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Abstract
The prime objective of the manufacturing industry is to meet the non-decreasing demand of customers with quality

products. Evaluation of optimal job sequence can largely increase the productivity, thereby fulfilling the aim of an

enterprise. Usually, determining the optimal job sequence is an arduous task due to the fact that unit increase in an input

exponentially increases the problem size. Scheduling problems is a case of non-deterministic polynomial (NP) hard

problem which implies it is impractical to compute optimal job sequence within feasible time. Therefore, in the present

study, a novel two-phase heuristic algorithm is proposed for multi-stage scheduling problem. The first phase of the

proposed model is to compute the job and machine priority. Job priority is the measure of the total work remaining and

time taken for processing and completion of the job. On the other hand, machine priority determines the machine that shall

take the job for processing. The job prioritization is computed by hybridizing the completion time (CT), processing time

(PT) and total work remaining (TWR) for a job. Whereas, machines in each stage of the multi-stage scheduling problem is

prioritized by a novel multi-criteria decision-making (MCDM) method which is based on the concept of risk minimization.

In the proposed MCDM model, the risk is defined as the loss for choosing an unreliable machine to process a job. The

second phase of the proposed method involves assigning of the jobs to the machines based on their priority. The

potentiality of a proposed algorithm lies in the practicality and robustness of the model. Hence, it is applied in a flexible

flow-shop scheduling (FFSS) problem of a medium-sized manufacturing industry. The performance of the model is

statistically tested by Wilcoxon signed-rank test on the basis of make-span and execution. Finally, the proposed approach is

validated by comparing the result with some benchmark problems from the literatures.

Keywords Flexible flow shop � Parallel machine scheduling � Heuristic technique � Job and machine prioritization �
Fuzzy processing time

1 Introduction

In this technology-driven era, the sustainability of an

industry is solely dependent on the customer-based market

where the paradigm of an ideal product is often changing

(Kim et al. 2020), and the demand for customized products

is at its record height (Novshek and Thoman 2006). To

thrive in this environment where the manufacturers’ prime

objective is to meet the ever-increasing demand of the

customers with best quality, a new research dimension has

been added to the field of industrial engineering. The prime

aim of this branch of engineering is to increase the pro-

ductivity of the industry (Sakamoto 2010). Ascertaining the

optimum job-processing sequence is one of the many ways

for improving productivity (Arashpour et al. 2016). The

method for computing the optimal sequence is called
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sequencing and scheduling (SS), which involves the inte-

gration of engineering and numerical computation with

managerial activities (Kumar et al. 2017). Sequencing is

defined as assigning of jobs on a group of machines

whereas scheduling consists in arranging, controlling and

optimizing work and workloads in a manufacturing unit.

In industry, SS aims in maximizing efficiency and free

flow of production and also focuses on minimizing the

make-span and cost of production (Mokhtari and Hasani

2017). The determination of this optimum sequence facil-

itates the efficient use of its resources viz. processing

machines, available floor space, material handling and

storage, work hour, etc. It also reduces the wastage of time

due to lack of co-ordination and thereby enables the

company to deliver the products to its end-users at the

promised date. SS also establishes inter-department co-

ordination (Sly et al. 2017).

SS are broadly classified into two categories: 1. Job shop

scheduling (JSS) and 2. Flow shop scheduling (FSS). In

general, if a set of jobs are to be processed in a set of

machines such that each job has a pre-specified order or

route of visit on machines such type of schedule is called

JSS. Whereas if every job follows the same route of visit on

machines, such type of schedule is called FSS. In an

industrial scenario, encountering of single machine is a rare

sight to witness. In a multi-stage production shop, it is a

very common approach to install identical parallel machi-

nes that can operate the same set of operations at every

stage in the production shop (Naderi et al. 2014). The

objective of such an arrangement is to increase the floor-

space utilization and decrease the bottleneck formation.

Integration of parallel machines with FSS is called Flexible

flow-shop scheduling (FFSS) (Neufeld et al. 2016). FFSS is

a generalized form of FSS problems and it is capable of

processing more number of jobs at time. Due to these

properties FFSS is mostly applied in manufacturing

industries. FFSS is widely used in industry that does batch

production such as printer manufacturing industry, fabri-

cation industry, car repairing, circuit board manufacturing

industry etc. Above that, FFSS is characterized with

unlimited buffer space between different stages (Almeder

and Hartl 2013). Hence, FFSS problems from an industry

perspective are of keen research interest to the present-day

researchers and academicians maximizing efficiency and

productivity of an industry.

Recently, many researchers and academicians are

attracted to the objective of increasing productivity by

minimizing the maximum completion time (CT) called

make-span (Gao et al. 2016), total lateness or tardiness and

number of tardy jobs (Gholami and Zandieh 2009). These

performance parameters in a scheduling problem are a

function of processing time (PT) which is defined as the

time taken for processing a job on a machine (Choi et al.

2010). In most of the literature, PT is considered deter-

ministic, which implies that the time taken for processing a

job in every production cycle on a machine is known with

absolute accuracy. However, in the practical scenario, there

is some uncertainty associated with the PT. The reason for

uncertainty in PT is due to the different factors affecting

the physical nature of the scheduling problem such as the

efficiency of the workers, disruption during machining,

loading and unloading time of jobs, machine breakdown,

etc. contributes to the uncertainty in PT (Ahmadi et al.

2016).

Zadeh 1965 developed the concept of fuzzy sets (FS)

which was adopted by (Prade 1979) to quantify the

uncertainty in PT to develop the fuzzy PT (FPT). Dubois

and Prade (1982) utilized the FPT and integrated it with the

scheduling algorithm developed in (Erschler et al. 1976) to

develop the first FPT-based heuristic algorithm. Since then

a lot of research development is made. Some of the recent

notable literature that provides a comprehensive view

about FPT-based heuristic algorithm can be found in

(Behnamian 2016; Liu et al. 2017; Arık and Toksarı 2018).
FPT is applied for scheduling identical parallel machi-

nes with different capacities (Jia et al. 2019), uniform

parallel machines (Li et al. 2019) and non-identical parallel

machines (Alcan and BaşLıGil 2012). For a multi-stage

production shop, where the path of every job is pre-deter-

mined when hybridized with such arrangement is identified

as flexible flow-shop scheduling (FFSS). Salvador (1973)

was the first to study the FFSS problem. Some of the state-

of-the-art literature on the development of FFSS problems

can be found in (Ruiz and Vázquez-Rodrı́guez 2010;

Neufeld et al. 2016).

Initially, researchers focused on developing exact

methods for solving scheduling problems (Tran et al. 2016)

but optimization for FFSS problems are the case of NP-

hard problem (Wang and Li 2002). Therefore, researchers

shifted their focus towards developing heuristic algorithms

to compute a near-optimal schedule for the problems.

However, unit increase in the input may exponentially slow

down the devised technique. Therefore, researchers shifted

their focus on developing fast heuristic techniques that can

return a good schedule but not optimal (Asadzadeh and

Zamanifar 2010).

In multi-stage scheduling, one of the essential decision-

making is to prioritize the jobs that are waiting for pro-

cessing on a machine. Such type of decision-making reg-

ulations is termed as dispatching rule. Shortest processing

time (SPT) rule (Schultz 1989) is the simplest form of

dispatching rule. According to this rule, the job with the

shortest PT will be processed first in a machine. Unlike

SPT, longest processing time (LPT) rule prioritizes the job

that requires the highest time for processing (Della and

Scatamacchia 2020). One of the most common forms of
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dispatching rules applied in multi-stage medium enterprise

is the first come first serve (FCFS) rule. In this rule, the job

that arrives first in the working station is taken up for

processing irrespective of its importance (Schwiegelshohn

and Yahyapour 1998). Earliest release date (ERD) is sim-

ilar to FCFS rule. The ERD rule is mostly applied when the

prime objective of the schedule is to minimize the waiting

time of jobs (Pinedo and Chao 1999). Total work remain-

ing (TWR) is a dispatching rule that prioritize the job on

the basis of work remaining. Number of unfinished parts

(NUP) is a dispatching rule, where the job with maximum

unfinished parts is preferred over other jobs. Earliest

completion time (ECT) and latest completion time (LCT)

are two dispatching rules associated with completion time.

The former rule prioritize the job that is expected for

earlier completion; whereas, the later prioritize the job that

is expected for later completion (Jungwattanakit et al.

2008). Earliest due date (EDD) rule prioritize the jobs in

increasing order of due dates. The EDD rule is mostly

applied when the objective of the schedule is to minimize

the maximum tardiness (Pinedo and Chao 1999). Two

variations of the EDD rule are minimum slack time rule

(MST) and slack time per processing time rule (SP). Slack

time is defined as the difference between the due dates and

processing time required. In the MST rule, the job with the

least slack time is preferred for processing over other jobs.

In SP rule, the quotient obtained by dividing slack time by

processing time is arranged in non-decreasing order and

prioritized accordingly. It is shown in the paper (Kaban

et al. 2012) that hybridizing PT and TWR and combination

of TWR and CT works best for minimizing the job-flow

time and make-span, respectively. Jungwattanakit et al.

