Granular Computing (2023) 8:1609-1643
https://doi.org/10.1007/s41066-023-00386-x

ORIGINAL PAPER q

Check for
updates

Intuitionistic fuzzy entropy-based knowledge and accuracy measure
with its applications in extended VIKOR approach for solving multi-
criteria decision-making

Amandeep Singh' - Satish Kumar'

Received: 7 March 2023/ Accepted: 25 April 2023 / Published online: 2 June 2023
© The Author(s), under exclusive licence to Springer Nature Switzerland AG 2023

Abstract

The study of unclear phenomena has been facilitated by fuzzy sets. Fuzzy set extensions have allowed for a more detailed
investigation of these kinds of research. Finding quantitative measures for ambiguity and other characteristics of these
occurrences thus becomes a challenge. As a fuzzy set extension, several researchers proposed intuitionistic fuzzy (IF) sets
and used them in many contexts since they were first described by Atanassov. One such use is to solve multi-criteria
decision-making issues. This study measure the amount of knowledge linked with an IF-set. An IF-knowledge measure
is proposed. Using numerical examples, its utility and validity are examined. Besides this, the IF-accuracy measure, IF-
information measure, similarity measure, and dissimilarity measure, are the four new measures that are derived from the
proposed IF-knowledge measure. All these measures are checked for their validation and their properties are discussed.
Pattern detection is taken as an application of the proposed accuracy measure. Finally, a modified VIKOR approach
depending upon the proposed similarity and dissimilarity measure is proposed to deal with an MCDM issue in an
intuitionistic fuzzy environment. The efficiency of the proposed approach is demonstrated by using a numerical example. A
comparative study is also provided to assess the feasibility of the proposed approach.

Keywords Intuitionistic fuzzy set - Knowledge measure - Similarity measure - Dissimilarity measure - Accuracy measure -
VIKOR - MCDM

1 Introduction membership and membership degrees from one. Due to its

benefit in modelling uncertain information systems, Bus-

Based on Zadeh’s fuzzy set (Zadeh 1965), Atanassov
(1986) gave the notion of intuitionistic fuzzy (IF) set. The
requirement that the non-membership degree and mem-
bership degree after adding give one is relaxed by Ata-
nassov’s IF-sets. We can say that an IF-set is a general
form of fuzzy sets as described in Bustince et al. (2015),
Couso and Bustince (2018). For an IF-set, the hesitation
degree is calculated by subtracting the sum of the non-
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tince (2000) has given the IF-set theory a lot of attention.
Numerous areas, including decision-making (Ye 2010b;
Xia and Xu 2012) and uncertainty reasoning (Papakostas
et al. 2013) have effectively used the concept of IF-sets.
To quantify the fuzziness of a fuzzy set, Zadeh (1968)
initially established the concept of entropy. In certain ways,
the Shannon entropy idea (Shannon 1948), which was first
introduced in probability theory, is related to the fuzzy
entropy concept proposed for fuzzy sets. Luca and Termini
(1972) developed the axiomatic idea of entropy. The
measure of intuitionistic entropy was first axiomatically
established by Burillo and Bustince (1996), and it was just
based on hesitation degree. The ratio of two distance values
served as the basis for the definition of IF-sets provided
by Szmidt and Kacprzyk (2001); Szmidt et al. (2014a).
Many authors including Wang and Xin (2005), Song et al.
(2017), Garg and Kaur (2018), Garg (2019) etc. gave
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attention to the definition of entropy of an IF-set. Find
entropy of IF-sets and use this in evaluating attribution
weighting vectors have also been focused on by some
researchers. According to Szmidt et al. (2014a), the
entropy cannot properly describe the uncertainty present in
an IF-set. As a result, using an entropy measure alone may
not be sufficient to create an acceptable uncertainty esti-
mate for IF-sets. In computing the uncertainty of IF-sets,
Pal et al. (2013) have underlined the distinction between
entropy and hesitation. Entropy and hesitation together
may provide a useful technique to calculate the entire
quantity of uncertainty associated with an IF-set.

In general, the IF-knowledge measure is connected to
the usable data that an IF-set provides. According to
information theory, having a lot of information means
having a lot of knowledge, which is beneficial for making
decisions. Accordingly, rather than the entropy measure,
the concept of knowledge measure may be seen as a
complementary idea to the total uncertainty measure. (see
Arya and Kumar 2021) This indicates that more knowledge
is always accompanied by less overall uncertainty. Szmidt
et al. (2014a) proposed an IF-knowledge measure by tak-
ing into account both entropy and hesitation of an IF-set to
differentiate between different types of intuitionistic fuzzy
information. In order to resolve challenges with multi-cri-
teria decision-making (MCDM), Das et al. (2016) found
that each attribute’s weight has been estimated by using the
knowledge measure. By calculating the separation between
an [F-set and the most uncertain IF-set, Nguyen (2015) has
created a novel knowledge measure. Guo (2015) offered a
new notion of knowledge measure for IF-set. The model
studied by Guo (2015) has been widely utilized to establish
the intuitionistic fuzzy entropy by calculating the differ-
ence between an IF-set and its complement. A detailed
inspection of the axiomatic definitions of IF-information
measures was also carried out by Das et al. (2017).

In an MCDM issue, we try to find out a particular
alternative from given alternatives that meets the greatest
number of predetermined criteria. Numerous scholars
including Hwang and Yoon (1981), Mareschal et al.
(1984), Gomes and Lima (1991), Opricovic (1998), Yager
(2020), Dutta and Saikia (2021), Ohlan (2022), Gupta and
Kumar (2022) etc. have looked at various strategies for
selecting a most preferable alternative from all available
alternatives. Every solution to an MCDM issue has a key
term attached to it like criteria weights. By using the jus-
tified criteria weights, we may identify the best alternative.
Therefore, extra attention must be given while evaluating
the weights of each criterion. Criteria weights are calcu-
lated by several approaches. For the evaluation of criteria,
Chen and Li (2010) provided the following two ways-
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¢ Objective Evaluation approach: The criterion weights
in this approach are determined using mathematical
formulas. The most acceptable objective evaluation
approach is the calculation of criterion weights using
information and knowledge measures (see Diakoulaki
et al. 1995; Fan 2002; Odu 2019).

e Subjective Evaluation approach: In this approach,
resource persons directly assess the criteria weights.
Subjective weights are determined by the preferences
indicated by resource persons (see Chu et al. 1979;
Ginevicius and Podvezko 2005; Zoraghi et al. 2013).

When dealing with MCDM issues, Opricovic (1998) sug-
gested an approach, called VIKOR' approach, which can
offer a compromise solution in an MCDM issue. In this
approach, the precise assessment of “Closeness” to the
positive ideal solution is employed to select the best
alternative. Many researchers extended the traditional
VIKOR approach to finding the solutions of MCDM,
MADM, and MCGDM problems. Chen and Chang (2016)
proposed IF-geometric averaging operator to solve MADM
issues. Wang and Chang (2005) solved the MCGDM
problem by using the VIKOR approach in a fuzzy envi-
ronment. Sanayei et al. (2010) took the problem of supplier
selection and solve it with help of the fuzzy VIKOR
approach. Shemshadi et al. (2011) solved the supplier
selection method by entropy-based fuzzy VIKOR
approach. By using triangular intuitionistic fuzzy numbers,
Wan et al. (2013) extended the Concept of the VIKOR
approach to solving multi-attribute group decision-making
problems. Chang (2014) studied a case to find the best
hospital in Taiwan. By using triangular fuzzy numbers,
Rostamzadeh et al. (2015) found the solution to the green
supply chain management problem by using the VIKOR
approach. Gupta et al. (2016) extended the VIKOR
approach for the selection of plant location. Zeng et al.
(2019) used the novel score function in the VIKOR
approach to finding the best alternative. Ravichandran
et al. (2020) solved the personnel selection problem by
extended VIKOR approach. Hu et al. (2020) gave a rank-
ing to the doctors by using the VIKOR approach. Gupta
and Kumar (2022) proposed VIKOR approach based on IF-
scale-invariant information measure with correlation
coefficients for solving MCDM. Most of the researchers
used the distance measure in calculating maximum group
utility and the minimum individual regret in the VIKOR
approach. But in the proposed approach, we use the pro-
posed similarity as well as dissimilarity measure and find
the results are highly encouraging.

According to the study presented above, there is still
space for debate about IF-knowledge measures. The
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majority of studies on the IF-knowledge and information
measures primarily concentrate on the distinction between
IF-sets and their complement. Even though Nguyen (2015)
pioneered this novel approach to analysing IF-knowledge
measures, further research is required to enhance this type
of measure and provide a suitable measure that will find the
total amount of knowledge for an IF-set. Some of the
valuable conclusions from the study on IF-information and
knowledge measures cannot fully address some problems
in intuitionistic fuzzy environment and run into different
difficulties, including the following:

v The vast majority of IF-knowledge and information
measures do not follow the order required for lin-
guistic comparison. But, the proposed IF-knowledge
measure fulfils the desired order (see Example 1).

v The bulk of the IF-knowledge and information mea-
sures that are documented in the literature provide
absurd results when calculating the ambiguity
between different IF-sets (see Example 2).

v The majority of IF-knowledge and information mea-
sures compute the same criteria weights for various
alternatives, while the criteria weights calculated by
the proposed IF-knowledge measure are different for
different alternatives (see Example 3).

v The vast majority of similarity and dissimilarity
measures in intuitionistic fuzzy environment are not
able to detect a pattern from the available patterns.
But, the proposed IF-accuracy measure clearly detects
the pattern from the given patterns (see Example 4).

This inspires us to provide a fresh way to gauge one’s
understanding of IF-sets. From these facts, we proposed an
effective IF-knowledge measure in this study. The main
highlights of this study are as follows

v An IF-knowledge measure, together with its proper-
ties, is proposed.

v We provide numerical examples to show how the
proposed IF-knowledge measure overcomes the
drawbacks of some current IF-knowledge and infor-
mation measures.

v Based on the proposed knowledge measure, we
derived a new accuracy measure, information mea-
sure, similarity measure, and dissimilarity measure in
intuitionistic fuzzy environment. Some properties are
also discussed.

v The proposed accuracy measure is used in pattern
detection. A comparison with various measures is
provided to demonstrate the efficacy of the proposed
accuracy measure in pattern detection.

v To address an MCDM issue, a modified VIKOR
approach is presented. In the proposed approach, we
use proposed IF-similarity and dissimilarity measures
in place of the distance measure.

v We also show how effective the proposed approach is
for selecting the best university for a student in the
MCDM issue.

This study’s primary points are as follows: Sect. |
covered the primary objective of this article and related
literature. The requirement and main contribution of this
study are discussed. In Sect. 2, some of the basic defini-
tions are discussed. In Sect. 3, an IF-knowledge measure is
suggested and is checked for validation. Some of its
properties are mentioned and a comparison with some
other measures is given. In Sect. 4, we developed four
additional measures based on the proposed IF-knowledge
measure: accuracy measure, information measure, simi-
larity measure, and dissimilarity measure in intuitionistic
fuzzy environment. They are validated, and it is discussed
what properties they have. The proposed accuracy measure
is used in pattern detection and is compared with some
existing measures for detecting patterns. Section 5 dis-
cusses a modified VIKOR approach depending upon pro-
posed similarity and dissimilarity measures to solve
MCDM issues. By employing a numerical example to
tackle the MCDM issues, the proposed approach is com-
pared with previously published approaches in the litera-
ture. The conclusion and recommendations for more study
are given in Sect. 6.

2 Preliminaries

In the present section, we quickly recap a few pieces of
background information on IF-sets to make the upcoming
exposition easier.

