ[KA

I ðQ:V:W :Þ[KA
I ðV:W :Þ

[KA
I ðWÞ[KA

I ðM:L:W :Þ:

ð36Þ

Now, we found that, except EHYðRÞ and KA
I ðRÞ, none of the

information and knowledge measures follow the sequence

indicated in Eqs. (32) and (33). It suggests that they are not

performing well. Then, we solely compare information

measure EHYðRÞ and knowledge measure KA
I ðRÞ.

To do this, we use another IF-set provided by

R ¼ d1; 0:110; 0:798ð Þ; d2; 0:280; 0:502ð Þ;f
d3; 0:475; 0:423ð Þ; d4; 0:920; 0:019ð Þ;
d5; 0:981; 0:005ð Þg:

ð37Þ

The observed values are computed in Table 2 and the

following observations are made from it:

Table 1 Comparison of the proposed IF-knowledge measure with

some current measures

Measures M.L.W W V.W Q.V.W V.V.W

EZLðRÞ 0.4246 0.4354 0.2237 0.1439 0.1154

EBBðRÞ 0.0667 0.0794 0.0755 0.0730 0.0759

ESKðRÞ 0.3466 0.3963 0.1738 0.1142 0.0981

EHY ðRÞ 0.3330 0.3276 0.2381 0.1789 0.1475

EZJðRÞ 0.2997 0.3374 0.0997 0.0415 0.0229

Ep
ZðRÞ 0.6429 0.6526 0.5491 0.4530 0.3708

Er
BðRÞ 0.3038 0.3042 0.1868 0.1354 0.1189

KSðRÞ 0.7933 0.7622 0.8753 0.9064 0.9130

KNðRÞ 0.8698 0.8642 0.8939 0.9107 0.9147

KGðRÞ 0.7661 0.7610 0.8785 0.9196 0.9312

KA
I ðRÞ 0.4550 0.4826 0.6653 0.7711 0.8175

We take p ¼ 3 for Ep
Z (R); and r ¼ 5 for Er

B(R)

Table 2 Computed values of measures defined in Eqs. (21) and (28)

Measures M.L.W W V.W Q.V.W V.V.W

EHY ðRÞ 0.3471 0.3473 0.2626 0.2072 0.1798

KA
I ðRÞ 0.4499 0.4746 0.6486 0.7449 0.7838
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EHYðV :V :W :Þ\EHYðQ:V :W :Þ\EHYðV:W :Þ

\EHYðWÞ[EHYðM:L:W :Þ;

KA
I ðV :V :W :Þ[KA

I ðQ:V:W :Þ[KA
I ðV:W :Þ

[KA
I ðWÞ[KA

I ðM:L:W :Þ:

ð38Þ

In this case, we see that the information measure EHYðRÞ
does not match the order stated in Eq. (32). But the

proposed knowledge measure goes in the right order.

Consequently, the efficacy of the proposed knowledge

measure is really amazing.

3.3.2 Ambiguity computation

Two separate IF-sets have different levels of ambiguity.

However, some knowledge measures provide the same

ambiguity values corresponding to various IF-sets. As a

result, a new knowledge measure that generalizes previ-

ously recognized knowledge measures is required. The

effectiveness of the proposed measure is illustrated in the

following example:

Example 2 Define a set D= d1; d2; d3; d4f g and take

R1;R2;R3;R4 2 IFS(D) as follows

R1 ¼ ðd1; 0:423; 0:529Þ; ðd2; 0:219; 0:421Þ;f

ðd3; 0:231; 0:480Þ; ðd4; 0:421; 0:368Þg;

R2 ¼ ðd1; 0:320; 0:480Þ; ðd2; 0:410; 0:390Þ;f
ðd3; 0:480; 0:320Þ; ðd4; 0:319; 0:481Þg;

R3 ¼ ðd1; 0:623; 0:077Þ; ðd2; 0:619; 0:080Þ;f
ðd3; 0:613; 0:065Þ; ðd4; 0:725; 0:002Þg;

R4 ¼ ðd1; 0:423; 0:019Þ; ðd2; 0:214; 0:523Þ;f

ðd3; 0:329; 0:112Þ; ðd4; 0:298; 0:397Þg:

ð39Þ

We now determine the ambiguous content of given IF-sets

using some previously established knowledge measures

and suggested knowledge measure. Table 3 displays the

results of the calculations.

We can observe from Table 3 that the ambiguity content

as determined by existing knowledge measures is the same

for various IF-sets. However, the proposed knowledge

measure clearly distinguishes between these IF-sets.

Therefore, a fresh approach is constantly needed.

3.3.3 Attribute weights evaluation

The attribute weights are significant in an MCDM issue.

Here, we calculate attribute weights using both the proposed

measure and the previously existing knowledge measures

defined for IF-sets. Take a look at an example of this.

Example 3 Let D is a decision matrix corresponding to a

set of alternatives L1; L2; L3;L4f g and a set of attributes

T1; T2; T3; T4f g established in an intuitionistic fuzzy envi-

ronment.

The attribute weights can be determined using one of two

approaches given below:

(A). Approach depending upon information measures -

We can determine the weights corresponding to

various attributes by using the formula given as

follows:

wj ¼
1� EðTjÞ

q�
Pq

j¼1 EðTjÞ
; j ¼ 1; 2; 3; . . .; q; ð40Þ

where E denotes information measures corre-

sponding to an IF-set.

D ¼

\0:623; 0:077[ \0:320; 0:480[ \0:423; 0:019[ \0:423; 0:529[
\0:619; 0:080[ \0:410; 0:390[ \0:214; 0:523[ \0:219; 0:421[
\0:613; 0:065[ \0:480; 0:320[ \0:329; 0:112[ \0:231; 0:480[
\0:725; 0:002[ \0:319; 0:481[ \0:298; 0:397[ \0:421; 0:368[

2

6664

3

7775

Table 3 Ambiguity computation corresponding to different IF-sets

defined in Example 2

Knowledge Measures
?y  � Fuzzy sets �!

R1 R2 R3 R4

KSðRÞ 0.4927 0.4927 0.6615 0.4382

KNðRÞ 0.6754 0.6963 0.6754 0.5226

KGðRÞ 0.4829 0.4753 0.7325 0.4753

KA
I ðRÞ 0.0348 0.0233 0.3921 0.0925
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(B). Approach depending upon knowledge measures -

We can determine the weights corresponding to

various attributes by using the formula given as

follows:

wj ¼
KðTjÞPq
j¼1 KðTjÞ

; j ¼ 1; 2; 3; . . .; q; ð41Þ

where K denotes knowledge measures corre-

sponding to an IF-set.

In this example, we calculate weights calculated by

knowledge measures only. The attribute weights are com-

puted in the Table 4.

Table 4 demonstrates that the attribute weights deter-

mined by some existing knowledge measures are incon-

sistent. In some cases, the weights assigned to different

attributes are the same. However, the weights assigned by

the proposed knowledge measure are different for different

attributes. Thus, it is necessary to develop a new knowl-

edge measure for IF-sets.

4 Deduction of some new measures

In the present section, some more measures that are derived

from the proposed IF-knowledge measure, are suggested.

4.1 IF-accuracy measure

The quantity of intuitionistic fuzzy accuracy can be equa-

ted with the quantity of intuitionistic fuzzy knowledge. The

notion of IF-accuracy measure is used when we wish to

know how accurate IF-set S is in comparison to another IF-

set R. Verma and Sharma (2014) expanded the notion of

inaccuracy measure for IF-sets from fuzzy sets and gave

Intuitionistic Fuzzy Inaccuracy measure as follows:

IðR; SÞ ¼ � 1

t

Xt

i¼1

"
lR log

lR þ lS
2

� �

þ mR log
mR þ mS

2

� �
þ pR log

pR þ pS
2

� �

� pR log pR � 1� pRð Þ log 1� pRð Þ � pR

#
;

ð42Þ

where R; S 2 IFSðDÞ.
Now, depending upon proposed IF-knowledge measure

KA
I ðRÞ, we define a new IF-accuracy measure KI

accyðR; SÞ of
IF-set S w.r.t. IF-set R as follows:

KI
accyðR; SÞ

¼ ð
ffiffiffi
2
p
� 1Þ�1

2t

Xt

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ lRðdiÞ � mRðdiÞð Þ2

q
� 1

� �

þ ð
ffiffiffi
2
p
� 1Þ�1

2t

Xt

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ jlRðdiÞ � mRðdiÞj � jlSðdiÞ � mSðdiÞj

p
� 1

h i
:

ð43Þ

Now we check for the validation of the proposed accuracy

measure KI
accy.

Theorem 3 Let R ¼ hdi; lRðdiÞ; mRðdiÞi : di 2 Df g and

S ¼ hdi; lSðdiÞ; mSðdiÞi : di 2 Df g are two members of

IFS(D) for a finite set D 6¼ /ð Þ. Define a mapping KI
accy :

IFSðDÞ � IFSðDÞ ! 0; 1½ � given in Eq. (43). Then,

KI
accyðR; SÞ is a valid accuracy measure for IF-set S relative

to R if it fulfils the following axioms, (A1)-(A4):

(A1) KI
accyðR; SÞ 2 ½0; 1�.

