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Abstract

Analytical studies of fuzzy fractional differential equations (FFDEs) of two different independent fractional orders are
often complex and difficult. It is essential to develop comprehensive schemes for the solutions of FFDEs with independent
orders. This article introduces and investigates the fully closed-form analytical solutions of FFDEs involving two different
independent fractional orders under the strongly generalized Hukuhara differentiability (SGHD). Based on the concept of
SGHD, we extract two possible solutions of FFDEs in terms of the Mittag-Leffler function. Potential solutions for
homogeneous and inhomogeneous FFDEs are obtained using the definition of the fuzzy Laplace transform technique. Some
interesting properties and results for the FFDEs are introduced using the concepts of SGHD. We illustrate some examples
as applications to explain the effectiveness of our proposed results. FFDE has a variety of applications in science and
engineering. To enhance the functional significance of this work, we solve the RLC circuit using the proposed technique in
a fuzzy setting to analyze and interpret the theoretical results.

Keywords Fuzzy differential equations with independent fractional orders - Caputo fractional derivative -
Strongly generalized Hukuhara differentiability - Laplace transform - Mittag-Leffler function

1 Introduction
1.1 Fuzzy differential equations

Every real-world problem is inherently based on uncer-
tainty. In a world full of uncertainty, it is often necessary to
accurately identify problems, modify and solve, infer and
interpret results. Generally speaking, there are several
problems in science and engineering that are completely
solved by fuzzy differential equations (FDE). Dubios and
Prade (1982) initially introduced the the concept of FDEs.
These differential equations are based on the definition of
fuzzy derivative which is called the Dubois-Prade
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derivative. Subsequently, a number of definitions of fuzzy
derivatives were introduced including Puri and Ralescu
(1983) derivative (for short H-derivative), the Goetschel
and Voxman (1986) derivative, Seikkala (1987) derivative
and Friedman et al. (1996) derivative. Although these
derivatives are defined in different forms from one another,
but all of them gave equivalent results for fuzzy functions.
The most common derivatives are the Seikkala and Puri-
Ralescu derivative. The Puri-Ralescu derivative is defined
using H-difference while the Seikkala derivative defined by
a-level set of fuzzy functions. Yue and Guangyuan (1998)
introduced the ’same and reverse’ order derivative
approach to solve the challenges caused from H-derivative.
Bede and Gal (2005) developed the concept of SGHD. This
structure provides two types of differentiability from the
fuzzy function. These two types of differentiability are
usually called the first and second forms of differentiabil-
ity. The first form is corresponding to the H-differentia-
bility and the second form corresponds to the non-
decreasing diameter of fuzzy function. Allahviranloo and
Ghanbari (2020), Haq et al. (2022) and Wasques et al.
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(2020) introduced the reliable and ABC approach to extract
the fuzzy solutions of FFDEs with their applications.

1.2 Fuzzy fractional differential equations

Fractional calculus is a branch of mathematics that inves-
tigates the different properties of derivatives and integrals
with fractional order (or non-integer orders). A broader
understanding for fractional calculus allows us to evaluate
the dynamic behavior of real-world problems both in the-
oretical and practical point of view. Fractional calculus has
been effectively applied for modeling to solve many
complicated problems. In this field of study, the idea and
techniques for solving non-integer differential equations
with the unknown function are particularly important.
Several researchers, including Miller and Ross (1993),
Kilbas et al. (2006) and Magin (2006) investigated new
techniques for solving many complicated problems related
to the real-world. The revolution of non-integer orders (or
fractional orders) has been found to be useful in repre-
senting complicated systems, despite the fact that the
computational effects are vague. In many areas of frac-
tional calculus, the computational process is not straight-
forward. For this reason, Ahmad et al. (2021) developed
the solution procedure for solving the fuzzy fractional
dimensionless Fisher equation. Ghaffari et al. (2021)
introduced the analytical technique for time-fractional
problems in uncertain environments. Ezadi and Allahvi-
ranloo (2020) proposed an efficient technique to solve
FFDEs. Khakrangin et al. (2021) developed a numerical
scheme for the fuzzy solution of FFDEs. Melliani et al.
(2021) analyzed the Ulam—Hyers—Rassias stability to solve
fuzzy fractional integral-differential equations in the sense
of Caputo gH-differentiability. Vu and Hoa (2019) studied
FFDEs on time scales using granular differentiability.
Agarwal et al. (2010) studied the solution of FFDEs using
Riemann-Liouville (R-L) derivative. Fuzzy fractional
initial value problem using Caputo derivative was intro-
duced by Ngo et al. (2018). Generalized Hukuhara frac-
tional differentiation using interval numbers was developed
by Hoa et al. (2017). Laplace transform in fuzzy environ-
ments was established by Allahviranloo and Ahmadi
(2010). In addition, Salahshour and Allahviranloo (2013)
discussed the application of fuzzy Laplace transform.
Allahviranloo et al. (2014) developed the solution proce-
dure for FFDEs using Caputo’s definition. Akram et al.
(2022, 2022); Akram and lhsan (2022) interpreted the
solution of Pythagorean fuzzy ordinary and partial differ-
ential equations using SGHD. Furthermore, Akram et al.
(2022, 2023) extracted the solution procedure for fuzzy
Langevin and two dimensional system of differential
equations in Caputo’s derivative sense with their applica-
tions. Rahaman et al. (2021) and Dong et al. (2022)
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investigated the solution procedure for finding the exact
solution and finite-time stability of FFDE:s.

