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Abstract
This paper delivers three different ways to establish the initial structure of the interval-valued fuzzy signature (IVFSig). In

recent years, interval-valued fuzzy set theory has proven more capable of dealing with uncertainty and vagueness than

fuzzy set theory due to its increased flexibility. Therefore, the primary goal of this work is to develop an algebraic

framework for an IVFSig based on the aspects of an interval-valued fuzzy set (IVFS). First, the IVFSig’s are constructed

with the aid of IVFSs, which may be considered the truth values of IVFSs. Second, the families of IVFSig’s, as well as

meet and join operators, are formulated, and then their lattice algebraic structure is verified. Third, the relation of partial

ordering is established in an IVFSig family. Precisely, the addressed design is compared with recent well-known

framework. Finally, the numerical illustrations provide a higher degree of representation than other existing framework.

Keywords Fuzzy sets � Interval-valued fuzzy sets � Interval-valued fuzzy signatures � Lattice � Meet and join operators

1 Introduction

Graph theory is a branch of Mathematics that studies the

relationship between objects, or nodes. In a graph, the

edges are referred to as the connections between two or

more nodes; however, which was found by the Swiss

mathematician Leonhard Euler and they solved the famous

Konigsberg bridge problem. This problem raised the

question of whether it was possible to walk across all seven

bridges of the city of Konigsberg without crossing any

bridge twice. Euler’s work on this problem is considered to

be the first instance of graph theory applied to a real-world

problem. And also it applied to a wide range of applica-

tions, such as computer science, engineering, operations

research, social sciences, medical diagnosis, and many

other fields. Especially, in the medical field, which has the

ability to represent complex systems and have a powerful

analytical tool for identifying disease diagnosis (Chen

1997).

On the other hand, fuzzy set (FS) theory is a mathe-

matical concept that was developed by Zadeh in 1965,

which is based on the conception of crisp set theory (Zadeh

et al. 1996). Followed by Zadeh’s groundbreaking idea of

fuzzy sets, Goguen (1967) proposed the theory of the

L-fuzzy sets. This concept was aimed to provide a more

comprehensive description of a set. Thus, Goguen’s idea of

an L-fuzzy set has an important milestone in the evolution

of fuzzy logic. Besides, IVFS was intended by Zadeh in

1975 as an extension of FS theory. They are used to rep-

resent the membership of a given element in a fuzzy set

with a range of intervals instead of a single value, which

allows a more precise and accurate representation of

uncertainty in a system (Zadeh 1975). Moreover, the

authors developed a new FS called interval-valued intu-

itionistic fuzzy set (Atanassov and Gargov 1989), which

assigns a range of values from a lower limit and an upper

limit to the elements of a set.

Following that, fuzzy modeling utilizes a mathematical

construct known as a signature to model fuzzy subsets,

rules, and relations. A signature is defined by a set of

operators that give a description of the membership degrees

of elements within the fuzzy set. It is used to model fuzzy

rules, relations, systems, and control. The accuracy and

effectiveness of fuzzy logic systems have been increased
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by the use of signatures. Also, it can be used to identify

objects, estimate system behavior, locate data clusters, and

so on. The fuzzy signature models allow them to make

more accurate predictions and are simple to use (Pozna

et al. 2012). But, it is essential to observe that the lack of

proper numerical scheme analysis has been a significant

obstacle whereas the pure statistical procedure has been

attempted. In addition, the idea of the vector-valued fuzzy

set (VVFS) was generated in the response to an industrial

project that required the identification of microscopic pic-

tures of various steel alloys based on a number of criteria,

such as texture, directedness, and fineness. Subsequently,

fuzzy decision-making applications adopted the VVFS

concept (Koczy 1980). Later the applications prompted a

hierarchically organized expansion of the VVFS formula-

tion, resulting in the fuzzy signature idea. In detail, fuzzy

signatures are mathematical functions that are used to

represent the characteristics of a given data set. They are

used to identify patterns in the data and make predictions

about the behavior of the data. Also, they provide a way to

identify patterns and relationships in data that would

otherwise be difficult to determine (Koczy et al. 2021).

Moreover, these are commonly used in many areas of

research, including machine learning, pattern recognition

(Rathnasabapathy and Palanisami 2022), and artificial

intelligence and image processing (Premalatha and

Dhanalakshmi 2022; Rathnasabapathy and Palanisami

2022). The authors (Koczy et al. 2021) suggested the new

concept named fuzzy signature, which only consists of

membership degree but not considered the intervals. Also,

this study lacks a comprehensive analysis of the various

properties of fuzzy signatures, as well as lacks their

applications. Moreover, the fuzzy signature does not deal

with uncertain situations in the statistical evaluation

process.

Followed to the above study, Chen (1997) built the

concept of interval-valued fuzzy hypergraphs and fuzzy

partitions as a generalization of hypergraphs and fuzzy

partitions, respectively. This study verifies the properties of

the structures, and its applications, as well as their rela-

tionships between them. Moreover, Chen and Wang (2009)

investigated the use of interval-valued fuzzy grade sheets

to evaluate students’ answer scripts. In (Chen 2011), the

article investigated the use of similarity measures between

interval-valued fuzzy numbers to analyze fuzzy risk.

Nevertheless, the authors in (Chen et al. 2012) explored

a new multi-attribute decision-making method based on an

interval-valued intuitionistic fuzzy weighted average

operator and a fuzzy ranking method for intuitionistic

fuzzy values. Then, Zeng et al. (2020) recommended an

approach to solve the problem of interval-valued intu-

itionistic fuzzy multiple attribute decision-making in the

IVIFS environment. Besides, Susniene et al. (2021) create

a combined fuzzy signature model using Organizational

Citizenship Behavior (OCB) and Counterproductive Work

Behavior (CWB). Further, Chen and Chiou (2014), and

Komarudin et al. (2021) suggested a novel approach to

combining Linear Quadratic Regulator (LQR) controllers

using fuzzy signature-based Particle Swarm Optimization

(PSO). Furthermore, Shuichi Shuichi et al. (2021) formed

an approach to cryptographic authentication systems that

rely on biometrics, combining fuzzy signature and bio-

metric authentication methods. In recent decades, Koczy

et al. (2022) offered a novel similarity measure for fuzzy

signatures, which was applied to employee engagement in

Hungary and Lithuania. Further, the experts (Chaurasiya

and Jain 2022; Banitalebi and Borzooei 2023) introduced

an algorithm for solving multi-criteria healthcare waste

treatment problems that have been based on the Pytha-

gorean fuzzy entropy measure. Furthermore, based on

Fuzzy Inference System (FIS) (Ejegwa et al. 2022; Lilik

et al. 2022; Akram and Martino 2022), a new aggregation

operator has been developed. Following this context, Fer-

enczi et al. (2022) suggested an approach for optimizing

material handling management problems using fuzzy sig-

natures and state-dependent weighting. Then, Singh (2022)

examined the concept of bipolarity in a multi-way fuzzy

context algorithm to calculate the granules of bipolar fuzzy

sets. And also, the aforesaid studies do not deliver any

insights into the contexts of the similarity measure.

Besides, the fuzzy signature model relies too heavily on

subjective measurements, which may lead to unreliable

results. In this scenario, IVFSig provides an effective way

to represent imprecise and uncertain information instead of

a classical signature.

Based on the above thoughts, we develop a new signa-

ture called IVFSig and the contribution of this study is

detailed below.

1. We present a method for constructing an algebraic

framework for IVFSig’s, based on the premise of

IVFSs. We define a family of IVFSig’s associated with

a graph and a family of aggregation operators.

2. A meet and join operators are defined using the concept

of a family of IVFSig’s, and then their lattice algebraic

structure is verified.

3. As an algebraic structure, the family of IVFSig’s, the

meet, and the join together form a bounded lattice and

it also establishes the partial ordering relation in an

IVFSig. Then, the proposed study has been compared

with the existing method.

4. At last, numerical examples are given to show the

performance of the addressed technique.