Assume that

3

Q :{A = (A1, 02,73, M| > A =1
i=1

(1)

where 0< /7; <1Vi=1,2,.. .t},

is the collection of total probability distributions for t > 2.
Shannon’s definition of the information measure is

t
E(A) == Jilog (2)
i=1

where A € Q,. There are many generalizations of Shannon
entropy (Shannon 1948) given by many researchers
including Rényi (1961), Havdra and Charvat (1967),
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Tsallis (1988), Boekee and Vander Lubbe (1980) etc. The
r-norm entropy explored by Boekee and Vander Lubbe
(1980) is provided by

ril 1-(21{) re(0,00),r £ 1. (3)

Furthermore, the r-norm entropy is equivalent to the
Shannon entropy when r — 1 and E,(A) — (1 — max(4;))
when r — oo. The r-norm entropy was further generalized
by Hooda (2004), Kumar (2009), Kumar et al. (2014),
Joshi and Kumar (2018).

Now, we provide the necessary background information
on IF-sets and their generalizations.

Definition 1 (Zadeh 1965) Let D(# ¢) be a finite set. A
Fuzzy set R defined on D is given by

R = {(di, ug(di)) : d; € D}; (4)
where uz: D — [0, 1] represents membership function for

the fuzzy set R.

Definition 2 (Atanassov 1986) Let D(# ¢) be a finite set.
An IF-set R defined on D is given by

R = {(di, ux(d;), vg(d;)) : d; € D}; (5)

where ug: D — [0, 1] is membership function and vg: D —
[0, 1] is non-membership function with condition that

0< uR(d[) + VR(d,') <1,Vd; € D. (6)

E.(A) =

For an IF-set R described on D, the hesitation degree (7g)
is computed by the formula given below

TER(d,‘) =1- ,uR(d,) — VR(di);Vdi € D. (7)

Clearly, nz(d;) € [0,1]. Hesitation degree can also be
regarded as an intuitionistic index and is used to represent
the degree of the hesitance of the element d; € D in IF-set
R. Higher value of ng(d;) corresponds to high vagueness.
Also, when 7g(d;) =0, then the IF-set R decays into a
simple fuzzy set. The most IF-set is an IF-set in which the
membership and non-membership function values are
identical for every element of the set. Every element of
most IF-set is called a crossover element.

Note: From this point forward, the term IFS(D) shall
refer to the collection of all the IF-sets.

Definition 3 Consider two IF-sets R, S € IFS(D) defined
by

R = {(di, ug(di), vr(dy)) : d; € D},
S = {{di, us(di), vs(di)) = d; € D},

then following are the basic operations on IF-sets:
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RUS={(d;,max(ug(d;), ps(d;)),
min(vg(d;),vs(d;))):d; €D};

ROS={(di,min(ug(di), pus(d:)),
max(vg(d;),vs(d;))) :d; € D};

R ={(d;,v&(d:), g (d;)) :d; € D};

d;) Spg(d;) and vg(d;) > vs(d;) if ug(d;) <vs(d;
Rgsé{ﬂla( ) <ug(di) and vg(di) > vs(d;) if pg(di) <vs( ),Vd,-eD;
r(di) > ps(di) and vg (di) <vs(d:) if ug(di) >vs(di)

R=S<SCRandRCS.
(8)

Definition 4 (Szmidt and Kacprzyk 2001) To define a
function E: IFS(D) — [0, 1] as an IF-information measure,
it must satisfy the following four axioms:

(El) ER)=1 < ug(d;) = vg(d;) Vd; € D, i.e., R is most
IF-set.

(E2) ER)=0 & ,uR(dl) =0, VR(dl') =1 or ,LLR(d,) =1,
vr(d;)) =0V d; € D, i.e., R is a crisp set.

(E3) ER) < ES)< RCS.

(E4) If R represents complement of a fuzzy set R, then

E(R) = E(R°).

The fuzzy entropy calculates the Fuzziness of a fuzzy
set. In addition, a knowledge measure determines the total
quantity of knowledge. According to Singh et al. (2019),
these two theories are complimentary to one another.

Definition 5 (Singh et al. 2019) The following four
axioms must be met to define a function K: IFS(D) — [0, 1]
as an IF-knowledge measure:

(K1) KR)=l & up(d)) =0, vg(d;) =1 or pp(di) =1,
ve(d;) =0V d; €D, ie., R is a crisp set.

(K2) KR)=0 < ug(d;) =vg(d;) Vd; € D, ie., Ris most
IF-set.

(K3) KR) > K(S) & RCS.

(K4) If R° represents complement of a fuzzy set R, then

K(R) = K(R°).

Definition 6 (Hung and Yang 2004; Chen and Chang
2015) Let R,S,T € IFS(D). A mapping S,, : IFS(D) x
IFS(D) — [0,1] is considered to be an IF-similarity mea-
sure if it meets the four axioms listed below:

(S1) 0<S,(R,S)<1.

(52)  Su(R,S) = Su(S.R).

(S3) Su(R,S)=1< R=S5.

(S4) IfRC SCT, then Su(R,S)>Su(R, T) &
Su(S.T) > Su(R, T).
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Definition 7 (Wang and Xin 2005) Let R, S, T € IFS(D).
A mapping D,, : IFS(D) x IFS(D) — [0,1] is considered
to be a dissimilarity/distance measure if it meets the four
axioms listed below:

(D1) OSDm(R7S) <1

(D2) Dm(Rv S) = Dm(S7 R)

(D3) Dm(R, S) =0& R=S.

(D4) IfRCSCT, then Dm(R,S) SDm(R, T) &
Dyy(S,T) < Du(R,T).

Definition 8 Let R,S<IFS(D). A mapping A,
IFS(D) x IFS(D) — [0, 1] is said to be accuracy measure
in S w.r.t. R, if it fulfils the following four axioms:

(AD) An(R,S) € [0,1]

(A2) A,(R, S =0 < ug(d;) = vr(dy).

43) MRS =1 i ugld) = sld) 0. veld) =
vs(d ) or Hg(di) = ps(di) = 1,

vR(d) = vS( ;) =0, i.e., Both R and S are equal and

crisp IF-sets.

An(R,S) = K(R) if R=S, where K(R) is knowl-

edge measure.

(A4)

As briefly described below, Szmidt and Kacprzyk
(1998) provided a technique for converting IF-sets into
fuzzy sets.

Definition 9 (Szmidt and Kacprzyk 1998) Let R € IFS(D),
then the fuzzy membership function g (d;) corresponding
to fuzzy set R is given as follow

() = pgla) + 5%,

i)+ 1— i
:#R<d)+2 VR<d),vd[€D.

©)

In the next section, we proposed an IF-knowledge
measure.

3 Proposed intuitionistic fuzzy knowledge
measure

3.1 Definition

Let R € IFS(D). Based on the concept of r-norm infor-
mation measure proposed by Hooda (2004), Verma and
Sharma (2011), and Bajaj et al. (2012), we define a new IF-
knowledge measure for IF-set R as follow

ZN (( +;vR<d)>2+(vR<d/->+;uR<d»>2>_1}
(10)

for some R € IFS(D). Further on solving, we can write
Eq. (10) as follows

K7 (R) :7(\5: O

(11)

Zt: {\/1 + (ug(di) — vr(di))* — 1].

Further, if vg(d;) =1 — pg(d;),Vd; € D then Eq. (11)
becomes a fuzzy knowledge measure which is studied by
Joshi (2023) and is slightly different from the knowledge
measure studied by Singh and Kumar (2023). Figure 1
represents the total quantity of the knowledge passed by the
proposed IF-knowledge measure.

Now, we test the validity of the proposed IF-knowledge
measure K.

Theorem 1 Let R = {{(di, pug(di),vr(d;)) : di € D} and
S = {{di, us(d;),vs(d;)) : di € D} are two members of
IFS(D) for a finite set D(# ¢). Define a mapping
KMIFS(D) — [0,1] given in Eq. (11). Then, K is a valid
IF-knowledge measure if it fulfils the following axioms,
(K1)-(K4):

(KD K7 (R) =1 % pg(di) = 0, vp(di) = 1 or pg(di) = 1,
( .)=0V d; €D, ie., Ris acrisp set.

K}*( ) =0< up(d)) =vr(d;) ¥ d;i €D, ie, R is

most IF-set.

KMR)>K{(S) < RCS.

If R¢ represents complement of a fuzzy set R, then

K}R) = K (R).

(K2)

(K3)
(K4)

Proof (K1). First, we consider

v2-1)"
t

K}R)=1%

Z_l: {\/1 + (ug(di) — VR(di))z —1| =1,

@\/1+(uk(d ) —ve(d)’ =

& (ug(di) —vg(d)))?=1, Vd; € D,

< up(d;)) = 0,vg(d;) =1 or pgp(d;) =1,
vr(d;) =0,Vd; € D.

=2, Vd; €D,

This proves axiom K/.
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Fig. 1 Knowledge passed by proposed IF-knowledge measure

(K2). Let us take Ki'(R)=0. Then, from Eq. (11), we
have
\/2_1 -1
225 [ ) = vt 1] =0,
i=1

t

which gives

V1 + (e(ds) — veld))> = 1,¥d; € D,
(up(d;) — ve(di))*= 0,Vd; € D.

Thus, we get pig(d;) = vg(d;) V d; € D.

Conversely, Let pz(d;) = vg(d;) V d; € D, then Eq. (11)
implies K7'(R)=0.

This proves axiom K2.

(K3). To prove this axiom, first, we prove that function

f(s, 1) = (12)

is an increasing function w.r.t. ¢ and decreasing function
w.r.t. s, where s, 7 € [0, 1]. Partially differentiate function f
w.r.t. s, we have

6f(s,t): s—t ' "
Os 1+ (s—1)° (13)

L+ (s—1)?—1,

Now, critical points of s can be found by putting

@ Springer
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05 06
03 04
02 B

Non-membership

0.1

of (s, 1)
Os

which gives s = 1.
Here, two cases arise given below:

of (s,1) [ Positive if s>t
Os | Negative if s<t

(14)

i.e., function f is increasing function for s>¢ and is
decreasing function for s <t.
Similarly, we have

of (s,r) [ Negative
ot | Positive

if s>t
if s<t

(15)

i.e., function f is decreasing function for s>t and is
increasing function for s <t.

Now, take R,S € IFS(D) s.t. R C S. Let D; and D, are
two partitions of D s.t. D = Dy U D, and

{ tr(di) < pg(di) <vs(di) <vr(di) Vd; € D,
tg(di) = pg(di) > vs(di) > vr(di)  Vd; € Dy
Thus, from the monotonic behaviour of function f and from
Eq. (11), it is easy to prove that Kf(R) > K2(S). This

proves axiom (K3).

(K4). It is easy to see that
R = {(d;, vr(di), ug(d;)) = d; € D},

i.e.,

Hpe (d,) = VR(d,') and VRe (d,) = ‘MR(d,'),Vdi €D.
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Thus, from Eq. (11), we get K;1 (R)
axiom (K4).
Thus, K}“(R) is a valid IF-knowledge measure. []

= K#(R°). This proves

3.2 Properties

Now, we study about some of the characteristics of the
suggested knowledge measure K7(R).

Theorem 2 Some following properties are fulfilled by the
proposed IF-knowledge measure K3

(I) For an IF-set R, K}“(R) € [0,1].

2) K} (R) =K} (R°).

3) KA(RUS) +KA(RﬁS)
two arbitrary IF-sets R, S.

(4) K#(R) attains its highest value for crisp set R and
attains its lowest value for most IF-set R.

KAR) + K} (S) for any

Proof (1). Since, ug(d;), vr(d;) €
1< pp(di) — vr(d;) < 1 Yd; € D.
= 0< (ug(d;) — va(d:))* < 1 Vd; € D,
= 1< /1 + (ueldy) — va(di)* < V2 ¥, € D,
= 0< /14 (e (d;) — va(dy))® — 1< V2 — 1 Vd; € D,
= 0< W20 Sy 1T (g
(d;) — VR(di)) —1]<1,
= 0<KMR)<1.
= K(R) € [0,1].
(2). Proof is obvious from axiom (K4).