(A2) KI
accyðR; SÞ ¼ 0 , lRðdiÞ ¼ mRðdiÞ.

(A3) KI
accyðR; SÞ ¼ 1 if lRðdiÞ ¼ lSðdiÞ ¼ 0, mRðdiÞ ¼

mSðdiÞ ¼ 1 or lRðdiÞ ¼ lSðdiÞ ¼ 1,

mRðdiÞ ¼ mSðdiÞ ¼ 0, i.e., R and S both are equal

crisp IF-sets.

(A4) KI
accyðR; SÞ ¼ KA

I ðRÞ if R ¼ S, where KA
I ðRÞ is the

proposed knowledge measure.

Proof (A1). It is easy to prove this from Eq. (43).

(A2). Let KI
accyðR; SÞ ¼ 0,

i.e.,

ð
ffiffiffi
2
p
�1Þ�1

2t

Xt

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ lRðdiÞ�mRðdiÞð Þ2

q
�1

� �

þð
ffiffiffi
2
p
�1Þ�1

2t
Xt

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þjlRðdiÞ�mRðdiÞj�jlSðdiÞ�mSðdiÞj

p
�1

h i
¼0:

Table 4 Attributes weights corresponding to Example 3

Knowledge Measures
?y  � Criteria Weights �!

w1 w2 w3 w4

KKðRÞ 0.3173 0.2363 0.2101 0.2363

KNðRÞ 0.2628 0.2710 0.2034 0.2628

KGðRÞ 0.3382 0.2194 0.2194 0.2229

KA
I ðRÞ 0.7223 0.0430 0.1705 0.0642

123

Granular Computing (2023) 8:1609–1643 1619



Since the above summation contains only positive terms,

therefore above-mentioned equation is true only if

lRðdiÞ � mRðdiÞð Þ ¼ 0 and jlRðdiÞ � mRðdiÞj � jlSðdiÞ�
mSðdiÞj ¼ 0; 8di 2 D; which gives lRðdiÞ ¼ mRðdiÞ;
8di 2 D.

Conversely, let us consider lRðdiÞ ¼ mRðdiÞ; 8di 2 D;

which clearly implies KI
accyðR; SÞ ¼ 0.

(A3). Let R, S are two crisp sets in IFS(D) and are equal.

It implies that lRðdiÞ ¼ lSðdiÞ ¼ 0, mRðdiÞ ¼ mSðdiÞ ¼ 1 or

lRðdiÞ ¼ lSðdiÞ ¼ 1, mRðdiÞ ¼ mSðdiÞ ¼ 0. Clearly,

KI
accyðR; SÞ ¼ 1 from both cases.

(A4). It is simple to demonstrate KI
accyðR; SÞ ¼ KA

I ðRÞ
for R ¼ S from definition given in Eq. (43).

Hence, KI
accyðR; SÞ is a valid IF-accuracy measure. h

Theorem 4 For R; S; T 2 IFSðDÞ, then KI
accy satisfy the

following properties:

(1) KI
accyðR; S [ TÞ þ KI

accyðR; S \ TÞ ¼
KI
accyðR; SÞ þ KI

accyðR; TÞ.
(2) KI

accyðR [ S; TÞ þ KI
accyðR \ S; TÞ

¼ KI
accyðR; TÞ þ KI

accyðS; TÞ.
(3) KI

accyðR [ S;R \ SÞ þ KI
accyðR \ S;R [ SÞ

¼ KI
accyðR; SÞ þ KI

accyðS;RÞ.
(4) If Rc and Sc represents complements of R and S re-

spectively then

(a) KI
accyðR;RcÞ ¼ KI

accyðRc;RÞ.
(b) KI

accyðR; ScÞ ¼ KI
accyðRc; SÞ.

(c) KI
accyðR; SÞ ¼ KI

accyðRc; ScÞ.
(d) KI

accyðR; SÞ þ KI
accyðRc; SÞ ¼ KI

accy

ðRc; ScÞ þ KI
accyðR; ScÞ.

Proof Let R; S; T 2 IFS(D) for a non-empty finite set D,

are given as follows:

R ¼ hdi; lRðdiÞ; mRðdiÞi : di 2 Df g;

S ¼ hdi; lSðdiÞ; mSðdiÞi : di 2 Df g;

T ¼ hdi; lTðdiÞ; mTðdiÞi : di 2 Df g;

where lRðdiÞ; lSðdiÞ;lTðdiÞ are membership functions and

mRðdiÞ; mSðdiÞ; mTðdiÞ are non-membership functions corre-

sponding to sets R, S, T, respectively.

(1). Consider two sets

U1 ¼ di 2 D : lSðdiÞ� lTðdiÞ; mSðdiÞ\mTðdiÞf g;

U2 ¼ di 2 D : lSðdiÞ\lTðdiÞ; mSðdiÞ� mTðdiÞf g:

Now,

KI
accyðR;S[TÞ

¼ð
ffiffiffi
2
p
�1Þ�1

2t

Xt

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ lRðdiÞ�mRðdiÞð Þ2

q
�1

� �

þð
ffiffiffi
2
p
�1Þ�1

2t

Xt

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þjlRðdiÞ�mRðdiÞj�jlS[TðdiÞ�mS[TðdiÞj

p
�1

� �
;

¼ð
ffiffiffi
2
p
�1Þ�1

2t

Xt

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ lRðdiÞ�mRðdiÞð Þ2

q
�1

� �

þ
"
ð
ffiffiffi
2
p
�1Þ�1

2t

X

di2U1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þjlRðdiÞ�mRðdiÞj�jlSðdiÞ�mSðdiÞj

p
�1

� �

þð
ffiffiffi
2
p
�1Þ�1

2t

X

di2U2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þjlRðdiÞ�mRðdiÞj�jlTðdiÞ�mTðdiÞj

p
�1

� �#
;

ð44Þ

and

KI
accyðR;S\TÞ

¼ð
ffiffiffi
2
p
�1Þ�1

2t

Xt

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ lRðdiÞ�mRðdiÞð Þ2

q
�1

� �

þð
ffiffiffi
2
p
�1Þ�1

2t

Xt

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þjlRðdiÞ�mRðdiÞj�jlS\TðdiÞ�mS\TðdiÞj

p
�1

� �
;

¼ð
ffiffiffi
2
p
�1Þ�1

2t

Xt

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ lRðdiÞ�mRðdiÞð Þ2

q
�1

� �

þ
"
ð
ffiffiffi
2
p
�1Þ�1

2t

X

di2U1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þjlRðdiÞ�mRðdiÞj�jlTðdiÞ�mTðdiÞj

p
�1

� �

þð
ffiffiffi
2
p
�1Þ�1

2t

X

di2U2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þjlRðdiÞ�mRðdiÞj�jlSðdiÞ�mSðdiÞj

p
�1

� �#
:

ð45Þ

On adding Eqs. (44) and (45), we get
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KI
accyðR; S [ TÞ þ KI

accyðR; S \ TÞ
¼ KI

accyðR; SÞ þ KI
accyðR; TÞ:

(2). Consider two sets

W1 ¼ di 2 D : lRðdiÞ� lSðdiÞ; mRðdiÞ\mSðdiÞf g;

W2 ¼ di 2 D : lRðdiÞ\lSðdiÞ; mRðdiÞ� mSðdiÞf g:

Now,

KI
accyðR[S;TÞ

¼ð
ffiffiffi
2
p
�1Þ�1

2t

Xt

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ lR[SðdiÞ�mR[SðdiÞð Þ2

q
�1

� �

þð
ffiffiffi
2
p
�1Þ�1

2t

Xt

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þjlR[SðdiÞ�mR[SðdiÞj�jlTðdiÞj�mTðdiÞ

p
�1

� �
;

¼
"
ð
ffiffiffi
2
p
�1Þ�1

2t

X

di2W1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ lRðdiÞ�mRðdiÞð Þ2

q
�1

� �

þð
ffiffiffi
2
p
�1Þ�1

2t

X

di2W2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ lSðdiÞ�mSðdiÞð Þ2

q
�1

� �#

þ
"
ð
ffiffiffi
2
p
�1Þ�1

2t

X

di2W1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þjlRðdiÞ�mRðdiÞj�jlTðdiÞ�mTðdiÞj

p
�1

� �

þð
ffiffiffi
2
p
�1Þ�1

2t

X

di2W2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þjlSðdiÞ�mSðdiÞj�jlTðdiÞ�mTðdiÞj

p
�1

� �#
;

ð46Þ

and

KI
accyðR\S;TÞ

¼ð
ffiffiffi
2
p
�1Þ�1

2t

Xt

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ lR\SðdiÞ�mR\SðdiÞð Þ2

q
�1

� �

þð
ffiffiffi
2
p
�1Þ�1

2t

Xt

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þjlR\SðdiÞ�mR\SðdiÞj�jlTðdiÞ�mTðdiÞj

p
�1

� �
;