In light of the aforementioned studies, this paper is orga-

nized in the following manner: in Sect. 2, the study begins

with the fundamental conceptions linked with graph theory.
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Section 3 provides the creation of families of aggregation

operators. Section 4 delivers the definitions of an IVFSig, a

leaf interval-valued fuzzy sub signature, and a root inter-

val-valued fuzzy sub signature. Based on IVFSig’s the

meet and join operators are formulated in Sect. 5. Then,

Sect. 6 discusses the construction of partial ordering con-

nections between IVFSig’s. At last, the conclusions are

presented in the final section.

2 Brief description of graph theory

In this section, we introduce several well-known notions

and results which are necessary for our subsequent devel-

opments. This section provides an overview of the key

concepts in graph theory that will be utilized later.

Definition 2.1 (Hallquist and Hillary 2018) A graph G ¼
ðV;EÞ is a set of objects, where V stands for vertices or

nodes and E stands for the pairwise connections between

nodes.

Definition 2.2 (Koczy et al. 2021) Let the graph

G ¼ ðV;EÞ, and y; z 2 V be the coordinates of the graph.

We state that:

• If k� 2, k is an integer. A graph having node set

fv1; v2; . . .; vkg � V and edge set

ffv1; v2g,...,fvk�1; vkgg � E, having y ¼ v1 and

z ¼ vk, is a path yz on k nodes in G.

• A cycle is defined as a journey that starts and finishes at

the same node.

Definition 2.3 (Koczy et al. 2021) Let G ¼ ðV;EÞ be a

graph. Here is what we say:

• If each pair of nodes y; z 2 V has a path yz, then G is

connected.

• If G has no cycles and is connected, it is a tree.

• A tree G is said to be rooted if it has a node called the

root and all of its edges point away from it.

Definition 2.4 (Koczy et al. 2021) G ¼ ðV;EÞ is a rooted

tree having V ¼ fv0; v1; . . .; vng with v0 as the root. Here is

what we say:

• The length of any path vi; vj in G interconnecting the

nodes vi and vj in V is one less than the number of nodes

appearing in the path. The length of a path vivj will be

symbolised by the letter lðvi; vjÞ.
• The depth of G is represented by

dðGÞ ¼ maxflðv0; viÞjvi 2 Vg.

Definition 2.5 (Koczy et al. 2021) Consider G1 ¼ ðV1;E1Þ
and G2 ¼ ðV2;E2Þ to be rooted trees. If V1 � V2 and

E1 � E2, we can say that G1 is a rooted subtree of G2,

which is indicated by G1 � G2.

Definition 2.6 (Koczy et al. 2021) Consider G1 ¼ ðV1;E1Þ
and G2 ¼ ðV2;E2Þ to be rooted trees. G1 [ G2 ¼ ðV1 [
V2;E1 [ E2Þ and G1 \ G2 ¼ ðV1 \ V2;E1 \ E2Þ are the

union and intersection of rooted trees G1 [ G2 and

G1 \ G2, respectively.

It is worth noting that if G1 is a rooted subtree of G2,

then G1 [ G2 ¼ G2 and G1 \ G2 ¼ G1. The following

example demonstrates the concepts of rooted tree union

and intersection.

Example 2.1 Consider the rooted trees G1 ¼ ðV1;E1Þ and
G2 ¼ ðV2;E2Þ demonstrated in Fig. 1. Using Defini-

tion 2.6, we can get the rooted trees G1 [ G2 and G1 \ G2

are illustrates in Fig. 2.

Proposition 2.1 (Koczy et al. 2021) Let us pretend that

G1 ¼ ðV1;E1Þ, G2 ¼ ðV2;E2Þ, and G3 ¼ ðV3;E3Þ are all

rooted trees. The characteristics listed below are then

checked:

• G1 [ G2 ¼ G2 [ G1

• ðG1 [ G2Þ [ G3 ¼ G1 [ ðG2 [ G3Þ and ðG1 \ G2Þ \ G3

¼ G1 \ ðG2 \ G3Þ
• G1 [ ðG1 \ G2Þ ¼ G1 and G1 \ ðG1 [ G2Þ ¼ G1:

3 Organization of aggregation operators

Throughout this article, aggregation operators will also

play a significant role, because they will be taken into

account in the definition of IVFSig and operations between

two general IVFSig’s. Following that, we will provide

several examples as well as the formal definition of

aggregation operator.

(a) Rooted tree G1 (b) Rooted tree G2

Fig. 1 Rooted trees
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Definition 3.1 (Koczy et al. 2021) Assume that

ðP; � ;?;>Þ is a bounded poset. An order-preserving n-

ary aggregation operator w : Pn ! P is one that satisfies

the following equalities: wð>; . . .;>Þ ¼ > and

wð?; . . .;?Þ ¼ ?.

Aggregation operators include conjunctive and dis-

junctive operators, as well as averaging and hybrid oper-

ators. The following illustration show some common

aggregation operators.

The arithmetic mean M, geometric mean G, and har-

monic mean H are aggregation operators of the averaging

type specified as

Mðc1; c2; . . .; cnÞ ¼
Xn

i¼1

ci
n
;

Gðc1; c2; . . .; cnÞ ¼
Yn

i¼1

ci

 !1
n

;

and Hðc1; c2; . . .; cnÞ ¼
nPn
i¼1

1
ci

on the unit interval:

Additionally, the weighted average on [0, 1] is a non-

commutative aggregation operator.

Nðc1; c2; . . .; cnÞ ¼
2

n
ðnþ 1Þ

Xn

i¼1

ici:

We are focused on a collection of aggregation operators A

and an ordering relation � that together make a complete

lattice ðA;YÞ. This pair will be referred to as a family of

aggregators, and the infimum and supremum of this

ordering will be indicated as infY and supY, respectively.

One of the most fundamental and non-trivial families of

aggregation operators is A ¼ fwinf ;wr;ws;wsupg, where

winf : ½0; 1�
2 ! ½0; 1� is described as winfðr; sÞ ¼ inffr; sg,

wr;ws : ½0; 1� ! ½0; 1� are identity mappings wrðrÞ ¼ r,

wsðsÞ ¼ s, and wsup : ½0; 1�
2 ! ½0; 1� is determined by the

supremum operator wsupðr; sÞ ¼ supfr; sg, for all

r; s 2 ½0; 1�.
The aggregation operator winf is linked to the finf :

½0; 1�2 ! ½0; 1� mapping, which is given as

finfðr; sÞ ¼ inffr; sg, wr is related with the mapping fr :

½0; 1�2 ! ½0; 1� provided by frðr; sÞ ¼ r, ws is linked to the

fs : ½0; 1�2 ! ½0; 1� mapping, which is defined by frðr; sÞ ¼
r and wsup is defined as the mapping finf : ½0; 1�2 ! ½0; 1�
provided by fsupðr; sÞ ¼ supfr; sg, for all r; s 2 ½0; 1�.
Because finf ; fr; fs, and fsup are all binary mappings, we may

say finf � fr � fsup and finf � fs � fsup. Furthermore, the

mappings of fr and fs are incomparable. As a result, as seen

in Fig. 3, this ordering relation allows us to structure the

aggregation operators hierarchically.

As with other families of four elements, it could be

easily defined. For any r; s 2 ½0; 1�, for instance, the

aggregator operator winf can be replaced with any other t-

norm or operator w? which fulfils the w?ðr; sÞ� r and

w?ðr; sÞ� s conditions.

Similarly, for any r; s 2 ½0; 1�, the aggregator wsup can be

replaced with another t-conorm or operator w>, fulfilling
the inequalities r�w>ðr; sÞ and s�w>ðr; sÞ.

For instance, assuming a t-norm T : ½0; 1�2 ! ½0; 1�
(Cretu 2001; Kesicioglu et al. 2015; Klement et al. 2002)

and the aggregator operators w?;wr;ws;wsup : ½0; 1� !
½0; 1� described as w?ðr; sÞ ¼ Tðr; sÞ; wrðrÞ ¼ r; wsðsÞ ¼ s;

and wsupðr; sÞ ¼ supfr; sg, we receive the family

A2ðTÞ ¼ fw?;wr;ws;wsupg, with the ordering shown by

the Hasse diagram in Fig. 4.

The preceding family is labelled as A2ðTÞ because a

similar family may be constructed for any t-norm T and an

arbitrary number of variables. The similar family with 3

arguments is labelled as A3ðTÞ and is shown in Fig. 5.