(3). Let R, S € IFS(D). We take the partition of D as
follows:

D, = {d; € DR C S},
D, = {d; € D|S C R},

[0, 1] Vd; € D, therefore,

(16)

1.€e.,

{ Up(di) < pg(d;) and vg(d;) > vs(di) Vd; € Dy
,LlR(d ) > ,l,ts(d) and VR(d ) <vy (d,) Vd; € D,

where ug(d;) and pg(d;) are the membership functions and
vr(d;) and vg(d;) are the non-membership functions for the
IF-set R and S, respectively.

Now, Vd; € D,

KA(RUS)+KA(RmS)
~02-b Nl (s (d —vRus<d,->>2—1}

[\/ 1+ (ugns(d

+— ( 2= 1 VRms(di))2 - 1} ;

which gives

K} (RUS)+K}(RNS)

N 1+ () —v5(d) -1
v MZ 1+ () = ) - 1]
2T ) s - ]

+(\f2—1)_lz \/1 + (ugld —vS(d))—l}

_(2—1

On solving, we get

KMRUS) +KMRNS) = K (R) + KA(S). (17)

(4). Proof is obvious from axioms (K/) and (K2). O
3.3 Comparative study

Now, we contrast the suggested IF-knowledge measure
with the other measures that are already in use. The ben-
efits of new knowledge measure are explored by this
comparison. We examine these benefits in relation to the
estimation of ambiguity content of IF-sets, the estimation
of attribute weights in MCDM issues, and the manipulation
of structured linguistic variables. Among the available
measures in the literature are

1

Ez(R) =1 — %Z | (di) — v (di)l; (18)
i=1

(Zeng and Li 2006).

1

Epp(R) Z%Z(l — ug(di) — vr(di)); (19)

(Burillo and Bustince 1996).
1 ! min dl',\/ d,' +7 dl’
Ee(R) =13 (g (), ve(di)) + mr(ds)
t <= max (ug(d;), vr(d:)) + mr(d:) (20)
(Szmidt and Kacprzyk 2001).
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1

EnlR) =131 1hd) ()~
i=1

(Hung and Yang 2006).

_l min (ug(d;), ve(d;)) |
Ez(R) =~ 2 max (ju(ds), ve(dy) | (22)

(Zhang and Jiang 2008).

)1 =35 (Il s+ i) =) ).

2t
p>0;(Lietal. 2012). (23)
EL(R) Zﬁg(l — (ur(d;) + vi(di) + nl’e(d,-))%);
(Bajaj etal. 2012). (24)
L~ [min(ug(di),ve(di)) +7x(di) i
KslR)=1 ZfZ [max(uR(di)vvR(di))+nR(di)+ *(d)
(Szmidtetal.2014b). (25)
Ro(R) = VIR0 1300+ )+ ()
(Nguyen 2015). (26)

t

Kg(R) =1 —%Z(l
i=1

(Guo 2015). (27)

k1) =2 S Gt — et -1
i=1

(Proposed one) (28)

3.3.1 Structured linguistic computation

The idea of an IF-set is utilized to represent linguistic
variables, and the linguistic hedges are used to represent
the operations on an IF-Set. The linguistic hedges, which
are used to reflect linguistic variables, include “MORE”,
“LESS”, “VERY”, “FEW”, “SLIGHTLY” and “LESS”.
In this situation, we investigated these linguistic hedges
and compared the suggested IF-knowledge measure’s
performance to existing measures.

Let us take an IF-set R = {{(d;, ug(d;), vr(d;)) : d; € D}
defined on a finite set D(# ¢) and treat this IF-set as
“Wide” on D. For k>0, De et al. (2000) define the
modifier of IF-set R as follow

R = {(d, (gl 1 = (1 = va(d))") - di €D} (29)

De et al. (2000) define the concentration and dilatation for
an IF-set R as follow

@ Springer

CON(R) = R?, »
DIL(R) = R". G0)

Concentration and dilatation are used for modifiers. For the
sake of clarity, we shorten the following terms: W stands
for WIDE, V.W. stands for VERY WIDE, M.L.W. stands
for MORE/LESS WIDE, Q.V.W. stands for QUITE VERY
WIDE and V.V.W. stands for VERY VERY WIDE.
Hedges for the IF-set R are defined as follows:

M.L.W. stands for R%3

w stands for R
V.W. stands for R? (31)
OV.W. stands for R’

V.V.W. stands for R*

It makes intuitive sense that as we move from set R% to set
R*, the uncertainty concealed in them decreases and the
knowledge amount they express grows. For top perfor-
mance, the information measure E(R) of an IF-set R must
match the following criteria:

E(V.V.W.)<E(Q.V.W.)<E(V.W.)

<E(W)<EM.LW.); (32)

where E(R) is the information measure of an IF-set R. On
the other hand, a knowledge measure must adhere to the
following criteria:

K(V.V.W.)>K(Q.V.W.) > K(V.W.)

> K(W) > K(M.LW.); (33)

where K4(R) is knowledge measure of IF-set R.
Now, to assess the efficacy of the suggested knowledge
measure K7'(R), consider the following example:

Example 1 Let us consider a set D = {d;, 1 <i <5} and let

R is an IF-set defined on D defined as follows:

R ={(d,,0.105,0.809), (d»,0.297,0.492),
(d3,0.509,0.482), (d4, 0.906,0.005), (34)
(ds,0.997,0.001)}.

Considering an IF-set “R” on D as “WIDE” and assuming

the linguistic variables according to Eq. (31). Using
Eq. (29), we may produce the following IF-sets:
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R’ = {(d;,0.3240,0.5630), (d»,0.5450,0.2873),
(d3,0.7134,0.2803), (d4,0.9518,0.0025),
(ds,0.9985,0.0005)};

R = {(dy,0.1050,0.8090), (2, 0.2970, 0.4920),
(d3,0.5090, 0.4820), (d4,0.9060, 0.0050),
(ds,0.9970,0.0010)};

R? = {(d,,0.0110,0.9635), (d»,0.0882,0.7419),
(d3,0.2591,0.7317), (d4, 0.8208,0.0100), (35)
(ds,0.9940, 0.0020) };

R = {(d,,0.0012,0.9930), (d»,0.0262,0.8689),
(d3,0.1319,0.8610), (d4,0.7437,0.0149),
(ds,0.9910,0.0030)};

R* = {(d,,0.0001,0.9987), (d»,0.0078,0.9334),
(d3,0.0671,0.9280), (dy,0.6738,0.0199),
(ds,0.9881,0.0040)}.

Now, we compared the suggested IF-knowledge measure’s
performance to existing measures described in the litera-
ture. The values of the existing measures and the proposed
IF-knowledge measure are compared and shown in
Table 1.

Following observations are made from Table 1:

Table 1 Comparison of the proposed IF-knowledge measure with
some current measures

Measures M.LW W V.W QV.W V.V.W
Ez(R) 0.4246 0.4354 0.2237 0.1439 0.1154
Egg(R) 0.0667 0.0794 0.0755 0.0730 0.0759
Esk(R) 0.3466 0.3963 0.1738 0.1142 0.0981
Epny(R) 0.3330 0.3276 0.2381 0.1789 0.1475
Ez(R) 0.2997 0.3374 0.0997 0.0415 0.0229
EL(R) 0.6429 0.6526 0.5491 0.4530 0.3708
EL(R) 0.3038 0.3042 0.1868 0.1354 0.1189
Ks(R) 0.7933 0.7622 0.8753 0.9064 0.9130
Kn(R) 0.8698 0.8642 0.8939 0.9107 0.9147
Ks(R) 0.7661 0.7610 0.8785 0.9196 0.9312
K;’ (R) 0.4550 0.4826 0.6653 0.7711 0.8175

We take p = 3 for E5(R); and r =5 for ER(R)

En(V.V.W.)<Ez(QV.W.)<Ey(V.W.)
<Ezn (W) > Ezy(M.LW.);
Epg(V.V.W.) > Epg(Q.V.W.) <Epg(V.W.)
<Epp(W) > Egg(M.LW.);
Esg(V.V.W.) <Esx(Q.V.W.) <Esx(V.W.)
<Esg(W) > Esg(M.LW.);
Epy(V.V.W.) <Epy(Q.V.W.) <Epy(V.W.)
<Epy(W) <Epy(M.LW.);
2 (V.V.W.) <Ez(Q.V.W.) <Ez(V.W.)
<Ez; (W) > Ezy(M.LW.);
E(V.V.W)<E,(Q.V.W.)<E,(V.W.)

<E (W (36)

S(W) > ES(M.LW.);
E3(V.V.W.)<E3(Q.V.W.)<Ey(V.W.)
<E}(W) > Ex(M.LW.);
Ks(V.V.W.) > Ks(Q.V.W.) > Kg(V.W.)
> Ks(W)<Ks(M.LW.);

Kny(V.V.W.) > Ky(Q.V.W.) > Ky(V.W.)
> Ky(W) <Ky(M.LW.);

K(V.V.W.) > K6(Q.V.W.) > Kg(V.W.)
> Kg(W)<Kg(M.LW.);

KNV.V.W.) > KNQ.V.W.) > KNV.W.)
> K}NW) > KN (M.LW.).

Now, we found that, except Epy(R) and K7 (R), none of the
information and knowledge measures follow the sequence
indicated in Egs. (32) and (33). It suggests that they are not
performing well. Then, we solely compare information
measure Epy(R) and knowledge measure K7'(R).

To do this, we use another IF-set provided by

R ={(d,,0.110,0.798), (d»,0.280,0.502),
(ds,0.475,0.423), (ds,0.920,0.019), (37)
(ds,0.981,0.005)}.

The observed values are computed in Table 2 and the
following observations are made from it:

Table 2 Computed values of measures defined in Egs. (21) and (28)

Measures M.LW W V.W QV.W V.V.W
Epny(R) 0.3471 0.3473 0.2626 0.2072 0.1798
KA(R) 0.4499 0.4746 0.6486 0.7449 0.7838
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Eny(V.V.W.) <Epy(Q.V.W.) <Epy(V.W.)

<Eyy ) >EHy(MLW)

(
(W
(38)
KNV.V.W.) > KNQ.V.W.) > KNV.W.)
(W

> KN W) > KN (M.LW.).

In this case, we see that the information measure Epy(R)
does not match the order stated in Eq. (32). But the
proposed knowledge measure goes in the right order.
Consequently, the efficacy of the proposed knowledge
measure is really amazing.

3.3.2 Ambiguity computation

Two separate IF-sets have different levels of ambiguity.
However, some knowledge measures provide the same
ambiguity values corresponding to various IF-sets. As a
result, a new knowledge measure that generalizes previ-
ously recognized knowledge measures is required. The
effectiveness of the proposed measure is illustrated in the
following example:

Example 2 Define a set D={di,d,ds,ds} and take
Ri{,R>,R3, R, € IFS(D) as follows

Table 3 Ambiguity computation corresponding to different IF-sets
defined in Example 2

Knowledge Measures |~ «— Fuzzy sets —

Rl R2 R3 R4
Ks(R) 04927 04927 06615 04382
Kn(R) 0.6754 0.6963 0.6754 0.5226
KG(R) 0.4829 0.4753 0.7325 0.4753
KA(R) 0.0348 0.0233 0.3921 0.0925

We now determine the ambiguous content of given IF-sets
using some previously established knowledge measures
and suggested knowledge measure. Table 3 displays the
results of the calculations.

We can observe from Table 3 that the ambiguity content
as determined by existing knowledge measures is the same
for various IF-sets. However, the proposed knowledge
measure clearly distinguishes between these IF-sets.
Therefore, a fresh approach is constantly needed.

