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Abstract

The power geometric (PG) operator has the significant advantage of reducing the effects of the incorrect information given
by the biased experts. Therefore, in this paper, we propose the g-rung orthopair fuzzy Yager power weighted geometric
(¢-ROFYPWG) aggregation operator (AO) based on the PG operator and Yager’s norm for aggregating the g-rung
orthopair fuzzy values (g-ROFVs). The ¢-ROFYPWG AO proposed in this article can conquer the shortcomings of the
g-rung orthopair fuzzy weighted geometric (-ROFWG) AO and the g-rung orthopair fuzzy Einstein weighted geometric
(g-ROFEWG) AO of g-ROFVs. We also present some characteristics of the proposed g-ROFYPWG AO. Moreover, by
utilizing the proposed g-ROFYPWG AO of ¢g-ROFVs, we develop a new multi-attribute decision making (MADM)
approach for g-ROFVs environment. The proposed MADM approach can conquer the drawbacks of existing MADM
approaches, where they cannot distinguish the ranking orders (ROs) of alternatives in some situations. It offers a highly

effective approach for dealing with MADM issues in the context of g-ROFVs.
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1 Introduction

Multi-attribute decision-making (MADM) is a common
and important activity in our regular lifestyle. However, the
most important step for solving the MADM problems is to
choose an adequate environment to do performance
assessments of the alternatives. Recently, “fuzzy sets”
(Zadeh 1965) and its extensions, “intuitionistic fuzzy set”
(IFS) (Atanassov 1986) and “Pythagorean fuzzy set” (PFS)
(Yager 2013), have been widely used by the researchers for
the alternative assessment. In these environments, various
MADM approaches (Chen et al. 2016; Kumar and Chen
2021b, a; Dhankhar and Kumar 2022; Garg and Kumar
2020, 2019; Jiang et al. 2018; Zou et al. 2020; Abdullah
et al. 2022; Gupta and Kumar 2022; Joshi and Kumar
2022; Seikh and Mandal 2021a; Garg and Kaur 2020;
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Ahmad and Sabir 2022; Saad and Rafiq 2022; Chabaane
and Kheffache 2022; Ganie 2022; Ashraf et al. 2021;
Suresh et al. 2021; Dutta and Doley 2021; Biswas and Deb
2021; Dutta and Saikia 2021; Mishra et al. 2022; Meng and
Chen 2021; Pant and Kumar 2022; Ali and Ansari 2022;
Ejegwa et al. 2022; Zeb et al. 2022; Chaurasiya and Jain
2022) have been developed by the researchers. For exam-
ple, Garg and Kumar (2019) defined the improved possi-
bility degree measure (PDM) for intuitionistic fuzzy
numbers (IFNs) and a MADM approach based on it.
Dhankhar and Kumar (2022) proposed the advanced PDM
of IFNs and a MADM approach for the IFNs environment.
The power aggregation operator (AO) has the significant
advantage of reducing the effects incorrect information
given by the biased experts. The power AO allows aggre-
gated values to support each other throughout the aggre-
gation process. Therefore, Garg and Kumar (2020) defined
the power AOs for aggregating the connection numbers and
a MADM approach for the IFNs environment. Jiang et al.
(2018) defined the MADM approach based power AO and
entropy measures for the IFNs. Biswas and Deb (2021)
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presented the Schweizer and Sklar power AOs and MADM
for PFSs environment.

Recently, Yager (2017) presented the idea of g-rung
orthopair fuzzy set (¢-ROFS), where a g-rung orthopair
fuzzy value (¢-ROFV) y = ({,0) with membership grade
MG) { and non-MG (NMG) 0 fulfils the constraints
0<({<1, 0<60<1, 0<{"+67<1 and ¢g>1. The g-
ROFS is called IFS and PFS when ¢ =1 and g =2,
respectively. The q-ROFS provides experts with additional
flexibility when evaluating alternatives. In last five years,
various MADM approaches (Akram and Shahzadi 2021;
Farid and Riaz 2021; Akram et al. 2021; Wei et al. 2018;
Yang et al. 2021; Liu and Wang 2018; Liu et al. 2018;
Khan et al. 2021; Kumar and Gupta 2023; Feng et al.
2022a; Seikh and Mandal 2021b; Feng et al. 2022b; Verma
2022) have been developed by the researchers in context of
q-ROFVs. Akram and Shahzadi (2021) defined the AO
based on the Yager’'norm for aggregating the g-ROFVs for
MADM under the g-ROFVs environment. Farid and Riaz
(2021) defined the Einstein interactive geometric AOs for
MADM of g-ROFVs. Akram et al. (2021) proposed the g-
rung orthopair fuzzy Finstein weighted geometric (g-
ROFEWG) AO to develop a MADM approach in the
environment of g-ROFVs. Wei et al. (2018) presented the
Heronian mean AO to develop a MADM approach in
context of g-ROFVs. Yang et al. (2021) defined the inter-
action Maclaurin symmetric mean AO for MADM
approach under the g-ROFVs environment. Liu and Wang
(2018) proposed the g-rung orthopair fuzzy weighted
geometric (-ROFWG) AO for MADM in ¢g-ROFVs con-
text. Liu et al. (2018) presented the MADM approach
based entropy measure for the q-ROFVs environment.

In this paper, we find that the ¢-ROFWG AO (Liu and
Wang 2018) and the ¢-ROFEWG AO (Akram et al. 2021)
both have the shortcomings that the MG and the NMG of
their aggregated ¢g-ROFVs are indeterminate in some
instances. Moreover, the g-ROFWG AO (Liu and Wang
2018) and the ¢-ROFEWG AO (Akram et al. 2021) have
the drawbacks that if there is only one g-ROFV with MG 0
among n aggregated ¢g-ROFVs then the MG of the aggre-
gated ¢g-ROFV becomes O; if there is only one g-ROFV
with NMG 1 among n aggregated g-ROFVs then the NMG
of the aggregated ¢g-ROFV becomes 1. Therefore, we need
a new AO of ¢g-ROFVs to overcome the shortcomings of
the ¢g-ROFWG AO (Liu and Wang 2018) and the g-
ROFEWG AO (Akram et al. 2021) of ¢g-ROFVs. More-
over, we also find that Akram et al.’s MADM approach
(Akram et al. 2021) based on g-ROFEWG AO and Liu and
Wang’s MADM approach (Liu and Wang 2018) based on
g-ROFWG AO have the shortcomings that they cannot
distinguish the ranking ordering (RO) of alternatives in
some cases. In order to overcome the shortcomings of the
Akram et al.’s MADM approach (Akram et al. 2021) and
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the Liu and Wang’s MADM approach (Liu and Wang
2018), we need to develop a new MADM approach for the
g-ROFVs environment.