1.3 Motivation of the proposed technique

Many authors have drawn readers’s attention when solving
fractional differential equations (FrDE) involving inde-
pendent fractional orders discussed the existence of solu-
tions for FrDE. Ahmad et al. (2012) and Ahmad and Nieto
(2010) investigated the solution of FrDEs on different
Dirichlet boundary conditions and intervals. Moreover,
Mahmudov (2020) and Baghani and Nieto (2019) studied
the FrDEs containing two fractional independent orders on
various intervals. Fazli et al. (2020) determined the exis-
tence and uniqueness of FrDEs with different independent
fractional orders. So, determining the solution of FrDEs
with independent fractional order becomes more important
because of their cross-discipline research. On the other
hand, fuzzy models are used to represent the dynamical
behaviors that do not include randomness but do contain
some uncertain parameters. Some of these models naturally
result in FFDEs. FFDEs have received extensive attention
due to the vast majority in real-life problems including
science and engineering (Blackwell and Beck (2010)). This
uncertainty in FFDEs may cause due to measurement,
observation, environmental facts, or lack of information.
There are some mathematical models in the literature that
can deal with the uncertainty such as stochastic, or fuzzy
sets. Wang et al. (2015) studied that some problems exist
in the literature that can only analyzed using fuzzy math-
ematical models. Here, we extract the fully closed-form
analytical solution of FDEs with fractional orders to
overcome and analyze the uncertainty that arises in the
fuzzy mathematical model. Although, Diethelm et al.
(2002) and Diethelm and Ford (2004) determine the
approximate solution of FrDEs using various numerical
approaches and algorithms. We investigate the analytical
fuzzy solution of FFDEs with independent fractional orders
in terms of the M-LF using the tool of fuzzy Laplace
transform.

1.4 Novelty of the work

Nonetheless, some authors have developed many interest-
ing methods and schemes to address FFDE and its appli-
cations. This article emphasizes its uniqueness from the
following perspectives:

(i) A solution to an FFDE involving two independent
fractional orders.

(ii)) Two possible solutions of FFDE are extracted on
the basis of SGHD.
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(iii)) M-LF closed-form solutions for homogeneous and
heterogeneous FFDEs are discussed.

(iv) The fuzzy solution is determined using the fuzzy
Laplace transform technique.

(v)  Several important concepts, facts and relationships
and their applications are analyzed.

(vi)  Solution of RLC circuits in uncertain environ-
ments using the proposed method.

1.5 Structure of paper

The rest of this article is arranged as: Section 2 presents
some preliminaries and the basic concepts of fractional
calculus, fuzzy fractional calculus, and fractional differ-
ential operators in crisp and fuzzy environments. In Sect. 3,
we describe the concept of fuzzy Caputo SGHD using H-
difference. Section 4 contains the solution procedure for
FFDEs involving independent fractional order in terms of
the M-LF using first and second differentiability. In Sect. 5,
some examples are solved to check the validity and effi-
ciency of our proposed technique. The conclusions and
future directions are given in Sect. 6.

2 Basic concepts

We start this section by reviewing some fundamental
concepts and terminologies that are necessary for this
article.

FR = {m:Q—:[0,1]} denotes the class of fuzzy
subset on R. Firmly, 7 is convex because
7i(0x1 + (1= 0)x2) > min {7i(x),71(x2) },
V0, x1,x with 0 € [0, 1], x1,x; € R,

where, 7 is semi-continuous on upward such that {x; €
R| fi(x;) > A} is closed for every 0 < 1 < 1; and there exist

x; € R such that 71(x;) = 1; [f]° = {x; € R 71(x;) > 0} is
compact. The support of 7 is {x € R| 7(x) > 0}.