3.3.3 Attribute weights evaluation

The attribute weights are significant in an MCDM issue.
Here, we calculate attribute weights using both the proposed
measure and the previously existing knowledge measures
defined for IF-sets. Take a look at an example of this.

Example 3 Let D is a decision matrix corresponding to a
set of alternatives {L;,L»,Ls,Ls} and a set of attributes
{T),T,,T5,T,} established in an intuitionistic fuzzy envi-
ronment.

<0.623,0.077 >
<0.619,0.080 >
<0.613,0.065 >
<0.725,0.002 >

<0.320,0.480 >
<0.410,0.390 >
<0.480,0.320 >
<0.319,0.481 >

<0.423,0.019 >
<0.214,0.523 >
<0.329,0.112 >
<0.298,0.397 >

<0.423,0.529 >
<0.219,0.421 >
<0.231,0.480 >
<0.421,0.368 >

Ry = {(d,0.423,0.529), (d>,0.219,0.421),
(d3,0.231,0.480), (ds,0.421,0.368) };
Ry = {(dy,0.320,0.480), (d>,0.410, 0.390),

(d3,0.480,0.320),

ds,0.319,0.481)};

Ry = {(dy,0.623,0.077), (d>,0.619, 0.080),

(d3,0.613,0.065), (ds,0.725,0.002) };
Ry = {(dy,0.423,0.019), (d,0.214,0.523),
(d3,0.329,0.112), (ds,0.298,0.397)}.
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The attribute weights can be determined using one of two
approaches given below:

(A).

Approach depending upon information measures -
We can determine the weights corresponding to
various attributes by using the formula given as
follows:

1 - E(T))
1 E(T))
where E denotes information measures corre-
sponding to an IF-set.

wj = 7]:172737»6], (40)
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(B). Approach depending upon knowledge measures -
We can determine the weights corresponding to
various attributes by using the formula given as
follows:

K(1;)

-1 K(T)

w; = j=12,3,...,q; (41)
where K denotes knowledge measures corre-
sponding to an IF-set.

In this example, we calculate weights calculated by
knowledge measures only. The attribute weights are com-
puted in the Table 4.

Table 4 demonstrates that the attribute weights deter-
mined by some existing knowledge measures are incon-
sistent. In some cases, the weights assigned to different
attributes are the same. However, the weights assigned by
the proposed knowledge measure are different for different
attributes. Thus, it is necessary to develop a new knowl-
edge measure for IF-sets.

4 Deduction of some new measures

In the present section, some more measures that are derived
from the proposed IF-knowledge measure, are suggested.

4.1 IF-accuracy measure

The quantity of intuitionistic fuzzy accuracy can be equa-
ted with the quantity of intuitionistic fuzzy knowledge. The
notion of IF-accuracy measure is used when we wish to
know how accurate IF-set S is in comparison to another IF-
set R. Verma and Sharma (2014) expanded the notion of
inaccuracy measure for IF-sets from fuzzy sets and gave
Intuitionistic Fuzzy Inaccuracy measure as follows:

t
I(R.S) = — }Z [uR tog (145

i=1

+ vglog (VR —2|_ vS) + ng log (@)

—nglog g — (1 — 7g)log(1 — mg) — nR];

(42)
where R, S € IFS(D).
Now, depending upon proposed IF-knowledge measure
K}(R), we define a new IF-accuracy measure K. (R, S) of
IF-set S w.r.t. IF-set R as follows:

1

VT Tagld) = vl Tas(d) = vs(d)] - 1].

i=1
(43)

Now we check for the validation of the proposed accuracy
measure K’

(ILL\

Theorem 3 Letr R= {(d,-,,uR(di), VR(d,')> 1 d; € D} and
S ={{di, us(d;),vs(d;)) : di € D} are two members of
IFS(D) for a finite set D(# ¢). Define a mapping Kéccy
IFS(D) x IFS(D) — [0,1] given in Eq. (43). Then,

Kéccy (R, S) is a valid accuracy measure for IF-set S relative

to R if it fulfils the following axioms, (A1)-(A4):

(AD Ki.,(R,S) €[0,1].

(A2) accv( ) =0« :uR(d) - VR(di)'

(A3) uccy(R S) =1 if :uR( ) - :uS(dl) =0, VR( )
vs(di) = or pg(di) = ps(di) = 1,
vr(d;) = vs( ;) =0, i.e., R and S both are equal

crlsp IF-sets.

(A4) K. (R S)=K}R) if R=1, where K}'(R) is the

proposed knowledge measure.

Proof (Al). It is easy to prove this from Eq. (43).

(A2). Let K}, (R,S) =0
ie.,
(V2-1)'§ 2
T; \/1+(MR(dt)—VR(di)) -1
2—-1)""
ek Vi

2t

13

S|V i) = v (o) [ X Tt (i) = vs{) | 1] =0.

i=1

Table 4 Attributes weights corresponding to Example 3

Knowledge Measures |~ «— Criteria Weights —

wi w2 w3 Wy
Kk(R) 0.3173 0.2363 0.2101 0.2363
Kn(R) 0.2628 0.2710 0.2034 0.2628
KG(R) 0.3382 0.2194 0.2194 0.2229
K;‘ (R) 0.7223 0.0430 0.1705 0.0642
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Since the above summation contains only positive terms,
therefore above-mentioned equation is true only if
(up(di) = ve(di)) =0 and  |ug(di) — ve(di)| x |us(di)—
vs(d;)| =0,Vd; € D; which  gives  ug(d;) = vr(d;),
Vd; € D.

Conversely, let us consider pg(d;) = vg(d;),Vd; € D;
which clearly implies m\,(R S)=0.

(A3).Let R, S are two crisp sets in IFS(D) and are equal.
It implies that pg(d;) = ug(d;) =0, vr(d;) = vs(d;) =1 or
Ug(di) = ug(dy) = 1, vr(d;) = vs(d;) = 0. Clearly,
K! . (R,S) =1 from both cases.

accy

(A4). 1t is simple to demonstrate K

accy (R7 S) = KIA (R)
for R = S from definition given in Eq. (43).

Hence, K/ . (R,S) is a valid [F-accuracy measure. [J

Theorem 4 For R,S,T € IFS(D), then K!_ . satisfy the

accy
following properties:

() k!

accy

(R,SUT) + K}, .,(R,SNT) =
Kéccy(R S) + K(iccy(R T)

2 Kl (RUST)+K, (RNS,T)

_ gl 1

Kaccy(R T) + Kaccy(S T)

3) Kl (RUS,RNS)+K] (RNS,RUS)
= Kcltccv(R S) + Kéccy (S7 R)

(4) If R° and ¢ represents complements of R and S re-
spectively then

(a) accy(R RC) = acc) (RC R)
(b) aCCV(R SC) = aCCy (Rc S)
(C) aLL) ( ) aay (RC SC)
1 R¢ 1
(d) accy (R S) + Kaccy( ’ S) Kac‘cy
(R, 5) + Kieey (R, 5°).

Proof Let R,S,T € IFS(D) for a non-empty finite set D,
are given as follows:

R = {(d;, ug(di), vr(d;)) : d; € D};
S = {{di, us(di), vs(di)) : d; € D};
T = {(di, ur(di), vr(d;)) = di € D},

where ug(d;), pts(d;), ur(d;) are membership functions and
vr(d;), vs(d;), vr(d;) are non-membership functions corre-
sponding to sets R, S, T, respectively.

(1). Consider two sets

Oy ={d; € D : ps(d;) = pr(di), vs(di) <vr(di)},
O, = {d;i € D : pg(di) <py(di), vs(di) = vr(d;)}-

Now,
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K! _(R,SUT)

accy

-1

2 S (Vi gt et -1 )

i=1

(v2-1
2t

+

1

Z(¢1+|MR< )=V X Trsur (d) —vsor(@)] 1),

i=1

DS (Vi eyt 1)

<\/§—1>*1
+[ -

S (V1 Tia(d) = vl < las(de) — vs(d) [~ 1)

dicd,

(vV2-1)"

T

S (VI eld) (@) (@ >—vT<di>_1)],
d;ed,

(44)

and
K! . (R,SNT)

_( 2_1)71 t
_2;;(\/1+(#R(di)—"1e(di))2—l)
L2yt

2t

1

Z(wﬂm ) = VR [ X [tsrr (d) —vsrr (@]~ 1),

i=1

_(v2-17 W” ) =) 1)

. l(ﬁ_l)l

2t

> (VIHleld) = e (@) X Trir (d) = (@) 1)
d;ie®,

(V2-1)""
+ 2t

> (\/1 + p(di) = vr(di)| % |ps(di) —vs(di)| - 1)] :

d,‘ed)z

(45)
On adding Eqgs. (44) and (45), we get
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Kzlzccy (R’ SuU T) + Kéccy (R7 SN T)
= Kéccy (R7 S) + Kfllccy (Rv T)

(2). Consider two sets

Vi ={di € D : pg(d;) = ps(di), ve(di) <vs(di) },
Wy = {di € D : pg(di) <ps(d;), vr(di) = vs(di)}.
Now,

K. (RUST)

(V2-1)'
2t

- (\/1 + (ugos(di) — veus(di) ) — 1)
(vV2-1)"

+ 2t

> (V1 Tt o) = vios (@) < (@)= (@) — 1),

i=1

2=t
N 2t

> (\/1+(uk(di)—vR(d,-))2—1>

dic¥,

+(\/§;tl)l > (\/I‘F(ﬂs(di)—vs(di))z—l)]

d,'GLPQ

(vV2-1"'
+[ 2t

S (VT el d) = va (@) X T (&)~ vr (@) -1)
d;ieV
(v2-1)""

+ 2t

> (VI Tns(d) = vs(d) X lur () = vr(d:) - l)] :
dieY,
(46)

and

Ktlzccy (R ﬂS, T)
\/j—l -1 ¢
:( 5 ) 1 <\/1+(ﬂRms(di)VRmS(di))21>

i=

(v2-1
2t

+

~

> (V1 Tt (o) = virs (@) < 1 (de) —vi (i)~ 1),

i=1

_(ve2-n
B 2t
Z (\/1+(#s(di)vs(di))21)
d;e¥
2-n" N ve(d )P —
O3 (V1 ) —vta) 1)]
(vV2-1)"'
> (VT Ins(d) = vs(d) [ xTrer (d) —vr(di) 1)
die¥
(vV2-n
+ 2t
> (\/1+|#R(di)—VR(di)| X |pg(di) —vr(di)| — 1)]
die¥,
(47)
On adding Eqgs. (46) and (47), we get
Kl..,(RUS,T)+K. . (RNS,T) =K. (R.T)+K}..(S,T).

(3). Consider the same two sets
Wi ={di € D: pug(di) > ps(di), ve(di) <vs(di)},
Wy = {di € D : pg(d;) <ps(d;), vr(di) > vs(di)}.

Now,
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K! _(RUS,RNS)

accy

t

v2-1) IZ<\/1 (gos(di) — veus(di))® — 1)

i=1

(\/571)]
s

1

> (VT Tt (@) = vics(@)] % Tiges(d) = vies(@) = 1)),

i=1

_{(ﬂ_l (\/1+ g (d:) — ve(dy))? —1)
d;eV¥,
+M
1 ) — vs(d;
W + (sl — vs(d)’ )}
(vV2-1n!
2t
S (VI Thald) = vl  Tus(d) — vs()] 1)
d;e¥,
(vV2-1!
+ 2t

> (VT

dieV,

i) = 5] > Tree ) = ve(d)] - 1)} :
(48)

and
K! (RNS,RUS)

accy

-1 1t

v2-1) Z(\/l (gns(d

i=1

(\5*1)1

2t

~es(@))* - 1)

+

r

> (VT Tags ) = virs(@)]  rtns(@d) = veus(@)] = 1),

_ {(\/5;1) 3 ( 1+ (us(ds) — vs(di))* — 1)

d;e¥,

L=

MZWH blds) — va(d)? 1)}

N [(ﬁ !