In the following sections, we will propose a technique

for creating families of aggregation operators from a pre-

fixed set of aggregators. The user may require this set. For

example, these operators might be useful for the user to

address the application problem.

Assume ½0; 1�½0;1��½0;1�
is the whole set of binary map-

pings from ½0; 1� � ½0; 1� to [0, 1], that is, ½0; 1�½0;1��½0;1� ¼
ff j f : ½0; 1� � ½0; 1� ! ½0; 1�g: Consider the set

(a) G1 ∪ G2 (b) G1 ∩ G2

Fig. 2 G1 [ G2 and G1 \ G2 of the rooted trees G1 and G2

Fig. 3 Hasse diagram of the

ordering relation on

A ¼ fwinf ;wr;ws;wsupg
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ff?; fr; fsg � ½0; 1�½0;1��½0;1�
in which f?ðr; sÞ ¼ Tðr; sÞ,

where T is a t-norm distinct from the Godel t-norm (the

minimum), frðr; sÞ ¼ r, and fsðr; sÞ ¼ s. We shall compute

the closure set of ff?; fr; fsg using the supremum and infi-

mum, taking into consideration that f? � fr , f? � fs, and fr
and fs are incomparable binary mappings. We get two new

binary mappings, fsup and finf , from this technique, that

are defined as fsupðr; sÞ ¼ supffrðr; sÞ; fsðr; sÞg ¼ supfr; sg
and finfðr; sÞ ¼ inf ffrðr; sÞ; fsðr; sÞg ¼ inffr; sg, respec-

tively. Furthermore, because the Godel t-norm is the

greatest t-norm, we can assure that the inequality f? � finf
holds. As a result, by determining the supremum and

infimum pointwise of every pair of mappings in the set, the

set ff?; fr; fsg may be viewed as a generator system from

which a family of binary aggregation operators

ff?; finf ; fr; fs; fsupg can be produced. This family of binary

aggregation operators is seen in Fig. 6.

Following the current reasoning, we may construct the

family of aggregation operators with 3 arguments, the

family of aggregation operators with 4 arguments, and so

on.

4 Constructing interval-valued Fuzzy
signatures

Theoretically, IVFSigs have been studied, and some

interesting mathematical properties have been looked into.

However, there are still a lot of questions about this area of

research. If the family of IVFSig’s is paired with suit-

able meet and join operators, we want to know if it has the

algebraic structure of a lattice. Following that, various

definitions related to IVFSig’s will be provided, along with

some clarifying examples.

The notions of a rooted tree and family of aggregation

operators are key to introducing the formal definition of

IVFSig. Hereafter consider G ¼ ðV ;EÞ as a tree with root

Fig. 4 Hasse diagram of the

ordering relation defined on

A2ðTÞ ¼ fw?;wr;ws;wsupg

Fig. 5 Ordering relation

A3ðTÞ’s Hasse diagram

Fig. 6 Family of binary aggre-

gation operators

ff?; finf ; fr; fs; fsupg
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v0, where the set of nodes is partitioned into 2 subsets, L

and N, with a non-empty subset L containing the leaves and

a subset N containing the inner nodes, respectively, ful-

filling that L [ N ¼ V and L \ N ¼ /, that is, V ¼ L ] N,

and that jV j ¼ m, jLj ¼ l. Hence, v0 2 N unless V ¼ fv0g,
G is a single leaf.

Definition 4.1 (Koczy et al. 2021) Let fA1; . . .;Ang
denote a collection of aggregation operator families. Con-

sider a set of fuzzy membership (MF) degrees lj 2 ½0; 1�,
with j 2 f1; . . .; lg, allocated to each leaf in L; and the

collection of aggregation operators hi 2 Ai is applied to

each inner node in N, where i 2 f1; . . .; ng. The tuple S ¼
hN; L; fh1; h2; . . .; hng; fl1; . . .; llgi is known as a fuzzy

signature associated with G, the tuple St ¼
hN; L; fh1; h2; . . .; hngi is called the structure of S;

fl1; . . .; llg is the MF degree set of S.

Depending on the length of the node to be denoted to the

root, we shall give several subscripts to the nodes appear-

ing in an IVFSig for practical purposes. As an outcome, if

v 2 V and lðv0; vÞ ¼ 1, we shall write v with one subscript,

if lðv0; vÞ ¼ 2, we will write v with two subscripts and so

on. If v0 has n0 children, its descendants will be denoted as

v1; v2; . . .; vn0 ; If v1 has n1 children, the following will be

written: v1;1; v1;2; . . .; v1;n1 . Inductively, if vi1;i2;...;id 2 V is

not the root and has nd children, the children are vi1;i2;...;id ;1 ;

. . .; vi1;i2;...;id ;nd . When there is no chance of confusion, we

shall write the subindices without commas, that is vi1i2;...;idnd
instead of vi1;i2;...;id ;nd .

Here, N will be segmented into N ¼ N0 [ N1 [ . . . [ Nk

from which k ¼ maxflðv0; vÞ j v 2 Vg ¼ dðGÞ, N0 ¼ v0
as well as we get Nh ¼ fv 2 V j lðv0; vÞ ¼ hg here

h 2 f1; 2; . . .; kg. It is worth noting that all nodes in Nh

have precisely h subscripts. The first denoting the subscript

of the ancestor node that is a direct child of the root. The

first and second producing the subscript of the ancestor,

that is a grandchild of the given root.

Example 4.1 Consider G be a rooted tree with dðGÞ ¼ 2,

with nodes V ¼ fv0; v1; v2; v11; v21; v22; v23g, leaves

L ¼ fv11; v21; v22; v23g, and inner nodes N ¼ fv0; v1; v2g.
The root v0 has two children, v1 and v2, and the node v1 has

two children, v11 and v12. The node v2 has three children,

v21, v22, and v23. The tree can be presented graphically

using this notation. This rooted tree is shown in Fig. 7,

from which we can determine the sets N0 ¼ fv0g and N1 ¼
fv1; v2g that fulfill N ¼ N0 [ N1.

Assuming the fuzzy MF degrees l11,l12, l21, l22, l23 2
½0; 1� applied to the leaves L, the bundle of aggregation

operator families fA2ðGÞ;A1;A3ðPÞg is defined as fol-

lows:A2ðGÞ is the aggregation operator family constructed

from the Godel t-norm with 2 variables; A1 is the

aggregation operator family constructed from the Godel

t-conorm with 2 variables; and A3ðPÞ is the family of

aggregation operators is made up of the product t-norm

with 3 variables. Each inner node in N is allotted with the

aggregation operators h0 2 A2ðGÞ, h1 2 A1, and

h2 2 A3ðPÞ.
h0ðp; qÞ ¼ minfp; qg
h1ðp; qÞ ¼ maxfp; qg
h2ðp; q; rÞ ¼ p 	 q 	 r:

The fuzzy signature, S ¼ hN; L; fh0; h1; h2g,
fl11; l12; l21; l22; l23gi is outlined in Fig. 7. The structure

(St) of the fuzzy signature can also be seen in this diagram,

where h0 is allocated to the root, and h1; h2 are assigned to

the children. In Fig. 8a, a specified set of MF degrees is

evaluated, and the variables are substituted with constant

values to yield the fuzzy signature, S ¼ h N;L; fh0; h1; h2g,
f 0.76, 0.86, 0.6, 0.5, 0.4gi.

Definition 4.2 (Koczy et al. 2021) The evaluation of a

fuzzy signature S associated with G ¼ ðV ;EÞ, denoted as

E(S), is the MF degree assigned to v0 obtained by executing

all the general aggregation operators in S, starting from the

MF degrees in the leaves.

Example 4.2 Returning to Example 4.1, we can determine

the evaluation of the fuzzy signature, S ¼
h N; L; fh0; h1; h2g; f 0.76, 0.86, 0.6, 0.5, 0.4 gi shown in

Fig. 8a. Using basic computations, we can assess that the

evaluation of the fuzzy signature, EðSÞ ¼ 0:12. This

approach is presented in Fig. 8b and c.