Definition 1 Smadi et al. (2021) The o-level set of 7 €
F % is defined as

{x1 € R| Ailx)) >a}, Voe(0,1],
" =
{x1 € R| f1(x1) > 0}, a=0.
[A* is bounded and closed interval such that

1" = [ (2), ()], Yo € [0, 1].

Definition 2 Goetschel and Voxman (1986) The triangular
fuzzy number (TFN) v € & ® is characterized in the para-
metric form (77, (), 712(«)), 0 < o < 1. The functions 77y (o)
and 7, (o) fulfil the following axioms:

(i) The lower parametric fuzzy function 7 (o) is left
continuous, bounded and monotonic increasing.
(ii)) The upper parametric fuzzy function 7, (o) is left
continuous, bounded and monotonic decreasing.
(i) (o) <tip(o).

Definition 3 Ngo et al. (2018) Suppose 7,7, € FRif
there exist i3 € Z " such that 71y = 71, + fi3. Then 73 will
be the H-difference of (#,7,). We will compose the
standard notation of H-difference as #; Sy h>. Indeed, if
H-difference noui exists, then
freni” =[m(x) —i (), m2(x) — jy(e)]. Throughout this
article, we depict the sign “©” to denote H-difference.

Let €7 and QTR(@() be the class of continuous and
integrable fuzzy-valued functions (FVFs) on & = [a,b],
respectively.

Definition 4 Ngo et al. (2018) Suppose

ne (iﬂ(@‘ n 7" (&). The fuzzy R-L fractional integral
of order ¥ € C, Re(¥) > 0 is defined

) =15 [ (=9 is)as

for x > a, ¥ € (0,1].

(1)

Recall that the o-level form of fuzzy-valued function
(FVF) 71 is defined as: [fi(x)]" = [f1 (x; o), 712 (x; ) ] .

On the base of lower and upper FVF, we describe the
fuzzy R-L fractional integral as:

Definition 5 Salahshour et al. (2012) Let
ree” R(é n Eﬂ(é”‘ ). The fuzzy R-L fractional integral
for FVF 7 of order ¥ € C, Re()) > 0 is defined as

e

(@)

— {(Igm'l)(x; o), (If+h’2)(x; )|,

o€ [0,1], x > a,

(2)

where the lower and upper FVFs is defined as
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(10, 75) (x; 00) = ﬁ/ax(x 5)" 7'y (53 o0)ds, (10,75 (x; o)
1 X 9—1 )
:m/a (x s)y fia(s; a)ds.

3 Caputo’s SGH-differentiability

In this section, we define fuzzy Caputo SGH-differentia-
bility under H-difference. We attempt to develop some
basic definitions and terminologies which are similar to the
classical context in fuzzy environment.

Definition 6 Bede and Gal (2005) Assume 77 € €7 (&) N
pe 1 *1i(q) © 1(0)

27" (&) and Y(x) = / dg. The

FVF 7i(x) is said to be the Caputo fuzzy fractional differ-

entiable function (CFFDF) of order 0<9¥ <1 at x € (a,b)

in the first form, if there exists “D7(x) € #* such that:

(i) For every t positive, the functions ¥/ (x + 1) © Y(x)
and ¥(x) © Y(x — ) both exists such that

CDﬂf’l’(x) — Tlir(r)xr l//(x + Tz O ‘p(x)
T ) ®
T™N\0F T

Or, 7i(x) is called CFFDF of order 0<v¥<1 at
x € (a,b) in the second form, if there exists
DYi(x) € " such that
(ii)  For every t positive, the expressions (x) © W (x +
7) and Y(x — 7) © ¥ (x) both exists such that

CDﬁh’(x) _ 11{1,(1)1 !D(X) G_Li(x + T)
Do @
™N\0F —7T

Indeed, 71 is differentiable on the open interval (a, b) if 71 is
differentiable for every point in the interval (a, b).

Note 1 Fuzzy R-L fractional derivative of FVF 7i(x) is

denoted by 'DV7i(x) and is defined same as the above
Definition 6.

For the sake of convenient, we depict the following
definition as:

Definition 7 Let 7 € (57%(5) neg”" (&) such that the
following status can be obtained:

(i) i is first differentiable on &, if 7 is differentiable at
first status of the Definition 6.
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(i) 7#is second differentiable on &, if 77 is differentiable
at second status (ii) of the Definition 6.

Based on Allahviranloo et al. (2012), we define the
following theorem without its proof.

Theorem 1 Let fr € €7 (&) N 27" (&) such that the fol-
lowing status can be achieved:

(i) If 77 is CFFDF of the first form, then their lower and
upper FVF is also fractional differentiable and

[“D"n(x)]”) = [(CD%) (x; ), (‘D7) (x; oc)} .