(2008) proposed a heuristic algorithm by hybridizing the

SPT and EDD rule for minimizing make-span and total

number of tardy jobs. There exist several survey literature

on dispatching rules that are applied to multi-stage

scheduling problems (Nguyen et al. 2017a, b).

Moreover, many new dispatching rules were formulated

for prioritizing jobs. Priority dispatching rule falls in the

category of completely reactive of the three groups as

identified in (Ouelhadj and Petrovic 2009). Some of the

priority dispatching algorithms formulated for FFSS envi-

ronment are Palmer heuristic, Campbell, Dudek, and Smith

(CDS) algorithm, Gupta algorithm (GUP), Dannenbring

algorithm, Nawaz, Encore and Ham (NEH) heuristics, etc.

Palmer heuristic (Palmer 1965) developed the concept of

‘Slope Order Index (SOI)’ for the jobs. Jobs are arranged in

an increasing order of the SOI and the sequencing of the

jobs is done accordingly. The Palmer heuristic is later

applied to fuzzy FFSS problem by (Hong and Wang 1999).

Campbell et al. (1970) proposed a priority-based dis-

patching rule termed as CDS algorithm. The algorithm is

an extension of the Johnson algorithm. The algorithm

creates many schedules for a FFSS problem and then

Johnson’s algorithm is applied to it. Out of the various

schedules, the best computed by Johnson’s algorithm is

chosen (Gozali 2019). Dannenbring (1977) hybridized the

advantages of the CDS and Palmer heuristic. The NEH

algorithm developed in the year 1983 considered that the

job with highest total operating time must be placed in

higher order of the job sequence (Nawaz et al. 1983).

Above these, there are many other priority dispatching rule

proposed for the FFSS problem which falls within the

category of completely reactive. Amin and El-Bouri (2018)

defined the term completely reactive as decision-making

under the real-time scenario and identified 27 sets of pri-

ority-based dispatching rules. Literature where multi-cri-

teria decision-making (MCDM) methods were employed

for developing priority-based dispatching rules (Subrama-

niam et al. 2000; Petroni and Rizzi 2002). For optimizing

the performance parameters, dispatching rules were

hybridized with different optimization algorithms in the

literature (Joo and Kim 2015; Nguyen et al. 2017a, b).

Many pieces of literature were reviewed for the present

study but limited with the most recent and significant state-

of-the-art.

1.1 Motivation and novelties

In a multi-stage manufacturing industry, one of the most

important decision-making activity is to choose the next

job for processing in a machine. But most of the time, it is

been observed that choosing a wrong job may affect the

free flow of production. Above that, for increasing the

production capacity of the industry resulted in installation

of number parallel machines. Even though the parallel

machines are replication of each other, yet their working

condition may vary depending upon their state of condi-

tion. The product quality is greatly affected depending on

the condition of the processing machines. It is observed

that the quality of product fails to meet the customer

expectation if the jobs are assigned to machines that are

deemed unfit or imperfect from the perspective of relia-

bility. The prime need of the manufacturing industry is to

design an effective SS algorithm that not only maximizes

the efficiency and free flow of production but also increases

the production of quality products.

Motivated by the problem, this paper proposes a novel

two-phase heuristic scheduling algorithm to compute the

performance measures of a flexible flow-shop environment.

The proposed scheduling algorithm considers FPT for

scheduling the jobs on the machines. FPT is applied to

model the uncertainty associated with time taken for pro-

cessing a job on a machine. The first phase of the method is

setting the priority of the jobs and the machines. Job pri-

oritization (JP) decides the sequence in which jobs shall be
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taken up by the machines in each stage of the FFSS

problem. JP is done by hybridizing three well-established

dispatching rules viz. CT, PT and TWR. Whereas machine

prioritization (MP) is a way of deciding which available

machine shall take up the jobs for processing by abiding

the assumption that no machine shall remain idle in any

stage of the FFSS environment. MP is a decision-making

process which is to be evaluated based on several criteria.

Hence, MCDM method became handy in setting machine

preference in each stage. A novel MCDM model is pro-

posed in the study, which is based on the concept of risk

minimization. The model perceives risk as choosing an

unreliable machine over the reliable one. The second phase

of the heuristic algorithm is assigning of the jobs to the

appropriate machines. The proposed approach is applied to

schedule a 72-job and 5-stage FFSS problem of a medium-

sized manufacturing industry. The performance of the

model is statistically tested by Wilcoxon signed-rank test

on the basis of make-span and execution. Also, the feasi-

bility of the proposed heuristic algorithm is tested by

comparing the results of the performance measures with

that obtained from some other established heuristic algo-

rithm. Moreover, an in-depth study about the heuristic

algorithm is conducted, and the important points that are

observed are explained elaborately in this paper.

The organization of the remaining paper is done as:

Sect. 2 recalls some preliminary concepts and their defi-

nitions followed by Sect. 3 that describes the case study.

Section 4 describes the methodology proposed, which is

followed by results and discussions obtained for the case

study in Sect. 5. Finally, Sect. 6 is the conclusion of the

paper.

2 Preliminaries

In this section, we shall discuss the key concepts employed

for developing the heuristic proposed in the article. We

shall start by recalling a few definitions.

2.1 Definitions

2.1.1 Triangular fuzzy number

In the universe of discourse U, eA is termed as FS, if it is

typified by membership value l
eA

� �

that maps every ele-

ment of U to a real-valued number in 0; 1½ � (Hussain et al.

2018).

eA ¼ x; l
eA
xð Þjx 2 U

n o

;

where l
eA
xð Þ denotes the membership value of x 2 U. eA is

called TFN if it is represented by triplets a; a; að Þ such that

a� a� að Þ and the triplets represent a fuzzy subset of a

real line whose membership value is defined as (Molinari

2016):

l ~A xð Þ ¼

x� a

a� a
; a� x� a

a� x

a� a
; a� x� a

0; otherwise:

8

>

>

<

>

>

:

2.1.2 Arithmetic operations and defuzzification of TFN

Arithmetic operations for two TFNs and defuzzification of

TFN by the center of gravity approach are defined in

(Hussain et al. 2019). The expression for inverse operation

and defuzzification of a TFN eA ¼ a; a; að Þ in Eqs. (1–5).

Inverse of : 1
�

~A ¼ 1=a;
1=a;

1=a

� �

; a; a; að Þ[ 0½ �; ð1Þ

1
�

~A ¼ 1=a;
1=a;

1=a

� �

; a 0; a; að Þh i0½ �; ð2Þ

1
�

~A ¼ 1=a;
1=a;

1=a

� �

; a; að Þ 0; ah i0½ �; ð3Þ

1
�

~A ¼ 1=a;
1=a;

1=a

� �

; a; a; að Þ\0½ �: ð4Þ

Defuzzification of ~A : A ¼ 1

3
aþ aþ að Þ; ð5Þ

where A is the defuzzified value of eA.

2.2 Processing time measurement

The PT considered in this paper is the sum of loading time,

machining time and unloading time. The loading time of a

job is defined as the time taken to set up a job on thelth

machine of the kth stage of the job-processing shop.

Machining time is defined as the time taken to machine the

loaded job, whereas unloading time is defined as the time

taken to unload the machined job. Since job setup,

machining and changeover are conducted manually.

Therefore, the time taken for processing a similar job on

the same machine varies for different cycles. Hence, job PT

is uncertain. Therefore, FSs is used to model the uncer-

tainty associated with job PT. TFN is employed to quantify

the uncertainty associated with the PT . The simplicity of

the membership function is the prime reason for applying

TFN the fuzziness of PT .

In the study, fuzzy PT is represented as et ¼ t; t; tð Þ. The
triplet of fuzzy PT represents the optimistic time, most

likely time and pessimistic time taken for processing a job

on a machine in definite stage. For computing the triplet of

et, the time taken for processing ten similar jobs on the same
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machine at the same stage is recorded. The triplets are

computed using Eqs. (6–8).

t ¼ min t1; t2; t3 � � � t10f g; ð6Þ

t ¼ 1

10

X

t1 þ t2 þ t3 þ � � � þ t10ð Þ; ð7Þ

t ¼ max t1; t2; t3 � � � t10f g: ð8Þ

The most likely value t has the highest membership

value l
eA
xð Þ ¼ 1, where x ¼ t. The value of membership

functions l
eA
xð Þ decreases uniformly when the value of x

approaches t and t. Since PT is considered in a fuzzy

environment, hence, all the scheduling parameters consid-

ered in the study that are functions of PT are fuzzy. Ahmad

and Cheng (2022) applied TFN to quantify the uncertainty

in the processing time to develop a fuzzy control chart.

(Kang et al. 2023) and (Zhou et al. 2022) developed a

hybrid optimization and Pareto-based discrete optimization

algorithm, respectively, for solving problems with FPT .

3 Case study

The problem considered in this paper is a case study of

72-job and 5-stage FFSS problem of a medium-sized

manufacturing industry. The first major department is the

manufacturing shop where the 72 jobs are produced in 5

manufacturing units. The manufacturing of the jobs is

initiated by a Kanban system. The jobs are then passed to

the second department that is the machining and job-pro-

cessing shop. The job-processing shop is divided into 5

stages and each stage comprises of different numbers of

identical parallel machines. The jobs from each manufac-

turing unit follow a unique route of visit on the machines.