¼
"
ð
ffiffiffi
2
p
�1Þ�1

2t

X

di2W1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ lSðdiÞ�mSðdiÞð Þ2

q
�1

� �

þð
ffiffiffi
2
p
�1Þ�1

2t

X

di2W2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ lRðdiÞ�mRðdiÞð Þ2

q
�1

� �#

þ
"
ð
ffiffiffi
2
p
�1Þ�1

2t

X

di2W1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þjlSðdiÞ�mSðdiÞj�jlTðdiÞ�mTðdiÞj

p
�1

� �

þð
ffiffiffi
2
p
�1Þ�1

2t

X

di2W2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þjlRðdiÞ�mRðdiÞj�jlTðdiÞ�mTðdiÞj

p
�1

� �#
:

ð47Þ

On adding Eqs. (46) and (47), we get

KI
accyðR[S;TÞþKI

accyðR\S;TÞ¼KI
accyðR;TÞþKI

accyðS;TÞ:

(3). Consider the same two sets

W1 ¼ di 2 D : lRðdiÞ� lSðdiÞ; mRðdiÞ\mSðdiÞf g;

W2 ¼ di 2 D : lRðdiÞ\lSðdiÞ; mRðdiÞ� mSðdiÞf g:

Now,
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KI
accyðR [ S;R \ SÞ

¼ ð
ffiffiffi
2
p
� 1Þ�1

2t

Xt

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ lR[SðdiÞ � mR[SðdiÞð Þ2

q
� 1

� �

þ ð
ffiffiffi
2
p
� 1Þ�1

2t

Xt

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ jlR[SðdiÞ � mR[SðdiÞj � jlR\SðdiÞ � mR\SðdiÞj

p
� 1

� �
;

¼
"
ð
ffiffiffi
2
p
� 1Þ�1

2t

X

di2W1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ lRðdiÞ � mRðdiÞð Þ2

q
� 1

� �

þ ð
ffiffiffi
2
p
� 1Þ�1

2t

X

di2W2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ lSðdiÞ � mSðdiÞð Þ2

q
� 1

� �#

þ
"
ð
ffiffiffi
2
p
� 1Þ�1

2t

X

di2W1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ jlRðdiÞ � mRðdiÞj � jlSðdiÞ � mSðdiÞj

p
� 1

� �

þ ð
ffiffiffi
2
p
� 1Þ�1

2t

X

di2W2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ jlSðdiÞ � mSðdiÞj � jlRðdiÞ � mRðdiÞj

p
� 1

� �#
;

ð48Þ

and

KI
accyðR \ S;R [ SÞ

¼ ð
ffiffiffi
2
p
� 1Þ�1

2t

Xt

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ lR\SðdiÞ � mR\SðdiÞð Þ2

q
� 1

� �

þ ð
ffiffiffi
2
p
� 1Þ�1

2t

Xt

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ jlR\SðdiÞ � mR\SðdiÞj � jlR[SðdiÞ � mR[SðdiÞj

p
� 1

� �
;

¼
"
ð
ffiffiffi
2
p
� 1Þ�1

2t

X

di2W1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ lSðdiÞ � mSðdiÞð Þ2

q
� 1

� �

þ ð
ffiffiffi
2
p
� 1Þ�1

2t

X

di2W2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ lRðdiÞ � mRðdiÞð Þ2

q
� 1

� �#

þ
"
ð
ffiffiffi
2
p
� 1Þ�1

2t

X

di2W1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ jlSðdiÞ � mSðdiÞj � jlRðdiÞ � mRðdiÞj

p
� 1

� �

þ ð
ffiffiffi
2
p
� 1Þ�1

2t

X

di2W2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ jlRðdiÞ � mRðdiÞj � jlSðdiÞ � mSðdiÞj

p
� 1

� �#
:

ð49Þ

Adding Eqs. (48) and (49), we get

KI
accyðR [ S;R \ SÞ þ KI

accyðR \ S;R [ SÞ
¼ KI

accyðR; SÞ þ KI
accyðS;RÞ:

(4). The definition given in Eq. (43) is used as the direct

proof for this part. h

4.1.1 Application of proposed accuracy measure in pattern
detection

Now, the pattern detection issue with IF-set is addressed by

the following application of the accuracy measure.

Problem: Let us consider m patterns, represented by IF-

sets Pj ¼ hdi; lPj
ðdiÞ; mPJ

ðdiÞi : di 2 D
n o

ðj ¼
1; 2; 3; . . .;mÞ defined on a non-empty finite set

D ¼ d1; d2; . . .; dnf g. Let C ¼
hdi; lCðdiÞ; mCðdiÞi : di 2 Df g is any unknown pattern. The

goal is to categorize pattern C into one of the recognized

patterns Pj.

There are three approaches to finding the solution to the

above problem as folows:

• Similarity measure approach: (Chen et al. 2016b) If

S(R,S) represents the similarity between pattern R and

S, then C is recognized as pattern P�j, where

SðC;P�jÞ ¼ max
j¼1;2;3;...;m

ðSðC;PjÞÞ:

• Dissimilarity measure approach: (Kadian and Kumar

2021) If D(R,S) represents the dissimilarity between

pattern R and S, then C is recognized as pattern P�j,

where

DðC;P�jÞ ¼ min
j¼1;2;3;...;m

ðDðC;PjÞÞ:

• Accuracy measure approach: If A(R,S) represents the

accuracy of pattern R from S, then C is recognized as

pattern P�j, where

AðC;P�jÞ ¼ max
j¼1;2;3;...;m

ðAðC;PjÞÞ:

Boran and Akay (2014) investigated pattern detection

using similarity measures, whereas Xiao (2019) investi-

gated pattern detection using dissimilarity measures. We

notice from the comparative studies of similarity and dis-

similarity measures that neither a similarity measure nor a

dissimilarity measure is suitable for every problem of

pattern detection. Therefore, for issues involving pattern

detection, an alternative model is required. In some pattern

detection problems, the proposed accuracy measure may

work as an improvement over the existing similarity and

dissimilarity measures. In the pattern detection issue, we

compare the examples from Boran and Akay (2014) and
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illustrate the usefulness of the proposed IF-accuracy

measure.

Example 4 Let us consider a non-empty finite set

D ¼ d1; d2; d3; d4f g. Let A1;A2;A3 be three patterns

defined as follows:

A1 ¼ ðd1; 0:6; 0:1Þ; ðd2; 0:7; 0:2Þ; ðd3; 0:2; 0:5Þ; ðd4; 0:6; 0:3Þf g;

A2 ¼ ðd1; 0:5; 0:5Þ; ðd2; 0:5; 0:3Þ; ðd3; 0:6; 0:1Þ; ðd4; 0:8; 0:1Þf g;

A3 ¼ ðd1; 0:0; 0:0Þ; ðd2; 0:4; 0:2Þ; ðd3; 0:3; 0:3Þ; ðd4; 0:5; 0:4Þf g:

Let the unknown pattern C be defined as follows:

C ¼ ðd1; 0:1; 0:0Þ; ðd2; 0:5; 0:2Þ; ðd3; 0:4; 0:3Þ; ðd4; 0:7; 0:2Þf g:

Our current goal is to classify the unknown pattern C as

one of the patterns A1;A2 or A3.

Boran and Akay (2014) used a similarity-measure

approach to solve this problem of pattern detection. Results

are computed in Table 5.

From Table 5, we found that the similarity measures SC
(Fan and Zhangyan 2001), SHB (Mitchell 2003), S1HY (Hung

and Yang 2004), S2HY (Hung and Yang 2004) and S3HY
(Hung and Yang 2004) are not able to recognize the pattern

C, but similarity measures SH (Hong and Kim 1999), SO (Li

et al. 2002) and SPe (Liang and Shi 2003) easily recognize

the pattern C.

Further, Xiao (2019) used a dissimilarity measure

approach to find the solution of the same example. Results

are computed in Table 6.

From Table 6, we found that the dissimilarity measures

leh (Yang and Chiclana 2012), lh (Grzegorzewski 2004) and

d2Z (Zhang and Yu 2013) are not able to classify pattern C,

but dissimilarity measures dE (Wang and Xin 2005), d1Z
(Zhang and Yu 2013) and d1 (Wang and Xin 2005) easily

classify the pattern C.

Now, we use the accuracy measure approach and apply

the proposed accuracy measure to the given patterns. The

values calculated are: KI
accyðC;A1Þ ¼ 0:2914,

KI
accyðC;A2Þ ¼ 0:2406 and KI

accyðC;A3Þ ¼ 0:1932. Pattern

C is categorized into the pattern A1 using the proposed

accuracy measure. As a result, the proposed accuracy

measure technique works well for this pattern detection

problem.