(a) Rooted tree G (b) Structure St of Example 4.1

Fig. 7 Rooted tree & its fuzzy signature structure
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Definition 4.3 Let fA1; . . .;Ang denote a collection of

aggregation operator families. Given a set of interval-val-

ued fuzzy MF degrees ½l�j ; lþj � 2 ½0; 1�, with j 2 f1; . . .; lg,
allocated to each leaf in L; and the collection of aggrega-

tion operators wi 2 Ai is applied to each inner node in N,

where i 2 f1; . . .; ng. The tuple IS ¼ hN; L; fw1; . . .;

wng,f½l�1 ; lþ1 �; . . .; ½l�l ; lþl �gi is known as an IVFSig

associated with G, the tuple ISt ¼ hN; L; fw1;w2; . . .;wngi
is called the structure of IS; f½l�1 ; lþ1 �; ½l�2 ; lþ2 �;
. . .; ½l�l ; lþl �g is the MF degree intervals set of IS.

We will use the following example to demonstrate the

concept of an IVFSig and the preceding concerns about the

notation.

Example 4.3 Consider G be a rooted tree with dðGÞ ¼ 2,

with nodes V ¼ fv0; v1; v2; v11; v21; v22; v23g leaves L ¼
fv11; v21; v22; v23g and inner nodes N ¼ fv0; v1; v2g. The

root v0 has two children, v1 and v2, and the node v1 has two

children v11 and v12. The node v2 has three children, v21,

v22, and v23. The tree may be presented graphically using

this notation. This rooted tree is shown in Fig. 9, from

which we can determine the sets N0 ¼ fv0g and N1 ¼
fv1; v2g that fulfill N ¼ N0 [ N1.

Assuming the interval-valued fuzzy MF degrees

½l�11; lþ11�, ½l�12; lþ12�, ½l�21; lþ21�, ½l�22; lþ22�, ½l�23; lþ23� 2 ½0; 1�
applied to the leaves L, the bundle of aggregation operator

families fA2ðGÞ;A1;A3ðPÞg, here A2ðGÞ is the aggrega-

tion operator family constructed from the Godel t-norm

with 2 variables, A1 is the aggregation operator family

constructed from the Godel t-conorm with 2 variables, and

theA3ðPÞ is the family of aggregation operators is made up

of the product t-norm with 3 variables. Each inner node in

N is allotted with the aggregation operators w0 2 A2ðGÞ,
w1 2 A1, w2 2 A3ðPÞ, are defined as follows:

w0ðp; qÞ ¼ minfp; qg
w1ðp; qÞ ¼ maxfp; qg
w2ðp; q; rÞ ¼ p 	 q 	 r:

w0 is allocated to the root, whereas w1;w2 are assigned to

the children. Then the IVFSig, IS ¼ hN; L; fw0;w1;w2g;
f½l�11; lþ11�; ½l�21; lþ21�, ½l�22; lþ22�; ½l�23; lþ23�gi is also outlined

in Fig. 9. The structure (ISt ) of the IVFSig, IS may be seen

in this diagram.

In Fig. 10a, a specified set of MF degrees is evaluated,

and the variables are substituted with constant values,

yielding the suitable IVFSig, IS ¼ h N; L; fw0;w1;w2g, f [

0.76, 0.88], [ 0.86, 0.96], [ 0.65, 0.92], [ 0.55, 0.78], [0.42,

0.69] gi.

Another intriguing concept in this paper is the assess-

ment of an IVFSig.

Definition 4.4 An IVFSig entrusted with G ¼ ðV ;EÞ is to
v0 acquired and evaluated by performing all of the general

aggregation operators in IS, beginning with the MF degrees

(a) Fuzzy signature S

in Example 4.1

(b) Evaluation of the fuzzy

signature in Example 4.2 (c) E(S) = 0.12

Fig. 8 Fuzzy signature and its evaluation

(a) Rooted tree G (b) Structure ISt of

Example 4.3

Fig. 9 Rooted tree & its structure

(a) Interval-valued fuzzy

signature IS in Example 4.3

(b) Evaluation E(IS) of the
IVFSig, IS in Example 4.4 (c) E(IS) = [0.15, 0.50]

Fig. 10 Interval-valued fuzzy signature and its evaluation
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in the leaves. EðISÞ represents the assessment of the

IVFSig.

Example 4.4 Returning to Example 4.3, we will determine

the evaluation of the IVFSig, IS ¼ h N; L; fw0;w1;w2g; f [

0.76, 0.88], [ 0.86, 0.96], [ 0.65, 0.92], [ 0.55, 0.78], [0.42,

0.69] gi shown in Fig. 10a. Using basic computations, we

assess that the evaluation of the IVFSig, IS is

EðISÞ ¼ ½0:15; 0:50�. This approach is presented in Fig. 10b
and c.

The concepts and examples that follow will help us

grasp the concept of IVFSig’s. They also allow partial

assessments of IVFSig’s to be computed.

Note 1 Based on Examples 4.2 and 4.4, we have evaluated

the comparison study. Figure 8 of Example 4.2 shows the

evaluation of the fuzzy signatures as well as Fig. 10 of

Example 4.4 provides an evaluation of the IVFSig. In this

context, both examples utilized the aggregation operators

accordingly. Then, the findings of both examples give the

best results, but Fig. 8 does not consists the membership

intervals; therefore, it obtained the result as low value. On

the other hand, in Fig. 10, the outcome of the evaluation is

[0.15, 0.50], which presents the intervals as well as

advanced one compared to the existing one. Therefore, we

conclude that the IVFSig performed better in the evaluation

of fuzzy signature.

Definition 4.5 Let G be the rooted tree, with N repre-

senting the inner node collections and IS being the IVFSig

associated with G.

• The leaf subtree of G associated with v 2 N is the tree

whose root is v and which contains the descendant

nodes of v as well as the related edges. LGðvÞ is a leaf

subtree of G related to v 2 N.

• The leaf subtree LGðvÞ contains the aggregation oper-

ators and MF degree intervals for each node in the

IVFSig IS. It is referred to as the leaf interval-valued

fuzzy sub-signature of IS associated with v 2 N. The

new signature is known as LISðvÞ.

Because a leaf interval-valued fuzzy subsignature is a

specific IVFSig, evaluating it is as simple as EðLISðvÞÞ, as
shown in Definition 4.4.

Example 4.5 Turning to Example 4.3, we now construct

the leaf subtree of G associated with v2, namely LGðv2Þ, as
seen in Fig. 11. LISðv2Þ, the leaf interval-valued fuzzy

subsignature of IS correlated with v2 2 N, is shown in

Fig. 12; Furthermore, the leaf interval-valued fuzzy sub-

signature of IS associated with v2 2 N, EðLISðv2ÞÞ is clearly
w2([ 0.65, 0.92], [ 0.55, 0.78], [ 0.42, 0.69]) = [ 0.15, 0.50].

The leaf interval-valued fuzzy subsignature’s dual def-

inition is similarly valuable, and it is discussed next.

Definition 4.6 Suppose IS be an IVFSig connected with G.

• The root subtree RGðvÞ of a tree G is formed by

removing all descendants of v from G, and it is

connected to v 2 N.

• The root interval-valued fuzzy sub signature of an IS
associated with v 2 N in the root subtree RGðvÞ includes
the evaluation of the leaf interval-valued fuzzy sub

signature in the node v, where the aggregation operators

and membership degrees of the original IVFSig IS are

preserved in the other nodes of the graph. This signature

is called RISðvÞ.

Unlike the leaf subtree, the evaluation of RISðvÞ in this

instance fulfils RISðvÞ ¼ EðISÞ for every v 2 N. We will

return to Example 4.3 to explain the concepts mentioned

before.

Example 4.6 We would calculate the root subtree of the

graph G and the root interval-valued fuzzy subsignature of

IS corresponding to v 2 N in the surroundings of Exam-

ple 4.3, which seems to be RGðv0Þ in Fig. 13 and RISðv0Þ in

(a) Rooted tree G (b) Leaf subtree LG(v2)
of Example 4.5

Fig. 11 Rooted tree and its one of the leaf subtrees LGðv2Þ

(a) IVFSig IS

(b) Leaf interval valued fuzzy

subsignature LIS (v2) of
Example 4.5

Fig. 12 IVFsig’s and leaf interval valued fuzzy subsignature LIS ðv2Þ
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Fig. 14. In this circumstance,

RISðv0Þ ¼ EðISÞ ¼ ½0:15; 0:50�.

