Granular Computing (2023) 8:1429-1449
https://doi.org/10.1007/s41066-023-00376-z

ORIGINAL PAPER q

Check for
updates

Multi-criteria group decision-making based on frank aggregation
operators under Pythagorean cubic fuzzy sets

Muhammad Rahim’

Received: 4 December 2022 / Accepted: 2 March 2023/ Published online: 20 April 2023
© The Author(s), under exclusive licence to Springer Nature Switzerland AG 2023

Abstract

Pythagorean cubic fuzzy is a relatively new improvement in the field of fuzzy set (FS) theory. It is a mathematical
framework that allows decision-makers to effectively evaluate and select the best course of action when faced with
uncertainty and ambiguity. The theory is built on the idea of a Pythagorean FS (PFS), which is a generality of the
traditional FS. It also includes a cubical structure, which allows for more flexibility in representing complex relationships.
The Pythagorean cubic fuzzy (PCF) sets (PCFSs) provide a way to model and handle uncertainty more precisely and
accurately, giving decision-makers the ability to make better-informed decisions in uncertain and fuzzy environments. This
study aims to investigate the use of Frank operations, which are a type of mathematical operation, to aggregate PCF
numbers (PCFNs) and provide a powerful tool for decision-making in uncertain and fuzzy environments. We introduce
new operations for PCF environments, including the Frank sum, product, scalar multiplication and exponentiation. Using
these operations, we develop new a series of aggregation operators (AOs) such as the PCF Frank weighted averaging
(PCFFWA) and PCF Frank weighted geometric (PCFFWGQG) operator. We establish various properties of these operators,
provide examples of them, and examine the connections between these operators. Furthermore, we utilize these operators
to devise a method for handling group decision-making with CPF information. To demonstrate the usefulness and effi-
ciency of the operators and method, we present a numerical example. Finally, we compare the results of the proposed
method with existing methods to demonstrate its applicability and feasibility.

Keywords Multi-criteria group decision-making - Pythagorean cubic fuzzy sets - Frank aggregation operators

1 Introduction

Multi-criteria decision-making (MCDM) is a method of
evaluating and choosing alternatives based on multiple,
often conflicting, criteria. MCDM involves evaluating
alternatives based on multiple criteria (e.g. cost, feasibility,
impact) and weighing them with mathematical models to
find the optimal solution. MCDM is useful in situations
where traditional single-criteria decision-making is insuf-
ficient, such as when multiple objectives need to be opti-
mized or trade-offs between objectives must be made. With
the progression of society and the economy, practical
decision-making problems have become increasingly
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complex. As a result, it has become challenging for deci-
sion-makers (DMs) to make decisions based solely on
precise numerical values. The complexity of these prob-
lems requires a more nuanced approach to decision-mak-
ing, taking into account multiple factors and variables,
rather than relying solely on clear-cut numerical data. This
has led to the need for MCDM methods that can help DMs
weigh and evaluate different factors to arrive at a more
informed and optimal decision. The concept of FSs intro-
duced by Zadeh (1965) allows for the representation of
ambiguous, vague, and uncertain elements in a set. This is
achieved through the use of a membership degree, which
serves as a measure of the extent to which a specific ele-
ment belongs to a particular set. The membership degree
ranges from O to 1, where O indicates that an element does
not belong to the set and 1 indicates full membership. This
concept provides a flexible and precise way to deal with the
uncertain or vague aspects of data. Atanassov (1986)
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proposed a solution to address the limitations of FS by
introducing the concept of intuitionistic fuzzy sets (IFSs).
The key difference between FS and IFS is that IFS con-
siders both the degree of membership and the degree of
non-membership for each element within the set. In real-
world decision-making scenarios, it is common for DMs to
encounter situations where the sum of their membership
and non-membership degrees is greater than one, even
though the sum of their squares is less than or equal to one.
To address this issue, Yager (2013) introduced the concept
of PFSs, which is an extension of the IFS model. PFS
provides a framework for dealing with these complex sit-
uations by considering both the membership and non-
membership degrees in a more nuanced and sophisticated
manner. This allows for a more accurate representation of
uncertainty and vagueness in decision-making processes.
Zhang (2016) introduced the concept of interval-valued
PFS (IVPFS) to address the challenges faced in MCDM
problems. IVPES is an extension of the PFS model and
represents the membership and non-membership degrees as
intervals rather than single values. This approach allows for
a more comprehensive understanding of the degree of
membership and non-membership, providing a more
accurate representation of uncertainty and vagueness in
MCDM problems.

The existing literature shows that previous studies pri-
marily concentrate on FSs, interval fuzzy sets, IFS, PFS,
and their practical applications. Jun et al. (2012) later
introduced the concept of cubic sets (CSs), which combines
interval-valued fuzzy numbers and fuzzy numbers, and
defined logic operations for them. In this set, Khan et al.
(2016) proposed cubic aggregation operators, while Mah-
mood et al. (2016) introduced the concept of cubic hesitant
fuzzy sets and their aggregation operators in decision-
making. Garg and Kaur (2019) introduced the concept of
cubic intuitionistic fuzzy sets (CIFSs) and specified several
desirable properties for these operations. Kaur and Garg
(2018) introduced the concept of Bonferroni Mean Oper-
ators for use with cubic IFSs (CIFSs) and developed a
decision-making method utilizing these operators.

Khan et al. (2019a) introduced the concept of Pytha-
gorean cubic fuzzy sets, which represents a noteworthy
advancement in the field of FS theory. This new idea
represents a more effective and innovative approach to
solving problems and making decisions in uncertain envi-
ronments. Khan et al. (2019b) investigated a series aver-
aging and geometric operators by utilizing the information
PCFSs and the idea of confidence levels. Khan et al. (2020)
presented a technique for MCDM that uses the technique
for order of preference by similarity to ideal solution
(TOPSIS) method with limited weight information. Wang
and Zhao (2021) transformed the PCFS into a geometric
form and suggested the utilization of PCFS geometric-
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distance measurements. The utilization of the cubic intu-
itionistic fuzzy set has become increasingly important in
handling uncertainty and fuzziness during the decision-
making process. This is because it allows for the simulta-
neous expression of interval-valued intuitionistic fuzzy
numbers and intuitionistic fuzzy values, thus providing a
more comprehensive approach to representing complex
and uncertain information. By employing the cubic intu-
itionistic fuzzy set, decision-makers can better capture the
nuances and ambiguities that arise in real-world scenarios.
The set offers a more flexible and powerful tool for mod-
eling uncertain information, as it provides a more accurate
representation of the decision-making environment.