4.2 IF-information measure

For any IF-set R, we can define an IF-information measure

EA
I as follows:

EA
I ðRÞ¼1�KA

I ðRÞ;

¼1�ð
ffiffiffi
2
p
�1Þ�1

t

Xt

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ lRðdiÞ�mRðdiÞð Þ2

q
�1

� �
:

ð50Þ

We now test the proposed IF-information measure’s

validity.

Table 5 Measures of similarity

between known and unknown

patterns given in Example 4

Similarity measures SðC;A1Þ SðC;A2Þ SðC;A3Þ Detected/Not detected

SC (Fan and Zhangyan 2001) 0.825 0.788 0.788 Not detected

SH (Hong and Kim 1999) 0.825 0.863 0.788 Detected as A1

SO (Li et al. 2002) 0.866 0.846 0.810 Detected as A1

SHB (Mitchell 2003) 0.825 0.788 0.788 Not detected

S1HY (Hung and Yang 2004) 0.975 0.975 0.950 Not detected

S2HY (Hung and Yang 2004) 0.8961 0.961 0.923 Not detected

S3HY (Hung and Yang 2004) 0.951 0.951 0.905 Not detected

SPe (Liang and Shi 2003) 0.992 0.981 0.997 Detected as A3

Table 6 Measures of

dissimilarity between known

and unknown patterns given in

Example 4

Dissimilarity measures DðC;A1Þ DðC;A2Þ DðC;A3Þ Detected/ Not detected

leh (Yang and Chiclana 2012) 0.225 0.225 0.350 Not detected

lh (Grzegorzewski 2004) 0.225 0.225 0.350 Not detected

dE (Wang and Xin 2005) 0.235 0.278 0.515 Detected as A1

d1Z (Zhang and Yu 2013) 0.163 0.235 0.325 Detected as A1

d2Z (Zhang and Yu 2013) NaN NaN NaN Not detected

d1 (Wang and Xin 2005) 0.194 0.219 0.281 Detected as A1
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Theorem 5 Let R ¼ hdi; lRðdiÞ; mRðdiÞi : di 2 Df g is a

member of IFS(D) for a finite set D 6¼ /ð Þ. Define a map-

ping EA
I : IFSðDÞ ! 0; 1½ � given in Eq. (50). Then, EA

I is a

valid IF-information measure if it satisfies the following

axioms, (E1)-(E4):

(E1) EA
I ðRÞ ¼ 1 , lRðdiÞ ¼ mRðdiÞ 8 di 2 D, i.e., R is

most IF-set.

(E2) EA
I ðRÞ ¼ 0, lRðdiÞ ¼ 0, mRðdiÞ ¼ 1 or lRðdiÞ ¼ 1,

mRðdiÞ ¼ 0 8 di 2 D, i.e., R is a crisp set.

(E3) EA
I ðRÞ � EA

I ðSÞ , R � S.

(E4) If Rc represents the complement of R, then

EA
I ðRÞ ¼ EA

I ðRcÞ.

Proof It is simple to confirm that the information measure

given in Eq. (50) adheres to the aforementioned axioms. h

4.3 Similarity measure in intuitionistic fuzzy
environment

For R; S 2 IFS(D), we can define a similarity measure as

follows:

=mðR; SÞ ¼ 1� jKA
I ðRÞ � KA

I ðSÞj: ð51Þ

Now we examine the proposed similarity measure’s

validity in an intuitionistic fuzzy environment.

Theorem 6 Let R; S; T 2 IFS(D) for a finite set D 6¼ /ð Þ.
Define a mapping =m : IFSðDÞ � IFSðDÞ ! 0; 1½ � given in

Eq. (51). Then, =m is considered to be an IF-similarity

measure if it meets the four axioms (S1)-(S4) listed below:

(S1) 0�=mðR; SÞ� 1.

(S2) =mðR; SÞ ¼ =mðS;RÞ.
(S3) =mðR; SÞ ¼ 1, R ¼ S.

(S4) If R � S � T , then =mðR; SÞ�=mðR; TÞ and
=mðS; TÞ�=mðR; TÞ.

Proof We verify the axioms (S1)-(S4) as follows:

(S1). Since, we know that values of proposed knowl-

edge measures KA
I ðRÞ and KA

I ðSÞ lies in [0,1],

therefore, 0� jKA
I ðRÞ � KA

I ðSÞj � 1, and hence the

axiom (S1).

(S2). From Eq. (51), we can say that

=mðR; SÞ ¼ =mðS;RÞ.
(S3). From Eq. (51), we have

=mðR; SÞ ¼ 1, 1� jKA
I ðRÞ � KA

I ðSÞj ¼ 1;

, jKA
I ðRÞ � KA

I ðSÞj ¼ 0;

, KA
I ðRÞ ¼ KA

I ðSÞ;

, lRðdiÞ ¼ lSðdiÞ

and mRðdiÞ ¼ mSðdiÞ; 8di 2 D;

, R ¼ S:

Table 7 Decision matrix in Intuitionistic Fuzzy environment DMr�s

DMr�s T1 T2 T3 . . . Ts

L1 hl11; m11i hl12; m12i hl13; m13i . . . hl1s; m1si
L2 hl21; m21i hl22; m22i hl23; m23i . . . hl2s; m2si
L3 hl31; m31i hl32; m32i hl33; m33i . . . hl3s; m3si

..

. ..
. ..

. ..
. . .

. ..
.

Lr hlr1; mr1i hlr2; mr2i hlr3; mr3i . . . hlrs; mrsi

Fig. 2 Proposed Similarity measure
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(S4). Let R; S; T 2 IFS(D) be s.t. R � S � T ,

)lRðdiÞ� lSðdiÞ� lTðdiÞ and

mRðdiÞ� mSðdiÞ� mTðdiÞ; 8di 2 D;

)KA
I ðRÞ�KA

I ðSÞ�KA
I ðTÞ;

)KA
I ðRÞ � KA

I ðTÞ�KA
I ðRÞ � KA

I ðSÞ;

)jKA
I ðRÞ � KA

I ðTÞj � jKA
I ðRÞ � KA

I ðSÞj;

)1� jKA
I ðRÞ � KA

I ðTÞj � 1� jKA
I ðRÞ � KA

I ðSÞj;

)=mðR; TÞ�=mðR; SÞ:

Similarly, we can prove that

=mðS; TÞ�=mðR; TÞ.

h

Thus, the measure defined in Eq. (51) is a valid simi-

larity measure. If two IF-sets provide equal knowledge,

then the proposed similarity measure attains its maximum

value, i.e., 1. This set up the potency of the proposed

similarity measure.

Example 5 If D={d} and R; S 2 IFS(D) s.t. R ¼
d; lRðdÞ; mRðdÞf g and S ¼ d; 0:5; 0:5f g, where lR is the

membership and mR is non membership function, respec-

tively. Thus, Fig. 2 represents the amount of similarity in

IF-sets R and S corresponding to different values of l and

m. From Fig. 2, the following points are easy to understand:

• Boundedness i.e., 0�=mðR; SÞ� 1.

• =mðR; SÞ ¼ 1 when R ¼ S.

• Symmetry i.e., =mðR; SÞ ¼ =mðS;RÞ.

4.4 Dissimilarity/distance measure
in intuitionistic fuzzy environment

For R; S 2 IFS(D), we can define a dissimilarity measure as

follows:

fmðR; SÞ ¼ jKA
I ðRÞ � KA

I ðSÞj: ð52Þ

Now we examine the proposed dissimilarity measure’s

validity in an intuitionistic fuzzy environment.

Theorem 7 Let R; S; T 2 IFS(D) for a finite set D 6¼ /ð Þ.
Define a mapping fm : IFSðDÞ � IFSðDÞ ! 0; 1½ � given in

Eq. (52). Then, fm is considered to be an IF-dissimilarity/

distance measure if it meets the four axioms (D1)-(D4)

listed as follows:

(D1) 0� fmðR; SÞ� 1.

(D2) fmðR; SÞ ¼ fmðS;RÞ.
(D3) fmðR; SÞ=0 , R ¼ S.

(D4) If R � S � T , then fmðR; SÞ� fmðR; TÞ and
fmðS; TÞ� fmðR; TÞ.

Proof We verify the axioms (D1)-(D4) as follows:

(D1). Since, KA
I ðRÞ 2 ½0; 1�8R 2 IFS(D), therefore,

0� jKA
I ðRÞ � KA

I ðSÞj � 1, and hence the axiom

(D1).

(D2). From Eq. (52), it is easy to say that

fmðR; SÞ ¼ fmðS;RÞ.