Thereby making the scheduling of jobs in the job-pro-

cessing shop a FFSS problem. The jobs are processed in

batches and continuous in nature. Since the time taken for

setting up of a job, machining the job and changeover are

conducted manually. Therefore, the time taken for pro-

cessing similar jobs on the same machine varies for dif-

ferent cycles. There is a fuzziness associated with the

processing time. The bottleneck formation of job flow in

the industry is materialized because of this department. The

jobs coming out of this department go to the third depart-

ment, i.e., the pre-fitting. The detailed job-flow diagram of

the job-processing shop is shown in Fig. 1.

3.1 Problem description

In this study, the objective of the scheduling problem under

consideration is to achieve a continuous and smooth flow

of parts to the pre-fitting area. This objective can be

obtained by minimizing the value of make-span, total

tardiness and total number of tardy jobs. J1; J2; J3; J4 and

J5 are a collection of 16, 17, 22, 8 and 9 jobs that are

manufactured in 5 manufacturing units.

The total number of schedules possible for FFSS prob-

lem considered in this paper is the sum of the schedules for

each stage. For a FFSS problem having n-stages with m-

machines in each stage needed to process j-jobs the total

number of schedules is computed according to Eq. (9).

Total number of schedules ¼
X

n

j!ð Þm
" #

: ð9Þ

The total number of schedules computed according

Eq. (9) is 4:746� 1099.

3.2 Assumptions made for the problem
considered

To achieve the aim of the scheduling problem, certain

assumptions that are made for processing of the jobs are as

follows:

i. All the machines, in a stage, are capable of

performing the same set of operations on the jobs.

ii. The sequential order of job flow is pre-defined and

strictly follows it, as shown in Fig. 1.

iii. Processing of a job once started on a machine in a

stage it will not pass to the next stage unless it is

completed in the present stage.

iv. No pre-emption of the job is allowed in any stage

of the job-processing shop.

v. Splitting of jobs is not allowed.

vi. All the 72 semi-finished jobs are readily available

for processing before starting of the current cycle.

vii. All the machines in every stage are available

before starting the current cycle.

viii. No machine will remain idle if jobs are available.

3.3 Proof of NP-hard

In the literatures, it is established that make-span opti-

mization for FFSS environment is non-deterministic poly-

nomial (NP) complete problem. It implies that the problem

is both NP and NP-hard. Therefore, there does not exist a

polynomial time algorithm for solving such type of prob-

lem (Jungwattanakit et al. 2008).

The problem considered in the study can be proved as

NP-hard if and only if all NP-hard problem is effectively

reducible to the present problem in polynomial time.

However, the easiest way of proving that the present

problem is NP-hard by reducing a known FFSS problem

into the present problem in polynomial time by polynomial

transformations also known as Karp reduction.
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Considering AandB is used to denote a general FFSS and

the problem considered in this study, respectively. The

steps of proving B as NP-hard can be summarized as fol-

lows (Bürgisser 2013):

• Transform inputs: Transform the inputs for problem

A IAð Þ into the inputs for B IBð Þ in polynomial time

represented as IA!
P
IB.

• Applying blackbox for solving problem B: Considering

that there exists a blackbox that is capable of solving

both the problem A as well asB.

• Transform output: Transforming the output for problem

B OBð Þ into the output of problem A OAð Þ in polynomial

time represented as OB!
P
OA.

Following the above steps, input for problem A is

identified as number of stages, number of machines in each

stage and number of jobs processing. After transforming

the inputs of A into inputs of B are tabulated in Table 1.

Considering that there exists a polynomial time algo-

rithm that can compute the value of make-span for problem

A and the value is C (say). The polynomial time algorithm

considered in the study is developed by (Aydilek and

Allahverdi 2013) for problem A. When applied the same

polynomial algorithm, the make-span value computed for

the problem B is 2071 min, i.e., C ¼ 2071 minutes. Thus,

the known NP-hard problem A is reduced to problem B.

Hence, it can be concluded that the problem considered in

this study is also a NP-hard problem.

4 Proposed model

The comprehensive intention of the paper is to develop a

heuristic algorithm that is efficient as well as effective in

returning a nearly optimal result for the FFSS problem. In

such type of scheduling problem, the most difficult task is

computing the optimal job sequence and allocating the jobs

to the appropriate machines simultaneously (Chen 2004).

Hence, a heuristic algorithm is developed that focuses on

job scheduling by allocating the resource to the most

appropriate machine in each stage of an FFSS problem.

The proposed heuristic is a double-phase procedure that

Fig. 1 Detailed job-flow

diagram of job-processing shop
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initially prioritizes the jobs and machines and finally,

allocates the jobs to the machines in order of the computed

preference score.

The first phase of the proposed heuristic algorithm is the

prioritization of the jobs and the machines in each stage. JP

is a machine-independent way of deciding the next job in

the queue, waiting for processing (Chua et al. 2011). Cer-

tain disadvantages are identified in the literature for the

dispatching rules that consider one factor for prioritizing

jobs. Therefore, in this paper, an attempt is made to pri-

oritize the jobs by combining the three factors CT ;PT and

TWR.

The second step of the first phase is the prioritization of

the machines in each stage of the job-processing shop. It is

a way of deciding the machine that shall take the next job

for processing in case two or more machines are available

at the moment (Chua et al. 2011). Selecting the suit-

able machine for processing the jobs is an MCDM problem

that involves decision-making from the point of view of

reliability, productivity, efficiency, revenue generation and

total costing (Karim and Karmaker 2016). From the liter-

ature survey, the criteria chosen for selecting machine are

tabulated in Table 2.

The final phase of the proposed heuristic is sequencing

the jobs with the most suitable machine available in order

of the preference score. Before explaining the proposed

approach, we shall start by defining the symbols and

notations that are used for the formulation. The list of

symbols used in formulating the heuristic is shown in

Table 3.

4.1 Job prioritization

JP is machine-independent rules for deciding the next job

in the sequence. In this study, the jobs priority is deter-

mined based on the preference score for the jobs which is

computed according to the Eq. (10).

e} jð Þ ¼ w1: eC jð Þ þ w2:et jð Þ þ w3: eT jð Þ; ð10Þ

where w1;w2andw3 are the weights for the CT, PT and

TWR, respectively. The computed value of e} jð Þ is in the

form of TFN which is defuzzified, according to Eq. (5).

The job with the highest preference score is given the

priority for processing on the available machine from a set

of jobs that are awaiting service. Higher the value of

preference score, more prioritization is given to the job as it

implies more work remaining, more time taken for pro-

cessing and completion. The advantage of hybridizing the

single-factor rules according to Eq. (10) is that the pref-

erence score integrates the conceptual attributes of the

individual dispatching rules to the level of their importance

in attaining the objectives. The value of C jð ÞandT jð Þ is

calculated according to Eqs. (11) and (12), respectively.

C jð Þ ¼
X

K

k¼1

t j;kð Þ; ð11Þ

T jð Þ ¼
X

K

k¼k

t j;kð Þ: ð12Þ

Table 1 Inputs of B in the form

of inputs of A
Sl. No Stage

kð Þ
MCs in the stage

Mk
� �

Jobs passing through the stage Total number of jobs

1 1 3 J1; J3; J4 and J5 55

2 2 4 J1; J2; J3; J4 and J5 72

3 3 4 J1; J2; J3; J4 and J5 72

4 4 3 J1; J2 and J3 55

5 5 2 J1 and J5 25

Table 2 List of criteria for machine selection

Sl. no Criterion Sl. no Criterion Sl. no Criterion

1 Setup time Cr1ð Þ 2 Parts cost Cr2ð Þ 3 Maintenance cost Cr3ð Þ
4 Time taken for repairing Cr4ð Þ 5 Frequency of damage Cr5ð Þ 6 Time taken for inspection Cr6ð Þ
7 Ergonomically designed Cr7ð Þ 8 Design safety Cr8ð Þ
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Table 3 List of symbols

Sl. No Symbols Definition

1 Cmax Make-span

2 s Total lateness or tardiness

3 d Number of tardy jobs

4 i Indexing for manufacturing unit

5 j Indexing for job

6 k Indexing for stage

7 K Total number of stages in the job-processing unit

8 l Indexing for machine

9 i; jð Þ jth job coming out of ith manufacturing unit

10 k; lð Þ lth machine of the kth stage

11 i; j; k; lð Þ Processing of the jth job coming out of ith manufacturing unit done in lth machine of the kth stage

12 j; kð Þ Processing of the jth job on the kth stage

13 } jð Þ Preference score of jth job

14 C jð Þ Completion time for jth job

15 t jð Þ Processing time for jth job

16 T jð Þ Total work remaining for the jth job

17 p Indexing for decision maker

18 a Total number of decision makers

19 q Indexing for criterion

20 m
Totalnumberofcriteria:m ¼ 3; Job prioritization

8; Machine prioritization

�

21 Mk It is a parametric term whose value depends on the value of k. It represents total number of machines in kth stage. k 2 1;K½ �
22 D Decision matrix

23 d Element of decision matrix D

24 Rpql Rating provided for the lth machine on the basis of qth criterion by pth decision maker

25 R Relative cost matrix

26 r Element of relative cost matrix R

27 N Normalize matrix

28 n Element of normalize matrix N

29 W Weighted normalize matrix

30 x Element of weighted normalize matrix W

31 wq Weightage of the qth criterion

32 } Preference score

33 zq Aggregated rating

34 u Number of jobs awaiting

35 v Number of machines available

36 }l Preference score for the lth machine

37 l} Machine with preference score of }

38 j} Job with preference score of }

39 Ji Collection of semi-finished jobs or parts coming out of ith manufacturing unit
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4.2 Machine prioritization

Machine prioritization (MP) is a way of ranking the

machines available in each stage based on their reliability.