Remark 4.1 Suppose G ¼ ðV;EÞ indicate the rooted tree,

with N designating the set of inner nodes.

• Definitions 4.5 and 4.6 show that for each v 2 N,

RGðvÞ [ LGðvÞ ¼ G and RGðvÞ \ LGðvÞ ¼ v. In RGðvÞ,
an inner node v becomes a leaf.

• Even if the root interval-valued fuzzy sub signature of

IS linked to one of its leaves does not produce any

change in IS, Definition 4.6 may be extended to any

node.

5 Join and meet operators in a family
of IVFSig

IVFSig was made to describe things or events that let

different structures with uncertain properties be used. The

main benefit of modeling with IVFSig is that different

IVFSig may appear in the same issue due to missing data

on one or more of the features defined by the leaves, or

even on whole feature groups defined by leaf subtrees.

A basic illustration is when an IVFSig describing a

patient’s body temperature is considered, as shown in the

application. It may be an IVFSig’s with three inner nodes,

each of which has four leaves. The temperatures on the day

before yesterday, yesterday, and today are represented by

the three potential leaf subtrees. Each leaf in a leaf subtree

represents body temperature in the morning, noon, after-

noon, and evening.

The very first leaf subtree is lacking for patients who

were admitted yesterday. Today’s new arrivals will miss

the first and second leaf subtrees, and depending on the

time, one or more leaves of the last subtree. A patient may

have fewer than four temperature measurements on those

days.

Even so, some individuals may only have average body

temperatures throughout the whole duration. In this

manner, whole subtrees might be missed, or just a few

leaves from some of the subtrees, or they may be replaced

by single leaves assigned interval-valued fuzzy MF degrees

expressing the degree of getting ‘‘high body temperature’’,

or simply fever, on a specific day, or in the period under

inspection in general.

Considering these things, Building a database of possi-

ble IVFSig’s may be very helpful that might represent

information related to a certain situation. In addition, if you

want to combine two or more IVFSig’s, you will need to

specify the meet and the join operators on them. In the

following parts, we will provide a more in-depth expla-

nation of the aforementioned ideas.

We will begin by defining a family that is constructed

using a rooted tree and the sets of families of aggregation

operators.

Definition 5.1 Assume that G ¼ ðV;EÞ. N ¼
fv0; v1; . . .; vng is a collection of inner nodes for a tree with

a root v0, and A ¼ fA0;A1; . . .;Ang is a sets of families of

aggregation operators. The F ðG;AÞ family of IVFSig’s,

which are derived from G and A, is defined as follows:

fISk ¼ hNk; Lk; fwi1
; . . .;wip

g; f½l�1 ; lþ1 �; . . .; ½l�q ; lþq �gijGk

� G and wij
2 Aij ; for all vij 2 Nkg;

where Gk ¼ ðNk [ Lk;EkÞ is a subgraph of G that satisfies

that v0 2 Nk, and ISk is an IVFSig associated with Gk.

Definition 5.2 Let IS be an IVFSig for the rooted tree GIS

and the collection of aggregation operator families AIS .

The F ðGIS ;AISÞ family of IVFSig’s is defined as the family

of IVFSig’s created from IS.

Definition 5.3 Let IS be an IVFSig for the rooted tree GIS

and the collection of aggregation operator families AIS . Let

IS1 ; IS2 2 FðGIS ;AISÞ represent IVFSig’s associated with

(a) Rooted tree G (b) Root subtree RG(v0)
of Example 4.6

Fig. 13 Rooted tree and its root subtree RGðv0Þ

(a) IVFSig IS

(b) Root interval valued fuzzy

subsignature RIS (v0) of
Example 4.6

Fig. 14 IVFSig’s and root interval valued fuzzy subsignature RIS ðv0Þ
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G1 ¼ ðV1;E1Þ and G2 ¼ ðV2;E2Þ, respectively, where L1,

L2 are leaf collections and N1, N2 are inner node collections

of each tree G1 and G2. The IVFSig linked with the rooted

tree G1 \ G2 ¼ ðV1 \ V2;E1 \ E2Þ, where NG1\G2
repre-

sents the collection of inner nodes and LG1\G2
the collection

of leaves, is the meet of the IVFSig’s IS1 and IS2 , which will

be designated as IS1 ^ IS2 . The following rules will deter-

mine the MF degrees allocated to each leaf in LG1\G2
and

the aggregation operators applied to each inner node in

NG1\G2
:

• If v 2 NG1\G2
, the aggregation operator for v is

wv ¼ inf
Y
fw1

v ;w
2
vg, where w

1
v is the aggregation operator

for v 2 N1 in IS1 and w2
v is the aggregation operator for

v 2 N2 in IS2 .

It’s interesting to note that if wv has fewer leaves

than variables, the missing variables will have a value

of zero when the IVFSig IS1 ^ IS2 is evaluated.

• If v 2 LG1\G2
, MF degree given to v is computed by

taking into account the following scenarios:

(i) If v 2 L1 and v 2 L2 are present, v’s MF degree

equals ½l�v ; lþv � ¼ inff½l1�v ; l1þv �; ½l2�v ; l2þv �g,
where ½l1�v ; l1þv � represents the MF degree

allocated to v 2 L1 and ½l2�v ; l2þv � represents

the MF degree allocated to v 2 L2.

(ii) If v 2 L1 and v 2 N2 are present, theMF degree

given to v is ½l�v ;lþv � ¼ ½l1�v ; l1þv �, where

½l1�v ; l1þv � is v 2 L1’s MF degree.

(iii) If v 2 N1 and v 2 L2 are present, theMF degree

assigned to v is ½l�v ; lþv � ¼ ½l2�v ; l2þv �, where
½l2�v ; l2þv � is the MF degree assigned to v 2 L2.

(iv) If v 2 N1 and v 2 N2 are true, v’s MF degree is

½l�v ; lþv � ¼ 0. When the arguments of the

aggregator of v in N1 differ from the arguments

of the aggregator of v in N2, this situation

might occur.

To understand the concept of meet of two IVFSig’s, we

shall present an example.

Example 5.1 Assume the rooted tree GIS ¼ ðV ;EÞ in

Fig. 15, where the set of nodes, the set of leaves, and the

set of inner nodes are V ¼ fv0; v1; v2; v3; v11; v12; v13; v21;
v22; v31; v32g, L ¼ fv11; v12; v13; v21; v22; v31; v32g, and

N ¼ fv0; v1; v2; v3g.
Consider AIS ¼ fA2ðGÞ;A3ðGÞ;A3ðPÞg, a collection of

aggregation operator families, where A2ðGÞ is the aggre-

gation operator family derived from the Godel t-norm and

two variables, and A3ðGÞ is a family of aggregation

operators described by the Godel t-norm and three

variables. The A3ðPÞ operator family is defined by the

product t-norm and three variables.

The aggregation operators w0 2 A3ðGÞ, w1 2 A3ðPÞ,
w2;w3 2 A2ðGÞ that are provided to each inner node in N

are as follows:

w0ðp; q; rÞ ¼ minfp; q; rg
w1ðp; q; rÞ ¼ p 	 q 	 r
w2ðp; qÞ ¼ w3ðp; qÞ ¼ minfp; qg; for every p; q; r 2 ½0; 1�:

Figure 15 also shows the IVFSig IS = hN; L;
fw0;w1;w2g{[0.2, 0.5], [0.6, 0.8], [0.3, 0.75], [0.4, 0.56],
[0.5, 0.89], [0.8, 0.95], [0.5, 0.82]}i:

Let IS1 ; IS2 2 FðGIS ;AISÞ represent the IVFSig’s for the

rooted trees. G1 ¼ ðV1;E1Þ and G2 ¼ ðV2;E2Þ, respec-

tively. These are shown in Figs. 16 and 17 and are defined

by the tuples IS1 ¼ hN1; L1; fw1
v0
;w1

v1
;w1

v2
g {[0.5, 0.82],

[0.4, 0.69], [0.1, 0.92], [0.2, 0.78]}i and IS2 ¼
hN2; L2; fw2

v0
;w2

v1
;w2

v2
;w2

v3
g {[0.3, 0.6], [0.6, 0.75], [0.7,

0.9]}i, respectively, where N1 ¼ fv0; v1; v2g,
L1 ¼ fv3; v11; v13; v21g, N2 ¼ fv0; v1; v2; v3g, L2 ¼
fv11; v22; v32g. For every p; q; r 2 ½0; 1�, the aggregation

operators w1
v0
;w2

v0
2 A3ðGÞ, w1

v1
;w2

v1
2 A3ðPÞ, w1

v2
;w2

v2
;

w2
v3
2 A2ðGÞ allocated to every inner node are defined as:

w1
v0
ðp; q; rÞ ¼ w2

v0
ðp; q; rÞ ¼ maxfp; q; rg

w1
v1
ðp; qÞ ¼ p 	 q

w1
v2
ðpÞ ¼ w2

v1
ðpÞ ¼ p

w2
v2
ðqÞ ¼ w2

v3
ðqÞ ¼ q:

(a) Rooted tree GIS (b) IVFSig IS

Fig. 15 Rooted tree GIS and IVFSig IS of Example 5.1
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We will now determine the meet of the IVFSig’s IS1 and

IS2 . According to Definition 5.3, G1 \ G2 is the rooted tree

corresponding to the IVFSig IS1 ^ IS2 , as seen in Fig. 18.

The set of inner nodes is NG1\G2
¼ fv0; v1g, and the set of

leaves is LG1\G2
¼ fv2; v3; v11g. Using the criteria con-

tained in Definition 5.3, the MF degrees allotted to each

leaf in LG1\G2
and also the aggregation operators assigned

to each inner node in NG1\G2
will be calculated. With

regard to the nodes in LG1\G2
, we identify the following

instances:

• v11 2 L1 and v11 2 L2, then v11’s MF degree is

½l�v11 ; l
þ
v11
� ¼ inff½0:4; 0:69�; ½0:3; 0:6�g ¼ ½0:3; 0:6�:

• v2 2 N1 and v2 2 N2, then lv2 ¼ ½0; 0� is the MF degree

ascribed to v2.

• v3 2 L1 and v3 2 N2, then lv3 ¼ ½0:5; 0:82� is the MF

degree ascribed to v3.

Consider the ordering relation provided on A3ðGÞ and

A3ðPÞ using the complete lattice shown in Fig. 5 for the

nodes in NG1\G2
. The aggregation operators wv0

and wv1

given to v0 and v1, respectively, are as follows:

wv0
¼ inf

Y
fw1

v0
;w2

v0
g ¼ w1

v0
;

wv1
¼ inf

Y
fw1

v1
;w2

v1
g ¼ w1

v1
:

Figure 18 depicts the IVFSig IS1 ^ IS2 ¼
hNG1\G2

; LG1\G2
; fwv0

;wv1
g {[0, 0], [0.5, 0.82], [0.3, 0.6]}i.

Look at the fact that wv1
has fewer leaves than variables.

As a result, in the assessment of the IVFSig IS1 ^ IS2 , the

value of the missing variables will be 0. To acquire the

assessment of the IVFSig IS1 ^ IS2 , we will do the necessary

computations wv1
¼ ð½0:3; 0:4� 	 ½0; 0�Þ ¼ ½0; 0� and wv0

=

max ([0,0], [0, 0], [0.5, 0.82]) = [0.5, 0.82]. As a result, we

arrive at the conclusion that EðIS1 ^ IS2Þ ¼ ½0:5; 0:82�.
Figure 19 shows the step by step evaluation of IS1 ^ IS2 .

In addition, the join of two IVFSig’s IS1 ; IS2 2
FðGIS ;AISÞ will be computed by combining the rooted

trees associated with IS1 ; IS2 and assigning suitable labels to

the nodes in the resulting tree. The labels of the nodes will

be generated using the supremum operator in this example.

Definition 5.4 Let IS be an IVFSig linked to the rooted

tree GIS and, the collection of aggregation operator families

AIS . Let IS1 ; IS2 2 F ðGIS ;AISÞ be IVFSig’s for G1 ¼
ðV1;E1Þ and G2 ¼ ðV2;E2Þ, respectively, where L1; L2 are

leaf sets and N1;N2 are inner node sets of each tree G1 and

G2. The join of the IVFSig’s IS1 and IS2 , denoted as

IS1 _ IS2 , is the IVFSig associated with the rooted tree

G1 [ G2 ¼ ðV1 [ V2;E1 [ E2Þ, where NG1[G2
represents the

set of inner nodes and LG1[G2
the set of leaves. The

(a) Rooted tree G1 (b) IVFSig IS1

Fig. 16 Rooted tree G1 and IVFSig IS1 of Example 5.1

(a) Rooted tree G2 (b) IVFSig IS2

Fig. 17 Rooted tree G2 and IVFSig IS2 of Example 5.1

(a) G1 ∩ G2 (b) IS1 ∧ IS2

Fig. 18 Rooted tree G1 \ G2 and IVFSig IS1 ^ IS2 of Example 5.1

(a) IS1 ∧ IS2

(b) Evaluation E(IS1 ∧ IS2)
of the IVFSig, IS1 ∧ IS2

in Example 5.1

(c) E(IS1 ∧ IS2) = [0.5, 0.82]

Fig. 19 Evaluation EðIS1 ^ IS2 Þ of the IVFSig IS1 ^ IS2 in Example 5.1
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following rules will determine the MF intervals allocated to

each leaf in LG1[G2
and the aggregation operators applied to

each inner node in NG1[G2
:

• If NG1[G2
, the aggregation operator allocated to v is

determined by taking into account the following cases:

(i) If v 2 N1 and v 2 N2 are both true, then the

aggregation operator assigned to v is:

wv ¼ sup
Y

fw1
v ;w

2
vg, where w1

v is the aggrega-

tion operator allotted to v 2 N1 in IS1 and w2
v is

the aggregation operator given to v 2 N2 in IS2 .

(ii) If v 2 N1 and v 2 L2 are true, the aggregation

operator for v is wv ¼ w1
v , where w1

v is the

aggregation operator for v 2 N1.

(iii) Symmetrically, if v 2 L1 and v 2 N2 are true,

the aggregation operator for v is wv ¼ w2
v ,

where w2
v is the aggregation operator for

v 2 N2.

(iv) If v 2 N1 and v 62 V2, the aggregation operator

for v is wv ¼ w1
v , where w1

v is the aggregation

operator allocated to v 2 N1.

(v) If v 62 N1 and v 2 V2, the aggregation operator

for v is wv ¼ w2
v , where w2

v is the aggregation

operator allocated to v 2 N2.

• If v 2 LG1[G2
, the MF degree given to v is determined

taking into account the following scenarios:

(i) If v 2 L1 and v 2 L2 are used, the MF degree

assigned to v is

½l�v ; lþv � ¼ supf½l1�v ; l1þv �; ½l2�v ; l2þv �g, where

½l1�v ; l1þv � is the MF degree v 2 L1 and

½l2�v ; l2þv � is the MF degree v 2 L2.

(ii) If v 2 L1 and v 62 V2, ½l�v ; lþv � ¼ ½l1�v ; l1þv �, is
the MF degree granted to v, where l1v is the MF

degree granted to v 2 L1.

(iii) If v 62 V1 and v 2 L2, ½l�v ; lþv � ¼ ½l2�v ; l2þv �, is
the MF degree granted to v, where ½l2�v ; l2þv � is
the MF degree granted to v 2 L2.

Example 5.2 In the setting of Example 5.1, we will cal-

culate the join of the IVFSig’s IS1 and IS2 , which are

associated with the rooted trees G1 and G2 shown in

Figs. 16 and 17, respectively. By applying Definition 5.4,

we can see that the union of G1 and G2 is the rooted tree

corresponding to the IVFSig’s IS1 _ IS2 , as shown in

Fig. 20. We can determine the set of inner nodes NG1[G2
¼

fv0; v1; v2; v3g and the set of leaves

LG1[G2
¼ fv11; v13; v21; v22; v32g. The membership degrees

assigned to each leaf and the aggregation operators

assigned to each inner node will be determined by using the

rules in Definition 5.4. With respect to the vertices in

LG1[G2
, we can distinguish the following cases:

• v11 2 L1 and v11 2 L2, then v11’s MF degree is

½l�v11 ; l
þ
v11
� ¼ supf½0:4; 0:69�; ½0:3; 0:6�g ¼ ½0:4; 0:69�.