2t

Z(\/IJFWS

die¥,

v2-n!
+ 2t

> (\/1 + |ug(di) — ve(di)| x |us(di) — vs(di)| — 1>} :
d;ie¥s

)= vs(d) % Tald) — va(di)] — 1)

(49)
Adding Egs. (48) and (49), we get
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1 1
Kyeey(RUS,RNS) + Ko (RN S,RUS)
(R,S) + K!

- KI accy (S’ R)

accy

(4). The definition given in Eq. (43) is used as the direct
proof for this part. []

4.1.1 Application of proposed accuracy measure in pattern
detection

Now, the pattern detection issue with IF-set is addressed by
the following application of the accuracy measure.
Problem: Let us consider m patterns, represented by IF-

sets P = {<d,~, up, (i), ve, () = d; € D} (=
1,2,3,...,m) defined on a non-empty finite set
D ={d\,dy,....d,}. Let C=
{{di, uc(di),ve(d;)) : d; € D} is any unknown pattern. The
goal is to categorize pattern C into one of the recognized
patterns P;.

There are three approaches to finding the solution to the
above problem as folows:

e Similarity measure approach: (Chen et al. 2016b) If
S(R,S) represents the similarity between pattern R and
S, then C is recognized as pattern Pj; where

S(C7 Pji) :j:ll:,l;glx m(S(CaP/))

30eeey

¢ Dissimilarity measure approach: (Kadian and Kumar
2021) If D(R,S) represents the dissimilarity between
pattern R and S, then C is recognized as pattern Py,
where

D(Ca Pji) = 1:11511%1’1 m(D(C7 PJ))

e Accuracy measure approach: If A(R,S) represents the
accuracy of pattern R from S, then C is recognized as
pattern P;, where

A(C.Fj) = max (A(C,P))).

Boran and Akay (2014) investigated pattern detection
using similarity measures, whereas Xiao (2019) investi-
gated pattern detection using dissimilarity measures. We
notice from the comparative studies of similarity and dis-
similarity measures that neither a similarity measure nor a
dissimilarity measure is suitable for every problem of
pattern detection. Therefore, for issues involving pattern
detection, an alternative model is required. In some pattern
detection problems, the proposed accuracy measure may
work as an improvement over the existing similarity and
dissimilarity measures. In the pattern detection issue, we
compare the examples from Boran and Akay (2014) and
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Table 5 Measures of similarity
between known and unknown

patterns given in Example 4

Table 6 Measures of
dissimilarity between known

and unknown patterns given in
Example 4

Similarity measures S(C,Ay) S(C,A) S(C,A3) Detected/Not detected
Sc¢ (Fan and Zhangyan 2001) 0.825 0.788 0.788 Not detected

Sy (Hong and Kim 1999) 0.825 0.863 0.788 Detected as A

So (Li et al. 2002) 0.866 0.846 0.810 Detected as A

Sup (Mitchell 2003) 0.825 0.788 0.788 Not detected

SLy (Hung and Yang 2004) 0.975 0.975 0.950 Not detected

S2,, (Hung and Yang 2004) 0.8961 0.961 0.923 Not detected

S3,y (Hung and Yang 2004) 0.951 0.951 0.905 Not detected

SP (Liang and Shi 2003) 0.992 0.981 0.997 Detected as A3
Dissimilarity measures D(C,Ay) D(C,Ay) D(C,A3) Detected/ Not detected
l.n (Yang and Chiclana 2012) 0.225 0.225 0.350 Not detected

Iy (Grzegorzewski 2004) 0.225 0.225 0.350 Not detected

dg (Wang and Xin 2005) 0.235 0.278 0.515 Detected as A;

d} (Zhang and Yu 2013) 0.163 0.235 0.325 Detected as A,

d2 (Zhang and Yu 2013) NaN NaN NaN Not detected

d; (Wang and Xin 2005) 0.194 0.219 0.281 Detected as A,

illustrate the usefulness of the proposed IF-accuracy
measure.

Example 4 Let us consider a non-empty finite set
D ={d|,dy,ds5,ds}. Let Aj,A;,A; be three patterns
defined as follows:

Ay = {(d1,0.6,0.1), (d»,0.7,0.2), (d3,0.2,0.5), (ds,0.6,0.3) };
Ay = {(d1705~05)7 (d2>05a03)' (d37067 01)7 (d4708>01)}7
As = {(d1,0.0,0.0), (d2,0.4,0.2), (d3,0.3,0.3), (ds, 0.5,0.4)}.

Let the unknown pattern C be defined as follows:

C = {(dy,0.1,0.0), (d>,0.5,0.2), (d3,0.4,0.3), (d4,0.7,0.2)}.

Our current goal is to classify the unknown pattern C as
one of the patterns Aj, A, or As.

Boran and Akay (2014) used a similarity-measure
approach to solve this problem of pattern detection. Results
are computed in Table 5.

From Table 5, we found that the similarity measures S¢
(Fan and Zhangyan 2001), Sy (Mitchell 2003), S},, (Hung
and Yang 2004), S, (Hung and Yang 2004) and S3,
(Hung and Yang 2004) are not able to recognize the pattern
C, but similarity measures Sy (Hong and Kim 1999), So (Li
et al. 2002) and S? (Liang and Shi 2003) easily recognize
the pattern C.

Further, Xiao (2019) used a dissimilarity measure
approach to find the solution of the same example. Results
are computed in Table 6.

From Table 6, we found that the dissimilarity measures
l.;, (Yang and Chiclana 2012), [, (Grzegorzewski 2004) and
dZ (Zhang and Yu 2013) are not able to classify pattern C,
but dissimilarity measures dr (Wang and Xin 2005), d),
(Zhang and Yu 2013) and d; (Wang and Xin 2005) easily
classify the pattern C.

Now, we use the accuracy measure approach and apply
the proposed accuracy measure to the given patterns. The
values  calculated  are: K!..,(C,A) =0.2914,
K} .,(C,A;) = 0.2406 and K} (C,A3) = 0.1932. Pattern
C is categorized into the pattern A; using the proposed
accuracy measure. As a result, the proposed accuracy
measure technique works well for this pattern detection
problem.

4.2 |IF-information measure

For any IF-set R, we can define an [F-information measure
E} as follows:

E}(R)=1-K}(R),

:1_Wf%“zNH(HR(d,-)—vR(d,-))z—l -

i=1

(50)

We now test the proposed IF-information measure’s
validity.
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Table 7 Decision matrix in Intuitionistic Fuzzy environment DM,

DM s T T, T3 Ty

Ly {t115vi1) (12, v12) (t13, v13) (fi55 V1s)
L, (ta15 v21) (t2, v22) (thag, v23) (tiags Vas)
Ly (a1, va1)  (Maasv32)  (Ha3sv33) (K3, v3s)
L, (.url ; Vr1> (:ur27 V,»2) <:u737 Vr3> <.urx7 vhf)

Theorem 5 Letr R = {{d;, ug(d;),vg(d;)) : d; € D} is a
member of IFS(D) for a finite set D(# ¢). Define a map-
ping E} 1 IFS(D) — [0, 1] given in Eq. (50). Then, E} is a
valid IF-information measure if it satisfies the following
axioms, (E1)-(E4):

(ED) E‘?(R) =1<% ,uR(d,) = VR(dl') VY d;eD,ie., Ris
most IF-set.

(E2)  E}(R) = 0 uglds) = 0, ve(dy) = 1 or ugl(di) = 1,
vr(d)) =0V d; € D, i.e., R is a crisp set.

(E3) E}R) < E}(S) & RCS.

(E4) If R° represents the complement of R, then
E} (R) = EAMRC).

Proof 1t is simple to confirm that the information measure

given in Eq. (50) adheres to the aforementioned axioms. [

4.3 Similarity measure in intuitionistic fuzzy
environment

For R, S € IFS(D), we can define a similarity measure as
follows:

Su(R,S) =1~ |K}'(R) — K7 (S)]. (51)
1 b
0.9 -
0.8
0.7 —|
g 0.6 —|
8 o5-
£
t/—) 0.4 —|
0.3 -
0.2
0.1
0 =l
1
0.9
0.8
0.7
0.6
0.5
04
0.3
0.2
Non-membership o1 0 0

Fig. 2 Proposed Similarity measure

@ Springer

Now we examine the proposed similarity measure’s
validity in an intuitionistic fuzzy environment.

Theorem 6 Ler R,S,T € IFS(D) for a finite set D(# ¢).
Define a mapping 3., : IFS(D) x IFS(D) — [0, 1] given in
Eq. (51). Then, &, is considered to be an IF-similarity
measure if it meets the four axioms (S1)-(S4) listed below:

(S1) 0<Su(R,S)<L.

(52) Su(R,S) =Sun(S,R).

(S3) Su(R,S)=1<R=S.

(S4) IfRCSCT, then S(R,S) > S, (R, T) and
Sn(S,T) > Su(R, T).

Proof We verify the axioms (S1)-(54) as follows:

(S1). Since, we know that values of proposed knowl-
edge measures K7'(R) and Ki'(S) lies in [0,1],
therefore, 0 < |[K7'(R) — K(S)| < 1, and hence the
axiom (S1).

(§2). From Eq. (51), we «can say that
S (R, S) = (S, R).

(83). From Eq. (51), we have

Su(R,S) =1 1— |KHR) —KA(S)| =1,
< K7 (R) — K} ()| =
< Kj'(R) = K}\(S),
© pg(di) = ps(di)
and vg(d;) = vs(d;), Vd; € D,
& R=S.
Simlagity

0.9

<08

q0.7

506

0.5

0.4

0.3

0.2

0.1

Membership
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(S4). LetR,S, T € IFS(D)best. RCSCT,

= g (di) < ps(di) < py (dy) and
ve(di) 2 vs(di) > vr(d;), Vd; € D,
=K7 (R) > K} (8) > K} (T),
=K7(R) — K} (T) > K} (R) — K} (S),
=K} (R) — K7 (T)| > |K}' (R) — K7 ()],
=1 —|K}(R) — K; (T)| <1 — K (R) — K7 (5)],
=S8R, T) <Sw(R,S).
Similarly, we can prove that

S (S, T) > (R, T).

O

Thus, the measure defined in Eq. (51) is a valid simi-
larity measure. If two IF-sets provide equal knowledge,
then the proposed similarity measure attains its maximum
value, i.e., 1. This set up the potency of the proposed
similarity measure.

Example 5 If D={d} and R,S€ IFS(D) st. R=
{d, ug(d),vg(d)} and S ={d,0.5,0.5}, where ug is the
membership and vg is non membership function, respec-
tively. Thus, Fig. 2 represents the amount of similarity in
IF-sets R and S corresponding to different values of y and
v. From Fig. 2, the following points are easy to understand:

e Boundedness i.e., 0 < S, (R,S) < 1.
e ,(R,S)=1whenR=S.

Dissimilarity

Non-membership ' 0 0

Fig. 3 Proposed Dissimilarity measure

e Symmetry i.e., Su(R,S) = S,u(S,R).

4.4 Dissimilarity/distance measure
in intuitionistic fuzzy environment

For R, S € IFS(D), we can define a dissimilarity measure as
follows:

Cn(R, S) =

Now we examine the proposed dissimilarity measure’s
validity in an intuitionistic fuzzy environment.

K7 (R) — K7'(S)]. (52)

Theorem 7 Let R, S,T € IFS(D) for a finite set D(# ¢).
Define a mapping (,, : IFS(D) x IFS(D) — [0, 1] given in
Eq. (52). Then, {,, is considered to be an IF-dissimilarity/
distance measure if it meets the four axioms (D1)-(D4)
listed as follows:

(D) 0<{u(R,S)<1.