MP determines the machine preference for processing a job

when more than one machine is available at a time.

Ranking of the available machines based on the preference

score is a case of multi-criteria decision-making (MCDM)

problem. Computation of the preference score for the

machine is done based on the criteria as listed in Table 2

which involves making a decision based on the factors

which are quantitative as well as qualitative in nature. To

simplify the rating process, linguistic terms are carried out

to assess the machines concerning the identified factors.

Based on the experience of the decision makers, linguistic

ratings are provided to the alternatives. The two main

reasons for vacillation that the decision makers faced are

the existence of vagueness and uncertainties in the avail-

able information about the factors and the psychological

perception of the decision makers about the factors. Due to

these two reasons, linguistic terminologies are the best way

of rating the alternatives (Hussain et al. 2018). Linguistic

terminologies are quantified using TFNs which are used for

rating the alternatives (Feng et al. 2022). In the state-of-

the-art literature, fuzzy sets and logic are integrated with

MCDM models to develop ranking algorithm that is

capable of taking into account the uncertainty that rose due

to the vagueness in the nature of the problem. Some of

the papers on fuzzy MCDM include (Hussain et al. 2018;

Hussain et al. 2019; Akram and Bibi 2023; Luo et al.

2023).

The criteria chosen for the process of MP is mostly

related with the operational, functioning and repairing of

the machines. Therefore, the operators and machinists who

operate and repair the machines are chosen as the decision

makers. The view of the decision makers is aggregated to

form the fuzzy decision matrix. The corresponding TFNs

for the linguistic ratings and the linguistic rating-based

decision matrix are shown in Tables 4 and 5, respectively.

The steps for computing the preference score of the

machines in each stage are as follows:

Step 1: Aggregation of the fuzzy decision matrix

First, the linguistic ratings provided by the decision

makers are quantified using TFNs. Then, the fuzzy decision

matrix of each decision maker is aggregated to form the

aggregated fuzzy decision matrix eD
� �

which is computed

as follows:

eD ¼ edql

h i

m�Mkð Þ
¼

Pa
p¼1

eRpql

� �

a

2

4

3

5

m�Mkð Þ
; q 2 1;m½ �; l

2 1;Mk
� 	

:

ð13Þ

Step 2: Formulation of fuzzy relative cost matrix

The fuzzy relative cost matrix eR
� �

is derived from the

concept of risk minimization. The concept of risk pertains

to for not selecting the available machine with maximum

reliability. The computation of eR is done as follows:

eR ¼ erql
� 	

m�Mkð Þ

¼
max
q

edql

� �

� edql


 �

m�Mkð Þ
; Forbenefit � criteria

edql �min
q

edql

� �


 �

m�Mkð Þ
; Forcost � criteria:

8

>

>

>

<

>

>

>

:

ð14Þ

Step 3: Formulation of weighted normalize matrix

The weighted normalize matrix eW
� �

is computed by

multiplying the elements of normalize matrix and weight of

the criteria. The factors based on which machines are pri-

oritized different units, and as a result, the values are

incomparable. Hence, this obstacle is tackled by normal-

izing the factors. Normalization of the entries of eR is

computed as follows:

eN ¼ enql
� 	

m�Mkð Þ ¼
erql

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

PMk

l¼1 erql
2

� �

q

2

6

4

3

7

5

m�Mkð Þ

;

q ¼ 1; 2; 3 � � �mf g:

ð15Þ

The weight represents the degree of importance of the

criterion for reaching at a rationale conclusion. The ele-

ments of weighted normalize matrix is computed as

follows:

eW ¼ exql

� 	

m�Mkð Þ ¼ wq � enql
� 	

m�Mkð Þ: ð16Þ

Step 4: Calculation of preference score

The formula for computing the preference score is as

follows:

Table 4 Corresponding TFNs
for linguistic variables

Linguistic variables Very low (VL) Low (L) Medium (M) High (H) Very high (VH)

TFN 0; 1; 2ð Þ 2; 3; 4ð Þ 4; 5; 6ð Þ 6; 7; 8ð Þ 8; 9; 10ð Þ
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e}l ¼
Pm

q¼1 exql

� �

PMk

l¼1

Pm
q¼1 exql

� �

2

4

3

5

1�Mkð Þ
;

l ¼ 1; 2; 3 � � �Mk
 �

; k ¼ 1; 2; 3; 4; 5f g:

ð17Þ

The preference score as evaluated from Eq. (17) is

defuzzified according to Eq. (5) and ranked in ascending

order which implies lower the value of }l more reliable

amongst the machine available for processing the jobs at

the moment. Hence, the machine with the least value of }l

will be selected to process a job in case more than one

machine is available.

4.3 Computation of weight factors
for the criteria

The weights signify the degree of importance of the criteria

in the process of decision-making. The weights computed

is the aggregate of the ratings as assigned by the decision

makers. In this study, the panel of decision makers are

experts from the domain of production scheduling which

includes researcher, production manager, production

supervisor and operational head. The experts provide their

decision in linguistic rating according to their experiences

in the domain of production scheduling which are quanti-

fied using TFNs. The aggregated rating ezq
� �

provided by

the experts were computed according to the Eq. (18).

ezq ¼
Pa

p¼1
eRpq

� �

a
; q ¼ 1; 2; 3; � � � ;mf g; ð18Þ

where eRpq represents the corresponding TFN for the lin-

guistic rating given by pth decision maker for the qth cri-

terion. The corresponding fuzzy ratings for linguistic terms

are shown in Table 6. In Eq. (18), a represents the total

number of decision makers in the panel and m is the no. of

criteria, m ¼ 3 for JP and m ¼ 8 for MP in each stage. The

ezq is defuzzified according to Eq. (5), which is then nor-

malized to evaluate the weight for the criteria.

wq ¼
zq

Pm
q¼1 zq

� � ; q ¼ 1; 2; 3; � � �mf g: ð19Þ

The fuzzy ratings for the criteria provided by the panel

of decision makers for evaluating the weights for priori-

tizing the jobs and the machines are tabulated in Tables 7

and 8, respectively.

Aggregating ratings provided by the panel of decision

makers and experts in the domain of production scheduling

for computing the weights of the criteria for JP and MP are

shown in Table 9.

4.4 Procedure for assigning of jobs
to the machines

The final phase of the proposed heuristic is assigning of the

jobs to the machines in the FFSS problem. Four cases may

arise during the mapping of jobs to the machines:

Case i: If u ¼ 1 and v ¼ 1

In this case, job awaiting jð Þ is assigned to the available

machine lð Þ which is represented as j; lð Þ.
Case ii: If u ¼ 1 and v[ 1

In this case, the machine with the lowest preference

score is given the priority for processing the available job.

If

}lmin
¼ min }l1

; }l2
; }l3

; � � � ; }lMk

n o

:

Then the assignment is done as j; l}min

� �

, where l}min
is

the highest prioritized machine.

Case iii: If u[ 1 and v ¼ 1

In this case, the job with the highest preference score is

given priority to be the next job in the queue waiting to be

processed.

Table 5 Linguistic decision matrix

Alt S1 S2 S3 S4 S5

MC-1 MC-2 MC-3 MC-1 MC-2 MC-3 MC-1 MC-2 MC-3 MC-4 MC-1 MC-2 MC-3 MC-4 MC-1 MC-2

Cr1 H H H VH VH H VH H VH H VH VH VH H M M

Cr2 M L M L L M L H L L H M H M H VH

Cr3 M M H VL VL VL H M H VH VH VH H M M H

Cr4 VH H M VH M M H H H VH L VL VH VL M L

Cr5 H H L VH M L H H M VH VL VL VH VL M VL

Cr6 VH VH M VH M H VH VH M H L L H L L L

Cr7 M VH M L H M M H H L H L L M M L

Cr8 H VH M H H L H VH H M M H H M H H

1106 Granular Computing (2023) 8:1097–1120

123



}jmax
¼ min }j1

; }j2
; }j3

; � � � ; }jJi

n o

:

The assignment of a job to a machine is done as

j}max
; l

� �

, where j}max
is the highest prioritized job.