(i) If 77 is CFFDF of the second form, then their lower
and upper FVF is also fractional differentiable and

D) = (D) 5, (D) 1)

where,

1

(D)) = gy [0 (2

and

(CDﬁﬁz) (x; o) :ﬁ/x(x — s)ﬂ’h’/z(s; o)ds,

0<d<1.

The fuzzy R-L fractional derivative is defined as:

Definition 8 Salahshour et al. (2012) Let
ne ¢7R(6 n @7 (&). If a FVF 7 is fractional differen-
tiable function of first form. Then the fuzzy R-L fractional

derivative of order ¥ € C, Re(d) >0 is defined as

RLy? ®
(*'D . 71)(x)
m . dm . 5
- [dx—mﬂza—"m)(x; 7). (I 'm) (x5 |, o
for x > a.

If a FVF # is fractional differentiable function of second
form. Then the fuzzy R-L fractional derivative of order
¥ € C, Re(¥) >0 is defined as

d (o)
("D, 1) (x)
" — da” m— 6
= [dxm(lf+ ﬁﬁz) (x; oc),dx—m(la+ 19?1’1)(x; o), (6)
for x > a,

where, the integral in Eqs. (5) and (6) is defined in
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Definition 5 and m — 1 < Re(d) <m such that m is natural ) () 1 x »

number. If 0<¥ <1 and a = 0 then the above definition is {(chh’) (x)] = [M/ (x—s8)" Tiy () (53 2)ds,
- 0

defined for first and second differentiability as

{(RLDZZH) (x)} v {F(ll—ﬁ)i /O X(xfs)719ﬁ1(s;a)ds,

ﬁc%(/o (xs)ﬂh’z(si“)ds}, for x > 0

and

{(RLDZJT) (X)} " = {ﬁ%/ox(x — )ty (s; 0)ds,

ﬁ%/o (x —5) " (s; oc)ds} , for x > 0.

Definition 9 Podlubny (1999) Let 77 € €7 (£) N 27" (&).
If a FVF # is differentiable in the first form. Then the
CFFDF of order ¥ € C, Re(¥) >0 is defined as

[eptnco]”

g dm . g, d™ . (7)
= |:(Ia+ 9(dx_mh’1))(x, o), (I 19(dx_mﬁ2))(x, oc)},
for x > a.

If a FVF # is differentiable in second form. Then the
CFFDF of order ¥ € C, Re(¥) >0 is defined as

{ (°D.7) (x)] i
— [(Igﬂ (d—n:nh’z)) (x; ), (1277 (d—n:nﬁ, ) (x; a)} :

X X

for x > a,
(8)

where, the integral in Eqgs. (5) and (6) is defined in Defi-
nition 5 and m — 1 <Re(¥) <m such that m is natural
number. If 0 <9 <1 and a = 0 then the above definition is
defined for first and second differentiability as

[(chfﬁ) (x)] v [ﬁ /0 " = ) (53 ),

M/{)x(xs)ﬂﬁ;(s;a)ds], for x > 0.

and

1 d ! —03!
F(l—ﬁ)dx/o (x =) "7y (s; Of)ds}, for x > 0.

Definition 10 Let 7€ €7 (§)N 2”7 (&). The fuzzy
fractional integral (base on Ahmadova et al. (2021)) in
terms of M-LF is defined as

(oL 7) (x) = / X(x =)' Ey (i (x = )" )i(s)ds, u> a,

where p,v > 0 and €, 7, are real parameters.

Definition 11 Allahviranloo and Ahmadi (2010) Let
ne (Z’ﬂ(é) N Q‘J’T%(é‘?). Assume that [ e "“7i(u)du is
fuzzy Riemann integrable. Then this integral is called the

fuzzy Laplace transform of 7 and their symbolic

representation

L) = / e Hi(w)du, g > 0. )
0

Since,

/0 e "fi(u)du = [/0 e~ [y (o; u))du,

/ e My (o u)]du}

0

Therefore, Eq. (9) takes the following form
23] = (167 (5 0) )
where,
(I (x;0)) = /OOO e [y (o u)du,

(i (x; o)) = /OOC e "y (o;u)|du

and /(7(x)) is the classical notation in crisp environment of
the function 7(x).