Frank t-conorm and t-norm are currently the only class
of t-conorm and t-norm that possess the features of general
t-conorm and t-norm, including algebraic, Einstein, and
Hamacher t-conorm and t-norm. Additionally, they are the
only t-conorm and t-norm that abide by the compatibility
law. Frank t-conorms and t-norms offer greater versatility
than their counterparts due to the presence of an additional
parameter that modulates the magnitude of the argument
values being raised. This added degree of control allows for
a greater range of results, providing greater flexibility to
the user. When we make various selections for the
parameter, it leads to the emergence of specific instances or
scenarios. These instances, also referred to as special cases,
result from the distinct choices made for the parameter.
Over the past several decades, there has been extensive
research and exploration into Frank t-conorms and t-norms.
This area of study has produced a significant amount of
results and advancements, with many noteworthy
achievements having been documented and reported. For
example, Yager (2004) introduced two novel methods for
computing the Frank t-conorm and t-norm and utilized
them for approximate reasoning. Sarkoci (2005) compared
the Frank t-norms to the Hamacher t-norms in terms of
domination through inspection and showed that both
t-norms originate from the same family. Mahnaz et al.
(2021) developed general operational laws, known as
Frank operational laws, for T-spherical fuzzy numbers
using the Frank t-norm and t-conorm. Seikh and Mandal
(2022) created aggregation operators based on the Frank
t-norm and t-conorm for merging g-rung orthopair fuzzy
(g-ROF) information. Seikh and Mandal (2021) introduced
some operations and aggregation operators for Pic-
ture Fuzzy Sets.

1.1 Motivation

Based on the previous discussion, it is evident that there is
a lack of research on the utilization of Frank T-norm and
T-conorm in the context of Pythagorean Cubic Fuzzy sets.
This research gap presents an opportunity for further
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investigation and exploration of the potential applications
and benefits of utilizing these operators in PCF-based
decision-making frameworks. Such studies may lead to
new insights and a deeper understanding of the capabilities
and limitations of Pythagorean cubic fuzzy sets, and help to
expand their applicability to a wider range of real-world
problems. In this communication, we aim to introduce a
new approach to aggregate the preferences decision-mak-
ers. Our proposal is based on the concept of the Frank
operations and leverages the benefits of the PCES in
expressing uncertainty. The new operators we present are
known as the PCFFW A and the PCFFWG. These operators
offer a fresh perspective on aggregation and aim to
improve decision-making processes. The desirable features
of these operators have been thoroughly analyzed, with a
focus on their key advantage of considering the intercon-
nections among aggregated values. Additionally, the
properties of the proposed operator have been investigated
and specific cases have been developed. The proposed
operator has been shown to be more comprehensive com-
pared to previous studies, as previous work can be derived
from the proposed operator. Lastly, a methodology for
ranking various alternatives based on the proposed opera-
tors has been presented for making informed decisions.

2 Preliminaries

In this section, we provide a comprehensive review of
definitions and concepts related cubic sets, Pythagorean
fuzzy sets, interval-valued Pythagorean fuzzy sets, Pytha-
gorean cubic fuzzy sets, and their associated operational
principles and laws.

2.1 Pythagorean fuzzy sets

Definition 1 (Yager 2013) Let T represent a non-empty
set. A PFS of an element ¢ that belongs to the set T is
formally defined as follows

P ={t, (up(1), Op(0))|t € T} (1)

The membership function of an element ¢ in T is rep-
resented by pup(z) which maps to the interval [0, 1].
Meanwhile, the non-membership grade of ¢ is represented
by ¥p(t) which also maps to the interval [0, 1].

Definition 2 (Yager and Abbasov 2013) For any Pytha-
gorean fuzzy number P = (up,Jp), score function of P can
be calculated as:

Se(P) = 1 — 2 )

where —1=<Sc(p)=<1. The accuracy function of P is defined
as follows:

Ac(P) = 12 + 12 (3)
where O<Ac(p)<1.

For any two Pythagorean fuzzy numbers P, P,, if
Sc(Py) < Sc(Pp) or Ac(Py) < Ac(P;), then Py < P,. If
Sc(P1)>Sc(P2) or Ac(Py)-Ac(p,), then P>=P,. If
Sc(Py) = Sc(P;) and Ac(P;) = Ac(P,) then Py = P;.

Definition 3 (Zhang and Xu 2014) Let P = (up, Up), p;
(tp,,Yp,) and p, = (up,Vp,) be any three PFNs, and ¢ is
any positive real number, then

l. P@P,= (<\/u%,+u%z—u%,ﬂ%ﬁﬁplﬂm),
2. Pl ®P2 = ((,Upl,upz, \/ 191231+191232_19%’11912’2>)’

3. PP = (uﬁ, 1—-(1——ﬂ%>¢),

4.¢P=O¢Tf5fﬁﬁﬁ%)

2.2 Interval-valued Pythagorean fuzzy sets

Definition 4 (Zhang 2016) Let T be a non-empty finite set.
An IVPFS Q in element ¢ € T is defined as follows:

Q = {1.{uo(1), 9o(1))|t € T} (4)

where i, (x) interval-valued fuzzy membership grade and
can be represented as pip(x) = [,ué(t),,ua(t)] and J¢(t)
interval-valued non-membership grade and can be repre-
sented as Yp(x) = [ﬁé(r),ﬁé(r)} of set Q such that
() + 9511

Definition 5 (Zhang 2016) Let QO = ([a,b],[c,d]) be an

interval-valued Pythagorean fuzzy number. The score
function of Q is defined as:

@ +b - —d
=7 (5)

where —1=xSc(Q)<1. The accuracy function of Q is
defined as:

Sc(Q)

Ry
B 2
where 0<Ac(0)x1.

Ac(Q) (6)

For any two interval-valued Pythagorean numbers Q,
and Q,, if Sc(Q;) < Sc(Q,) or Ac(Q;) < Ac(Q,), then
01 < 0y If Sc(Q1)~Sc(Q,) or Ac(Q;)~Ac(Q;), then
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0,>0,. If Sc(Q;) = Sc(Q,) and Ac(d)
0= 0.

Definition 6 (Zhang 2016) Let Q = ([a,b], [c,d]), O; =
([a1,b2),[c1,d1]) and Q, = ([az, b2],[c2,d2]), be three
interval-valued Pythagorean fuzzy numbers and ¢ is any
positive integer then,

\/m7
1. Q1®Q2<[ R A 7|:C16‘2,:| ,

\/bi + b3 +bib3 | [ dida
2 2.2
aay, \/c1—|—c2—cc27

biby & +d} — did3

3. 90 = ([ ((l_a?;;’] {d,pD

- o-(E) )

b? (1—d*)”

= Ac(Q,), then

The complement of PFNS Q is denoted by Q° and
defined as Q° = ([c, d], [a, b]).

Let ¢, and ¢, are any positive real numbers, then the
following properties for interval-valued Pythagorean fuzzy
numbers Q, O, and Q, holds.

L. 0190, =0, D0y,

2. 010, =0,%0,,

3. 9(Q190:) = 90 @ 90,
4. (@1 +02)0 = ¢,099,0,
5. (0120, =07 ® 05,

6. (0"®Q0%) = QP T2,

2.3 Cubic sets

Definition 7 (Jun et al. 2012) Let T be a non-empty finite
set. A cubic set over an element ¢ € T is defined as follows:

R ={(t,R(1), n(1))|r € T} (7)

where R(7) is interval-valued fuzzy set and p(z) is a fuzzy
set of an element fre€7. A cubic set R=
{(t, R(2), u(t))|t € T} is simply denoted by R = (R, p).
Let R(t) = [a, D], then a cubic set R = (R, u) is said to be
internal cubic set if 1 € [a, D], on the other hand a cubic set
R = (R, p) is said to be external cubic set if u ¢ [a, b].