Case iv: If u[ 1 and v[ 1

In this case, the preference score for both jobs and

machines shall come into play. Highest prioritized job is

assigned to the highest prioritized machine, and the second-

highest prioritized job is assigned to the second-highest

prioritized machine and so on. Considering after time et,

jobs j1; j2; j3andj4 awaiting processing in a stage where

three machines are available l1; l2andl3. Assuming

}j1
�}j2

�}j3
�}j4

and }l1
	 }l2

	 }l3
. The assignment of

the jobs to the machines is done as follows

j}1
; l}1

� �

; j}2
; l}2

� �

and j}3
; l}3

� �

. The CT for the jobs

j1; j2and j3 are computed as

eC j}1 ;l}1ð Þ ¼ et þ et j}1 ;l}1ð Þ; eC j}2 ;l}2ð Þ ¼ et þ et j}2 ;l}2ð Þ; eC j}3 ;l}3ð Þ
¼ et þ et j}3 ;l}3ð Þ:

Two sub-cases may arise for assigning of job j4 in any

one of the three machines.

Sub-case a: Job j4 will be assigned to the machine

having the least CT

Sub-case b: If minimum CT is the same for more than

one machine, then assigning of the job will be done

according to Case ii. The procedure for the solution by the

proposed heuristic is shown in Fig. 2.

5 Results and discussion

In this section of the paper, the result obtained for the

considered problem after applying the proposed approach

is discussed.

5.1 Performance analysis of the proposed model

To corroborate the relative superior performance of the

proposed heuristic approach, the performance of the pro-

posed algorithm is compared with the performance of

eighteen heuristic algorithms. The algorithms are applied

to sixteen different benchmark FFSS problems. The per-

formance table is shown in Table 10.

Subsequently, the Wilcoxon signed-rank test is

employed for pairwise comparison to verify the proposed

Table 6 Corresponding fuzzy ratings for linguistic terms

Linguistic terms Highly insignificant Insignificant Moderately significant Significant Highly significant

Fuzzy rating e1 e2 e3 e4 e5

TFN 1; 1; 2ð Þ 2; 3; 4ð Þ 4; 5; 6ð Þ 6; 7; 8ð Þ 8; 8; 9ð Þ

Table 7 Fuzzy ratings assigned to factors for JP

Factors DM

DM1 DM2 DM3 DM4

CT e5 e5 e5 e5

PT e3 e4 e5 e3

TWR e4 e5 e4 e4

Table 8 Fuzzy ratings assigned to criteria for MP

Decision maker Cr1 Cr2 Cr3 Cr4 Cr5 Cr6 Cr7 Cr8

DM1 e4 e5 e5 e3 e5 e2 e4 e4

DM2 e3 e5 e5 e3 e5 e1 e4 e3

DM3 e2 e5 e5 e4 e3 e1 e5 e5

DM4 e2 e5 e5 e5 e4 e2 e5 e5

Table 9 Computed weights of

the criteria
JP MP

Factor wi Criterion wi Criterion wi Criterion wi

CT 0.378 Cr1 0.087 Cr2 0.161 Cr3 0.161

PT 0.289 Cr4 0.123 Cr5 0.139 Cr6 0.042

TWR 0.333 Cr7 0.148 Cr8 0.139

Granular Computing (2023) 8:1097–1120 1107

123



approach’s superiority in comparison with other heuristic

algorithms. Wilcoxon signed-rank test is a non-parametric

dependable sample hypothesis test. This test is used to

compare the performance of the repeated measurements on

a single sample to analyze the divergence between their

population means (Woolson 2007). The null and alternative

hypotheses formulated for the Wilcoxon signed-rank test

are as follows:

H0ð Þh : lPA ¼ lh; i.e., there is no significant difference

in the performance of the proposed algorithm and heuristic

algorithm.

H1ð Þh : lPA 6¼ lh; i.e., there is a significant difference in
the performance of the proposed algorithm and heuristic

algorithm.Here, h in the null and alternative hypotheses

stands for the eighteen different heuristic algorithm. For

example: H0ð ÞSPT implies there is no significant difference

in the performance of the proposed algorithm and shortest

processing time algorithm. Whereas H1ð ÞSPT implies there

is a significant difference in the performance of the pro-

posed algorithm and shortest processing time algorithm.

Table 11 summarizes the results of pairwise comparison

for all the heuristics for significance level of 0.05. The

table consists of the sum of positive ranks (W ?), sum of

negative ranks (W-), Wilcoxon test (W) value and p value.

The W ? values indicate the sum of ranks for the heuristic

algorithms for which proposed approach outperformed the

compared algorithms and vice versa for W-. On the other

hand ‘W’ measures the pairwise averages that are greater

than the hypothesized median. The W- value helps to

evaluate the p value. The p value measures the evidence

against the null hypothesis.

Fig. 2 Proposed heuristic algorithm
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Table 10 Performance table

Prob.

No

Proposed

approach

SPT

(Schultz

1989)

LPT (Della Croce and

Scatamacchia 2020)

TWR (Karger

et al. 2010)

NUP (Sumichrast

et al. 1992)

EDD (Pinedo and

Chao 1999)

ERD (Pinedo and

Chao 1999)

1 770 866 887 870 770 831 790

2 1972 1895 2334 2082 2197 2402 2377

3 984 1228 1169 1111 1160 1022 971

4 596 833 631 690 817 637 592

5 489 580 459 561 590 528 490

6 1772 1951 1971 1730 2195 2148 1802

7 1080 1025 1060 1037 1029 1034 1056

8 988 1114 1496 1392 984 1477 1342

9 496 741 604 821 636 623 732

10 1817 1946 1897 2414 1827 1724 2182

11 1636 1575 1585 1629 1551 1608 1548

12 964 1160 924 1170 1053 1276 1104

13 523 602 540 818 619 538 711

14 1146 1715 1304 1386 1473 1647 1732

15 1056 895 1179 1350 994 1230 1338

16 1113 1120 1062 1078 1051 1113 1073

17 2041.6 2603.3 2543.6 2588.3 2363 2431.3 2072.7

Prob.

No

FCFS (Schwiegelshohn and

Yahyapour 1998)

ECT (Jungwattanakit

et al. 2008)

LCT (Jungwattanakit

et al. 2008)

MST (Davis

et al. 1993)

S/P (Bari and

Karande 2022)

PAL

(Palmer

1965)

1 941 781 889 829 937 973

2 1932 2276 2448 2144 1735 1950

3 958 1183 1018 1238 952 1202

4 759 606 806 580 630 786

5 485 480 631 580 425 612

6 2143 1830 2020 1891 1964 2219

7 1095 1051 1053 1060 947 1092

8 1243 1068 1297 1116 1127 1237

9 507 819 668 669 804 572

10 1823 2252 1913 1912 1766 2017

11 1588 1629 1590 1572 1544 1623

12 1388 1229 1006 1322 1371 1195

13 553 856 623 606 676 725

14 1720 1717 1049 1588 1730 1690

15 1189 1151 1110 1267 901 936

16 1072 1086 1122 1081 1046 1123

17 2270.5 2628 2603.6 2357.8 2068 2048.9

Prob.

No

GUP

(Hong et al.

2000)

NEH (Nawaz et al.

1983)

CDS (Campbell

et al. 1970)

PT ? CT (Kaban

et al. 2012)

CT ? TWR (Kaban

et al. 2012)

TWR ? PT (Kaban

et al. 2012)

1 926 778 845 816 743 767

2 2041 2355 1875 2471 2138 1921

3 985 1082 1136 1084 1067 1161

4 713 572 661 564 765 755

5 602 586 489 645 530 464

6 2087 1621 1892 1940 2084 1950
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From Table 11, there is enough evidence to reject the

null hypotheses and accept the alternate hypotheses for the

algorithms SPT, LPT, TWR, NUP, EDD, ERD, FIFO,

ECT, LCT, MST, PAL, PT ? CT, CT ? TWR and

TWR ? PT for significance level of 0.05. Hence, we can

conclude that there is a significant difference in the per-

formance of the proposed algorithm and heuristic algo-

rithm. It implies that the proposed heuristic algorithm

provides better solution when applied to FFSS problems.

5.2 Results from the proposed heuristic

In this section, the result obtained from the by applying the

proposed model in the problem considered for the study is

discussed. The first step of the proposed heuristic is to

compute the weightage of the factors and the criteria for

prioritizing the jobs and the machines. The calculated

weights of the criteria are shown in Table 9. The next step

is computing the preference score of the jobs and

machines.

In the process of JP, four decision makers are chosen

and based on their experience linguistic terms are assigned

to the criteria which were quantified using TFNs. The three

factors that are identified for prioritizing the jobs are

CT ;PT and TWR. Based on the three factors, preference

scores of the jobs are computed using Eq. (9).

For MP in each stage, decision makers assigned lin-

guistic ratings to the machines concerning the criteria

which are quantified using TFNs. The relative cost matrix

and the normalize matrix for each stage of the problem as

computed by Eqs. (13) and (14).

STAGE 1

R1 ¼

Cr1
Cr2
Cr3
Cr4
Cr5
Cr6
Cr7
Cr8

m=c1

�2;0;2ð Þ
m=c2

�2;0;2ð Þ
m=c3

�2;0;2ð Þ
0;2;4ð Þ �2;0;2ð Þ 0;2;4ð Þ
�2;0;2ð Þ
2;4;6ð Þ
2;4;6ð Þ
2;4;6ð Þ
2;4;6ð Þ
0;2;4ð Þ

�2;0;2ð Þ
0;2;4ð Þ
2;4;6ð Þ
2;4;6ð Þ
�2;0;2ð Þ
�2;0;2ð Þ

0;2;4ð Þ
�2;0;2ð Þ
�2;0;2ð Þ
�2;0;2ð Þ
2;4;6ð Þ
2;4;6ð Þ

2

6

6

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

7

7

5

;

Table 10 (continued)

Prob.