Fig. 3 Proposed Dissimilarity measure
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Fig. 4 Flowchart representing

steps of the proposed approach
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Table 8 Definitions of Criteria

Criteria Definition

Placement ðT1Þ Placement is an initiative launched by universities to give jobs to their students who are almost finished with their

studies

Infrastructure ðT2Þ Infrastructure involves classrooms, drinking water sources, playgrounds, labs, restrooms, art & craft rooms, and other

facilities

Ranking ðT3Þ Ranking involves sorting the universities according to a variety of criteria, such as graduate employment, research

quality, specialization expertise, accolades, and student opinions

Teaching staff ðT4Þ Teaching staff involve qualified individuals who are directly involved in instructing students, such as classroom

teachers, special education teachers, and other educators who interact with students individually, in small groups, or

as a class

Creativity ðT5Þ Teaching creatively means employing inventive techniques to make learning more fascinating, thrilling, and

successful

Library facility ðT6Þ Library is a place where all reference materials, including daily newspapers, magazines, and technical and non-

technical periodicals, are available

Sports activities ðT7Þ Sports activities include taking part in any type of athletic training, competition, or exercise that is managed by the

sports department of the university

Cultural activities ðT8Þ Cultural activities refer to the development of a person’s intellect, interests, tastes, and abilities

Student

accommodation ðT9Þ
Accommodations are things that are provided for comfort or to meet a need, including housing, food, and services, or

travel-related spaces and amenities

Accreditation ðT10Þ Universities must go through the accreditation process, which is a quality control procedure, to demonstrate that they

adhere to a rigid set of service and operational standards

Location ðT11Þ The term ‘‘university location’’ describes the specific position of a university in other parts of its physical

environment (rural or urban)

Tutor-Student ratio

ðT12Þ
The proportion of ‘‘full-time equivalent’’ teachers hired by a university to students enrolled in that institution is

expressed as a tutor-student ratio

Fig. 5 Basic framework of MCDM
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(D3). From Eq. (52), we have

fmðR; SÞ ¼ 0, jKA
I ðRÞ � KA

I ðSÞj ¼ 0;

, KA
I ðRÞ ¼ KA

I ðSÞ;

, lRðdiÞ ¼ lSðdiÞ

and mRðdiÞ ¼ mSðdiÞ; 8di 2 D;

, R ¼ S:

(S4). Let R; S; T 2 IFS(D) are s.t. R � S � T ,

) lRðdiÞ� lSðdiÞ� lTðdiÞ

and mRðdiÞ� mSðdiÞ� mTðdiÞ; 8di 2 D;

) KA
I ðRÞ�KA

I ðSÞ�KA
I ðTÞ;

) KA
I ðRÞ � KA

I ðTÞ�KA
I ðRÞ � KA

I ðSÞ;

) jKA
I ðRÞ � KA

I ðTÞj � jKA
I ðRÞ � KA

I ðSÞj;

) fmðR; TÞ� fmðR; SÞ:

Similarly, we can prove that fmðS; TÞ� fmðR; TÞ.

h

Thus, the measure defined in Eq. (52) is a valid dis-

similarity measure. If two IF-sets provide equal knowledge,

then the proposed dissimilarity measure attains its mini-

mum value, i.e., 0. This set up the potency of the proposed

dissimilarity/distance measure.

Example 6 If D={d} and R; S 2 IFS(D) s.t. R ¼
d; lRðdÞ; mRðdÞf g and S ¼ d; 0:5; 0:5f g, where lR is the

membership and mR is non membership function, respec-

tively. Thus, Fig. 3 represents the amount of dissimilarity

in IF-sets R and S corresponding to different values of l
and m. From Fig. 3, the following points are easy to

understand:

• Boundedness i.e., 0� fmðR; SÞ� 1.

• fmðR; SÞ ¼ 0 when R ¼ S.

• Symmetry i.e., fmðR; SÞ ¼ fmðS;RÞ.

5 Proposed intuitionistic fuzzy knowledge,
similarity and dissimilarity measure-based
modified VIKOR approach

In the present section, applications of the proposed IF-

knowledge measure, similarity, and dissimilarity measure

are provided in MCDM issues.

In MCDM problems, we try to choose the best alter-

native out of all those that are accessible. Multiple criteria

are used to describe a variety of real-world issues. This

model must meet the following requirements:

(i). A group of all the alternatives.

(ii). A defined group of criterions.

(iii). Weights of the defined Attributes/Criteria weights.

(iv). Variables that might change the priority given to

each alternative.

5.1 The proposed approach

Opricovic (1998) studied an approach, named VIKOR

approach to tackle MCDM issues. In terms of aggregation

function and normalizing technique, VIKOR differs from

TOPSIS. In the TOPSIS approach, an alternative that is

nearer to the positive ideal solution and farthest from the

negative ideal solution is chosen as the best alternative (see

Chen et al. 2016a). This could prefer to make a choice that

maximizes the profit and minimize the cost. Furthermore,

in the VIKOR, the precise assessment of ‘‘Closeness’’ to

the positive ideal solution is employed to select the best

alternative.

Table 9 Profession and

Experiences of Resource

persons

Resource persons Profession Highest qualification Experience (In years)

P1 Professor Ph.D 18

P2 Retired principal Ph.D 45

P3 Assistant Professor M.Tech 23

P4 Associate Professor Engg 34

P5 Sr. Professor Ph.D 40

P6 Private tutor M.Sc 15

P7 Principal Ph.D 32

P8 Retired Professor B.Tech 40

P9 Jr. Professor M.Tech 29

P10 Principal Ph.D 37
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5.2 Proposed IF-similarity and dissimilarity
measure-based modified VIKOR approach

The similarity and dissimilarity-based modified VIKOR

technique for the MCDM issue with the IF-knowledge

measure may be provided. It is inspired by the traditional

VIKOR approach and its extensions. Consider a MCDM

issue in which ML ¼ Lif gri¼1 is a collection of all the

alternatives and MT ¼ Tj
 �s

j¼1 is a collection of criteria.

Let RP ¼ Pdf gnd¼1 is a set of resource persons that are

involved to give their opinion for an alternative under

certain criteria. Let WC ¼ cj
 �s

j¼1 represent the criteria

weight corresponding to the attributes Tj s.t.
Ps

j¼1 cj ¼ 1.

Figure 4 represents the working steps of the proposed

approach. The proposed VIKOR approach includes the

following steps:

Fig. 6 Framework of the proposed MCDM issue
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Table 10 Responses given by the Resource persons for each alternative

Alternatives Resource persons T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12

L1 P1 Y N Y Y N Y Y Y N A Y A

P2 N Y A Y Y N N Y N Y Y Y

P3 A N Y Y A Y Y Y N N Y N

P4 Y Y N A Y A A N Y Y A Y

P5 A A N Y N A N Y A A Y Y

P6 Y Y Y A N N Y N Y Y Y N

P7 N N N N A Y N Y A Y Y Y

P8 A A N Y Y Y A Y N Y Y Y

P9 Y N Y A N Y A A Y N N N

P10 N A N Y N Y Y A A Y Y Y

L2 P1 Y Y N Y N N Y N N N A N

P2 N Y Y N Y Y N N A Y Y A

P3 A N Y Y N Y Y Y A N Y Y

P4 Y Y Y A A N Y Y N Y Y N

P5 A Y Y Y Y A Y Y Y Y Y Y

P6 N A A N Y N Y Y Y N Y Y

P7 Y Y Y Y Y Y Y N Y Y N Y

P8 N A N Y Y N Y Y Y Y N Y

P9 Y Y Y N Y A N Y Y N N Y

P10 Y Y N N N Y Y N Y Y N Y

L3 P1 Y N Y Y N Y Y Y N Y N N

P2 Y A Y N N A Y Y Y A N N

P3 Y N Y Y Y Y A N Y Y N Y

P4 Y A A A A A Y Y N Y A A

P5 N Y Y Y Y N Y N Y N N A

P6 A N N N N N N Y N Y Y N

P7 Y Y N Y Y N Y Y N N Y Y

P8 N Y Y A Y N N N N N N Y

P9 N Y Y Y N N N N N A Y N

P10 Y N N N A Y N Y Y N Y N

L4 P1 Y Y Y Y Y Y Y Y N N Y A

P2 N Y N Y N N N Y Y N Y Y

P3 Y N N Y Y Y A Y A Y N Y

P4 N N Y Y N Y N A Y Y Y Y

P5 N Y N N Y N N N Y Y N Y

P6 A N A Y N Y A Y N Y N N

P7 N Y Y Y N Y Y Y Y N N Y

P8 A N N N Y N N N Y N N N

P9 Y N Y Y A N A Y N Y A Y

P10 N N A N Y Y Y Y Y A Y Y

L5 P1 Y N Y A N Y A Y Y Y A Y

P2 Y N N Y Y N A Y N A N A

P3 N N Y Y A Y Y N A Y Y Y

P4 A Y N N N A N A Y A Y N

P5 Y A N Y Y N A N Y Y Y N

P6 N Y Y Y A Y Y A Y N Y A

P7 Y N N N N N N N Y N A A

P8 N Y Y N Y Y N A A A N A

P9 Y A N N N Y N Y N N A N

P10 N Y Y A N A Y A N A A N

Y: In favour; N : Not in favour; A: Can’t say anything
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Step 1: Create assessment information:We may create

the following decision matrix (Table 7) in an intuition-

istic fuzzy environment after receiving the resource

person’s responses for a criterion of a certain alternative:

where lij is the degree with which Li alternative satisfy

Tj criteria and mij is the degree with which Li alternative

do not satisfy Tj criteria.