In this article, we propose the g-rung orthopair fuzzy
Yager power weighted geometric (-ROFYPWG) AO for
aggregating the g-ROFVs by combining the features of PG
AO and Yager’s norm. We also present the various prop-
erties of the proposed g-ROFYPWG AO. The proposed
g-ROFYPWG AO can conquer the shortcomings of the
g-ROFWG AO (Liu and Wang 2018) and the ¢-ROFEWG
AO (Akram et al. 2021) of g-ROFVs. Based on the pro-
posed ¢g-ROFYPWG AO, we propose a new MADM
approach for ¢-ROFVs environment. The MADM
approach proposed in this paper can conquer the short-
comings of the Akram et al.’s MADM approach (Akram
et al. 2021) and the Liu and Wang’s MADM approach (Liu
and Wang 2018), where they cannot distinguish the ranking
order (RO) of alternatives in some cases. The proposed
MADM approach provides us with a very effective method
for dealing with MADM challenges in the ¢-ROFVs
environment.

The remaining part of this article is organised as fol-
lows: The preliminary materials related to this paper are
given in Sect. 2. In Sect. 3, we explore the drawbacks of
the g-ROFWG AO (Liu and Wang 2018) and ¢-ROFEWG
AO (Akram et al. 2021) of ¢g-ROFVs. In Sect. 4, we pro-
pose the g-ROFYPWG AO of ¢g-ROFVs to overcome the
drawbacks of the ¢-ROFWG AO (Liu and Wang 2018) and
q-ROFEWG AO (Akram et al. 2021) of g-ROFVs. Sec-
tion 5 presents the drawbacks of the Akram et al.”s MADM
approach (Akram et al. 2021). In Sect. 6, we develop a
new MADM approach based on the proposed g-
ROFYPWG AO of g-ROFVs to conquer the drawbacks of
the MADM approach given in (Liu and Wang 2018) and
(Akram et al. 2021). Finally, Sect. 7 discusses the con-
clusion of the paper.

2 Preliminaries

In the following, we present some preliminary materials
related to this paper.

Definition 1 (Yager 2017) A ¢g-ROFS Q in universal set U
is defined as

0 = {(u.o(w), 0o(w) [ u € U} (1)

where ((u) and 0(u) represent the membership grade (MG)
and the non-MG (NMG) of element u of ¢g-ROFS Q,
respectively, 0<Lp(u),0p(u) <1 and
0 <} (u) + 0% (u) < 1. The hesitance degree of u is given

by 1o = (1 — {4 (u) — 0%(u))"/* where g > 1.
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Frequently, Yager (2017) called the pair ((,0) a g¢-
ROFV in the g-ROFS Q = {<u,cQ(u),0Q(u)> lue U}.

Definition 2 (Liu et al. 2019) The Euclidean distance

de(y1, 22) between two g-ROFVs y, = ({;,0,) and y, =
({5, 0,) is defined as follows:

| 1/2
a1 = (506t = P + b - o2 @

Definition 3 (Yager 2017) Let y = ({, 0) be any ¢g-ROFV.
The score value S(y) of y is defined as

S(y) =" —07, (3)
where S(y) € [—1,1].

Definition 4 (Yager 2017) Let y = ({, 0) be any ¢g-ROFV.
The accuracy value A.(y) of y is defined as

Ac(r) =0+ 07, (4)
[0, 1].

Definition 5 (Yager 2017) Let y; and y, be two g-ROFVs.
Then

i) IfS(y
(i) If Sz
i) If S(x,

where A.(y) €

> S(y,), then y;>=y,.
<S(xn), then y; < 5.
= S(x,), then

Ac(x1) > Ac(xz), then yy=y5.
(b) I A(11) <Ac(x2), then x; < 7.
(© IfA.(y) =Acx), then y; = yp.

Definition 6 (Xu and Yager 2010) For aggregating the real
numbers ¥, %2 - -, X5 the PG AO is defined as follows:

(1 +T(x))

ST TG) X
PG(11 12,2 1s) = thzr—l( (). 5)
pel
where T(y,) = Y. Sup(y,, ), and Sup(y,, y;) represents
[=1
[#t

the support degree to which y; supports y, and meets the
following criteria:

[0, 1];

P (115 %)
(Xm’ /{n) lf |Xt

() Sup(x, 1) €
(i) Sup(y, 1) = Su
(i) Sup(y,, 1) > Su 2l < 1ot = 7l
Definition 7 (Akram and Shahzadi 2021) Let 3, = ({;, 0;)
and y, = ({», 6,) be two g-ROFVs, 2 > 0 and 6 > 0. Then

operation laws of g-ROFVs based on the Yager #-conorm
and f-norm are defined as follows:

@ 1= ( {fmin1, (@) + @),

{/1 —min{l, ((1 — 0‘11)1 +(1- Hg)ﬂ.)l//l}>;
(b) X1 ®X2 =

<(/1 —min{1, (1 - ) + (1 -

{fmin{1, (07 + (0 Wﬁ
© o= <\/m1n{1 ),

{/1 = min{1, (5(1 - 97)’~)1/’“}>;
@ ﬁ=<ﬁ—mMLWL4WW%

{/min{1, (5( W}>.

3 Analyzing the shortcomings
of the existing aggregation operators
of g-ROFVs

',

In this section, we explore the shortcomings of the g-
ROFWG AO (Liu and Wang 2018) and ¢g-ROFEWG AO
(Akram et al. 2021) of g-ROFVs.