• v13 2 L1 and v13 62 v2, then v13’s MF degree is

½l�v13 ; l
þ
v13
� ¼ ½0:1; 0:92�.

• v21 2 L1 and v21 62 v2, then v21’s MF degree is

½l�v21 ; l
þ
v21
� ¼ ½0:2; 0:78�.

• v22 62 v1 and v22 2 L2, then v22’s MF degree is

½l�v22 ; l
þ
v22
� ¼ ½0:6; 0:75�.

• v32 62 v1 and v32 2 L2, then v32’s MF degree is

½l�v32 ; l
þ
v32
� ¼ ½0:7; 0:9�.

Considering the ordering relation defined on A3ðGÞ and

A3ðPÞ by means of the complete lattice shown in Fig. 5,

we can assign aggregation operators to the vertices in

NG1\G2
:

• v0 2 N1 and v0 2 N2, then v0’s aggregation operator is

wv0
= sup

Y

fw1
v0
;w2

v0
g = w1

v0
= w2

v0
.

• v1 2 N1 and v1 2 N2, then v1’s aggregation operator is

wv1
= sup

Y

fw1
v1
;w2

v1
g = w2

v1
.

• v2 2 N1 and v2 2 N2, then v2’s aggregation operator is

wv2
= sup

Y

fw1
v2
;w2

v2
g = wsup, where wsup ¼ supfa; bg, for

all a; b 2 ½0; 1�.
• v3 2 L1 and v3 2 N2, then v3’s aggregation operator is

wv3
= w2

v3
.

(a) G1 ∪ G2 (b) IS1 ∨ IS2

Fig. 20 Rooted tree G1 [ G2 and IVFSig IS1 _ IS2 of Example 5.2
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Fig. 20 shows the IVFSig’s IS1 _ IS2 , which is represented

by the tuple IS1 _ IS2 ¼ hNG1[G2
; LG1[G2

;

fwv0
;wv1

;wv2
;wv3

g; {[0.4, 69], [0.1, 0.92], [0.2, 0.78], [0.6,
0.75], [0.7, 0.9]}i.

The evaluation of this IVFSig’s is EðIS1 _ IS2Þ=
maxfw2

v1
ð½0:4; 0:69�; ½0:1; 0:92�Þ;wsupð½0:2; 0:78�; ½0:6;

0:75�Þ;w2
v3
ð½0:7; 0:9�Þg.

EðIS1 _ IS2Þ ¼ maxf½0:4; 0:92�; ½0:6; 0:78�; ½0:7; 0:9�g
¼ ½0:7; 0:92�:

The results demonstrate that the meet and join operators

of the family F ðGIS ;AISÞ give rise to a lattice structure as

an abstract algebra (Birkhoff 1940).

Theorem 5.1 Let IS be an IVFSig for the rooted tree GIS

and the collection of aggregation operator families AIS . A

lattice is formed by the family FðGIS ;AISÞ, the meet

operator ^, and the join operator _.

Proposition 5.1 Let IS ¼ hN; L; fw0;w1; . . .; wng;
f½l�1 ; lþ1 �; . . .; ½l�l ; lþl �gi be an IVFSig, linked to the rooted

tree GIS and the collection of aggregation operator families

AIS ¼ fA0;A1; . . .;Ang: Then, for each i 2 f1; 2; . . .; ng,
the tuple ðFðGIS ; AISÞ;^;_Þ is a bounded lattice, with the

least element being the IVFSig IS? ¼ h/; fv0g;/; f½0; 0�gi
and the biggest element being the IVFSig IS> ¼
hN; L; fw>

0 ;w
>
1 ; . . .;w

>
n g; f½1; 1�; . . .; ½1; 1�gi, with w>

i being

the greatest element in Ai.

6 Relations of partial ordering in an IVFSig
family

We concentrate on ordering two IVFSigs from the same

family after introducing the join and the meet operators.

We will now analyze an IVFSig IS associated with a rooted

tree GIS and a collection of aggregation operator families

AIS . Let IS1 ; IS2 2 F ðGIS ;AISÞ be IVFSig’s for G1 ¼
ðV1;E1Þ and G2 ¼ ðV2;E2Þ, respectively, where L1; L2 are

leaf sets and N1;N2 are inner node sets of each tree G1 and

G2. Perhaps it is far natural to assume that the most direct

manner to outline the ordering relation, 
 among IS1 and

IS2 is to compare any two IVFSig’s only by their evalua-

tions, that is by equivalence: IS1 
 IS2 if and only if

EðIS1Þ�EðIS2Þ. In any case, the assessment is not the

foremost important feature of each IVFSig. This is often

why we attempt to function with the IVFSig’s from their

graphs. Hence, it appears that a conceivable request based

on the evaluations does not make sense when we need to

operate with the proper IVFSig’s. Without a doubt, this

definition isn’t compatible with the supremum and infimum

operators, as we are going to show next.

Example 6.1 Let GIS ¼ ðV ;EÞ be the rooted tree repre-

sented in Fig. 21, where the nodes V ¼ fv0; v1; v2;
v11; v12; v21; v22; v23g, the leaves L ¼ fv11; v12; v21; v22; v23g,
and the inner nodes N ¼ fv0; v1; v2g may be identified. Let

AIS ¼ fA2ðGÞ;A3ðPÞg be a set of aggregation operator

families, where A2ðGÞ is the aggregation operator family

formed from the Godel t-norm and 2 variables, and A3ðPÞ
is the aggregation operator family formed from the product

t-norm and 3 variables. Every inner node in N is assigned

the aggregation operators w0;w1 2 A2ðGÞ and

w2 2 A3ðPÞ, which are specified as

w0ðp; qÞ ¼ w1ðp; qÞ ¼ minfp; qg
w2ðp; q; rÞ ¼ p 	 q 	 r:

Figure 21 also shows the IVFSig, IS ¼ hN; L; fw0;

w1;w2g; f½0:2; 0:5�;
½0:5; 0:7�; ½0:7; 0:82�; ½0:5; 0:65�; ½0:3; 0:78�gi.

Let IS1 ; IS2 2 FðGIS ;AISÞ represent the IVFSig’s shown

in Figs. 22 and 23, which are connected with G1 ¼
ðV1;E1Þ and G2 ¼ ðV2;E2Þ, respectively. These IVFSig’s

are IS1 ¼ hN1; L1; fw1
v0
gf½0:61; 0:88�; ½0:62; 0:98�gi and

IS2 ¼ hN2; L2; fw2
v0
; w2

v1
;w2

v2
gf½0:8; 0:9�; ½0:6; 0:8�; ½0:7;

0:8�; ½0:5; 0:7�gi, where N1 ¼ fv0g, L1 ¼ fv1; v2g,
N2 ¼ fv0; v1; v2g, L2 ¼ fv11; v12; v21; v22g, and the aggre-

gation operators w1
v0
;w2

v0
;w2

v1
2 A2ðGÞ, and w2

v2
2 A3ðPÞ,

given to each inner node are defined as:

w1
v0
ðp; qÞ ¼ w2

v0
ðp; qÞ ¼ w2

v1
ðp; qÞ ¼ minfp; qg

w2
v2
ðp; qÞ ¼ p 	 q:

(a) Rooted tree G (b) IVFSig, IS of
Example 6.1

Fig. 21 Rooted tree and its IVFSig
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From Definition 5.3, we are able to compute the meet of

the IVFSig’s IS1 and IS2 , acquiring the IVFSig IS1 ^ IS2
proven in Fig. 24. Note that IS1 ^ IS2 ¼ hNG1\G2

;

LG1\G2
; fwv0

gf½0:61; 0:88�; ½0:62; 0:98�gi, wherein the inner

node set is NG1\G2
¼ fv0g, the leaf set LG1\G2

¼ fv1; v2g
and the aggregation operator is wv0

ðx; yÞ ¼ minfx; yg.
With a few basic calculations, we can find that

EðIS1Þ ¼ ½0:61; 0:88�, EðIS2Þ ¼ ½0:35; 0:56�, and EðLIS1^IS2
ðv0ÞÞ ¼ ½0:61; 0:88�. We can confirm that IS2 
 IS1 using

the ordering relation between IVFSig’s given just above

this example, because EðIS2Þ ¼ ½0:35; 0:56� �EðIS1Þ ¼
½0:61; 0:88�. Therefore, as seen below, the equality EðIS1 ^
IS2Þ ¼ inffEðIS1Þ;EðIS2Þg is not derived:

EðIS1 ^ IS2Þ ¼ ½0:61; 0:88�[ ½0:35; 0:56�
¼ inff½0:61; 0:88�; ½0:35; 0:56�g
¼ inffEðIS1Þ;EðIS2Þg:

Because we are interested in ordering 
 so that

ðFðGIS ;AISÞ;
Þ is a lattice, the natural ordering from the

supremum and infimum operators, as described in lattice

theory, will be addressed in the following.