D2)  {u(R.S) = Lu(S.R).

(D3)  (u(R,S)=0 & R =S.

(D4) IfRCSCT,then {,(R,S) <(,(R,T) and

Gn(S,T) <Cu(R,T).

Proof We verify the axioms (D1)-(D4) as follows:

(DI). Since, Ki#(R) € [0,1)VR € IFS(D), therefore,
0<|K#(R) — Ki*(S)| <1, and hence the axiom
(DI).

(D2). From Eq. (52), it is easy to say that

Cm(R7S) = Cm(SaR)

Dissimilarity
1

0.5
0.4
0.3

Membership
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Fig. 4 Flowchart representing
steps of the proposed approach
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Table 8 Definitions of Criteria

Criteria Definition

Placement (T7) Placement is an initiative launched by universities to give jobs to their students who are almost finished with their
studies

Infrastructure (75) Infrastructure involves classrooms, drinking water sources, playgrounds, labs, restrooms, art & craft rooms, and other
facilities

Ranking (75) Ranking involves sorting the universities according to a variety of criteria, such as graduate employment, research
quality, specialization expertise, accolades, and student opinions

Teaching staff (7}) Teaching staff involve qualified individuals who are directly involved in instructing students, such as classroom
teachers, special education teachers, and other educators who interact with students individually, in small groups, or
as a class

Creativity (T5s) Teaching creatively means employing inventive techniques to make learning more fascinating, thrilling, and
successful

Library facility (7s) Library is a place where all reference materials, including daily newspapers, magazines, and technical and non-

technical periodicals, are available

Sports activities (77) Sports activities include taking part in any type of athletic training, competition, or exercise that is managed by the
sports department of the university

Cultural activities (Tg) Cultural activities refer to the development of a person’s intellect, interests, tastes, and abilities

Student Accommodations are things that are provided for comfort or to meet a need, including housing, food, and services, or
accommodation (75) travel-related spaces and amenities
Accreditation (7)) Universities must go through the accreditation process, which is a quality control procedure, to demonstrate that they
adhere to a rigid set of service and operational standards
Location (Ty;) The term “university location” describes the specific position of a university in other parts of its physical
environment (rural or urban)
Tutor-Student ratio The proportion of “full-time equivalent” teachers hired by a university to students enrolled in that institution is
(Th2) expressed as a tutor-student ratio

Identify best
alternative?

Resource Persons

Alternatives Criteria’s
1%t Alternative (Ly) /Placement (T1) Sports activities (T) \
2" Alternative (Lo) Infrastructure (T,) Cultural activities (Ts)
34 Alternative (Ls) Ranking (T3) Student accommodation (T)
4 Alternative (Ls) Teaching staff (Ta) Accreditation (Tio)
5t Alternative (Ls) Creativity (Ts) Location (T1a)

/ KLibrary facility (Te) Tutor-Student ratio (T1) /

Fig. 5 Basic framework of MCDM
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Table 9 Profession and

Experiences of Resource Resource persons Profession Highest qualification Experience (In years)
persons Py Professor Ph.D 18
P Retired principal Ph.D 45
Ps Assistant Professor M.Tech 23
Py Associate Professor Engg 34
Ps Sr. Professor Ph.D 40
P Private tutor M.Sc 15
Py Principal Ph.D 32
Pg Retired Professor B.Tech 40
Py Jr. Professor M.Tech 29
Py Principal Ph.D 37
(D3). From Eq. (52), we have . Bo(unde)dness ie, 0<(,(R,S)<1.
e (,(R,S)=0whenR=S.
En(R,S) = 0 < K[ (R) — K[(S)| = e Symmetry i.e., {,,(R,S) = {,.(S,R).
& K (R) = K7 (9),
& pg(di) = ps(di)
5 Proposed intuitionistic fuzzy knowledge,
and vg(d;) = vs(d;), Vd; € D, - T
similarity and dissimilarity measure-based
S R=S. modified VIKOR approach

(S4). LetR,S, T € IFS(D) are st. RCSC T,
= pg(di) < pg(di) < py(di)
and vg(d;) > vs(d;) > vr(d;), Vd; € D,
= Kj'(R) > K} (8) > K} (T),
= K (R) — K} (T) > K (R) — K}.(S),
= K (R) — K} (T)| > |K (R)
= (,(R,T) > (,0(R,S).

— K (S)],

Similarly, we can prove that {,,(S,T) < (R, T).

O

Thus, the measure defined in Eq. (52) is a valid dis-
similarity measure. If two IF-sets provide equal knowledge,
then the proposed dissimilarity measure attains its mini-
mum value, i.e., 0. This set up the potency of the proposed
dissimilarity/distance measure.

Example 6 If D={d} and R,S€ IFS(D) st. R=
{d, ug(d),vg(d)} and S ={d,0.5,0.5}, where ug is the
membership and vg is non membership function, respec-
tively. Thus, Fig. 3 represents the amount of dissimilarity
in IF-sets R and S corresponding to different values of u
and v. From Fig. 3, the following points are easy to
understand:

@ Springer

In the present section, applications of the proposed IF-
knowledge measure, similarity, and dissimilarity measure
are provided in MCDM issues.

In MCDM problems, we try to choose the best alter-
native out of all those that are accessible. Multiple criteria
are used to describe a variety of real-world issues. This
model must meet the following requirements:

(1). A group of all the alternatives.
(i1). A defined group of criterions.
(iii). Weights of the defined Attributes/Criteria weights.
(iv). Variables that might change the priority given to
each alternative.

5.1 The proposed approach

Opricovic (1998) studied an approach, named VIKOR
approach to tackle MCDM issues. In terms of aggregation
function and normalizing technique, VIKOR differs from
TOPSIS. In the TOPSIS approach, an alternative that is
nearer to the positive ideal solution and farthest from the
negative ideal solution is chosen as the best alternative (see
Chen et al. 2016a). This could prefer to make a choice that
maximizes the profit and minimize the cost. Furthermore,
in the VIKOR, the precise assessment of “Closeness” to
the positive ideal solution is employed to select the best
alternative.
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Placement (T4)

Infrastructure (T5)

Goal: Select
best university

Ranking (T3)

Teaching staff (T4)

«“

‘:‘\’»«

Creativity (Ts)

Library facility (Tg)

Q\ /IAA
AM")':(\ O
Q/ wv \ ‘§

M‘,«»\

Sports activity (T7)

Cultural Activities (Tg)

Student accommodation (Tg)

Accreditation (T4q)

Fig. 6 Framework of the proposed MCDM issue

5.2 Proposed IF-similarity and dissimilarity
measure-based modified VIKOR approach

The similarity and dissimilarity-based modified VIKOR
technique for the MCDM issue with the IF-knowledge
measure may be provided. It is inspired by the traditional
VIKOR approach and its extensions. Consider a MCDM
issue in which M; = {L;};_, is a collection of all the

Location (T44)

Tutor-Student ratio (T42)

alternatives and My = {Tj};:] is a collection of criteria.
Let Rp = {P,}),_, is a set of resource persons that are
involved to give their opinion for an alternative under
certain criteria. Let W¢ = {cj}jzl represent the criteria
weight corresponding to the attributes 7; s.t. Ej.:l ¢j = 1.

Figure 4 represents the working steps of the proposed
approach. The proposed VIKOR approach includes the
following steps:

@ Springer
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Table 10 Responses given by the Resource persons for each alternative
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Step 1: Create assessment information: We may create
the following decision matrix (Table 7) in an intuition-
istic fuzzy environment after receiving the resource
person’s responses for a criterion of a certain alternative:
where yi; is the degree with which L; alternative satisty
T; criteria and v;; is the degree with which L; alternative
do not satisfy 7; criteria.

Step 2: Compute normalized decision matrix: We can
normalize the fuzzy decision matrix as follows

M = {my},

. { <:uzj7 Vij>

<vija Aulj>

Also, the amount of knowledge passed is estimated by
using Eq. (11).

Step 3: Compute criteria weights: Criteria weights are
calculated by following two approaches:

Benefit criteria (53)

Cost criteria

(A). For unknown criteria weights: Chen and Li
(2010) provided the following approach for
determining the criterion weights:

=1 —FEj)/<s - ZFE,-),Vj =1,2,...,s
j=1
(54)

where FE; =3[ | E(L;,T;) (Vj=1,2,...,s).
In this case, E(L;,T;) stands for the fuzzy
information measure of the alternative L;
equivalent to the criteria 7. Knowing that the
ideas of fuzzy information measure and fuzzy
knowledge measure complement each other, we
apply the following formula to get the criteria

weights:
K i .

¢ :S—',VJZI,Z,...,S; 55
J Zj:l FK; ( )

where FK; => ' | K(L;,T;) and K(L;,T}) is
the knowledge obtained from the alternative L;
analogous to criteria T;.

(B). For partially known criteria weights: Resource

persons may not always be able to offer their
opinions in the form of exact statistics in real-
world circumstances. This could be as a result of
lack of time, inability to understand the issue
domain, etc. So, resource persons like to give their
opinions in the form of intervals in this sort of
difficult circumstance. We compile the informa-
tion delivered by resource persons in the set /.
Also, the total quantity of knowledge is found by
the formula given as follows

FK = 3" Kmy): (56)

where

K(mlfi) = K?(Lia Tj)’

R R

3

t
Vi=1,2,3,..,rj=1,23...s.

(57)
Thus, optimum criteria weights are calculated
as follows

s

- Z<c;< iK(mi»),
i=1

=1

= (ﬁ—l)fl

5 o 1+ (= vg)" =1

C] :

i=1 j=1
(58)

where ¢f € ['and > cf = 1.
Hence, the criteria weights obtained by Eq. (58)
are given as follows

argmax(F) = (Cy,Cs,...,C)7; (39)
where 7 represents the transpose of the matrix.

Step 4: Compute Best and Worst ideal solutions:
Now, we find the ideal solutions. Let B =
{By,Bs,....,B;} and W= {W,Wy,..., W} are two
sets of best and worst ideal solutions respectively. We
can find the values of the best and worst ideal solutions
as follows

@ Springer



1632

Granular Computing (2023) 8:1609-1643

5 (max;y p;;, ming;y v;;)  Benefit criteria 60
7\ (ming; gy, maxg;y vz)  Cost criteria )
(ming;y u;, maxg;y v)  Benefit criteria 61
7 (maxyy gy, mingy vy)  Cost criteria )

Step 5: Compute best and worst ideal similarity
matrices: By using the formula of similarity measure
given in Eq. (51), we can find the value of similarity
measure of the best ideal solution B and normalized
decision matrix M for each attribute, find the value of
similarity measure of the worst ideal solution W/ and
normalized decision matrix M for each attribute, and
compute the best ideal matrix B and worst ideal matrix
W under similarity measure as follows

B = {bj},,, and W = {w;} (62)

rXxs

where by = 3,,(Bj, my), wy = Su(W;,myj).>

Step 6: Compute similarity measure solutions: We can
find the similarity measure solution Y which is nearest
to the best ideal solution and similarity measure solution
Y~ which is farthest to the best ideal solution and find
the similarity measure solution Z* which is nearest to
worst ideal solution and similarity measure solution Z~
which is farthest to worst ideal solution as follows

Y+ = {yT’y;aay;r}aY7 = {y;ay2777y;}7

Z+: + 4 + 7 — _ 1. (63)
{217227-..,Z5 }7 {ZI,ZZ,...,ZS}’

where y." = max; by, y; = ming; by, 77 = maxy wy;,

= min{,»} Wij, G=1,2,3,.. .,S).