Let 1= (01, 00), 72 = {CasOx)oty = (G0 0) b g-
ROFVs. The g¢-ROFWG AO (Liu and Wang 2018) and g-
ROFEWG AO (Akram et al. 2021) of ¢-ROFVs are
reviewed as below:

(1) ¢g-ROFWG AO (Liu and Wang 2018):
1/q
<Hg1 7 < - H 1 - H:I)WI) >
t=1

[0,1], r=1,2,...,s and

q-ROFWG(1, 12, -

where ¢>1, w, €

S we =1
(2) ¢g-ROFEWG AO (Akram et al. 2021):

Q‘ROFEWG(XI ) 127 sy ;{s)

:< V21T, 4

YT + 1L, (7)
Hf:l(l + 0:1)Wt Hz—l( t) '
ML, T+ 0™ + T, (1—0)"
[0, 1],

where

s
2 Wi =
t=1

g>1, w € t=1,2,...,s and
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Example 1 Let y; = (0.2,0.3) and y, = (0,1) be two g-
ROFVs with weights w; = 0.3 and w, = 0.7, respectively.
By using the ¢-ROFWG AO (Liu and Wang 2018) given in
Eq. (6) to aggregate the y; and y,, it gets
q — ROFWG(y,, x2) = (0, 1). It can be seen that the MG of
the g-ROFV y, is 0.2, which is not 0 because 0.2 > 0, but
the MG of the aggregated result g — ROFWG(y,, 1,) =
(0,1) is 0, which is not satisfactory. Moreover, it can be
seen that the NMG of the g-ROFV y; is 0.3, which is not 1
because 0.3 <1, but the NMG of aggregated result g —
ROFWG(y,, x,) = (0,1) is 1, which is not satisfactory.
This aggregated value is unreasonable as the g-ROFV y,
loses its effect in the presence of the g-ROFV y,, which is
practically infeasible.

Example 2 Let y, = (0.4,0.6) and y, = (0,1) be two g-
ROFVs with weights w; = 0.4 and w, = 0.6, respectively.
By using the g-ROFEWG AO (Akram et al. 2021) given in
Eq. (7) to aggregate the y; and y,, it gets
q — ROFEWG(y,, x,) = (0,1). It can be seen that the MG
of the g-ROFV y; is 0.2, which is not 0 because 0.4 > 0,
but the MG of aggregated result ¢ — ROFEWG(y;, 1) =
(0,1) is 0, which is not satisfactory. Moreover, it can be
seen that the NMG of the g-ROFV y, is 0.6, which is not 1
because 0.6 <1, but the NMG of aggregated result g —
ROFEWG(y,, 1,) = (0,1) is 1, which is not satisfactory.
This aggregated value is unreasonable as the g-ROFV y;
loses its effect in the presence of the g-ROFV y,, which is
practically infeasible.

Example 3 Let y; = (0.5,0.3) and y, = (0,1) be two g-
ROFVs with weights w; = 1 and w, = 0, respectively. By
using the ¢-ROFWG AO (Liu and Wang 2018) given in
Eq. (6) to aggregate the y; and y,, it can be seen that the
terms ()" and (1 — Hf)w’ given in Eq. (6) of the g¢-
ROFWG AO (Liu and Wang 2018) are ({,)" = 0° and
(1 —9)"=0° respectively, where 0° and 0° are inde-
terminated values. Hence, the ¢-ROFWG AO (Liu and
Wang 2018) given in Eq. (6) has the above shortcoming in
this case.

Example 4 Let y, = (0,1) and y, = (0.6,0.2) be two g-
ROFVs with weights w; = 0 and w, = 1, respectively. By
using the g-ROFEWG AO (Akram et al. 2021) given in
Eq. (7) to aggregate the y; and y,, it can be seen that the
terms ({,)" and (1—67)" given in Eq. (7) of the g¢-
ROFEWG AO (Akram et al. 2021) are ({;)"" =0° and
(1 — C‘f)w]: 0°, respectively, where 0° and 0° are inde-
terminated values. Hence, the -ROFWG AO (Akram et al.
2021) given in Eq. (7) has the above shortcoming in this
case.

@ Springer

4 The proposed g-rung orthopair fuzzy
Yager power weighted geometric
aggregation operator

In this section, based on the Yager’s operations of g-
ROFVs given in Definition 7 and the PG AO given in
Eq. (5), we propose the g-rung orthopair fuzzy Yager
power weighted geometric (¢-ROFYPWG) AO to conquer
the shortcomings of the g-ROFWG AO (Liu and Wang
2018) and the g-ROFEWG AO (Akram et al. 2021) of the
q-ROFVs.

Definition 8 Let y, = ({1,01), o =((3,02), ..., ¥ =
({s,05) be g-ROFVs. For aggregating the y, = ({;,0,),
12 = {0, 0a), ..., 1s = (s, O5), the proposed g-ROFYPWG
AO is as follows:

g-ROFYPWG( (11, 125 - - - Xs)

Wt(l + T(Xr))
=®, () o= WL+ T(1)),

%) v
< l—mm{l (ZZrlwf (y))(l_C)> }7
1/4
al . )) g\ 4
mm{ (Z Zt 1Wt +T(x,)) (0;) ) }>

where w, represents the weight of y,, w, >0, Zle w; =1,
g=1,  2>0,  T(x)=>"_ Sup(x, 7)), and

I+t
1_dE(szXl) =1-

Sup (x> 1) =
1/2
(301cr = 1P + 107 — 01P))

degree to which y; supports y, and meets the following
criteria:

represents the support

i) Sup(y, 1) € 10,1];
(i) Sup(x,, 1) = Su (/Cla /z)

XZ‘ < |Xm — Xnl-

Example 5 Let y; = (0.4,0.5), y, = (0.3,0.6) and y3 =
(0.5,0.2) be three ¢g-ROFVs with weights w; = 0.4, w, =
0.3 and w3 = 0.3, respectively. First, we calculate the
Sup(y,, 1;) between ¢g-ROFVs y, and y;, where g =3,
t,1=1,2,3,1t#]1,
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1 12
st 72) =1~ (36t~ P + b - o2

1 1/2
=1- (2(|o.43 —03% 4105 - 0.632)>

—0.9305,
1 5 5 1/2
Sup(ia ) =1~ (36t = P + b - o))

1 1/2
=1- (5(|0.43 — 05 +10.5° - 0.232))

—0.9067,
1 5 5 1/2
Sz 1) =1 — (3 12— 4P + 10— ot

: 1/2
—1- (5 (10.3* - 0.5 + j0.6* - 0'232))

=0.8374.