Definition 8 (Jun et al. 2012) Let R = (R, ) and S =
(S, v) be two cubic sets in T. Then the following properties
holds.

1. (Equality). If R =S and u = v, then R = S,
2. (P-order) RCpS & R C S and u<v,
3. (R-order) R CpS < R C S and pu>=v.
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Definiton 9 (Jun et al. 2012) For any R;=
(¢, (Ri(2), u;(2))|t € T) where ieA. Then,
P-Union
UléA { (UR> (\/ )(I)‘t € T}v
ieA
R-Union
R
R = {r, <UR> (1), (Ntt) 0l € T},
ieA ieA
P-Intersection
P
(V= {r (RO (Ai) I € T},

ieA

R-Intersection

am: {(ﬂ R) (\/ieAui>(x)|t€T}.

2.4 Pythagorean cubic fuzzy sets

Definition 10 (Khan et al. 2019a, b) Let T be a non-empty
finite set. A PCFS D of an element ¢t € T is defined as:

D = {t,Cp(t),Dp(t)|t € T} (8)

where Cp(t) = (Zp(t); up(¢)) membership grade, while
Dp(1) = (Zp(1); vp(1))
grade. Furthermore Zp(¢) and Zp(¢) are interval-valued
fuzzy sets while p,(¢) and vp(¢) represent fuzzy sets. Let

Zp(t) = [up(0), (1)) and Zp(r) = [95(1), 9 (1)), then
Cp(r) = (({up (1), 1) (1); up(1))) describes the degree of
membership, while Dp(t) = (([195()6),195;([)};@0)))
represent non-membership degree of an element ¢ € 7T,
such that 0<(u$(t))2—|— (95(r))<1 and 0= (up(1))*
+(9p(1))*<x1. For simplicity we call ((Z(t); u(r)),
(Z(1);9(t))) a CPF number (PCFN) denoted by
:8: (<Z;,u ;<Za19>)'

Definition 11 (Khan et al. 2019a, b) Let
:8: (<Zv é>a <Z,‘C>), ﬁl = (<Zl;ul>a<zlaﬂl>) and ﬁZ =
((Zz;u2>,Z~2;192) be three PCFNs, and ¢ is any positive
real number, where Z; = [u (1), 1 (1)], Z) = [9; (1),
O Zo=m (), m 0. Zy=[0,(1),9;(1). Z=
[ (1), ()] and Z =[9 (r),9"(r)] then the opera-
tional laws are defined as.

represent the non-membership

< —
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1.
B @ P,
V <u1>2<u2>%}
UV + ) = ) ] |
\/ulﬂtz 1515
([97 95, 0795 ]; 01,)
2. B®pB
[,Ul ,U2,/11 Hz] Hill),
Vo) —w;f(ﬁ;)z, |
(L) ~ @) ]|
wﬁ+%—ﬁ%
\/1 - (1 - (u*)z)q),
3. op= < \/1—(1—(u+)2) ) ,

4 P =
{ \/1 - (1 - (W)z)” )
1—(1-9%)°
Definition 12 (Khan et al. 2019a, b) Let f=
((Z; 1), (Z;9)) be a PCFN, where Z = [y, u*] and Z =

[9~,97"] then the score function Sc(p) is defined as follows:
I e A A A A
Sc(f) = (W) _ (%) 9)

while the accuracy function is defined as follows:

~ ot 20 0\
Ac(p) = R R + v +o v (10)
3 3
where —1<Sc(f)<xl and O<Ac(f)<gl. Let f, =

(<ZI;H1>7<ZI’191>) and ﬁl = (<Z27:u2>7 <227192>) be two
PCFNs. If Sc(f;) < Sc(f,) or Ac(f;) < Ac(f,) then f3,
=< B,. If Sc(f;)=Sc(f,) or Ac(f,)>=Ac(f,) then f,>=p,. If
Sc(By) = Sc(B,) and Ac(B;) = Ac(p,) then f; = f,.

Definition 13 (Khan et al. 2019a, b) Let f, f; and f3, be
any three PCFNs and ¢, ¢, and ¢, are positive real
numbers then following properties holds.

1433
Bi & B, = B,®By,
Bi® B, =B, @By,
(B © By) = @B © ¢Ps,

((/’1‘1'402)@ = 0,100, p,
(B @ By)" = BY @ B3,
ﬁ (01+9,) ﬁ(ﬁ@ﬁwz

S kL=

2.5 Frank operations

Definition 14 (Frank 1979) Let J be a positive real and
(a,b) € [0,1]*. Then, Frank product ® and Frank sum ®p

are defined as follows:
5170 _ 1 517b _ 1
aEBszl—log(;(( )( )>
y—1
“—1)(8" - 1)
T

(0
a®rb = log;
Properties of the Frank product and Frank sum are as
follows:

1. (a®rb) + (a®Fb) = a+ b,

O(a®rb) | 0(a®rb)
2. et =1

(11)

(12)

Based on the limit theory see (Wang and He 2009),

1. If 6 — 0, then a®rb — a + b — ab, Then Frank sum
being transformed into a probabilistic sum..

2. If 6 — 0 then a®rb — ab, then Frank product trans-
formed into a probabilistic product.

3. If 6 — oo then a®pb — min(a + b, 1), then Frank sum
transformed into a Lukasiewicz sum.

4. If 6 — oo then a®pb — max(0,a + b — 1), then Frank
product transformed into a Lukasiewicz product.

w

Frank operations in Pythagorean cubic
fuzzy environment

This section presents the Frank operations on PCFSs and
examines several key properties of these operations.

Definition 15 Let f = (((u™, u]; ), ([97,97]; ), B, =
(e w15 ), ([07, 07 s 01) and By =
(([15, 13 |5 12}, ([95 95 ]:92)) be any three PCFNs and ¢
is any positive real number, then
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Bi1Orpy =

Bi®rpy =

@ Springer

o—1
S0t 1) (50) ;
( log;s 1+(() (13)7(? l) )
WRERIES)

B?

op

[ (517(19*)2_0@ 1
l—lOgé 1+W 5

S(u)? ¢
log; (1 +(b()1_?) ,
G- 1)
W’ _\\ |’
( log5(1 +%) )

s —1)"
logs (1 + %)

—
—

]

[V

<
—
—

+
o

—~ | >
|
N
— ©
— |

S
1| =
—N—
]
S———

Theorem 1 Let B= ({(u,u i), ([97,97];9), B, =

((Lar e ] ) (97,97 ] 00)) and
(<[ﬂ2_aﬂ§r];ﬂz>a <[192_7193_]7792>

By =
) be any three CPFNs. Then

the operational laws B,Erp,, f1Qr By, ¢f and p* are also

PCFNs.
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Proof Since [u;, i, [9;,9]] €
for i = 1,2, then

[07 1]2 and His ﬁi6[07 1]

o—1

) et =

(5(#I)2 _ 1) (5(/6)2 _ 1)

o—1

(5(#?)2 _ 1) (5(#2*)2>

o—1

(- 1) - 1>>

= logs <1 +

<logs| 1+

<logs | 1 +

<log(5<1 + 51

On the

other hand, we have

N
—_
|
=)
ga
<

N
—
I
=)
03

0o—1

Similarly, we can prove that 055?41 and 04‘5?41.
Now, in order to show that (ul.*)2 + (19?)2<1 and

1w+ 191.2<l, we will proceeds as follows:

() 1) (s() _
1 (6 1) (o 1)

o—1

(51*(191*)2 _ 1) (51*(792*)2 _ 1)

o—1

log;

+ |1—logs| 1+

()" _ () _

< |1 —logs 1+(51 | ;)_((151 | 1) +1
()" _ ()" _

— |1 —log; 1+(5] ﬁ ;)(f] 19 1) =1

Similarly, we can prove that 4 + ﬁ?#l.Hence B1®Fp,
is PCFN. Similarly, we can prove that §; & f3,, ¢ff and p*
are also PCFNs.