Step 2: Compute normalized decision matrix: We can

normalize the fuzzy decision matrix as follows

M ¼ mij

 �
;

¼
hlij; miji Benefit criteria

hmij; liji Cost criteria

(
ð53Þ

Also, the amount of knowledge passed is estimated by

using Eq. (11).

Step 3: Compute criteria weights: Criteria weights are

calculated by following two approaches:

(A). For unknown criteria weights: Chen and Li

(2010) provided the following approach for

determining the criterion weights:

cEj ¼ 1� FEj

� �
= s�

Xs

j¼1
FEj

 !
; 8j ¼ 1; 2; . . .; s;

ð54Þ

where FEj ¼
Pr

i¼1 EðLi; TjÞ ð8j ¼ 1; 2; . . .; sÞ.
In this case, EðLi; TjÞ stands for the fuzzy

information measure of the alternative Li
equivalent to the criteria Tj. Knowing that the

ideas of fuzzy information measure and fuzzy

knowledge measure complement each other, we

apply the following formula to get the criteria

weights:

cKj ¼
FKijPs
j¼1 FKij

; 8j ¼ 1; 2; . . .; s; ð55Þ

where FKij ¼
Pr

i¼1 KðLi; TjÞ and KðLi; TjÞ is
the knowledge obtained from the alternative Li
analogous to criteria Tj.

(B). For partially known criteria weights: Resource

persons may not always be able to offer their

opinions in the form of exact statistics in real-

world circumstances. This could be as a result of

lack of time, inability to understand the issue

domain, etc. So, resource persons like to give their

opinions in the form of intervals in this sort of

difficult circumstance. We compile the informa-

tion delivered by resource persons in the set �I.

Also, the total quantity of knowledge is found by

the formula given as follows

FKj ¼
Xr

i¼1
KðmijÞ; ð56Þ

where

KðmijÞ ¼ KA
I ðLi; TjÞ;

¼
ð
ffiffiffi
2
p
� 1Þ�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ lij � mij

� �2q
� 1

� �

t
;

8i ¼ 1; 2; 3; . . .; r; j ¼ 1; 2; 3; . . .; s:

ð57Þ

Thus, optimum criteria weights are calculated

as follows

maxðFÞ ¼
Xs

j¼1
ðcKj ÞðFKjÞ;

¼
Xs

j¼1
cKj
Xr

i¼1
KðmijÞ

 !
;

¼
ffiffiffi
2
p
� 1

� ��1

Xr

i¼1

Xs

j¼1
cKj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ lij � mij

� �2q
� 1

t

0
@

1
A

2
4

3
5;

ð58Þ

where cKj 2 �I and
Ps

j¼1 c
K
j ¼ 1:

Hence, the criteria weights obtained by Eq. (58)

are given as follows

argmaxðF Þ ¼ C1;C2; . . .;Csð ÞT ; ð59Þ

where T represents the transpose of the matrix.

Step 4: Compute Best and Worst ideal solutions:

Now, we find the ideal solutions. Let B ¼
B1;B2; . . .;Bsf g and W ¼ W1;W2; . . .;Wsf g are two

sets of best and worst ideal solutions respectively. We

can find the values of the best and worst ideal solutions

as follows
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Bj ¼
hmaxfig lij;minfig miji Benefit criteria

hminfig lij;maxfig miji Cost criteria

(
ð60Þ

W j ¼
hminfig lij;maxfig miji Benefit criteria

hmaxfig lij;minfig miji Cost criteria

(
ð61Þ

Step 5: Compute best and worst ideal similarity

matrices: By using the formula of similarity measure

given in Eq. (51), we can find the value of similarity

measure of the best ideal solution B and normalized

decision matrix M for each attribute, find the value of

similarity measure of the worst ideal solution W and

normalized decision matrix M for each attribute, and

compute the best ideal matrix B and worst ideal matrix

W under similarity measure as follows

B ¼ bij
 �

r�s and W ¼ wij

 �
r�s ð62Þ

where bij ¼ =mðBj;mijÞ;wij ¼ =mðWj;mijÞ.2
Step 6: Compute similarity measure solutions:We can

find the similarity measure solution Yþ which is nearest

to the best ideal solution and similarity measure solution

Y� which is farthest to the best ideal solution and find

the similarity measure solution Zþ which is nearest to

worst ideal solution and similarity measure solution Z�

which is farthest to worst ideal solution as follows

Yþ ¼ yþ1 ; y
þ
2 ; . . .; y

þ
s

 �
; Y� ¼ y�1 ; y

�
2 ; . . .; y

�
s

 �
;

Zþ ¼ zþ1 ; z
þ
2 ; . . .; z

þ
s

 �
; Z� ¼ z�1 ; z

�
2 ; . . .; z

�
s

 �
;
ð63Þ

where yþj ¼ maxfig bij, y
�
j ¼ minfig bij, z

þ
j ¼ maxfig wij,

z�j ¼ minfig wij; ðj ¼ 1; 2; 3; . . .; sÞ.
Step 7: Compute normalized best & worst group

utility and individual regret values: We can find the

values of normalized nearest best ideal group utility BU i

and normalized nearest best ideal individual regret BRi

as follows

BU i ¼
Xs

j¼1
cKj

yþj � bij

yþj � y�j
;

BRi ¼max
fjg

cKj
yþj � bij

yþj � y�j

 !
; 8i ¼ 1; 2; 3; . . .; r:

ð64Þ

Similarly, we can find the values of normalized nearest

worst ideal group utility WU i and normalized nearest

worst ideal individual regret WRi as follows

WU i ¼
Xs

j¼1
cKj

zþj � wij

zþj � z�j
;

WRi ¼max
fjg

cKj
zþj � wij

zþj � z�j

 !
; 8i ¼ 1; 2; 3; . . .; r:

ð65Þ

Step 8: Compute nearest best and worst ideal VIKOR

indices: we can find the values of VIKOR indices VP
i

that are nearest to best ideal solutions and VIKOR

indices VN
i that are nearest to worst ideal solutions as

follows

VP
i ¼ k

BU i �minfig BU i

maxfig BU i �minfig BU i

þ ð1� kÞ
BRi �minfig BRi

maxfig BRi �minfig BRi
;8i ¼ 1; 2; 3; . . .; r;

VN
i ¼ k

WU i �minfigWU i

maxfigWU i �minfigWU i

þ ð1� kÞ
WRi �minfigWRi

maxfigWRi �minfigWRi
;8i ¼ 1; 2; 3; . . .; r:

ð66Þ

In general, the value of weightage (k) is used to be 0.5.

Step 9: Compute Correlation factor for proximity:

We can find the value of correlation factor Cc
i for each

alternative Li as follows

Cc
i ¼

VP
i

VP
i þ VN

i

; 8i ¼ 1; 2; 3; . . .; r: ð67Þ

After calculating the value of the correlation factor, we

arrange the list of correlation factors of each alternative

in increasing order. Smaller the value of the correlation

factor for an alternative, the better the performance of

that alternative.

Note : Also, if we use the proposed dissimilarity

measure in place of the similarity measure, then the

greater the value of the correlation factor for an alter-

native, the better the performance of that alternative.

5.3 Numerical example

University selection for higher education: Take an

example of a student looking for the best university for his

higher education. After initial scrutiny, a student has

shortlisted five universities as alternatives say L1; L2; L3; L4
and L5. He has established twelve criteria’s T1; T2; . . .; T12
defined in Table 8. In Fig. 5, a basic framework is given.

The student has taken the help of ten resource persons

P1;P2;P3; . . .;P10 from various education-related fields to

choose the best alternative. Table 9 provides the details

about the profession and experiences of the resource
2 If we use the proposed dissimilarity measure then

bij ¼ fmðBj;mijÞ;wij ¼ fmðW j;mijÞ.
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persons involved in the proposed MCDM issue. The basic

framework of the MCDM issue is shown in Fig. 6.

Now, we solve the given MCDM issue by using the

proposed model. There are the following steps involved:

Case 1. For unknown criteria weights

Step 1: We collect the responses from all the resource

persons about a criterion corresponding to a particular

alternative. Table 10 provides the details about the

responses collected from the resource persons.

Compile the responses supplied by all resource

persons, and the resulting decision matrix is displayed

in Table 11.

In this matrix, M = mij ¼ hlij; miji, lij represents the
ratio of total number of all the resource persons that

support alternative Li w.r.t. criteria Tj to the total

resource persons involved and mij represents the ratio

of total number of all the resource persons that don’t

support alternative Li w.r.t. criteria Tj to the total

resource persons involved. The amount of knowledge

passed by each individual criteria is also provided in

Table 11.