In next step, we calculate the T(y, ), T(y,) and T(y3) of the
q-ROFVs y,, x, and y3, respectively, as follows:

T (1) =Sup (1, 12) + Sup(x1, 13)

=0.9305 + 0.9067 = 1.8372,

=Sup (12, x1) + Sup (12, 13)
=0.9305 + 0.8374 = 1.7680,

=Sup(13, 12) + Sup(x3, 11)
—0.8374 + 0.9067 = 1.7441.

T(1>)

T(13)

Then, by using the Eq. (8), we aggregate the g-ROFVs y,
%> and y3, where g = 3, 1 =2,

q — ROFYPWG(11, 12, 13)

In the following, we present a few characteristics of the
proposed g-ROFYPWG AO given in Eq. (8).

Property 1 (Idempotency) Let x;, %, ..., x; be g-ROFVs
with weights wy, wa, .. ., wy, respectively, where w, >0 and
S we=L1If yy = yp,... =y, = 2, then

q — ROFYPWG(11, 12, - - - Zs) = X-

Proof The weights of g-ROFVs yy, %2, ..., X, are wi, wa,
.., wy, respectively, where w;>0 and >}, w, = 1. If
L = X2, --- = Ys = ¥ then by using Eq. (8), we have
wi(1+T7(z))
o Us) :®f:1 (X;)Zf:l wi(1+T(x,))
wi(1+T7(z))

g-ROFYPWG(y, 15, - -

_ ()21 W1+ T (7))
t= 1

:XZ:‘:] '

:X_
Property 2 Let y;, x5, ..., ¥, be g-RONs, let y~ =
min{y,, %2, - xs+ and let y™ = max{y;, x, ---, zs}- Then,
%~ < @ROFYPWG(1y, 2, -5 2s) < 1
Proof Because - =min{y, 2, s An} and

ot = max{y, %2, xn}> by using Eq. (8), we obtain

0.4(1 + 1.8372) (1 047 172
0.4(1 + 1.8372) + 0.3(1 + 1.7680) + 0.3(1 + 1.7441) '
’ . 0.3(1 + 1.7680) o
=( |1- 1 1-03
< I +04(l+18372)+03( [ 1.7680) 7 03(1 17441 ) ’
1.7441
+ 03(1+ ) (1-0.5%?
0.4(1 +18372)+03( + 1.7680) + 0.3(1 + 1.7441)
0.4(1 + 1.8372) 0.5 1/2
0.4(1 + 1.8372) + 0.3(1 + 1.7680) + 0.3(1 + 1.7441)
| 0.3(1 + 1.7680) o
1 0.6
B +04(1+18372)+03( [ 1.7680) 1 03(1 5 1.74a1) -6
1.7441
- 03(1 + ) (0.2%)?
0. (1+13372)+03( + 1.7680) + 0.3(1 + 1.7441)

=(0.4125,0.5222).
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wi(1+ T (%))
GROFYPWG (11, 1, - 75) =1 () 2==1 Wi (1 + T (1))
wi(1+T(x"))
< QL (T T+ T
:w)Er =
wi(1+ 7 (%))
G-ROFYPWG (71, 12, - 75) =R (1) 2t=1 W11+ T (1))
wi(1+T(x7))
> Q0 () T+ ()
:(X7)21:1 Y=y,
Hence, we get 7~ < ¢-ROFYPWG(y1, 72, %) < 1"
Property 3 (Monotonicity) Let y1, %2, -+ Xg» X1> X35 - - o>
and x; be g-ROFVs. If y, <y, where t = 1,2, ..., n, then

q — ROFYPWG (), %as s Au) < g — ROFYPWG ()Y, 235 s 1)

Proof By utilizing Eq. (8), we obtain
wi(1+ T ()
) =, (x )Ez pwi(1+ (71))
wi (1 +T(x,))
g~ ROFYPWG(1;, 73 . 7}) = @) (1) Wi (1 + T

q — ROFYPWG(yy, 12, ---
%))

Because y, <y, Vt =1,2,...,n, we obtain

®;l<xt>2‘z‘:lwf<1 <® 2, i T(y ).
Hence, g — ROFYPWG(y,, 12, %) < ¢ — ROFYPWG
(XTaX;v 7/(?)

In the following, we show how the proposed g¢-
ROFYPWG AO can conquer the shortcomings of the g-
ROFWG AO (Liu and Wang 2018) and ¢g-ROFEWG AO
(Akram et al. 2021) of the g-ROFVs shown in Sect. 3, as
follows:

Example 6 Let us consider same ¢-ROFVs y; = (0.2,0.3)
and y, = (0,1) with weights w; =0.3 and w, =0.7,
respectively, given in Example 1. By utilizing the g¢-
ROFYPWG AO given in Eq. (8), we obtain

q — ROFYPWG (1, 71,) = (0.1338,0.9423).

Hence, the g-ROFYPWG AO given in Eq. (8) can conquer
the shortcoming of ¢-ROFWG AO (Liu and Wang 2018),
shown in Example 1.

Example 7 Let us consider same ¢g-ROFVs y; = (0.4,0.6)
and y, = (0,1) with weights w; =0.4 and w, = 0.6,
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respectively, given in Example 2. By utilizing the g¢-
ROFYPWG AO given in Eq. (8), we obtain

q — ROFYPWG (1, 1,) = (0.2928,0.9231).

Hence, the ¢-ROFYPWG AO given in Eq. (8) can conquer
the shortcoming of ¢-ROFEWG AO (Akram et al. 2021),
shown in Example 2.