Theorem 2 For any three PCFNs = (([u ,u1"];u),
(w500, Br= (s i L) ([97, 973 91)) and
By = ({12,153 s m2), ([97,95]392)) and ¢, ¢y and ¢,
are any positive real numbers then the following properties
holds.

Bi®rBr = B2®rpy,

Bi @F By = B> ®F By,
o(B1®rfy) = 0P 1©rops,
(B1@rB,)” = BT REP3,
ﬁ(/’r‘r(ﬂz — ﬁ(/’l ®Fﬁ(ﬂ2’

(@1 + @2)B = @1 fOrQ,p.

A

Proof 1 1. By Definition 15, we have

@ Springer
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[ () _ 1-(15)" _ | s Z 1\ (s50) —
J 1 —logs (1+ (51 (]3>((13 1))7 logs (l+ ( 5)(1 1)),
2 = ; ) 1) (5057 1) |
ol 1) (o0 — e (6
Jl,%(H(s ol 1)) < zgo(w ols ) )
L | s —1) (6% -1
—logs|1+>— 2 7 _ ;
Bi®rr= | ( ¢ - 5(_ ; ), Bi&@rp, = o 1 (5‘*(’ ) 1) (5|,(0;)2 - 1)
s(1)" _ 5(1) —logs| 1+ :
[ 00) : :
(o) ) ; S0 ) (s () ’
(] togs | 1+ <O(U]) _(i)_(?(}:) - 1> ) | J o (1 : | 5>7(1 l>)
Ul 503 _ ] - _ -2 _ _
log; (1 + W) J 1 —logs (1 + <5 >7<6 ))
' 05 1) (5 1) |
\l 1 — log; (1 + (0 ;)(?1 1))7 logs | 1 + )
3 ; 5 uz* _ 1 () _ 1
s1-(5)" 51=(u)" — 0o
J o (l NGERN 1)) (o144 N )
_ -8 _ 1) (s — logs| 1 +—
_ J 1 — log; (1 + <51 51_> gf" 1>) ot ( : 20 ' ) -
< : T
() _ 1) (s) = 1—logs [ 1+ 7
) : A
9t S ) (s1-01) '
(| togs| 1+ L - 1;)_<?(”1) ), ) < J 1= logs (1 * ( (15)7(1 1>) >
U3 _ U7 _ ) 1-93 -9 ]
(e =
= BZ@Fﬁl' = ﬁ2®Fﬁ1'

2. Similarly, By Definition 15, we have

@ Springer
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| ()’ ] i s-) —1)" |
(5 () _1> 1 — log, 1+(7,11) :
1 —log; 1+W ) (6-1)°
: o0 ) |
(u ( —lo ( )
< (51 (n‘l) 1) > Jl lgo(l+ (071)4’—1 )
1—logs| 1+ T 1)(071 ) L — S
- - 1 —logs (1—&-%)
(51% — 1)(,} oP1®rof, = (0-1)
I —logy[ 14— 1 S0 _1)*
(pﬁl — ( (5 — 1)4) 1 ) 7 logo (1 +<(5W?)
\ N P
. . (5(79,) _ 1) < (5(0,_): | ¢ >
85 (5_1)¢,1 ) logs| 1+ G—1)7
. ) ¢ 7 502_ P
(5(01) 1) g, l+( 21
( logs| 1+ T 1)({)71 ) (6-1)
i 92 o\ i () ]
lo 1+((3 1> 1 —log; l+g :
A (6-1)""
r o si-(m) _q \ |
(51*(#2) 1) < 1 — lOg()' 1 + ( wl) >7
1 —logs| 1+ G , (0—-1)
; st —1)"
(51*(“2) 1) 1 —log, [ 1+ ( w)l
( 1 —logs| 1+ G ) ® (0-1)
I J (5(792’)2 1)(/)
2 4 logs| 1+ — ,
' e (1+(51 uz_1)> 0 6—1)""
- 0 o—1 2 )
opy = (0-1) (a(ﬂz*) 1)¢
I (5(19;)2 N 1)4’ 1 (| logs| 1+ - )
14 (0-1)
log() (5 — 1)(/),1 ) L ( 2 )q) J
) 02 —1
95) NI logs | 1 +—-——
( log l—l—u ) 6( (5_1)([)])
J (57 1)(/,,1
) 519% —1 @ )
logs| 1 +¥
(6-1)°

As stated in Definition 15, it can be concluded that
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(51_(# ) 1)‘*’ (51_(u2)2 _ 1)‘”
1—logs| 1+ 1+ ,
® (617" (617"

< (51—(#1*)2 _ 1)(() (51—(142*)2 _ 1) >

1 —logs| 1+ T 1+ ol ’
(0-1) (0-1)
L : . J

[ s 1)’ 5(n)
log, | 1+ <((5— 1)“’1) ) (1 + <(5_ 1)¢1>
s _ )’ 50 1)’
(| 1ogs| 1+ ((5 - 1>¢1> ) (1 + ( = l)Ll)
G
° (56— 1)¢! (6 —1)¢!

= B1®rp,

The rest of the proof can be carried out in a similar
manner.

4 PCF Frank operators

In this section, we present the creation of two new aggre-
gation techniques, derived from Frank t-norm and Frank
t-conorm, aimed at reducing any uncertainties present in
the decision values during decision-making processes.
Additionally, we have also explored some of their key
characteristics.

Definition 16 Let f;, = (([,u{,,uf];,u), <[197 19*};19,'))

(i=1,2,...,n) be a collection of PCFNs and 5=
(1,155 - 1,)" be the weight vector such that 1; € [0, 1],
and Y ! n; = 1. The PCFFWA operator is a mapping
PCFFWA : I'" — I and defined as follows:

PCFFWA(fSy, s, - -, )

= (M B1)Br(n,5,)®rF, . . (13)

B ®F(nnﬁn)

Definition 17 Let f; = ({[u;, 1|5 ), ([9; .95 94))

(i=1,2...,n) be the collection of PCFNs and 5=
(N1:1a, - -»1n,)" be the weight vector such that 7,€[0, 1] and
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> n; = 1. PCFFWG operator is a mapping PCFFWG :
I — T and defined as follows:
PCEFWG(By, B2, - - B,) = (mB1)@r (1)

QF, - ®F(’7nﬁn) (14)

Definition 18 As the value of J approaches 1, the
PCFFWA operator gradually transforms into the CPFWA
operator

%%(CPFFWA(ﬁI ) ﬂ27 RS ﬁn))