No

GUP

(Hong et al.

2000)

NEH (Nawaz et al.

1983)

CDS (Campbell

et al. 1970)

PT ? CT (Kaban

et al. 2012)

CT ? TWR (Kaban

et al. 2012)

TWR ? PT (Kaban

et al. 2012)

7 1062 1044 1059 1079 1086 1035

8 1357 1211 1094 1710 1502 1631

9 614 856 728 839 699 743

10 1920 2393 1948 2017 1788 2175

11 1575 1535 1541 1611 1541 1636

12 988 1036 887 1434 1251 902

13 757 656 890 579 690 854

14 1230 1549 1527 1134 1127 1341

15 1091 1301 910 1267 982 1168

16 1061 1108 1075 1081 1057 1120

17 2314.2 2366.5 2099.3 2352.3 2284 2307.3

eN 1 ¼

m=c1 m=c2 m=c3
Cr1
Cr2
Cr3
Cr4
Cr5
Cr6
Cr7
Cr8

�0:577; 0; 0:577ð Þ �0:577; 0; 0:577ð Þ �0:577; 0; 0:577ð Þ
0; 1; 2ð Þ �1; 0; 1ð Þ 0; 1; 2ð Þ

�0:707; 0; 0:707ð Þ
0:707; 1:414; 2:121ð Þ
0:577; 1:154; 1:732ð Þ
0:577; 1:154; 1:732ð Þ
0:577; 1:154; 1:732ð Þ
0; 0:707; 1:414ð Þ

�0:707; 0; 0:707ð Þ
0; 0:707; 1:414ð Þ

0:577; 1:154; 1:732ð Þ
0:577; 1:154; 1:732ð Þ
�0:577; 0; 0:577ð Þ
�0:707; 0; 0:707ð Þ

0; 0:707; 1:414ð Þ
�0:707; 0; 0:707ð Þ
�0:577; 0; 0:577ð Þ
�0:577; 0; 0:577ð Þ

0:577; 1:154; 1:732ð Þ
0:707; 1:414; 2:121ð Þ

2

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

5

:
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STAGE 2

eR2 ¼

m=c1 m=c2 m=c3
Cr1
Cr2
Cr3
Cr4
Cr5
Cr6
Cr7
Cr8

0; 2; 4ð Þ 0; 2; 4ð Þ �2; 0; 2ð Þ
�2; 0; 2ð Þ �2; 0; 2ð Þ 0; 2; 4ð Þ
�2; 0; 2ð Þ
2; 4; 6ð Þ
4; 6; 8ð Þ
2; 4; 6ð Þ
2; 4; 6ð Þ
�2; 0; 2ð Þ

�2; 0; 2ð Þ
�2; 0; 2ð Þ
0; 2; 4ð Þ
�2; 0; 2ð Þ
�2; 0; 2ð Þ
�2; 0; 2ð Þ

�2; 0; 2ð Þ
�2; 0; 2ð Þ
�2; 0; 2ð Þ
0; 2; 4ð Þ
0; 2; 4ð Þ
2; 4; 6ð Þ

2

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

5

;

eN 2 ¼

m=c1 m=c2 m=c3
Cr1
Cr2
Cr3
Cr4
Cr5
Cr6
Cr7
Cr8

0; 1; 2ð Þ 0; 1; 2ð Þ �1; 0; 1ð Þ
�0:707; 0; 0:707ð Þ �0:707; 0; 0:707ð Þ 0; 0:707; 1:414ð Þ
�0:577; 0; 0:577ð Þ

0:577; 1:154; 1:732ð Þ
0:894; 1:342; 1:789ð Þ
0:707; 1:414; 2:121ð Þ
0:707; 1:414; 2:121ð Þ
�0:577; 0; 0:577ð Þ

�0:577; 0; 0:577ð Þ
�0:577; 0; 0:577ð Þ
0; 0:447; 0:894ð Þ
�0:707; 0; 0:707ð Þ
�0:707; 0; 0:707ð Þ
�0:577; 0; 0:577ð Þ

�0:577; 0; 0:577ð Þ
�0:577; 0; 0:577ð Þ
�0:447; 0; 0:447ð Þ
0; 0:707; 1:414ð Þ
0; 0:707; 1:414ð Þ

0:577; 1:154; 1:732ð Þ

2

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

5

:

STAGE 3

eR3 ¼

m=c1 m=c2 m=c3 m=c4
Cr1
Cr2
Cr3
Cr4
Cr5
Cr6
Cr7
Cr8

0; 2; 4ð Þ �2; 0; 2ð Þ 0; 2; 4ð Þ �2; 0; 2ð Þ
�2; 0; 2ð Þ 2; 4; 6ð Þ �2; 0; 2ð Þ �2; 0; 2ð Þ
0; 2; 4ð Þ
�2; 0; 2ð Þ
0; 2; 4ð Þ
2; 4; 6ð Þ
0; 2; 4ð Þ
0; 2; 4ð Þ

�2; 0; 2ð Þ
�2; 0; 2ð Þ
0; 2; 4ð Þ
2; 4; 6ð Þ
�2; 0; 2ð Þ
�2; 0; 2ð Þ

0; 2; 4ð Þ 2; 4; 6ð Þ
�2; 0; 2ð Þ 0; 2; 4ð Þ
�2; 0; 2ð Þ 2; 4; 6ð Þ
�2; 0; 2ð Þ 0; 2; 4ð Þ
�2; 0; 2ð Þ 2; 4; 6ð Þ
0; 2; 4ð Þ 2; 4; 6ð Þ

2

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

5

;

Table 11 Wilcoxon signed-rank

test table
Heuristic model W ? W- W p Heuristic model W ? W- W p

SPT 126 10 117 0.012 MST 126 10 125 0.003

LPT 121 15 113 0.021 S/P 100 36 87 0.339

TWR 126 10 126 0.003 PAL 130 6 123 0.005

NUP 121 15 101 0.021 GUP 130 6 105 0.059

EDD 130 6 104 0.013 NEH 121 15 106 0.052

ERD 121 15 111 0.028 CDS 115 21 88 0.118

FIFO 121 15 110 0.032 PT ? CT 121 15 121 0.007

ECT 126 10 122 0.006 CT ? TWR 115 21 123 0.005

LCT 130 6 121 0.007 TWR ? PT 121 15 101 0.021
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eN 3 ¼

m=c1 m=c2 m=c3 m=c4
Cr1
Cr2
Cr3
Cr4
Cr5
Cr6
Cr7
Cr8

0; 0:707; 1:414ð Þ �0:707; 0; 0:707ð Þ 0; 0:707; 1:414ð Þ �0:707; 0; 0:707ð Þ
�0:5; 0; 0:5ð Þ 0:5; 1; 1:5ð Þ �0:5; 0; 0:5ð Þ �0:5; 0; 0:5ð Þ

0; 0:707; 1:414ð Þ
�0:577; 0; 0:577ð Þ
0; 0:707; 1:414ð Þ

0:577; 1:154; 1:732ð Þ
0; 0:577; 1:154ð Þ
0; 0:707; 1:414ð Þ

�0:707; 0; 0:707ð Þ
�0:577; 0; 0:577ð Þ
0; 0:707; 1:414ð Þ

0:577; 1:154; 1:732ð Þ
�0:577; 0; 0:577ð Þ
�0:707; 0; 0:707ð Þ

0; 0:707; 1:414ð Þ 0:707; 1:414; 2:121ð Þ
�0:577; 0; 0:577ð Þ 0; 0:577; 1:154ð Þ

�0:707; 0; 0:707ð Þ 0:707; 1:414; 2:121ð Þ
�0:577; 0; 0:577ð Þ 0; 0:577; 1:154ð Þ

�0:577; 0; 0:577ð Þ 0:577; 1:154; 1:732ð Þ
0; 0:707; 1:414ð Þ 0:707; 1:414; 2:121ð Þ

2

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

5

:

STAGE 4

eR4 ¼

m=c1 m=c2 m=c3 m=c4
Cr1
Cr2
Cr3
Cr4
Cr5
Cr6
Cr7
Cr8

0; 2; 4ð Þ 0; 2; 4ð Þ 0; 2; 4ð Þ �2; 0; 2ð Þ
0; 2; 4ð Þ �2; 0; 2ð Þ 0; 2; 4ð Þ �2; 0; 2ð Þ
2; 4; 6ð Þ
0; 2; 4ð Þ
�2; 0; 2ð Þ
�2; 0; 2ð Þ
�2; 0; 2ð Þ
0; 2; 4ð Þ

2; 4; 6ð Þ
�2; 0; 2ð Þ
�2; 0; 2ð Þ
�2; 0; 2ð Þ
2; 4; 6ð Þ
�2; 0; 2ð Þ

0; 2; 4ð Þ �2; 0; 2ð Þ
6; 8; 10ð Þ �2; 0; 2ð Þ
6; 8; 10ð Þ �2; 0; 2ð Þ
2; 4; 6ð Þ �2; 0; 2ð Þ
2; 4; 6ð Þ 0; 2; 4ð Þ
�2; 0; 2ð Þ 0; 2; 4ð Þ