Example 8 Let us consider same ¢-ROFVs y; = (0.5,0.3)
and y, = (0,1) with weights w; = 1 and w, = 0, respec-
tively, given in Example 3. By utilizing the g-ROFYPWG
AO given in Eq. (8), we obtain

q — ROFYPWG(y,, x,) = (0.5,0.3).

Hence, the proposed g-ROFYPWG AO given in Eq. (8)
can conquer the shortcoming of g¢-ROFWG AO (Liu and
Wang 2018), shown in Example 3.

Example 9 Let us consider same ¢g-ROFVs y; = (0, 1) and
72 = (0.6,0.2) with weights w; =0 and w, = 1, respec-
tively, given in Example 4. By utilizing the ¢-ROFYPWG
AO given in Eq. (8), we obtain

q — ROFYPWG(1,, 1) = (0.6,0.2).

Hence, the ¢-ROFYPWG AO given in Eq. (8) can conquer
the shortcoming of g-ROFEWG AO (Akram et al. 2021),
shown in Example 4.

5 Analyzing the shortcomings of the Akram
et al.’s MADM approach

In this section, we explore the shortcomings of Akram
et al.’s MADM approach (Akram etal. 2021). Let
01,0,,...,0, be alternatives and Ci,C;,...,C be attri-
butes with weights wy, wy, ..., ws such that w, € [0, 1] and
>, w, = 1. The expert assess the alternative O with

respect to the attribute C, by utilizing the ¢-ROFVs 7,, =

<an5kt> to construct the decision matrix (DMx) D =
(Tke) s @s Tollows:

i C ... G
O1 (xu X - Xis
— 0, |x: X cee Xos
D= .2 X.21 X.22 . )(.2 .
Or ).(drl ;Y-)'Z (R /.\/-rs
where k=1,2,...,r and t=1,2,...,;s. We review the

Akram et al.’s MADM approach (Akram et al. 2021) as
follows:
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Step 1: By using the ¢-ROFEWG AO given in Eq. (7),
aggregate the ¢-ROFVs 71, Jxose - o Xis
appeared in k" row of NDMx D = (y;,),, tO
obtain the overall aggregated ¢g-ROFV y;, =
Lk, Or) of alternative Oy, where
Tk =q-ROFEWG (141, Zias - - -5 Zks)

:< WH::I thw'
YIT @ =)™ + 10 (G
qHLl(l + HZt)W' — H::l(l — ta)w,
[T (T4 0™ + TT=y (1 = 05)™
9)
k=1,2,....,r,w €[0,1] and S w, = L.
=1

Step 2:  Compute the score value S(y;) of the overall ¢-
ROFV y; = ({i, Uk) of alternative Oy obtained
in Step 1, shown as follows:

() = ()" — (00" (10)
and compute the accuracy value A.(y;) of the
overall g-ROFV y, = ({;, 6;) obtained in Step
1 as follows:

Ac() = (G + ()7, (11)
where k =1,2,...,r.

Step 3:  Find the ranking order (RO) of the alternatives

01, O,, ..., 0, based on Definition 5 and select
the best alternative.

Example 10 Let O, O, and O; be three alternatives and
let Cy, C, and C; be three beneficiary type attributes with
weights w; = 0.3, w; =0.4 and w3 = 0.3. The expert
evaluates the alternatives Oy, O,, and O3 with respect to the
attribute Cy, C, and C; by using an ¢g-ROFV 7,, to obtain

the DMx D = (K )3s3= (Zk,,gk,) K shown as follows:

3x
C (&) C;
01 ((0.2,0.3) (0.4,0.6) 0,1)
D= 0, {(0.6,0.7) 0,1) (O.2,0.3)]-
03 0, 1) (0.3,0.6) (0.1,0.4)
Step 1: By utilizing Eq. (9), Akram et al’s MADM

approach (Akram et al. 2021) obtains the overall
g-ROFVs y,, 1, and y5 of the alternatives Oy, O,
and Oj;, respectively, where g =3, y; = (0, 1),
%2 =(0,1), and 3 = (0, 1).

Step 2: By utilizing Eq. (10), Akram et al’s MADM
approach (Akram et al. 2021) gets the score
values S(y;), S(x,) and S(y3) of the overall g-
ROFVs y,, y» and y; obtained in Step 1,
respectively, where ¢ = 3, S(y;) = —1, S()) =
-1 and S(ys) = —1. Because
S(n) =8(r) =S(xa),  where  S(x,) = —1,
S(x,) = —1 and S(y3) = —1, by using Eq. (11),
Akram et alI’s MADM approach (Akram et al.
2021) gets the accuracy values A.(y;), Ac(x2)
and A, (y3) of the overall g-ROFVs y, x, and y3,
respectively, where A.(y;) =1, A.(x,) = 1 and
Ac(xs) = 1.

Since $(x;) = S(%2) = S(x3), where S(,) = -1,
S(y) =—1 and S(y3) =—1, and because
A1) = Acl) = Aclzs), where Ac(zy) = 1,
Ac(y) =1 and A.(y3) = 1, based on Definition
5, Akram et al’s MADM approach (Akram et al.
2021) obtains the RO “O; = O, = 03" of the
alternatives Op, O, and Os.

Step 3:

Example 11 Let O, O, and O3 be three alternatives and
let Cy,C, and C; be three beneficiary type attributes with
weights w; = 0.28, w, = 0.35 and w3 = 0.37. The expert
evaluates the alternatives O}, O,, and O3 with respect to the
attribute Cy, C, and C3 by using an ¢-ROFV 7, to obtain

the DMx D = (4)3,3= (Zk,, Ek,)3 K shown as follows:
X

C G Cs
0 0,1) (0.4,0.5) (0.8,0.9)
D= o, {(0.7,0.4) (0.2,0.3) 0,1) ]
03 \(0.2,0.3) 0,1) (0.6,0.7)
Step 1: By utilizing Eq. (9), Akram et al’s MADM

approach (Akram et al. 2021) obtains the overall
g-ROFVs y,, x, and y5 of the alternatives Oy, O,
and O3, respectively, where g = 3, y; = (0, 1),
%2 =(0,1), and 3 = (0, 1).