ST (=)
-t (- wr)" |
Vi-TI

I (1 —m)"
{Hz’_l (19:)”"_,] .
(LTI ()™ 1)
[T

In the same way, as the value of ¢ approaches 1, the
PCFFWG operator converges to the CPFWG operator
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lin}(CPFFWG(pl, 02y 00)) Step 1. If n = 2, then, we get
y" r -
Hzr'l:l ('ui—)’h7 . (517(;4]*)2 B 1) (i
LTI e 1), Dtogs | 14— |
l:l.',l;ﬂ" (6—1)"
) 2 m '

_ ., Y si-(r)
- 1 _Hi:l(l_(,ﬁi) ) ) . ) < 1—log(5 1+% >7

- (- 97" | : -

mpy = (0— 1)'71—1
Definition 19 For any collection Bi = ! s N
(([sr s 1 )5 ), ([97,9F]59:)) of CPFNs we have oz | 14 (5( to— 1)
085 Ts_ 1yt |?
rinti) ), [l G-1)
Pin = ([ min(g) |7): ¢ ma{c(%,-) A (5(191,)2 B ])m ;
a4 min(8) ( log; 1—&-7"]71 )
{max(,ui‘),]. [mi.n(ﬁi),] (6—1)
o = | ([ maxyir) |10, ¢ [ min(i) ) ). : o
! min(L;) max(9;) - )

Definition 20 Let be a collection of PCFNs r E

—\2 mn
B = ([ ) ). ([0 9} ]:9))- Then complement of (600 —1)
B; is denoted by B and defined as follows: I—logs| 1+ (6 — 1) ’
B = (s s i) (o )5 10)). (15) — |’
si-(m) — 1) ’
(11— togs [ 1+ _ ),
‘ 0-1r!
Theorem 3 Given B, = (([u, 1 ]; ), ([V;7,9]];93))
(i=1,2,...,n) as the set of PCFNs, the aggregated values i e o
obtained through the application of the PCFFWA operator 11 1+ (5 P 1)
are also considered to be a PCFN. _ 85 (6 — 1)'72*1
Ny =
PCFFWA(Bl,ﬂz,...,ﬁn) r (5(19;)2 B l)ﬂz

1o (11 (507 1)) | T
)
( \/ logo(l—ﬁ-Hl 1(5' 1)’7‘) (| logs l—ﬁ—% )
= \/1—10&,( + 11 1(51 " ‘l)nl) logé<1+(5ﬂ§_l>m)
10g0<1+H > (
( log(;( + 11 1 )
10g5(1 + 115, (5192 — 1) )

Proof. According to the principle of mathematical induc-
tion and the operational law outlined in Definition 15, it
can be concluded that
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mB1SrN B,

I () 1)
1 - lOg& l + (5 _ 1)17|‘H7271 ’

I, s )"
( 1 —logs (1 + (5(_ 1),7,+,12_1 ) )

PR
\Illogb‘(“rn?l(é“ —1)>

((3 _ 1)'11+’7z 1

[ 2 (s0) )" ]
log;s (1 —I—Hl:] (5 19 1> ),

(5 _ 1)’11*’72*1

I (600 )" |
( logs (1 + 60— 1)'11+'1rl )

2 i
log5 (1 + m>

(5 _ 1)'71+’7z 1

As YL —1=0,

mB1©rN2b,

(6-1)
H;:1(51_(”+) 1)
< — lo !
1 lgo( + (571)0

_— (1 N 12, (517(;4;)' - 1) ) |
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PCFFWA(fy, )

\/1 - logé<1 1T (517(%‘7)2 } 1)"')

)

( \/ g, (110 (500 1))
_ \/1 —togs (1 4TI, (67 = 1)")
log, (1 + 11, (5(07)2 3 1)}1,)7

)

10g5<1 + H?:l (5”’2 - 1)?11-)

This implies that Eq. (14) is valid for n = 2.

( zogé(lmf_l(a(ﬂr)z_1)”") )

b

);

Step 2. Assuming that Eq. (14) holds true for the value

of n being equal to k, meaning that
PCFFWA(ﬁl?ﬁz’ M) Bk)

\/1 —log(;(l +TTE (o 1)"’)

(k) —
( \/l — log()-(l + Hff:] (51_(,1/%)2 _ l)m)
= \/1 - log5(1 _i_Hf:l(él_,,g I n,)
lOga(l ST (50 - 1)%)
< 10g5(1 + Hle (5(ﬁ+)2 B 1)’7,-
s (T8 (7 1))

For n = k+ 1, we have

PCEFWA (B,, B, - - -, Brs1)

)
ik

\/1—logb< +11E 1(51 " ) >

)
)
)

{ \/1 log()(l—O—Hl (o0 ) )
_ \/l—logb( +11E 1(51 G 1) )
logo(l—FHl 1 1) )

( log()< —l—Hl 1 W 1)n>
log5(1+H, 1(5192 1>n>

Y
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(5'—(%)2 - 1)"‘*‘
(0 — 1)

(51—(%)2 _ 1)’“+l
(6 —1)ha”!

(517”12(\1 — 1)'71<+1
1- 10g5 (1 +—)

1 —logs| 1+

)

( 1 —logs| 1+

(6 — 1)hn!
(5(%1)2 - 1)"”‘
(6 — 1)nn”!
(5(%)2 - 1)'““
(0 —1)mn™!

s Mt
logs (1 + %)
\/1 10g5<1—|—Hk+1(51 ) )

{ \/1—zogo<1+1‘["“(5‘ ))
_ \/l—logo< +1‘["“(51 G 1) )

log; (1 + H"+1 )
( log(;( +H"“ )
log(,<1 +H"+‘ (5” ) )

This implies that Eq. (14) is valid for n =k + 1.
Consequently, Eq. (14) holds for all values of n, which
concludes the proof of Theorem 3.

(s ) ([977,9 500 (i =
1,2,...,n) be a collection of PCFNs and m=
(M1, Mgs-- M) " be a weight vector with y; € [0,1] and
Sini =1, then the aggregated values obtained by
PCFFWG operator is also PCFN.

logs| 1+

)

( logs| 1+

Theorem 4 Let f§; =

PCFFWG(ﬁb ﬁ27 LN ﬁn)

log(g( +TT (o0 1) )
{ log5<1+1‘[;’_1( u 1)"')
togs (1+ 111 (67 —1)")
- \/1 = log5<1 +11, (51*@7)2 - 1)"'),
{ \/1—zog5(1+1‘[;’1(5'—(0?)2_1)"‘) ;>
\/1 . log(;(l T, (5‘*19? - 1)"’)

Proof The proof is simple and can be easily understood,
therefore we have chosen not to include it in this
discussion.