Definition 6.1 Consider IS1 ; IS2 2 F ðGIS ;AISÞ to be an

IVFSig’s. From the meet operator, the ordering relation 

between IS1 and IS2 is defined as:

IS1 
 IS2 if and only if IS1 ^ IS2 ¼ IS1 :

From the join operator, the ordering relation 
 between

IS1 and IS2 is defined as:

IS1 
 IS2

if and only if IS1 _ IS2 ¼ IS2 :

As a result, this is the ordering that permits the lattice of

the FðGIS ;AISÞ family to be seen as an ordered set in a

clear manner. The following proposition gives a descrip-

tion of this ordering relation.

Proposition 6.1 Consider IS1 ; IS2 2 FðGIS ;AISÞ to be

IVFSig’s connected with the rooted trees, G1 ¼ ðV1;E1Þ

and G2 ¼ ðV2;E2Þ, respectively, where L1 and L2 are the

leaf sets and N1, N2 are the inner node sets of each tree, G1

and G2. Therefore, if IS1 
 IS2 , if and only if the following

assertions are true:

(a) G1 � G2.

(b) If v 2 N1 is present, then w1
vYw2

v , where w1
v repre-

sents the aggregation operator allocated to v 2 N1 in

IS1 and w2
v represents the aggregation operator

allocated to v 2 N2 in IS2 .

(c) If v 2 L1 \ L2, then ½l1�v ; l1þv � � ½l2�v ; l2þv �, where

½l1�v ; l1þv � represents theMF degree allotted to v 2 L1
in IS1 and ½l2�v ;l2þv � represents the MF degree

allotted to v 2 L2 in IS2 .

Proof To begin, we will assume that IS1 
 IS2 and

demonstrate that the propositions (a), (b), and (c) are

satisfied:
(a) Rooted tree G1 (b) IVFSig, IS1 of

Example 6.1

Fig. 22 Rooted tree and its IVFSig IS1

(a) Rooted tree G2 (b) IVFSig, IS2 of
Example 6.1

Fig. 23 Rooted tree and its IVFSig IS2

(a) Rooted tree G1 ∩ G2 (b) IS1 ∧ IS2

Fig. 24 Rooted tree G1 \ G2 and IVFSig IS1 ^ IS2 of Example 6.1
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(a) As for IS1 
 IS2 , we have IS1 ^ IS2 ¼ IS1 . As a result,

the rooted tree G1 \ G2 relating to the IVFSig IS1 ^
IS2 is equivalent to the rooted tree G1 relating to the

IVFSig IS1 , that is, G1 \ G2 ¼ G1. This brings us to

G1 � G2.

(b) Because IS1 ^ IS2 ¼ IS1 , if v 2 N1 is true, then v 2 N2

and v 2 NG1\G2
are true. According to Definition 5.3,

the aggregation operator wv allocated to v 2 NG1\G2

in IS1 ^ IS2 is wv ¼ inffw1
v ;w

2
vg, w

1
v is the aggregation

operator allocated to v 2 N1 in IS1 and w2
v is the

aggregation operator given to v 2 N2 in IS2 .

Taking into consideration that IS1 ^ IS2 ¼ IS1 , we

find that wv ¼ infYfw1
v ;w

2
vg ¼ w1

v , and so, because

the family ðAv;YÞ associated with v is a lattice, the

inequality w1
vYw2

v holds.

(c) If v 2 L1 \ L2, then v 2 LG1\G2
follows. According to

Definition 5.3, the MF degree ½l�v ; lþv � allocated to

v 2 LG1\G2
in IS1 ^ IS2 is ½l�v ; lþv � ¼ inf f½l1�v ;

l1þv �; ½l2�v ; l2þv �g, ½l1�v ; l1þv � is the MF degree allo-

cated to v 2 L1 in IS1 and ½l2�v ; l2þv � is the MF degree

allocated to v 2 L2 in IS2 . Taking into mind that

IS1 ^ IS2 ¼ IS1 , we have ½l�v ; lþv � ¼ inff½l1�v ; l1þv �;
½l2�v ; l2þv �g ¼ ½l1�v ; l1þv � and, as a result, the inequal-
ity ½l1�v ; l1þv � � ½l2�v ; l2þv � holds.

We shall now describe the counterpart. Assuming that

claims (a), (b), and (c) are accurate, we will demonstrate

that IS1 
 IS2 is true.

We know from assertion (a) that G1 � G2, thus we

may be certain that G1 \ G2 ¼ G1. If v 2 N1 is true, then

v 2 NG1\G2
is true, so G1 \ G2 ¼ G1. Using assertion (b)

and Definition 5.3, we can calculate that wv ¼
infYfw1

v ;w
2
vg ¼ w1

v . As a result, the aggregation operator

wv given to v 2 NG1\G2
in IS1 ^ IS2 is equivalent to the

aggregation operator allocated to v 2 N1 in IS1 . If v 2 L1 is

present, then v 2 N2 is present, and finally v 2 LG1\G2
is

present. Because ½l�v ; lþv � ¼ ½l1�v ; l1þv � according to Defi-

nition 5.3, then the MF degree ½l�v ; lþv � allocated to v 2
LG1\G2

in IS1 ^ IS2 corresponds to the MF degree allocated

to v 2 L1 in IS1 .

Both values also correspond in the last instance, that is,

if v 2 L1 \ L2 then v 2 LG1\G2
, since G1 \ G2 ¼ G1, and

we have ½l�v ; lþv � ¼ inff½l1�v ; l1þv �; ½l2�v ; l2þv �g ¼
½l1�v ; l1þv � using statement (c) and Definition 5.3. Taking

these factors into account, we can be certain that IS1 ^ IS2 ¼
IS1 and, as a result, IS1 
 IS2 . h

The above description is quite obvious. Two IVFSig’s,

IS1 ; IS2 2 FðGIS ;AISÞ, can be evaluated if G1 is a subtree of

the tree G2. Furthermore, It is possible to verify that IS1 is

lesser than or equivalent to IS2 . If the MF degree allotted to

IS1 is lesser than or equivalent to the one designated to the

corresponding leaf in IS2 in all coinciding leaves, If the

aggregation operators in the inner nodes of IS1 are lesser

than or equivalent to the ones designated for the corre-

sponding inner nodes of IS2 . Returning to Example 6.1, it’s

clear that the IVFSig’s in Figs 22 and 23 are comparable.

We have IS1 � IS2 because Definition 6.1 holds.

7 Conclusion

In this paper, we designed a new framework like IVFSig

rely on the IVFS environment. Firstly, we explored some

definitions, including leaf and root interval-valued fuzzy

sub-signatures. Further, we created a family of IVFSig’s

associated with a graph and a family of aggregation oper-

ators; furthermore, join-and-meet operators, a partial

ordering, an ordered set, and a lattice structure were

employed to define the family of IVFSig’s. Moreover,

some of the numerical examples are supplied to compare

the proposed method with the existing one. Lastly, these

illustrations prove the efficacy of the suggested method.

The authors declare that the join and meet operators as

well as partial ordering are enough for the lattice structure

verification. In the future, we will explore some other

operations at the next level. Likewise, the authors plan to

investigate the interval-valued intuitionistic fuzzy signature

and its applications.
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