Step 2: Because all of the criteria involved are benefit

criteria, therefore normalized matrix is the same as

presented in Table 11.

Step 3: The criterion weights are calculated. Let us

say that the criterion weights are unknown. Then, by

using Eq. (55), we have

WC ¼ 0:0441; 0:0899; 0:0414; 0:1035; 0:0417;f
0:0849; 0:0876; 0:1104; 0:0780; 0:0479;

0:1202; 0:1504g:

Step 4: We can determine the best and worst ideal

solutions provided by Eqs. (60) and (61) as given

below:
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Fig. 7 Correlation factors for proximity for each alternative
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B ¼ fh0:6; 0:3i; h0:7; 0:1i; h0:6; 0:3i; h0:7; 0:1i;

h0:6; 0:3i; h0:6; 0:2i; h0:8; 0:2i; h0:7; 0:2i;

h0:6; 0:2i; h0:6; 0:2i; h0:8; 0:1i; h0:7; 0:2ig:

W ¼ fh0:3; 0:5i; h0:3; 0:6i; h0:4; 0:5i; h0:4; 0:4i;

h0:3; 0:5i; h0:3; 0:5i; h0:3; 0:4i; h0:3; 0:4i;

h0:3; 0:6i; h0:3; 0:4i; h0:4; 0:5i; h0:2; 0:5ig:

Step 5: Using the Eq. (62), we calculate best ideal

matrices B and worst ideal matrices W under similar-

ity measure as follows

and

W¼

0:9642 0:9057 0:9880 0:7150 1 0:8618 1 0:8261 0:9057 0:8261 0:4793 1

1 0:7051 0:9057 0:9880 0:9415 0:9415 0:6108 0:9642 0:9203 0:9642 1 0:8213

0:9415 0:8937 0:9057 0:9522 0:9522 1 1 0:9642 0:9415 0:9880 1 0:9415

1 0:9415 0:9880 0:8140 0:9642 1 1 0:7271 1 1 1 0:8213

0:9642 0:8937 0:9880 1 1 1 1 0:9880 0:9415 0:9880 0:9642 0:9415

2
6666664

3
7777775

Step 6: The similarity measure solutions

Yþ; Y�; Zþ; Z� can be found by using Eq. (63) and

their values are given as below

Yþ ¼ 1; 1; 1; 0:8837; 1; 1; 1; 1; 1; 1; 1; 1f g;

Y� ¼ 0:9057; 0:5988; 0:8937; 0:5988;f
0:8937; 0:8618; 0:6108; 0:7150; 0:8261;

0:8140; 0:4793; 0:7629g;

Zþ ¼ 1; 0:9415; 0:9880; 1; 1; 1; 1; 0:9880; 1; 1; 1; 1f g;

Z� ¼ 0:9415; 0:7051; 0:9057; 0:7150;f
0:9415; 0:8618; 0:6108; 0:7271; 0:9057;

0:8261; 0:4793; 0:8213g:

Step 7: By using Eq. (64), the calculated values of

normalized nearest best ideal group utility BU i and

normalized nearest best ideal individual regret BRi for

each alternative, are shown below

Table 12 Computed VIKOR

indices, Correlation factors, and

Ranks

Alternatives
?y  � Similarity measure �!  � Dissimilarity measure �!

VP
i VN

i
Cci Ranking VP

i VN
i

Cci Ranking

L1 0.0841 0.8505 0.0900 2 0.8011 0.5000 0.6157 3

L2 0.0924 0.9918 0.0852 1 1 0.1154 0.8966 1

L3 0.9116 0.1436 0.8639 4 0.1844 0.4636 0.2846 4

L4 0.2525 0.7564 0.2503 3 0.8398 0.3508 0.7054 2

L5 1.0000 0.0000 1.0000 5 0.0000 0.5000 0.0000 5

B ¼

0:9057 0:6108 0:8937 0:8837 0:9415 1 0:6108 0:9010 0:8261 1 1 0:8213

0:9415 1 1 0:6108 1 0:9203 1 0:7629 1 0:8618 0:4793 1

1 0:5988 1 0:6466 0:8937 0:8618 0:6108 0:7629 0:8618 0:8140 0:4793 0:7629

0:9415 0:6466 0:8937 0:7848 0:9057 0:8618 0:6108 1 0:9203 0:8261 0:4793 1

0:9057 0:5988 0:8937 0:5988 0:9415 0:8618 0:6108 0:7150 0:8618 0:8140 0:5151 0:7629

2

6666664

3

7777775
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BU1 ¼ 0:5129;BU2 ¼ 0:4231;BU3 ¼ 0:8626;

BU4 ¼ 0:5941;BU5 ¼ 0:9570;

BR1 ¼ 0:1133;BR2 ¼ 0:1202;BR3 ¼ 0:1504;

BR4 ¼ 0:1202;BR5 ¼ 0:1504:

Similarly, by using Eq. (65), the calculated values of

normalized nearest worst ideal group utility WU i and

normalized nearest worst ideal individual regret WRi

for each alternative, are shown below

WU1 ¼ 0:5435;WU2 ¼ 0:5372;WU3 ¼ 0:2661;

WU4 ¼ 0:3539;WU5 ¼ 0:1543;

WR1 ¼ 0:1202;WR2 ¼ 0:1504;WR3 ¼ 0:0493;

WR4 ¼ 0:1504;WR5 ¼ 0:0493:

Step 8: By using Eq. (66), the values of VIKOR

indices VP and VN for each alternative, are shown

below

VP
1 ¼ 0:0841;VP

2 ¼ 0:924;VP
3 ¼ 0:9116;

VP
4 ¼ 0:2525;VP

5 ¼ 1;

VN
1 ¼ 0:8505;VN

2 ¼ 0:9918;VN
3 ¼ 0:1436;

VN
4 ¼ 0:7564;VN

5 ¼ 0:

Step 9: From Eq. (67), the calculated values of

correlation factors Cci for each alternative, are shown

below

Cc1 ¼0:09; Cc
2 ¼ 0:0852; Cc3 ¼ 0:8639;

Cc4 ¼0:2503; Cc
5 ¼ 1:

Fig. 7 represents the graphical representation of the

values of correlation factors Cc
i w.r.t. each alternative

We compile the values of nearest best ideal VIKOR

indices VP
i , nearest worst ideal VIKOR indices VN

i ,

correlation factor Cci and ranks for each alternative by

using proposed similarity measure and proposed dis-

similarity measure in Table 12. Figure 8 and Fig. 9

represent these values under similarity measure and

Table 13 Sensitive analysis for

different values of k under

proposed similarity measure

Weightage (k)
?y  � Correlation factors �! Preference order Best alternative

L1 L2 L3 L4 L5

k ¼ 0 0 0.1559 1 0.1559 1 L1	L2 ¼ L4	L5 ¼ L3 L1

k ¼ 0:1 0.0225 0.1428 0.9716 0.1725 1 L1	L2	L4	L3	L5 L1

k ¼ 0:2 0.0423 0.1291 0.9438 0.1901 1 L1	L2	L4	L3	L5 L1

k ¼ 0:3 0.0600 0.1150 0.9166 0.2089 1 L1	L2	L4	L3	L5 L1

k ¼ 0:4 0.0758 0.1004 0.8901 0.2289 1 L1	L2	L4	L3	L5 L1

k ¼ 0:5 0.0900 0.0852 0.8639 0.2503 1 L2	L1	L4	L3	L5 L2

k ¼ 0:6 0.1028 0.0694 0.8384 0.2732 1 L2	L1	L4	L3	L5 L2

k ¼ 0:7 0.1145 0.0531 0.8134 0.2979 1 L2	L1	L4	L3	L5 L2

k ¼ 0:8 0.1252 0.0361 0.7889 0.3245 1 L2	L1	L4	L3	L5 L2

k ¼ 0:9 0.1350 0.0184 0.7649 0.3533 1 L2	L1	L4	L3	L5 L2

k ¼ 1 0.1439 0 0.7414 0.3845 1 L2	L1	L4	L3	L5 L2

Fig. 9 Nearest best & worst ideal VIKOR indices, correlation factor

and ranks in case of proposed Dissimilarity measure

Fig. 8 Nearest best & worst ideal VIKOR indices, correlation factor

and ranks in case of the proposed Similarity measure
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dissimilarity measure respectively.

The preference order of the alternatives is given by

L2	L1	L4	L3	L5 for proposed similarity measure

L2	L4	L1	L3	L5 for proposed dissimilarity measure

	

ð68Þ

In both cases, we get L2 as the most preferable

alternative.

Now, we take a sensitivity analysis for the different

values of weightage (k). The value of k lies between 0

and 1. We take the different values of k starting from 0

and ending with 1 with step interval 0.1. The values of

correlation factor under the proposed similarity measure

for different values of k’s are shown in Table 13 and

diagrammatical representation is given in Fig. 10. Fur-

ther, The values of the correlation factor under the pro-

posed dissimilarity measure for different values of k’s
are shown in Table 14, and diagrammatical representa-

tion is given in Fig. 11.