Theorem 6 Ler f; = ([, 15| ), ([9; .97 ];:9:)) and

Bo= (i T s o [9097 590)) = 1,2, m) e
two collections of PCFNs. If u; <, , uf <1, ﬁ;k@f,
19?'%5?, w<u,; and 19,#1’91 then

PCFFWA(B,, Bs, .- ., B.)<SPCFEWA(B,, B - -, )

PCFFWG(B,, Bs, . - ., B,)<SPCFFWG(B,, Bas - - -, )

Proof As p < then
1 — log;s (1 + Hn_ (517 - 1) ><
—log5< +]1 1(5‘ m) ) > (20)

In the same way,
l—log()(l—i—H ( ()" _1)"’><1
~t\ 2 ni
—log5<1 —|—H7:1 (51 W) 1) ) (21)

n - ni
1=tog; (14T, (67 = 1) )=
" ~2 n;
—logs( 1+ ][, (51;1,» _1> ) (22)
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log; (1 +11, (5(1’7)2 = 1)"')

<os, (14T, (500 1)) )
s (14T, (500 1))
<tog, [ 14T G (24)

log(;(l + H; (5’9"2 - 1)?1,»)
<log; <1 + HZ;I <51)~,2 _ 1>"9f (25)

By Definition 9, we have
Sc(PCEFWA(By, B2, - -5 Ba))

1 —log; <1 + H:?Zl (517(/5)2 . 1)'1;)+
1 - log(3(1 + 11, <517(H:’+)2 _ 1)»11) .

_10g5(1 + 11, (5‘—#? _ 1)11,)
3

1+, (50’7)2 - l)ni fry
I (600 = 1) -
+IT (6 - 1)""
3

~—\2 i 2
l—lag(5<l +1‘[,.":1(5‘*(“') - 1) >+1
2 0
—log(5<l + 1%, (517(“') - 1) > -1
- i
—log; (1 + [T, <517“‘ - 1) )

3

N
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1+ 1 (5@)2 - 1)’% +1

~\ 2 i
9.
+I1, 5(‘)—1 —1

~2 ni
-1 (5ﬂi - 1)

3

=Sc (PCFFWA(El ) Bz» - En))

Theorem 7 The results obtained by applying the PCFFWA
method, which is a representation of PCFFWG, on a group
of PCFNs B; = ({1, 1} ), [0, 9 ]59)), have limi-

tations and are confined to certain boundaries i.e.,

ﬁmin#PCFFWA(ﬁl ’ ﬁ27 R ﬂn)#ﬂmaxand

ﬁmm#PCFFWG(ﬁl ) ﬁ27 RS ﬁn)#ﬁmax'

Proof The demonstration of this proof follows a similar
process as the proof for Theorem 6, therefore, for the sake
of brevity, we have chosen not to include it here.

collection of PCFNs and
ﬁzc = (<[79i7719i+];:u,‘>’<[Mi77,ui+];195>)’ then  we
PCFFWG(ﬁl? ﬁ27 RS} ﬂn) = PCFFWA( fa ﬁg7 BERS) ﬁrf)c
and

Theorem 8 Ler f; = ([, 15| i), ([9; 97 ]:9)) be a

have

PCFFWA(ﬁ] ) ﬁ27 ce ﬁn) = PCFFWA( lcﬂ Bgv ) ﬁf)c

Proof By Definition 20,
BS = (([9;,97]; 1), ([ » 7 ]; 9:)). Then, by Theorem 3,
we have



\/1 - log(;(l I (50 1)"’>7
{ \/1—zog5<1+nj'_l(5l(ﬂ?)z_l)"‘) ;>,
\/1—log()< +1‘[, 1(5' o 1) )

log; (1 + 1T 1 1)
( logo< + 11 1 1)
log()<1 + 11 1(5” 1)n>

)]
)]

This implies that

< log(;(l T (80 - 1)"’) ),
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Table 1 Data generated by D
decision maker E' }
A ([0.6,0.8]; , ([0.6,0.8]; , ([0.7,0.8];0.6), ([0.3,0.4];0.6
((0506]08) ((0506]08) (([0506]07)) (([0809]07)
Boo(lasaey)  (Gaease)  (Tasdes)  (Biehed)
A ([0.5,0.6];0.8) ([0.6,0.7]; , ([0.6,0.8];0.2), ([0.6,0.8];0.7
' <(0406]06> ((0506]07) (([0506]09)) (([0506]06)
A ([0.6,0.8];0.6) ([0.6,0.7]; ([0.5,0.7];0.7), ([0.4,0.5];0.8),
) <(0506]07> ((0506]04) (([0406]06>> (([0708]06)
As ([0.8,0.9];0.3) ([0.7,0.8]; ([0.6,0.8];0.5), ([0.6,0.7];0.6),
((03 04]09) <<0506]03> (([0506]07>> (([0506]08)
eciton e D
A ([0.4,0.6];0.5) ([0.3,0.6]; ([0.8,0.9];0.5), ([0.7,0.8];0.6
((O708]O7> ((0708]07) (([0304]07}) (([0405]05)
A ([0.5,0.6]0.8) ([0.4,0.5];0.8), ([0.7,0.8];0.4), ([0.7,0.8];0.6),
’ (([07 0.8]; 05) ((07 09]05 > (([05 08]07}) (([03 0.6];0.5) )
A: ([0.7,0.8];0.4), ([0.4,0.5];0.7), ([0.5,0.8];0.7), ([0.5,0.6];0.4),
2 ((04 0.5];0.7) ) ((07 08]05 > (([06 07]04)) (([06 0.7];0.6) )
Ay <([O708 1;0.7), ) ((0708 ,) ((0608]07)) ((0405]07 )
([0.4,0.5];0.5) <0405]06 ([0.5,0.7];0.4) ([0.7,0.8];0.5)
As ([0.7,0.8];0.6) ([0.6,0.7]; ([0.7,0.8];0.7), ([0.7,0.8];0.5),
<(0405]05> ((0506]06) (([0507]06>> (([0405]06)
PCFFWA(B7, 55, ., ;) (PCFFWA (BS, 5., fS))©

ey (1T, (500 1)"),
log(;(l + H:’Zl(é“? - 1) [>

- \/1_

l0g5<1+Hi (000 - 1)")

<¢1

\/1 —tog; (1+TT (67 = 1))

—log5<1+Hl1( 1) > )

= PCFFWG(B}, Bas - - -, B)-
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Table 3 Data generated by

decision maker E?

Table 4 Ordered decision

matrix R!

Table 5 Ordered decision

matrix R?

D;
" (%%2%2] os) (i%i%i-] o) (feosor) (2{32%‘% o3)
oo(fesdey)  (Basaen)  (Rssaey)  (hsthod)
oo (fhoden)  (Bssaen)  (Rsseed)  (hethod)
(b)) (Bheen)  (RaeuRn)  (Biedd)
oo (fseden)  (Bssaey)  (Wasked)  (Wasaod)
" (%%Z%‘;%i ) (2%2%86] o) (éS?SS}%Z) (2[%38%‘2] o)
Boo(ssdes)  (Tassey)  (Raeed)  (hsthed)
" () (i) (Ras) (G
o (fsoden)  (Bssaen)  (Baeed)  (Bheded)
o (feomen)  (Biseex)  (Heoded)  (hsehed)
" ( foao0ai09) (2%37%%] o) (i{é%%ﬂ] %) (i{éi%iﬁ o)
o (Tsnhesr)  (Bassey)  (Raseh)  (Raeeed)
Poo(fesaen)  (Basey)  (Rsedey)  (Beeded)
oo(hsaen)  (BEsEey)  (Reskey)  (Waeded)
As (([0405 1;0.5) ) ((0607 ) ((0507]06)) ((0708]05 )
([0.7,0.8];0.6) <0506]06 ([0.7,0.8];0.7) ([0.4,0.5];0.6)

5 A revised approach to MCGDM based

on proposed operators

In this article, a solution to multi-criteria group decision-
making (MAGDM) problems has been presented. This
approach is based on the use of Pythagorean cubic fuzzy
information and two specific operators: the PCFFWA and

@ Springer

the PCFFWG. These operators enable a more comprehen-
sive and accurate evaluation of the available alternatives
and help arrive at a well-informed group decision. Let A =
{A1,Az,...,A,} be a set of possible alternatives, while

G=1{G,G,...