Step 7: Compute normalized best & worst group
utility and individual regret values: We can find the
values of normalized nearest best ideal group utility BlU;
and normalized nearest best ideal individual regret BR;

as follows
K y-f- _ bij
BUi=) cf "2,
= Y 7Y
(64)

P AN
BR,-:maX Cjﬁ 7Vl:17273:"'7r'
U Vi T

Similarly, we can find the values of normalized nearest
worst ideal group utility WU; and normalized nearest
worst ideal individual regret WR; as follows

K Z-}—_W[j
Wi =3 o
= Y 7% (65)
KZ*—Wi/
WR; =max| c; % Vi=1,2,3,...,r.
o\’ g -z

Step 8: Compute nearest best and worst ideal VIKOR
indices: we can find the values of VIKOR indices Vf)
that are nearest to best ideal solutions and VIKOR
indices VY that are nearest to worst ideal solutions as
follows

P BI/{, — min{,-} BM,

=

bmax{i} BU; — ming;y BU;
BR,‘ — min{,-} BR,

1—4 Vi=1,2,3,...r,
+( A)max{,»}BR,-—min{,-}BR,-’ ! 152l
VN - WU, — min{,-} Wul
i Lmax{,-} WU; — mingy WU,
WR; — mingy WR;
F(1=2) gy Vi=1,2,3,...r

max WR; — mingy WR; ’
(66)

In general, the value of weightage (/) is used to be 0.5.
Step 9: Compute Correlation factor for proximity:
We can find the value of correlation factor C; for each
alternative L; as follows

C = Vi Vi=1,2,3 r (67)

R A e
After calculating the value of the correlation factor, we
arrange the list of correlation factors of each alternative
in increasing order. Smaller the value of the correlation
factor for an alternative, the better the performance of
that alternative.

Note : Also, if we use the proposed dissimilarity
measure in place of the similarity measure, then the
greater the value of the correlation factor for an alter-
native, the better the performance of that alternative.

5.3 Numerical example

University selection for higher education: Take an
example of a student looking for the best university for his
higher education. After initial scrutiny, a student has
shortlisted five universities as alternatives say L, Ly, L3, Ly
and Ls. He has established twelve criteria’s T, 75, ...,T1»
defined in Table 8. In Fig. 5, a basic framework is given.

The student has taken the help of ten resource persons
Py, Py, Ps, ..., Py from various education-related fields to
choose the best alternative. Table 9 provides the details
about the profession and experiences of the resource

2If we use the proposed  dissimilarity measure then
bij = Cu(Bj, mij), wig = L (W), myz).
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Table 11 Intuitionistic fuzzy decision matrix Dsy s

T, T; Ty Ts Ts T Ts Ty Tio Ty Tip

T,

D512

(0.6,0.2) (0.3,0.4) (0.6,0.2) (0.8,0.1) (0.6,0.3)

(0.4,0.3)

(0.6,0.2)

(0.8,02)  (0.6,0.4) 0.6,02)  (0.6,04)  (0.5,0.4) (0.7,0.2)

(0.5,0.2)

(0.5,04)  (0.6,0.4) (04,0.6)  (0.4,04)  (0.4,0.5) (0.3,0.5)

(0.3,0.5)

0.6,04)  (03,04)  (0.7,0.2) 0.6,03)  (05,04)  (0.4,0.5) (0.7,0.2)

(0.5,0.3)
0.0871

(0.2,0.4)
0.1544

03,03)  (0503)  (0.3,03)  (0.4,02)
0.0800 0.0492 0.1233

0.1133

(0.3,0.4)
0.0899

o~ o~~~ o~

Ly

(0.7,0.1)

(0.5,0.3)

L,

(0.4,0.4)

(0.6,0.3)

L

(0.4,0.6)

(0.3,0.5)
(0.5,0.4)

0.0452

Ly

(0.4,0.4)
0.0922

0.1061 0.04288

0.0425

L4

Fig. 7 Correlation factors for proximity for each alternative

persons involved in the proposed MCDM issue. The basic
framework of the MCDM issue is shown in Fig. 6.

Now, we solve the given MCDM issue by using the
proposed model. There are the following steps involved:

Case 1. For unknown criteria weights

Step 1: We collect the responses from all the resource
persons about a criterion corresponding to a particular
alternative. Table 10 provides the details about the
responses collected from the resource persons.

Compile the responses supplied by all resource
persons, and the resulting decision matrix is displayed
in Table 11.

In this matrix, M = m;; = (u;, v;;), ji;; represents the
ratio of total number of all the resource persons that
support alternative L; w.r.t. criteria 7; to the total
resource persons involved and v; represents the ratio
of total number of all the resource persons that don’t
support alternative L; w.r.t. criteria 7; to the total
resource persons involved. The amount of knowledge
passed by each individual criteria is also provided in
Table 11.

Step 2: Because all of the criteria involved are benefit
criteria, therefore normalized matrix is the same as
presented in Table 11.

Step 3: The criterion weights are calculated. Let us
say that the criterion weights are unknown. Then, by
using Eq. (55), we have

We ={0.0441,0.0899,0.0414, 0.1035, 0.0417,
0.0849,0.0876, 0.1104, 0.0780, 0.0479,
0.1202,0.1504}.

Step 4: We can determine the best and worst ideal
solutions provided by Eqs. (60) and (61) as given
below:
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Table 12 Computed VIKOR

indices, Correlation factors, and Alternatives l «— Similarity measure — «— Dissimilarity measure —
Ranks VP vy C; Ranking VP vy C; Ranking
L 0.0841 0.8505 0.0900 2 0.8011 0.5000  0.6157 3
Ly 0.0924 0.9918 0.0852 1 1 0.1154  0.8966 1
L3 0.9116 0.1436  0.8639 4 0.1844  0.4636  0.2846 4
Ly 0.2525 0.7564  0.2503 3 0.8398 0.3508 0.7054 2
Ls 1.0000 0.0000 1.0000 5 0.0000  0.5000  0.0000 5
B = {(0.6,0.3),(0.7,0.1), (0.6,0.3), (0.7,0.1), Yt =1{1,1,1,0.8837,1,1,1,1,1,1,1,1},
(0.6,0.3), (0.6,0.2),(0.8,0.2),(0.7,0.2), Y~ = {0.9057,0.5988,0.8937,0.5988,
(0.6,0.2),(0.6,0.2), (0.8,0.1),(0.7,0.2) }. 0.8937,0.8618,0.6108,0.7150, 0.8261,

W = {{0.3,0.5), (0.3,0.6), (0.4,0.5), (0.4,0.4), 0.8140,0.4793,0.7629},
(0.3,0.5),(0.3,0.5),(0.3,0.4),(0.3,0.4), Zt ={1,0.9415,0.9880,1,1,1,1,0.9880,1,1, 1,1},
(0.3,0.6),(0.3,0.4), (0.4,0.5),(0.2,0.5)}. Z~ ={0.9415,0.7051,0.9057,0.7150,

Step 5: Using the Eq. (62), we calculate best ideal 0.9415,0.8618,0.6108, 0.7271,0.9057,
matrices B and worst ideal matrices ¥V under similar- 0.8261,0.4793,0.8213}.
ity measure as follows
0.9057 0.6108 0.8937 0.8837 0.9415 1 0.6108 0.9010 0.8261 1 1 0.8213
0.9415 1 1 0.6108 1 0.9203 1 0.7629 1 0.8618 0.4793 1

1 0.5988 1 0.6466 0.8937 0.8618 0.6108 0.7629 0.8618 0.8140 0.4793 0.7629
0.9415 0.6466 0.8937 0.7848 0.9057 0.8618 0.6108 1 0.9203 0.8261 0.4793 1
0.9057 0.5988 0.8937 0.5988 0.9415 0.8618 0.6108 0.7150 0.8618 0.8140 0.5151 0.7629

and
0.9642 0.9057 0.9880 0.7150 1  0.8618 1  0.8261 0.9057 0.8261 0.4793 1
1 0.7051 0.9057 0.9880 0.9415 0.9415 0.6108 0.9642 0.9203 0.9642 1  0.8213
W=10.9415 0.8937 0.9057 0.9522 0.9522 1 1 09642 09415 09880 1  0.9415
I 09415 0.9880 0.8140 0.9642 1 1 0.7271 1 1 1 0.8213
0.9642 0.8937 0.9880 1 1 1 1 0.9880 0.9415 0.9880 0.9642 0.9415
Step 6: The similarity measure solutions Step 7: By using Eq. (64), the calculated values of
YT, Y~,Z* ,Z can be found by using Eq. (63) and normalized nearest best ideal group utility BU; and
their values are given as below normalized nearest best ideal individual regret BR; for

each alternative, are shown below
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Values

L1 L2 L3 L4 L5
Alternatives
V+_i mV-_i mCC_i mRank

Fig. 8 Nearest best & worst ideal VIKOR indices, correlation factor
and ranks in case of the proposed Similarity measure

Values

L1 L2 L3 L4 L5
Alternatives
V+_i mV-_i mCC_i mRank

Fig. 9 Nearest best & worst ideal VIKOR indices, correlation factor
and ranks in case of proposed Dissimilarity measure

BU, = 0.5129, BU, = 0.4231, BUs = 0.8626,
Bl = 0.5941, BUs = 0.9570;
BR; = 0.1133, BR, = 0.1202, BR3 = 0.1504,
BR4 = 0.1202, BRs = 0.1504.

Similarly, by using Eq. (65), the calculated values of
normalized nearest worst ideal group utility WU, and
normalized nearest worst ideal individual regret WWR,;
for each alternative, are shown below

WU, = 0.5435, Wid, = 0.5372, Wld3 = 0.2661,
WU, = 0.3539, Wids = 0.1543;
WR = 0.1202, WR, = 0.1504, WR;3 = 0.0493,
WR4 = 0.1504, WRs = 0.0493.

Step 8: By using Eq. (66), the values of VIKOR
indices V¥ and V" for each alternative, are shown
below

VP =0.0841, V) = 0.924, V) = 0.9116,
VI =0.2525, V8 =1,

VY =0.8505, V) =0.9918, V) = 0.1436,
VY =0.7564,VY = 0.

Step 9: From Eq. (67), the calculated values of
correlation factors Cf for each alternative, are shown
below

¢S =0.09, C5 = 0.0852, C5 = 0.8639,
¢ =0.2503,C5 = 1.

Fig. 7 represents the graphical representation of the
values of correlation factors C; w.r.t. each alternative

We compile the values of nearest best ideal VIKOR
indices Vf , nearest worst ideal VIKOR indices Vf.v ,
correlation factor C; and ranks for each alternative by
using proposed similarity measure and proposed dis-
similarity measure in Table 12. Figure 8 and Fig. 9
represent these values under similarity measure and

Table 13 Sensitive analysis for
different values of A under

Weightage (1) l

«—— Correlation factors —

Preference order

Best alternative

proposed similarity measure L L, Ls Ly Ls
=0 0 0.1559 1 0.1559 1 Li-Ly, =L4y>Ls =13 L
42=0.1 0.0225 0.1428 09716 0.1725 1 Ly-Ly>Ly>L3>Ls L,
A=02 0.0423  0.1291 0.9438 0.1901 1 Ly-Ly>Ly>L3>Ls L,
A=03 0.0600 0.1150 09166 0.2089 1 Li-Ly>Ly>L3>Ls L,
A=04 0.0758 0.1004 0.8901 0.2289 1 Liy>Ly>Ly-L3>Ls L
A=0.5 0.0900 0.0852 0.8639 0.2503 1 Ly>-Ly>Ly>L3>Ls L,
A=0.6 0.1028 0.0694 0.8384 0.2732 1 Ly>-Ly>Ly>L3>Ls L,
A=0.7 0.1145 0.0531 0.8134 02979 1 Ly-Ly>Ly>L3>Ls L,
2=0.8 0.1252  0.0361 0.7889 0.3245 1 Ly-Ly>Ly>L3>Ls L,
A=09 0.1350 0.0184 0.7649 0.3533 1 Loy>Ly~Ly>-L3>Ls L,
A=1 0.1439 0 0.7414 03845 1 Ly>Ly~Ly>-L3>Ls L,
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Fig. 10 Sensitive analysis under 0
proposed similarity measure

0.6

(a) L1 alternate

0.6

(¢) L3 alternate

dissimilarity measure respectively.
The preference order of the alternatives is given by

{ Ly>Ly>Lsy>~L3>~Ls  for proposed similarity measure

Ly>Ls>L;>~L3>Ls for proposed dissimilarity measure

(68)

In both cases, we get L, as the most preferable
alternative.
Now, we take a sensitivity analysis for the different
values of weightage (4). The value of 1 lies between 0
and 1. We take the different values of 4 starting from O

@ Springer

0.1

0.2

0.9 0.2

0.3 0.8 0.3

0.4 0.7 0.4

0.5 0.6 0.5

(b) L2 alternate

0.5 0.6 05

(d) L4 alternate

(e) Ls alternate

and ending with 1 with step interval 0.1. The values of
correlation factor under the proposed similarity measure
for different values of A’s are shown in Table 13 and
diagrammatical representation is given in Fig. 10. Fur-
ther, The values of the correlation factor under the pro-
posed dissimilarity measure for different values of 1’s
are shown in Table 14, and diagrammatical representa-
tion is given in Fig. 11.