By utilizing Eq. (10), Akram et al’s MADM
approach (Akram et al. 2021) gets the score
values S(y;), S(x,) and S(y3) of the overall ¢-
ROFVs y,, y» and y; obtained in Step 1,
respectively, where ¢ = 3, S(x;) = —1, S(x,) =
-1 and S(y3) = —1. Because
S(a) =S0n) = S(x3),  where  S(y;) = —1,
S(y2) = —1 and S(y3) = —1, by using Eq. (11),
Akram et alI’s MADM approach (Akram et al.
2021) gets the accuracy values A.(y;), Ac(xn)
and A.(y3) of the overall g-ROFVs y,, x, and y3,
respectively, where A.(y;) =1, Ac(x,) = 1 and
AC(X3) =1

Step 2:
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Step 3:  Since S(y;) = S(x,) = S(x3), where S(y;) = —1,
S(x,) =—1 and S(x3) =—1, and because
Ac(1) = Ac(ra) = Ac(xs), where Ac(y) =1,

A.(y,) =1 and A.(y3) = 1, based on Definition
5, Akram et al’s MADM approach (Akram et al.
2021) obtains the RO “O; = 0, = 03” of the
alternatives O1, O, and Os.

6 A new MADM approach based
on the proposed q-ROFYWG AO of g-
ROFVs

In this section, we develop a new MADM approach by
using the proposed g-ROFYWG AO of ¢g-ROFVs. Let

01,0,,...,0, be alternatives and Cy,C;,...,C, be attri-

butes with weights wy, wy, .. ., wy, respectively, where w, €
s

[0,1] and > w,=1. By using the ¢-ROFVs
=1

T = (Zk,, Ek,>, the expert evaluates the alternative O with
respect to the attribute C, to construct the DMx

D= (k) x5» sShown as follows:

¢ G ... G
O1 (xu X - Xis
5o ?2 )('21 X?z /\iz: .
Or ;rl /’\‘;rZ /’\‘;rs
where k=1,2,...,r and t=1,2,...,s. The proposed

MADM approach is presented as follows:
Step I: Transform the DMx D=

(<Zk”5kt>)r><v into
(L, Ore) as follows:

<Zk!7§kt>
Xkt = ~ o~
* { <0kt7 Ckr>

(%kt)rxs:

NDMx D = (th)rxs =

:if C, is a benefit type attribute
:if C; is a cost type attribute
(12)

Step 2:  Based on Eq. (2), calculate the support measure
Sup (i, 1) between g-ROFVs y,, and y;, as

follows:

Sup(Les ) =1 — dE(Las )

1 ) ) 1/2
—t— (50t~ G+ 10— o))
(13)
where k=1,2,....r; t,1=1,2,....8; | #1,

d(u ) is Hamming distance between g-
ROFVs Ykt and Xkl

@ Springer

Step 3:

Step 4:

Step 5:

Calculate support Ty, and weight J, for the g-
ROFV y,, as follows:

S
Ty = Z Sup (Zaes Yua)s

= (14)
[#1t
and
wi (1 + T(sz))
5 == 7] ) 15
o thl Wt(l + T(Xkr)) ( )
where 9, € [0,1] and Y7, 6 = 1.

By applying the proposed g-ROFYWG AO
given in Eq. (8), aggregate the ¢-ROFVs
Yits Yias - - Xis appeared in k™ row of NDMx
D = (%4),uxn to obtain the overall aggregated
g-ROFV g, = ({4, O0k) of alternative O, shown
as follows:

L =(Mie> Ox)

=¢-ROFYWG (%41, %25 - - -5 Xks)

:< 1 — min (Z&k, Ckl ) ,

1
1 1

min< 1, (Z 5k,(HZ,)A> >,
=1

(16)

where g > 1, A > 0, §;; >0 and Zék,_l

Calculate the ranking value (RV) lp(yk) of the
overall g-ROFV y, = ({, 0x) of alternative Oy
obtained in Step 4, shown as follows:

0 = (@ + 55 ) @ + o)
(17)
where  (m)?=1— ()7 — (6k)?  and
k=1,2,...r
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Step 6:  Arrange the RVs ¥(xy), ¥(x2)s-r W(y,) of
alternatives O;, O0,,..,0, in decreasing
sequence and obtain the RO of the alternatives
01, 0,,...,0,. If the RVs Y(y,) and ¥(y;) of
alternatives O, and Og, respectively, are equal,
i.e., ¥(x,) = ¥(xp). then calculate the accuracy
values H(y,) =} + 0% and H(yy) = {f + 0%
of the overall g-ROFVs y; = ({,,0,) and y5 =
({,,0,) respectively. The larger the accuracy
value H(y;), the better the RO of alternative
O, where k= 1,2,....,r. If ¥(x,) = () and
H(y,) = H(yp), the alternatives O, and Oy
have the same RO.

Example 12 (Akram et al. 2021) The government wants to
choose the ideal location for a thermal power station (TPS)
plant to cover the requirements of electric power. Let O,
0,, O3 and O4 be the possible locations as alternatives to
setup a TPS plant. Let the C; (“Availability of coal”), C,
(“Availability of water”), C; (“Transportation facilities™)
be the three attributes for the judgement of a best TPS
location. The attributes C;, C, and C; have the weights
wi = 0.4, w, = 0.3 and w3 = 0.3, respectively. The expert
evaluates the TPS locations O,0,,, O3 and O4 with
respect to the attribute C;, C, and C; by using an g-ROFV

7. to construct the DMx D = (i) a3 = (Zk,,%)vk,>4 K
X2

shown as follows:

Cy C C3
0, ((0.6,04) <0.7,0.3) <(0.8,0.2)
D= 02 [(04,06) (0.7,02) (05,04)
O3 [(0.5,04) <0.8,0.1) <(0.4,0.5)
04 \0.4,05) (0.9,0.1) <(0.3,0.5)

We utilize the MADM approach presented in this paper to
solve this MADM problem as follows:

Step 1:  Since all the attributes C;, C, and C3 are of

benefit type, therefore we get the NDMx
D = ({its Okt) 43= (C/m sz)

4><3.