2

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

5

;

eN 4 ¼

m=c1 m=c2 m=c3 m=c4
Cr1
Cr2
Cr3
Cr4
Cr5
Cr6
Cr7
Cr8

0; 1; 2ð Þ 0; 1; 2ð Þ 0; 1; 2ð Þ �1; 0; 1ð Þ
0; 0:707; 1:414ð Þ �0:707; 0; 0:707ð Þ 0; 0:707; 1:414ð Þ �0:707; 0; 0:707ð Þ

0:577; 1:154; 1:732ð Þ
0; 0:302; 0:603ð Þ
�0:289; 0; 0:289ð Þ

�0:5; 0; 0:5ð Þ
�0:577; 0; 0:577ð Þ
0; 0:707; 1:414ð Þ

0:577; 1:154; 1:732ð Þ
�0:301; 0; 0:301ð Þ
�0:289; 0; 0:289ð Þ

�0:5; 0; 0:5ð Þ
0:577; 1:154; 1:732ð Þ
�0:707; 0; 0:707ð Þ

0; 0:577; 1:154ð Þ �0:577; 0; 0:577ð Þ
0:905; 1:207; 1:508ð Þ �0:302; 0; 0:302ð Þ
0:866; 1:155; 1:443ð Þ �0:289; 0; 0:289ð Þ

0:5; 1; 1:5ð Þ �0:5; 0; 0:5ð Þ
0:577; 1:154; 1:732ð Þ 0:577; 1:154ð Þ
�0:707; 0; 0:707ð Þ 0; 0:707; 1:414ð Þ

2

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

5

:

STAGE 5

eR5 ¼

m=c1 m=c2
Cr1
Cr2
Cr3
Cr4
Cr5
Cr6
Cr7
Cr8

�2; 0; 2ð Þ �2; 0; 2ð Þ
�2; 0; 2ð Þ 0; 2; 4ð Þ
�2; 0; 2ð Þ 0; 2; 4ð Þ
0; 2; 4ð Þ �2; 0; 2ð Þ
2; 4; 6ð Þ �2; 0; 2ð Þ
�2; 0; 2ð Þ �2; 0; 2ð Þ
�2; 0; 2ð Þ 0; 2; 4ð Þ
�2; 0; 2ð Þ �2; 0; 2ð Þ

2

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

5

;

eN 5 ¼

m=c1 m=c2
Cr1
Cr2
Cr3
Cr4
Cr5
Cr6
Cr7
Cr8

�0:707; 0; 0:707ð Þ �0:707; 0; 0:707ð Þ
�1; 0; 1ð Þ 0; 1; 2ð Þ
�1; 0; 1ð Þ 0; 1; 2ð Þ
0; 1; 2ð Þ �1; 0; 1ð Þ

0:707; 1:414; 1:732ð Þ �0:707; 0; 0:707ð Þ
�0:707; 0; 0:707ð Þ �0:707; 0; 0:707ð Þ

�1; 0; 1ð Þ 0; 1; 2ð Þ
�0:707; 0; 0:707ð Þ �0:707; 0; 0:707ð Þ

2

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

5

:
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Preference score and machine priority computed fol-

lowing the steps of the proposed approach is shown in

Table 12.

Assigning the jobs to the machines by following the

steps as shown in Fig. 2, the result obtained is tabulated in

Table 13. The Gantt chart for the problem considered

following the proposed algorithm is shown in Fig. 3.

5.3 Validation of the proposed heuristic
algorithm

Validation for a heuristic algorithm is checks the robust-

ness of the proposed model (Singh et al. 2006). For this

reason, the result obtained from the proposed heuristic

algorithm is compared with the result obtained from dif-

ferent established algorithms. The deviation of the results is

computed using Eq. (20) and the comparison values are

tabulated in comparison Table 14.

Deviation values ¼ y� ypa
ypa

� 100%; ð20Þ

where ypa is the value of the performance parameters

obtained from the proposed approach whereas y is values

obtained from the heuristic algorithms. The value of

deviation is calculated to show how accurate the proposed

model behaves with respect to the other established mod-

els. Table 14 and Fig. 4 show the comparison of the per-

formance measures of the various heuristic algorithms.

For the problem considered in the study, the execution

time for the proposed scheduling heuristic model is 27.08 s

which is fairly good in comparison to the execution time of

other heuristic algorithms. The result of make-span from

the proposed heuristic is 2041.6 min which is far superior

to the make-span value obtained from other heuristic

algorithms. However, the value of total tardiness and

number of tardy jobs obtained from the proposed method is

the fourth best and thirteenth best value, respectively. But it

should be noted that the heuristic algorithms for which

performance value of total tardiness and number of tardy

jobs is better than the proposed model either compute an

inferior value of make-span or take more execution time.

From the overall comparison of the values of perfor-

mance measures computed by different heuristic algo-

rithms and the deviation computed, it can be concluded that

proposed heuristic algorithm could be applied for solving

the FFSS problem in fuzzy environment.

5.4 Discussions

The general intention of the paper is to develop a heuristic

algorithm that is capable of returning the near-optimal

result for FFSS problems. The proposed heuristic algorithm

is a two-phase method. The first phase involves prioriti-

zation of jobs as well as machines and the second phase of

the proposed heuristic involves assigning of jobs to the

machines in each stage of the problem. Some of the points

observed during the study are as follows:

• JP is defined as the sequence in which the jobs shall be

processed. Dispatching rules are the most popular form

of JP. Sequencing and scheduling done by hybridizing

two or more dispatching rules performs better than

single-factor regulations.

• In the study, JP is done by hybridizing three dispatch-

ing rules viz. processing time, completion time and total

work remaining. The job with higher priority value in a

stage implies comparatively more time taken for

completion and processing as well as more amount of

work remaining for completing the job. Hence, such a

job should be processed earlier rather than other jobs.

• MP involves the process of decision-making from the

perspective of reliability to choose the machine that

shall take the job for processing in case more than one

machine is available.

• A novel MCDM model is developed for computingMP.

The model is based on the concept of risk minimization.

In the model, the decision matrix is converted into a

relative cost matrix which is used to compute the

priority value of the machines in each stage. The model

perceives risk as processing of jobs in a comparatively

less reliable machine. The highest prioritized machine

implies that the machine is highly reliable and the

Table 12 Machine priority table

Sl. no Stage Machine Preference score Machine priority

1 STAGE 1 MC-1 0.250744 1

2 MC-2 0.600906 3

3 MC-3 0.366403 2

4 STAGE 2 MC-1 0.539193 3

5 MC-2 0.477992 1

6 MC-3 0.499668 2

7 STAGE 3 MC-1 0.37589 3

8 MC-2 0.30571 2

9 MC-3 0.38798 4

10 MC-4 0.17068 1

11 STAGE 4 MC-1 0.2799 2

12 MC-2 0.3378 3

13 MC-3 0.0630 1

14 MC-4 0.5300 4

15 STAGE 5 MC-1 0.740972 1

16 MC-2 0.772545 2
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Table 13 Sequence of assigning

jobs to machine as obtained by

proposed heuristic

STAGE 1 STAGE 2 STAGE 3

MC-1 MC-3 MC-2 MC-2 MC-3 MC-1 MC-4 MC-2 MC-1 MC-3

(4,5) (4,6) (4, 8) (2,15) (2,12) (2,16) (2,16) (2,12) (2,15) (2,6)

(4,3) (4,7) (4,4) (2,2) (2,7) (2,6) (2,2) (2,7) (2,4) (2,14)

(3,8) (4,2) (4,1) (2,1) (2,14) (2,4) (2,9) (2,1) (2,3) (2,17)

(3,16) (3,10) (3,1) (2,5) (2,3) (2,9) (2,8) (2,5) (2,10) (2,11)

(3,7) (3,14) (3,17) (2,8) (2,17) (2,10) (3,14) (3,1) (2,13) (3,22)

(3,19) (3,13) (3,15) (3,1) (2,11) (2,13) (3,7) (3,8) (3,16) (3,10)

(3,18) (3,22) (3,4) (3,14) (3,8) (3,16) (3,18) (3,13) (4,4) (3,9)

(3,21) (3,9) (3,20) (3,7) (3,22) (3,13) (3,21) (3,15) (3,17) (4,2)

(3,6) (3,3) (3,2) (4,4) (3,18) (3,10) (3,19) (3,4) (3,2) (4,1)

(3,11) (3,5) (3,12) (3,21) (3,15) (3,9) (3,20) (4,3) (3,3) (5,1)

(5,3) (5,2) (5,8) (3,4) (3,17) (3,19) (3,12) (3,6) (4,7) (5,8)

(5,7) (5,5) (5,1) (3,2) (4,3) (3,20) (3,5) (4,8) (4,5) (1,2)

(5,4) (5,9) (5,6) (4,2) (3,3) (3,12) (3,11) (5,2) (5,7) (1,13)