G,} be a set of features (attributes) that

help differentiate each alternative in the set A. It is
important to note that both sets A and G are finite, meaning
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Table 6 Ordered decision
matrix R>
Ay ([0.5,0.6];0.4), (0.7,0.8];0.6), ([0.6,0.7]0.7), ([0.5,0.6];0.8),
([0.6,0.7];0.7) <O405]O7 ([0.4,0.5];0.5) ([0.6,0.7];0.5)
Ay ([0.4,0.5];0.9), ([0.4,0.4);0.4), ([0.5,0.6];0.3), ([0.6,0.7]; 0.8,
(0608]02 <0708]O7 ([0.6,0.7];0.8) ([0.5,0.6];0.4)
As (0.4,0.5);0.7), ([0.6,0.7);0.4), ([0.5,0.6];0.4), ([0.6,0.7);0.7),
(0708]04 <0506]O7 ([0.6,0.7];0.8) ([0.4,0.6];0.4)
Ay ([0.5,0.6];0.6), (0.7,0.8];0.5), ([0.4,0.5];0.5), ([0.7,0.8];0.9),
([0.6,0.7];0.7) <0405]07 ([0.7,0.8];0.7) ([0.4,0.5];0.3)
As ([0.6,0.7];0.5), ([0.6,0.7);0.5), ([0.4,0.5];0.7), ([0.7,0.8];0.5),
([0.5,0.6];0.6) <0506]08 ([0.7,0.8];0.4) ([0.4,0.6];0.7)
Table 7, Score values of Alternative Score values Tab.le 8 Score vglues of alter- Alternative Score value
alternative A; native X as obtained by the
A 0.0091 PCFFWG operator A 0.0638
Aj 0.0018 As 0.0325
Az 0.0099 Az 0.1016
Ay 0.0025 Ay 0.0496
As 0.0373 As 0.1511
that there is a specific, limited number of elements in each el en - e
set. The decision-makers evaluate the information related e ey - ey
to alternative A; with respect to attribute Gj, (where i E(h) = (26)
ranges from 1 to m and j ranges from 1 to n) and it is eml em - emm

assumed that these evaluations are represented by PCFNs.
It is assumed that the Pythagorean cubic fuzzy decision

matrix referred to as “E(h) = ( (h)) (h=1,2,...,1)”

y

has been provided by an expert . The weight vector

This
vector is used to measure the importance or significance of
each attribute in a specific context or application. The
values in the vector 1 determine the relative weight of each
attribute, allowing for a more informed decision-making
process based on the weighted analysis of all relevant
attributes. In order to create a solution for this issue, an
approach will be developed that incorporates the proposed
aggregation operators. This approach consists of several
steps that include:

assigned to the attributes is 5 = (nl,nz,...,nj)T.

Step 1. Formulate the PCF decision matrix E(h) =

h -
I R (o e ey
characterize the PCFN with respect to the alternative X;.

Step 2. Categorize the attributes into two groups:

1. Cost attributes which refer to the expenses incurred and
2. Benefit attributes which refer to the advantages or
positive outcomes gained.

The first category, “Cost attributes,” refers to attributes
that represent the costs or expenses involved. The second
category, “Benefit attributes,” refers to attributes that
represent the benefits or positive outcomes that are gained.

Normalization of the rating values is required if the
attributes are of two different types, using the following
formula. However, if all the attributes are of the same type,
normalization is not necessary.

{ ﬁij for the criterion of benefit type

ij for the criterion of cost type @7

Step 3. Make use of the recommended aggregation
operators in order to calculate the complete and final
appraisals of the available alternatives. These operators
will be used to bring together and investigate different
pieces of information and data, in order to determine the
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Table 9 Ranking order of

. . Parameter J
alternatives for different o

Score values

Ranking order

A1 A2 A3 A4 AS
o=1 0.0023 0.0003 0.0027 0.0005 0.0079 As=Az=A1=A4=Ar
0=2 0.0091 0.0018 0.0099 0.0025 0.0373 As=A3=A1=As=Ar
0=3 0.0123 0.0076 0.0135 0.0089 0.0463 As=A3=A1=As=Ar
0=10 0.0167 0.0086 0.0178 0.0124 0.0511 As=A3=A1=As=Ay
0 =150 0.1304 0.1027 0.1423 0.1154 0.1677 As=A3=A1=A4=As
o =80 0.1832 0.1759 0.1877 0.1566 0.2013 As=A3=A17A4=Ar
Ta'ble 1(.) A comparison study Approaches Score values Ranking
with existing approaches under
PCF environment Ay Aj Az Ay As
PCFWA (Khan 2019a) 0.0186  —0.0092 0.0165 0.0063 0.0568  As=A|>A3=As=Ar
PCPWG (Khan 2019a)  —0.0027  —0.0163  0.0353  0.0028  0.0656  As=Az=As=A1=As

value of each alternative and arrive at a single, overall
valuation.

Step 4. To compute the score or accuracy value for each
alternative, use Eqgs. (9) and (10). These equations provide
a numerical representation of the accuracy of each alter-
native and will be used to determine which alternative is
the most accurate.

Step 5. To determine the best and most desirable alter-
native(s), it is necessary to rank all of the alternatives based
on their score or accuracy. This process involves evaluating
each alternative and comparing it to the others to determine
its position in terms of effectiveness and performance.
Once all the alternatives have been ranked, the top-per-
forming alternative(s) can then be selected as the best and
most desirable alternative(s).

5.1 Numerical example

Let us consider an investment company that has a signifi-
cant amount of funds at their disposal and is actively
searching for the most advantageous investment alternative
to put their money in (taken from the study of Khan et al.
(2019a, b)). They want to ensure that they make the best
use of their funds by investing in a choice that promises
maximum returns while minimizing the risk involved. The
investment firm has been given a set of five distinct
investment alternatives, labelled as {A|,Az,A3,A4,4s5},
from which they must carefully select the most suitable one
to allocate their funds towards. A, is a car company, A, is a
food company, A3 is a computer company, A4 is a arms
company, and As TV company.

@ Springer

Four criteria are considered when making a decision.
These include: G; risk analysis—an examination of
potential risks involved in a particular situation. G, growth
analysis—an evaluation of the potential for growth and
expansion. Gj social-political impact analysis—a study of
the effects on society and politics. G4 environmental
impact analysis—an examination of the impact on the
natural environment. Three decision-makers {EI,EZ,E3}
form a committee to evaluate the five alternatives A;
(i=1,2,3,4,5) based on the four criteria G;
(G = 1,2,3,4). The decision makers have evaluated the five
possible alternatives based on four attributes and the
resulting information is recorded in Tables 1, 2 and 3.