Step 2: By utilizing Eq. (13), we calculate the support
measure Sup(yy,, 1) between g-ROFVs y;, and
- Where g=3, k=1,2,3,4; t,1=1,2,3;
[#1t, Sup(y11, x12) = 0.9065,
) = 0.7870, Sup(,{lz, z13) = 0.8797,
Sup(7a15 122) = 0.7539, S p(/{217)f23) = 0.8842,
) = up( ) =
) = ) =

(s 213
(

Sup (1225 123 D(1315 132) = 0.7227,
(
(

Sup(y31, x33) = 0 9390, Sup(,(32, 733) = 0.6713,
Sup(1a1, Xaz) = 0.5217,  Sup(y4y, 143) = 0.9738
and Sup(y3,, 133) = 0.4959.

By utilizing Eq. (14), we calculate the support Ty,
of the g-ROFVs y,,, where

Ty, =1.6934, T, = 1.7862,T13 = 1.6667,

Tr = 1.6381, T, = 1.5948, T»3 = 1.7250,

T3 = 1.6617,T5;, = 1.3941, T35 = 1.6103,

Ty = 1.4955,T4, = 1.0176, T4z = 1.4698,

Step 3:

and, based on Eq. (15), we calculate the weight
O of the g-ROFV y,,, where

S11 = 0.3971, 812 = 0.3081, 8,3 = 0.2949,
21 = 0.3980, 55> = 0.2936, 553 = 0.3084,
831 = 0.4149, 85, = 0.2799, 533 = 0.3052,
a1 = 0.4258, 840 = 0.2582, 843 = 0.3160.

Step 4: By utilizing Eq. (16), we obtain the overall g-
ROFV y, of the alternative Oy, where A =2,
qg=3, k=1,234, y =/(0.6919,0.3510),
72 = (0.5389,0.5204), = (0.5776,0.4316)
and y, = (0.5525,0.4757).

By utilizing Eq. (17), we obtain the RVs ¥/(y;),
V()x2), W(x3) and ¥(y,) of the overall ¢-ROFVs
L1»> %2> X3 and y, obtained in Step 4, respectively,
where W(y,) =0.2412, V(y,) = 0.1510,
W(yz) = 0.1519 and y(y,) = 0.1466.

Because V() > () > () > (),
where YU(y) =0.2412, V(y,) = 0.1510,
W (y;) = 0.1519 and ¥(y,) = 0.1466, the RO of
the alternatives O;, O,, Oz and Oy is
“01-03>0,-04", where O is the best alter-
native among the alternatives O, O, O3 and Oj.

Step 5:

Step 6:

Table 1 presents the ROs of the alternatives obtained by
using different MADM approaches for Example 12. It
shows that Akram et al.”’s MADM approach based on the g-

Table 1 The ROs of the

alternatives achieved by MADM approaches

ROs

different MADM approaches for
Example 12

Proposed MADM approach

Akram et al.’s MADM approach(Akram et al. 2021)
Liu and Wang’s MADM approach (Liu and Wang 2018)

01>03>0,>04
01>03>0,>04
01>-03>0,>-04
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Table 2 The ROs of the
alternatives achieved by

different MADM approaches for
Example 13

MADM approaches ROs

Akram et al.’s MADM approach (Akram et al. 2021) 0, =0,=0;
Liu and Wang’s MADM approach (Liu and Wang 2018) 0,=0,=0;3
Proposed MADM approach 0,~01~0;

ROFEWG AO (Akram et al. 2021), Liu and Wang’s
MADM approach based on the g-ROFWG AO (Liu and
Wang 2018) and the proposed GDM approach achieve the
same RO “0;>03>0,>0,” of the alternatives Oy, O,, O3
and Oj.

Example 13 We utilize the MADM approach presented in
this paper to solve the Example 10, shown as follows:

Step 1:  Since all the attributes C;, C, and C3 are of

benefit type, therefore we obtain the NDMx

D = (G Ox)ya= (s Our)

Based on Eq. (13), we calculate the support
measure Sup (., ) = Skex between g-ROFVs
Yk and yy, where g =3,k =1,2,3;1,1=1,2,3;
L#t, Sup(711, x12) = 0.8606, Sup(yi1,113) =
0.3120, Sup(x1, x13) = 0.4438, Sup(121, 722) =
0.5110, Sup(a1, x23) = 0.7325, Sup(y22, 123) =
0.3120, Sup(y31, x32) = 0.4443, Sup(y31, 133) =
0.3381 and Sup(ys,, 133) = 0.8910.

By utilizing Eq. (14), we calculate the support Ty,
of the g-ROFVs y,,, where

T = 1.1726, Ty, = 1.3044, Ty3 = 0.7557,
Ty = 1.2435, Ty = 0.8229, T3 = 1.0445,
Ty = 0.7834, Ty, = 1.3363, T35 = 1.2291,

Step 2:

Step 3:

and, by utilizing Eq. (15), we calculate the
weight Jy, of the ¢-ROFV y,,, where

511 = 0.3103, 81> = 0.4389, 5,3 = 0.2508,
a1 = 0.3339, 85, = 0.3618, 553 = 0.3043,
831 = 0.2502, 830 = 0.4370, 533 = 0.3127.

Step 4: By utilizing Eq. (16), we obtain the overall g-
ROFV y, of the alternative Oy, where 1 =2,
q=3,k=1,2,3,4,y, =(0.3111,0.8047), y, =
(0.4105,0.8588) and y; = (0.2291,0.8049).

By utilizing the Eq. (17), we obtain the RVs
W(y1)s w(y,) and Y(y3) of the overall g-ROFVs
X1 x> and y; obtained in Step 4, respectively,
where () = 0.1403, (y,) =0.1531 and
W(y3) = 0.13009.

Step 5:

@ Springer

Step 6: Because V() > v(n) > v(n), where
W(y,) = 0.1403, W(x,) = 0.1531 and
W(x3) = 0.1309, the RO of the alternatives Oy,
0, and O3 is “0,>0;>03", where O, is the best

alternative among the alternatives Oy, O; and Os.