Case 2. For partially known criteria weights
Resource persons are not in a position to assign
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criterion weights in the form of numbers since there are
so many real-world issues involved. Under these cir-
cumstances, intervals are used to distribute the weights
of the criterion. Let us have a look at the MCDM issue
mentioned above with partially known criterion weights.
Let the following details be provided for the weights of
the criteria:

The data in Eq. (69) should be interpreted as follow

We again acquire L, as a more preferred alternative by
solving in the same way that case (1) was solved.

The aforementioned technique may be used to resolve a
variety of MCDM issues that occur in real-world contexts,
including the following:

(D). A person wants to pick a restaurant in a city for a
party. The selection criteria are (A) Costs,

0.02 <X <0.06,0.05 <X <0.10,0.02 < & <0.06,0.08 <cf <0.12,
I=1¢ 0.02<ck<0.06,0.05<ckX <0.10,0.05 < X <0.10,0.10 < & <0.14, (69)
0.05 <& <0.10,0.02 < c& < 0.06,0.10 < cK <0.14,0.13 < &, <0.18.

Fonax = 0.0452¢f 4 0.0922¢5 + 0.0425¢5 + 0.1062cF
+0.0428¢5 + 0.0871ch + 0.0899¢5 +0.1133cf
+0.0800ck + 0.0492¢f) + 0.1233¢f, + 0.1544c%;;
subjected to conditions

0.02 < K <0.06,

0.05 <X <0.10,

0.02 < X <0.06,

0.08<ck <0.12,

0.02 < X <0.06,

0.05 < c§ <0.10,

0.05 <X <0.10,

0.10< K <0.14,

0.05<ck<o0.10,

0.02 < ¢§, <0.06,

0.10< X <0.14,

0.13< ¢k, <0.18.

Zililct{( =1

(70)

Using MATLAB software to solve Eq. (70), the fol-
lowing result is obtained:

X =0.06,c5 =0.10,c5 =0.06,c5 =0.1,
¥ =0.05,cK =0.08,c5 =0.06,cf =0.1, (71)

X =0.1,c =0.06,ck =0.1,c5 = 0.13.

(B) Location, (C) Quality of food, (D) Comfort,
and (E) Other services.

(II). A student wishes to pick one of the six offered
subjects. Student selection factors include (A) The
availability of the teacher, (B) The number of seats
available, (C) the Student’s interest in the subject,
and (D) the Topic’s future.

(III). A principal wants to choose a teacher for his
school. There are the following criteria that the
principal created: (A) Education, (B) Experience,
(D) Communication skill, (D) Age, (E) Previous
record (if any).

(IV). A company wants to develop tourism in India.
Some factors might have an impact on it. They are
(A) Community interest, (B) Funds availability,
(C) Development of infrastructure, and (D) Sup-
port of government.

5.4 Comparison and discussion

To test the usefulness of the proposed approach, we solve
the example described in Table 11 utilizing other approved
methodologies from the literature. Among the popular
techniques are as follows:
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Table 14 Sensitive analysis for

different values of 4 under Weightage (4)

Correlation factors

Preference order

Best alternative

proposed dissimilarity measure L L, Ly Ly Ls
A=0 0.4351 0.8234 04725 0.8234 O L, = Ly-L3-Li-Ls L, &Ly
A=0.1 0.4631 0.8371 04190 0.8002 O Ly>-Ly-Ly-L3>Ls L,
A=02 0.4945 0.8512 0.3757 0.7768 O Ly-Lg-Li-L3>Ls L,
A=03 0.5298 0.8658 0.3400 0.7532 O Ly=Ly>Li=L3>Ls L,
A=04 0.5699 0.8809 0.3101 0.7294 O Ly-Ly-Li-L3>Ls L,
A=0.5 0.6157 0.8966 0.2846 0.7054 O Ly>=Ly-Ly>L3>Ls L,
A=0.6 0.6687 09128 0.2626 0.6812 0 Ly>-Ly-Ly>L3>Ls L,
A=0.7 0.7306  0.9296 0.2436  0.6568 O Lry>-Li-Ly-L3>Ls L,
A=038 0.8038 0.9470 0.2268 0.6322 0 Ly>-Li-Ly-L3>Ls L,
A=09 0.8920 0.9651 02119 0.6075 O Ly-Ly-Ly-L3>Ls L,
A=1 1 0.9840 0.1987 0.5825 O Li=Ly=Ly-13>Ls L

\

Hwang and Yoon (1981) proposed TOPSIS (Tech-
nique for Order Preference by Similarity to Ideal
Solutions) approach.

Ye (2010a) proposed Decision-making approach
(DMA).

Verma and Sharma (2014) proposed DMA.

Singh et al. (2020) proposed DMAs by using three
knowledge measures.

Farhadinia (2020) proposed DMAs by using four
knowledge measures.

Farhadinia (2020) proposed DMA by using knowl-
edge measure studied by Nguyen (2015).

Farhadinia (2020) proposed DMA by using knowl-
edge measure studied by Guo (2015).

X Y Y XYY 1\

To compare the outcomes of several approaches with the
outcomes of the proposed approach in intuitionistic fuzzy
environment, we generate Table 15 and Fig. 12.
According to the TOPSIS approach, the best alternative
is the one that is the furthest away from the worst solution
and closest to the best solution. Opricovic and Tzeng
(2004) contrasted the VIKOR approach to the TOPSIS
approach, arguing that it is not always correct that the
alternative closest to the best solution is likewise the
alternative farthest from the worst solution. Ye (2010a)
merely took into account the relationships between alter-
natives and the optimal alternative. In certain specific sit-
uations, being close to the optimum answer may be
advantageous, but not always, as this might result in the
loss of crucial information. As a result, the output sug-
gested by Ye (2010a) technique is not particularly trust-
worthy. Verma and Sharma (2014) developed an approach
to solve MCDM issues in an intuitionistic fuzzy environ-
ment based on the weighted intuitionistic fuzzy inaccuracy
measure. Singh et al. (2020) gave an approach to tackle

@ Springer

MCDM issues by utilizing three different knowledge
measures. Farhadinia (2020) gave an approach to finding
the solution to the MCDM issue by using four different
measures. He also uses the measures proposed by Nguyen
(2015) and Guo (2015) to solve the same MCDM issue.
The proposed problem suggests five different alternatives
out of which the L, alternative is the best alternative by all
given approaches as suggested by Table 15. As a result, the
output of the proposed approach is trustworthy.

6 Conclusion

In this study, an IF-knowledge measure is suggested and is
checked for validation. The IF-knowledge measure pro-
posed in this work is found to be an effective option for
handling problems with structured linguistic variables, the
calculation of ambiguity for two different IF-sets, and the
computation of objective weights. To show the efficacy of
the proposed IF-knowledge measure, its comparison with
several well-known IF-information and knowledge mea-
sures is taken. Three examples are provided in the current
study to evaluate the efficacy of the proposed IF-knowl-
edge measure. In addition, four new measures are proposed
and validated namely accuracy measure, information
measure, Similarity measure, and Dissimilarity measure in
intuitionistic fuzzy environment. We use the proposed IF-
accuracy measures in pattern detection. Also, an example
of pattern detection is given to compare the performance of
some other measures with the proposed accuracy measure.
To tackle MCDM issues, proposed knowledge measure,
similarity measure, and dissimilarity measure based mod-
ified VIKOR approach based is proposed, and it is dis-
covered that the results were quite encouraging. To
illustrate its efficacy, a numerical example with a com-
parison is given. The proposed approach has great promise
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Fig. 11 Sensitive analysis under 0
proposed dissimilarity measure

0.6

(a) L1 alternate

0.9

0.8

0.7

0.6

(¢) L3 alternate

since it can find the best alternative that almost perfectly
meets all the criteria. It also gives professionals advice on
what factors make a particular alternative less successful.
Further, the proposed approaches make it simple to see
why some alternatives are preferable to others in terms of
making decisions. The proposed approach does not require
more complex calculations and may be assessed and used

0.5 0.6 0.5

(b) Lo alternate

0.9 : 0.2

0.8 0.3

0.7 0.4

0.5 0.6 0.5

(d) L4 alternate

0.9 0.2

0.8 0.3

0.7 0.4

0.6 0.5

(e) Ls alternate

for a wide range of intuitionistic fuzzy scenarios. Hesitant
Fuzzy set; Interval-valued Intuitionistic Fuzzy set; Pic-
ture Fuzzy set; and Neutrosophic Fuzzy set are all included
in the scope of expansion of the proposed measure. The
suggested knowledge, accuracy, similarity, and dissimi-
larity measures may be applied to many areas including
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Table 15 Comparison of

proposed modified VIKOR Approaches

Preference order Best alternative

approach with other known

. . TOPSIS (Hwang and Yoon 1981)
approaches in the literature

DM (Ye 2010a)
DM (Verma and Sharma 2014)
DMM! (Singh et al. 2020)
DMM? (Singh et al. 2020)
DMM? (Singh et al. 2020)
DMM! (Farhadinia 2020)
DMM? (Farhadinia 2020)
DMM? (Farhadinia 2020)
DMM* (Farhadinia 2020)
DMM (Farhadinia 2020)
DMM (Farhadinia 2020)

Proposed one (by using proposed similarity measure)

Proposed one (by using proposed dissimilarity measure)

Lo>-Li>Ly>Ls>Ls L
Lo>-Li>Ly>Ls>Ls L
Ly-Ly-Ly-L3>Ls L,
Ly-Ly~Ly>L3>-Ls L,
Ly>=Li>Ly~Ls>Ls L,
Ly>-Li>Ly-Ls>Ls L
Ly>Li>Ly>L3>~Ls L,
Ly-Ly~Ly-L3>Ls L,
Lo>-Li>Ly>L3>Ls L
Ly=Li>Lsy>~L3>~Ls L,
Ly=Ly>=Lsy>~L3>~Ls L,
Ly>Li>Ly>L3>Ls L,
Ly=Ly>Lsy>~L3>Ls L,
Lo-Ly>L;>L3>Ls L,

TOPSIS (1981)
Proposed 5

(Dissimilarijy= -2

Verma & Sharma
(2014)

Proposed (Similarity
measure)

Guo (2020) Singh et al.1(2019)

Nguyen (2020) Singh et al.2 (2019)

Fafhadinia4 (2020) Singh et al.3 (2019)

Fafhadinia3 (2020,

) Fafhadinial (2020)

Fafhadinia2 (2020)

—_—1 =2 L3 L4 =I5

Fig. 12 Comparison of the proposed approach with other known
approaches

feature recognition, voice recognition, and image
thresholding.
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