Case 2. For partially known criteria weights

Resource persons are not in a position to assign

Fig. 10 Sensitive analysis under

proposed similarity measure
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criterion weights in the form of numbers since there are

so many real-world issues involved. Under these cir-

cumstances, intervals are used to distribute the weights

of the criterion. Let us have a look at the MCDM issue

mentioned above with partially known criterion weights.

Let the following details be provided for the weights of

the criteria:

The data in Eq. (69) should be interpreted as follow

Fmax ¼ 0:0452cK1 þ 0:0922cK2 þ 0:0425cK3 þ 0:1062cK4

þ 0:0428cK5 þ 0:0871cK6 þ 0:0899cK7 þ 0:1133cK8

þ 0:0800cK9 þ 0:0492cK10 þ 0:1233cK11 þ 0:1544cK12;

subjected to conditions

0:02� cK1 � 0:06;

0:05� cK2 � 0:10;

0:02� cK3 � 0:06;

0:08� cK4 � 0:12;

0:02� cK5 � 0:06;

0:05� cK6 � 0:10;

0:05� cK7 � 0:10;

0:10� cK8 � 0:14;

0:05� cK9 � 0:10;

0:02� cK10� 0:06;

0:10� cK11� 0:14;

0:13� cK12� 0:18:
P12

i¼1 c
K
i ¼ 1:

8
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

ð70Þ

Using MATLAB software to solve Eq. (70), the fol-

lowing result is obtained:

cK1 ¼ 0:06; cK2 ¼ 0:10; cK3 ¼ 0:06; cK4 ¼ 0:1;

cK5 ¼ 0:05; cK6 ¼ 0:08; cK7 ¼ 0:06; cK8 ¼ 0:1;

cK9 ¼ 0:1; cK10 ¼ 0:06; cK11 ¼ 0:1; cK12 ¼ 0:13:

ð71Þ

We again acquire L2 as a more preferred alternative by

solving in the same way that case ð1Þ was solved.

The aforementioned technique may be used to resolve a

variety of MCDM issues that occur in real-world contexts,

including the following:

(I). A person wants to pick a restaurant in a city for a

party. The selection criteria are (A) Costs,

(B) Location, (C) Quality of food, (D) Comfort,

and (E) Other services.

(II). A student wishes to pick one of the six offered

subjects. Student selection factors include (A) The

availability of the teacher, (B) The number of seats

available, (C) the Student’s interest in the subject,

and (D) the Topic’s future.

(III). A principal wants to choose a teacher for his

school. There are the following criteria that the

principal created: (A) Education, (B) Experience,

(D) Communication skill, (D) Age, (E) Previous

record (if any).

(IV). A company wants to develop tourism in India.

Some factors might have an impact on it. They are

(A) Community interest, (B) Funds availability,

(C) Development of infrastructure, and (D) Sup-

port of government.

5.4 Comparison and discussion

To test the usefulness of the proposed approach, we solve

the example described in Table 11 utilizing other approved

methodologies from the literature. Among the popular

techniques are as follows:

�I ¼
0:02� cK1 � 0:06; 0:05� cK2 � 0:10; 0:02� cK3 � 0:06; 0:08� cK4 � 0:12;

0:02� cK5 � 0:06; 0:05� cK6 � 0:10; 0:05� cK7 � 0:10; 0:10� cK8 � 0:14;

0:05� cK9 � 0:10; 0:02� cK10� 0:06; 0:10� cK11� 0:14; 0:13� cK12� 0:18:

8
><

>:
ð69Þ
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U Hwang and Yoon (1981) proposed TOPSIS (Tech-

nique for Order Preference by Similarity to Ideal

Solutions) approach.

U Ye (2010a) proposed Decision-making approach

(DMA).

U Verma and Sharma (2014) proposed DMA.

U Singh et al. (2020) proposed DMAs by using three

knowledge measures.

U Farhadinia (2020) proposed DMAs by using four

knowledge measures.

U Farhadinia (2020) proposed DMA by using knowl-

edge measure studied by Nguyen (2015).

U Farhadinia (2020) proposed DMA by using knowl-

edge measure studied by Guo (2015).

To compare the outcomes of several approaches with the

outcomes of the proposed approach in intuitionistic fuzzy

environment, we generate Table 15 and Fig. 12.

According to the TOPSIS approach, the best alternative

is the one that is the furthest away from the worst solution

and closest to the best solution. Opricovic and Tzeng

(2004) contrasted the VIKOR approach to the TOPSIS

approach, arguing that it is not always correct that the

alternative closest to the best solution is likewise the

alternative farthest from the worst solution. Ye (2010a)

merely took into account the relationships between alter-

natives and the optimal alternative. In certain specific sit-

uations, being close to the optimum answer may be

advantageous, but not always, as this might result in the

loss of crucial information. As a result, the output sug-

gested by Ye (2010a) technique is not particularly trust-

worthy. Verma and Sharma (2014) developed an approach

to solve MCDM issues in an intuitionistic fuzzy environ-

ment based on the weighted intuitionistic fuzzy inaccuracy

measure. Singh et al. (2020) gave an approach to tackle

MCDM issues by utilizing three different knowledge

measures. Farhadinia (2020) gave an approach to finding

the solution to the MCDM issue by using four different

measures. He also uses the measures proposed by Nguyen

(2015) and Guo (2015) to solve the same MCDM issue.

The proposed problem suggests five different alternatives

out of which the L2 alternative is the best alternative by all

given approaches as suggested by Table 15. As a result, the

output of the proposed approach is trustworthy.

6 Conclusion

In this study, an IF-knowledge measure is suggested and is

checked for validation. The IF-knowledge measure pro-

posed in this work is found to be an effective option for

handling problems with structured linguistic variables, the

calculation of ambiguity for two different IF-sets, and the

computation of objective weights. To show the efficacy of

the proposed IF-knowledge measure, its comparison with

several well-known IF-information and knowledge mea-

sures is taken. Three examples are provided in the current

study to evaluate the efficacy of the proposed IF-knowl-

edge measure. In addition, four new measures are proposed

and validated namely accuracy measure, information

measure, Similarity measure, and Dissimilarity measure in

intuitionistic fuzzy environment. We use the proposed IF-

accuracy measures in pattern detection. Also, an example

of pattern detection is given to compare the performance of

some other measures with the proposed accuracy measure.

To tackle MCDM issues, proposed knowledge measure,

similarity measure, and dissimilarity measure based mod-

ified VIKOR approach based is proposed, and it is dis-

covered that the results were quite encouraging. To

illustrate its efficacy, a numerical example with a com-

parison is given. The proposed approach has great promise

Table 14 Sensitive analysis for

different values of k under

proposed dissimilarity measure

Weightage (k) Correlation factors Preference order Best alternative

L1 L2 L3 L4 L5

k ¼ 0 0.4351 0.8234 0.4725 0.8234 0 L2 ¼ L4	L3	L1	L5 L2 & L4

k ¼ 0:1 0.4631 0.8371 0.4190 0.8002 0 L2	L4	L1	L3	L5 L2

k ¼ 0:2 0.4945 0.8512 0.3757 0.7768 0 L2	L4	L1	L3	L5 L2

k ¼ 0:3 0.5298 0.8658 0.3400 0.7532 0 L2	L4	L1	L3	L5 L2

k ¼ 0:4 0.5699 0.8809 0.3101 0.7294 0 L2	L4	L1	L3	L5 L2

k ¼ 0:5 0.6157 0.8966 0.2846 0.7054 0 L2	L4	L1	L3	L5 L2

k ¼ 0:6 0.6687 0.9128 0.2626 0.6812 0 L2	L4	L1	L3	L5 L2

k ¼ 0:7 0.7306 0.9296 0.2436 0.6568 0 L2	L1	L4	L3	L5 L2

k ¼ 0:8 0.8038 0.9470 0.2268 0.6322 0 L2	L1	L4	L3	L5 L2

k ¼ 0:9 0.8920 0.9651 0.2119 0.6075 0 L2	L1	L4	L3	L5 L2

k ¼ 1 1 0.9840 0.1987 0.5825 0 L1	L2	L4	L3	L5 L1
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since it can find the best alternative that almost perfectly

meets all the criteria. It also gives professionals advice on

what factors make a particular alternative less successful.

Further, the proposed approaches make it simple to see

why some alternatives are preferable to others in terms of

making decisions. The proposed approach does not require

more complex calculations and may be assessed and used

for a wide range of intuitionistic fuzzy scenarios. Hesitant

Fuzzy set; Interval-valued Intuitionistic Fuzzy set; Pic-

ture Fuzzy set; and Neutrosophic Fuzzy set are all included

in the scope of expansion of the proposed measure. The

suggested knowledge, accuracy, similarity, and dissimi-

larity measures may be applied to many areas including

Fig. 11 Sensitive analysis under

proposed dissimilarity measure
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feature recognition, voice recognition, and image

thresholding.
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