Table 2 represents the ROs of the alternatives obtained
by using different MADM approaches for Example 13. It
shows that Akram et al.”s MADM approach based on the g-
ROFEWG AO (Akram et al. 2021), Liu and Wang’s
MADM approach based on the ¢-ROFWG AO (Liu and
Wang 2018) achieve the same RO “O; = O, = 03 of the
alternatives O, O, and O3, where they have the drawbacks
that they cannot distinguish the RO of the alternatives Oy,
0, and O3 in this situation; the proposed MADM approach
gets the RO “0,>0;>03" of the alternatives O, O, and
O5. Hence, the proposed MADM approach can conquer the
shortcomings of Akram et al.’s MADM approach based on
the g-ROFEWG AO (Akram et al. 2021), Liu and Wang’s
MADM approach based on the ¢-ROFWG AO (Liu and
Wang 2018) in this situation.

Example 14 We utilize the MADM approach presented in
this paper to solve the Example 11, shown as follows:

Step 1:  Since all the attributes C;, C, and C3 are of
benefit type, therefore we obtain the NDMx
D = ({ias Oke)3,3= (Zkzaékr)3x3-

Step 2: By utilizing Eq. (13), we calculate the support

measure Sup(yi;, 1) = Sk between g-ROFVs
Y and yy, where g =3,k =1,2,3;¢,1=1,2,3;
L#t, Sup(xi1, 112) = 0.3796,  Sup(z11, 7213) =
0.5904, Sup(y12, 113) = 0.4682, Sup(1a1, %22) =
0.7617, Sup (a1, 123) = 0.2951, Sup(y25, 123)
0.3120, Sup(131, x32) = 0.3120, Sup(131, 133) =
0.7325 and Sup(y3,, x33) = 0.5110.
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Table 3 The ROs of the ) )
alternatives achieved by MADM approaches ROs
]‘f:‘fferefl“ l\ﬁ“DM approaches for  Ayram et al.’s MADM approach (Akram et al. 2021) 0, = 0, = 04
ample
xamp Liu and Wang’s MADM approach (Liu and Wang 2018) 0,=0,=0;3
Proposed MADM approach 01~0,>0;

Step 3: By utilizing Eq. (14), we calculate the support T,, 7 Conclusion

of the g-ROFVs y,,, where

Ti1 = 0.9700, Ty, = 0.8479, Tj3 = 1.0586,
To1 = 1.0568, Toy = 1.0736, Tr; = 0.6071,
T3 = 1.0445, T3, = 0.8229, T3; = 1.2435,

and, by utilizing Eq. (15), we calculate the
weight Jy, of the ¢-ROFV y,,, where

511 = 0.2814, 8,5 = 0.3300, 8,5 = 0.3886,
S>1 = 0.3037, 85 = 0.3827, 823 = 0.3136,
31 = 0.2805, 830 = 0.3127, 833 = 0.4068.

Step 4: By utilizing Eq. (16), we obtain the overall g-
ROFV y;, of the alternative Oy, where 4 =2,
q=3k=1,2,3,4,y, =(0.3111,0.8047), y, =
(0.4105,0.8588) and y; = (0.2291,0.8049).

By utilizing Eq. (17), we obtain the RVs (),
V(x,) and Y(y3) of the overall g-ROFVs ¥, x,
and y; obtained in Step 4, respectively, where
W(y,) =0.2147, W (y,) =0.1735 and
Y (y;) = 0.1656.

Because (1) > W(1) > W(zs),  where
U(y) =0.2147, V(y,) =0.1735 and
W(y3) = 0.1656, the RO of the alternatives Oy,
0, and O3 is “O;=0,>03" where O is the best
alternative among the alternatives Oy, O; and Os.

Step 5:

Step 6:

Table 3 represents the ROs of the alternatives obtained
by using different MADM approaches for Example 14. It
shows that Akram et al.’s MADM approach MADM
approach based on the g-ROFEWG AO (Akram et al.
2021), Liu and Wang’s MADM approach based on the g-
ROFWG AO (Liu and Wang 2018) achieve the same RO
“01 = 0, = 03” of the alternatives O, O, and O3, where
they have the drawbacks that they cannot distinguish the
RO of the alternatives O, O, and Oz in this situation; the
proposed MADM approach gets the RO “0;>0,>03" of
the alternatives O;, O, and O3;. Hence, the proposed
MADM approach can conquer the shortcomings of Akram
et al.’s MADM approach based on the g-ROFEWG AO
(Akram et al. 2021), Liu and Wang’s MADM approach
based on the ¢-ROFWG AO (Liu and Wang 2018) in this
situation.

In this paper, we have proposed the g-rung orthopair fuzzy
Yager power weighted geometric (¢-ROFYPWG) aggre-
gation operator (AO) based on the PG operator and Yager’s
norm for aggregating the g-rung orthopair fuzzy values (g-
ROFVs). The proposed g-ROFYPWG AO can reduce the
effect of incorrect information given by the biased experts
and also allows aggregated values to support each other
throughout the aggregation process. The proposed g-
ROFYPWG AO can conquer the shortcomings of the g-
rung orthopair fuzzy weighted geometric (¢-ROFWG) AO
(Liu and Wang 2018) and the g-rung orthopair fuzzy
Einstein weighted geometric (-ROFEWG) AO (Akram
et al. 2021) of g-ROFVs. Moreover, by utilizing the pro-
posed g-ROFYPWG AO, we have proposed a new multi-
attribute decision making (MADM) approach for g-ROFVs
environment. The proposed MADM approach can conquer
the drawbacks of the Akram et al.’s MADM approach
MADM approach based on the ¢-ROFEWG AO (Akram
et al. 2021), Liu and Wang’s MADM approach based on
the g-ROFWG AO (Liu and Wang 2018), where they
cannot distinguish the ranking orders (ROs) of alternatives
in some situations. In future, we can also define the group
decision making methods based on the proposed g-
ROFYPWG AO under the g-ROFVs environment.
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