(1,11) (1,12) (1,14) (4,7) (3,6) (3,5) (4,6) (5,5) (1,15) (1,9)

(1,7) (1,15) (1,16) (4,6) (4,8) (3,11) (5,3) (5,6) (1,5)

(1,13) (1,1) (1,9) (5,2) (4,1) (4,5) (5,9) (1,14) (1,1)

(1,3) (1,5) (1,2) (5,7) (5,5) (5,3) (5,4) (1,7) (1,4)

(1,10) (1,4) (5,6) (5,9) (5,1) (1,12) (1,6) (1,16)

(1,6) (1,8) (1,15) (5,8) (5,4) (1,11) (1,3) (1,10)

(1,5) (1,1) (1,14) (1,8)

(1,7) (1,2) (1,12)

(1,4) (1,13) (1,6)

(1,16) (1,10) (1,11)

(1,3) (1,9)

(1,8)

STAGE 4 STAGE 5

MC-3 MC-1 MC-2 MC-4 MC-1 MC-2

(2,12) (2,15) (2,16) (2,6) (2,12) (2,15)

(2,7) (2,2) (2,4) (2,1) (2,7) (2,16)

(2,14) (2,3) (2,9) (3,1) (2,4) (2,6)

(2,5) (2,10) (2,17) (3,8) (2,14) (2,1)

(2,8) (2,13) (3,14) (3,16) (2,3) (2,5)

(2,11) (3,22) (3,7) (3,9) (2,13) (2,8)

(3,13) (3,10) (3,18) (1,12) (2,11) (2,9)

(3,15) (3,17) (3,21) (1,3) (2,10) (2,2)

(3,4) (3,2) (3,19) (5,2) (2,17)

(3,20) (3,3) (3,12) (5,5) (5,3)

(3,6) (3,5) (1,1) (5,6) (5,7)

(3,11) (1,5) (1,2) (5,9) (5,1)

(1,15) (1,7) (1,16) (5,8)

(1,14) (1,6) (1,10) (5,4)

(1,4) (1,11)

(1,13) (1,8)

(1,9)
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product obtained by manufacturing from such machine

is of superior quality.

• The degree of importance of each criterion while

prioritizing the jobs and machines is the aggregation of

the linguistic ratings provided by the decision makers.

The linguistic rating signifies the degree up to which a

decision maker feels the criterion is relevant for the

process of prioritization. The linguistic ratings are

quantified using TFNs.

• The primary ambition of the proposed heuristic algo-

rithm is to assign more number of jobs to the reliable

machines in each stage of the problem. The assignment

must also abide the assumptions that a low priority

machine will not remain idle if jobs are available for

processing at the present stage.

• It is observed that the proposed heuristic algorithm

computed the best value of make-span and the fourth

best value for total tardiness. Whereas the model

performed poorly while minimizing the value for

number of tardy jobs. However, it should be noted that

average tardiness per unit tardy job is the least for the

proposed model. The reason is that the model assigns

more number of jobs to relatively more reliable

machines.

• The proposed algorithm and eighteen other heuristic

algorithms are applied to seventeen benchmark schedul-

ing problems from the literatures. The algorithms are

compared statistically on the basis of performance and

execution time. Wilcoxon signed-rank test conducted at

significance level of 0.05, shows that there is a

significant difference in the performance of the pro-

posed algorithm and SPT, LPT, TWR, NUP, EDD,

ERD, FIFO, ECT, LCT, MST, PAL, PT ? CT, CT ?

TWR and TWR ? PT. It implies that the proposed

heuristic algorithm provides better solution when

applied to scheduling problems.

Some other important points that are observed during

the study are:

• The PT for jobs on a reliable machine has values much

nearer to the most likely time. In contrast, the PT for

jobs on a relatively low reliable machines show

negative skewness, i.e., most of the PT fall toward

Fig. 3 Gantt chart obtained by

the proposed heuristic
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pessimistic value. This is also established by (Qin and

Jiang 2005).

• The processing time for job 1; 8ð Þ in 4th stage by 4th

and 3rd machines for 100 periods is shown in Fig. 5a, b,

respectively. It is observed that at an average 63%, the

PT value falls toward the pessimistic time when

processed on a relatively lower reliable machine.

Whereas on average, the PT value for 69% concentrates

about the most likely time when processed on a more

reliable machine.

• In a particular stage, the difference between the

pessimistic and optimistic value for processing a job

on the least reliable machine for 100 cycles is around

81% more than processing the same job on a most

reliable machine.

• The proposed algorithm strategically assigns more jobs

to relatively more reliable machines in each stage. Due

to this reason, the machine idle time for such machines

is less in comparison to other machines. Since PT for

reliable machines is less in comparison to less reliable

machines. Hence, the make-span value obtained from

the proposed heuristic is very much nearer to the

optimal value. The number of jobs assigned to the

machines at each stage is shown in Fig. 6.

5.5 Limitations of the proposed approach

The proposed approach computes the best result for make-

span as it assigns more number of jobs to higher ranked

machines. On the other hand, the model fails to compute a

better result for the total tardiness and total number of tardy

jobs. Above this, the execution time for the proposed

model is more than some of the heuristic models in the

literature.

Table 14 Comparison table

Sl. No Algorithm Performance measures Deviation values Execution time (s)

Cmax

(minutes)

s
(minutes)

d Cmax

(%)

s
(%)

d
(%)

1 Proposed approach 2041.6 938 103 – – – 27.08

2 SPT 2603.3 1235.6 91 27.51 31.73 - 11.65 22.36

3 LPT 2543.6 1018.5 98 24.59 8.58 - 4.85 25.384

4 TWR 2588.3 1135.3 105 26.78 21.03 1.94 30.725

5 NUP 2363 1016.6 105 15.74 8.38 1.94 31.34

6 EDD 2431.3 1075 86 19.09 14.61 - 16.5 29.872

7 ERD 2072.7 972.6 90 1.52 3.69 - 12.62 31.443

8 FCFS 2270.5 79 \9.6 110 11.21 - 14.75 6.8 24.561

9 ECT 2628 1374.3 111 28.72 46.51 7.77 26.395

10 LCT 2603.6 1235.6 93 27.53 31.73 - 9.71 27.02

11 MST 2357.8 1073 88 15.49 14.39 - 14.56 28.224

12 S/P 2068 909.2 78 1.29 - 3.07 - 24.27 29.325

13 PAL 2048.9 975 98 0.36 3.94 - 4.85 31.925

14 GUP 2314.2 936 101 13.35 - 0.21 - 1.94 35.623

15 NEH 2366.5 1176.6 86 15.91 25.44 - 16.5 31.24

16 CDS 2099.3 942.7 86 2.83 0.5 - 16.5 34.491

17 PT ? CT 2352.3 1008.6 95 15.22 7.53 - 7.77 26.702

18 CT ? TWR 2284 936 109 11.87 - 0.21 5.83 28.35

19 TWR ? PT 2307.3 938 108 13.01 0 4.85 31.283

Fig. 4 Comparison chart
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6 Conclusion

The comprehensive intention of the paper is to develop a

robust scheduling heuristic algorithm capable of returning

a good solution within a reasonable time-period. The study

proposes a novel heuristic two-phase algorithm that prior-

itizes both the jobs as well as the identical parallel

machines in a scheduling problem. Job prioritization is

done by hybridizing the CT, PT and TWR. On the other

hand, machine prioritization is done by computing the

reliability of the parallel machines in the form of prefer-

ence score. Ranking the identical machines based on cer-

tain criteria is an MCDM problem. A novel MCDM model

is developed and proposed in this study. The MCDM

model is built on the concept of risk minimization. In this

study, risk is defined as the sense of regret for choosing a

low reliable machine over a more reliable machine. The

proposed heuristic algorithm assigns more number of jobs

to a reliable machine than a less reliable machine. At the

same time abides by the rule that a low priority machine

shall not remain idle if jobs are available for processing at

the present stage. Above this, the study employs the con-

cept of fuzzy sets to model the uncertainty in the PT. The

potentiality of a proposed heuristic algorithm lies in the

practicality and robustness of the model. The proposed

model is applied for scheduling jobs in the manufacturing

industry of a medium enterprise in FFSS environment.

Also, the same problem is solved by different heuristic

algorithms. It is observed that the result obtained from the

proposed model computed the best value for make-span

and fourth best value for total tardiness. The heuristic

algorithms for which performance value of total tardiness

Fig. 5 Variation in PTs for job 1; 8ð Þ in 4th stage by a 4th and b 3rd machines for 100 cycles

Fig. 6 Bar graphs representing

jobs assigned to the machines
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and number of tardy jobs is better than the proposed model

either computes an inferior value of make-span or takes

more execution time. From the study, it is also observed

that PT for jobs on a more reliable machine is lesser than

the PT for jobs on a low reliable machine. Because of this

time taken for processing the jobs are relatively lesser than

the time taken for processing the same job in relatively

small reliable machines. The proposed approach outper-

formed heuristic approached for computing the make-span

and therefore, the proposed approach is mostly be applied

to the manufacturing industries that aims in increasing the

production of the manufactured products. From the overall

discussions, it can be concluded that the proposed heuristic

can be applied for computing the performance measures of

FFSS problem under uncertain environment.
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