The ranking of these decision matrices was obtained by
applying the score function specified in Eq. (9). The nor-
malized decision matrices that have been arranged in order
are summarized in Tables 4, 5 and 6.

Transform the preference values into their overall score
values using the score function outlined in Eq. (9). The
score values for each alternative are summarized in
Table 7.

The aggregation of the preference value of each alter-
native A; (where i ranges from 1 to 5) can be achieved by
utilizing the PCFFWA operator defined in Eq. (13).

A _ (([03911,0.5243];0.3732),
! ([0.3463,0.4567]; 0.4282) )
e (|

0.3172,0.4612]; 0.4850),
0.3271,0.5213];0.3442) )
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Table 11 A comparison study with existing approaches under IVPF environment (under process)

Approaches Score values Ranking

Ay A, As Ay As
Peng and Yang (2016) —0.2013 —0. 1843 —0.2312 —0.1409 —0.1056 As=AszAri=A=A3
Rahman and Abdullah (2019) —0.4574 —0.3721 —0.3953 —0. 2987 —0.2190 As=As=Ar=Az=A
Yang et al. (2018) —0.6745 —0.5776 —0.4481 —0.4173 —0.3471 As=As=A3=Ar A
Rahman et al. (2018) —0.7360 —0.6113 —0.5752 —0.4751 —0.4004 As=As=Ar=Az=A
Tang et al. (2019) —0.7215 —0.6608 —0.7733 —0.5312 —0.4618 As=Ag=Ar=A1=As

we

([0.3502,0.4979]; 0.3866), >
( )
( ([0.3713,0.5478]; 0.5241),)
( ) )’
( )

[0.2821,0.4255];0.3601

= 0.2572,0.3893];0.2831
s [0.4431,0.5532]; 0.3874),
57\ (]0.2341,0.3552]; 0.4059)

The PCFFWG operator, which is defined in Eq. (13),
can be applied to gather the performance metrics of various
alternatives, with a J value of 2. This results in a combined
evaluation that provides an overall assessment of the
alternatives’ performances.

A, ( (105231,0.9163];0.6652),
0.1215,0.2339]: 0.1973)

[0.0102,0.1836];0.2317

A 0.6592,0.9431];0.4321),
5=\ {]0.0875,0. 1642 :0.1532)

(
A, — ( (05589,0.8232];0.7769),
([0.1081, 02853 10.1239)
A, — ( (106395,0.9305];0.6073),
([0.0911, 01932 10.1412)
A (<[05731 0.8861]; 07902,)
(
| )

Calculating the score values of each alternative using
Eq. (9), as displayed in Table 8.

The order in which the alternatives are ranked, as
determined by their respective score values, has been
determined to be As>A3-A;>A4>A>.

5.2 Evaluating the effect of 6 on alternative
ordering in rankings

The aggregation operators that have been suggested pos-
sess symmetry in terms of the parameter 6. However, in
order to understand the influence of the parameter on the
ultimate ranking of the alternatives, a study was conducted
by altering parameter 6. The results of the investigation,
including the score values and the ranking order, have been

presented in Table 9. This table demonstrates that while the
score values of the aggregated numbers change with dif-
ferent values assigned to the parameter J, the relative
rankings of the alternatives remain unchanged. The sig-
nificance of this aspect of the proposed operators is par-
ticularly important in actual decision-making scenarios.
For example, as the number of parameter J increases, the
scores of the alternatives also rise, providing a positive
outlook for decision makers.

5.3 A comparative examination of various
approaches

5.3.1 Comparison with existing PCF operators

To validate the superiority of our proposed aggregation
operators over existing operators, as described by Khan
et al. (2019a, b), a comprehensive examination was carried
out to determine the best alternative. The scores and
rankings of the various options are summarized in
Table 10. Based on the results, it is evident that As is the
best choice. Table 10 provides evidence that the ranking of
alternatives determined through approach (Khan et al.
2019a, b) is identical to the ranking suggested by our
approach. One of the key advantages of the PCFFWA and
PCFFWG methods is their ability to minimize computa-
tional complexity costs while preserving the consistency of
the aggregate results in uncertain conditions. Furthermore,
our proposed approach includes a parameter that allows for
modifications to the aggregate value based on actual
decision-making needs and reflects the personal prefer-
ences of the decision-maker. As a result, the suggested
operators are more versatile and adaptable. Additionally,
the study highlights that the computational process of the
proposed approach differs from the existing approaches
under different conditions. However, the results obtained
from the proposed method in this paper are more in line
with reality in the decision-making process because they
take into account the consistent priority degree between the
pairs of arguments.
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5.4 Comparison with existing IVPFS operators

In order to assess the performance of the proposed method
in comparison to existing theories within an interval-valued
Pythagorean fuzzy environment, we established the fuzzy
judgments of the PCFNs to be zero. As a result, the
obtained information was transformed into IVPES. Subse-
quently, the transformed data undergoes the application of
multiple available optimization algorithms such as aver-
aging operator (Peng and Yang 2016), geometric operator
(Rahman and Abdullah 2019), Frank power AOs (Yang
et al. 2018), Einstein AOs (Rahman et al. 2018), and
Muirhead mean operators (Tang et al.2019). The aim of
this step is to identify the most appropriate alternative(s)
among the available options. The outcome of this process
is presented in Table 11, which also includes the order of
ranking for each alternative. Based on these results, it has
been observed that alternative As remains the best option.
However, the worst alternative has changed for all cases.
The reason for this is that in previous studies, only the
initial preferences of the alternatives have been taken into
account. This means that these existing theories are unable
to handle situations where the evaluator or decision maker
must consider the degree of falsehood associated with their
earlier assigned truth degree across a range. Thus, the
methods used in IVPFSs may overlook valuable informa-
tion from IVPENs, which could impact the decision out-
come. Finally, it can be concluded that the proposed
operators take into account the decision maker’s parameter
“9”, which offers them more options to choose from and
select their preferred alternative based on the varying score
values of the alternatives for different values of “6”. This
provides decision makers with the flexibility to make
choices that best align with their preferences.

6 Conclusion

In the current study, we have made an advancement by
extending the Frank t-conorm and t-norm to encompass
PCF environments. Additionally, we have established
multiple new operational laws specifically for PCFNs and
conducted a thorough examination of their properties and
relationships. As a result of these new operational laws,
new aggregation operators such as the CPFFWA and
CPFFWG have been created to handle cases where the
inputs are PCFNs. An in-depth investigation has been
conducted on the desirable properties and specific instances
of these operators, and the connections between them have
been explored as well. In conclusion, the newly created
operators have been utilized to address group decision-
making problems with interval-valued intuitionistic fuzzy

@ Springer

information. A numerical example has been provided to
demonstrate the process. However, the current paper does
not cover the determination of the parameter § in the
proposed operators for practical situations, which is a
crucial and intriguing aspect that deserves further investi-
gation in future studies. We plan to implement the sug-
gested operators and method in various practical
applications such as game theory, image processing, cluster
analysis, pattern recognition, and uncertain programming
in the future.
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