In the following section, we develop an analytical
technique to solve FFDEs with independent fractional
order.
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4 Solution procedure for FFDEs involving
independent fractional order

In this section, first we develop some categorial structure
for closed-form fuzzy solutions of FFDEs with independent
fractional orders. To this end, we demonstrate the follow-
ing results, which are required to find the fuzzy Laplace
transform (FLT) of the fuzzy fractional derivative.
Although, the following theorem has already proof using
fuzzy R-L fractional derivative ( Salahshour et al. (2012)).
We proof in the sense of Caputo derivative as:

Theorem 2 Let 7i: & — Z*, e 67 (&) N 27" (&). If
7i(x) is CFFDF of first form. Then

2|D1i(w)| = g"H{g) & ¢"'(0). (10)
If 7(x) is CFFDF of second form. Then

[ ] _
Z|Dfi(x)| = (—=1)¢" '1(0) & (~1)¢"H(q). (11)

Proof Suppose 7i(x) is CFFDF of first form. Then
4’H(q) © 4" 'n(0) = {qﬁHl(a; q) —¢""'m(0;2), 4 Ha (% q)
—q"'m(0; M)}
= [q”l[m (x;0)] = ¢" 7110 2), g1 [Iia (x; 2)] — ¢"~ 12 (0; a)}
- [z €D, (1, (x:2))] 1[°DY. ( a))ﬂ .

By linearity of %, we have

o 9
q'H(q) ©1(0) = & {CDa (711 (x; 2)), D, (72 x; a))] :
This leads to the following expression

¢'H(q) & 4" Hi(0) = ¥ [CDZL (ﬁ@))} )

Since «-values are arbitrary. Therefore, we get the above
equation as

() © 4" 8(0) = 2|l

If 7i(x) is CFFDF of second form. Then

@ Springer

(- 1)_61”’177(0) e (-4"H(q))

= | = ¢ 'm(0;0) + ¢"Ha(2; q), —q" 111 (0; )
J .

+q"H (o q)]

= |¢" [ (x;0)] — " '12(0; ), ¢"1 1) (x5 )

—q"'m(0; %)]

— [1[eD7. (s (s )], 1 D (1 oc))]] .
By linearity of ¥, we have
(=g’ 'm0) & (~q"H())

=7 {CD:; (2 (x; ), CDZ+ (1 (x; oc))} .
This leads to the following expression
(-1)¢"'m0)e (-¢’H@g) =2 {CDZL (h’(x))} :

Since o-level values are arbitrary. Therefore, we get the
above equation as

(-1)¢"'m0) e (- q'H(q)) =« {CDih’(x)} ,

This completes the proof. O

FFDEs with independent fractional orders play a sig-
nificant role to deal the uncertainty in uncertain fractional
model. Let us we assume the functional fuzzy structure of
FFDEs with independent fractional order in a general form

DY (x) + DY Ai(x) = Z(x, Ti(x)),
fio(xo0) = Tio(x0; ) = (o1 (%03 )3 Fi(0)2 (%03 %)),
Ty (x0) = 71 (x0; ) = (Fiay1 (%03 )5 (12 (X035 ),
(12)
where, x € [xo,X] and 0<¥;,9; <1. The mapping Z :
[x0, X] X R — R is continuous and the initial condition7i(0)

is the fuzzy number. Here CDgl and CDgi are the Caputo
derivatives with arbitrary non-integer order. A mapping
7 : [x0,X] x ® — Z % such that 77 is absolutely continuous
in the domain, then we call 7 is the solution of FFDEs with
independent fractional order. According to Zadeh’s
extension principle when 7i=7i(x) is a fuzzy number

Z(x,fi(x)(s)) = sup {A(t) : s=2Z(x,1)},

where, r € R. It follows that
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(Z(x,71(x))]" = [Z (x, i(x); 0), Zo(x, i(x); )], Ve € [0, 1],

with lower and upper FVF defined as

Z;(x,7i(x); o) = min {Z(x, o, u): u € [f(x;a),in(x; oc)}},

and

Z(x,i(x); o) = max {Z(x,ot,u) : u € [/ (x;0), 72 (x; )] }.

Moreover, Ahmad et al. (2013) studied the existence and
uniqueness of FFDEs using extension principle.

Case I. To deterministic the solution of system 24.
Taking fuzzy Laplace transform on both sides of
Eq. (24), we get

2Dy i(x)] + £ [Dyi(x)] =

L[2(x, 7(x))].

(13)
If 7 is CFFDF of first form. Then using the status first of
Theorem 3.1 (Akram et al. 2022), it yields that

g 2 [i(x)|©q" "1 (0) + g™ L [f(x) | ©g™ 11 (0)
= L[7(x,1(x))].
(14)

Now we extend the aforementioned expression into the
following lower and upper FVF as:

q" 171 (x; 0] — ¢" 701 (0; )
+ g™ [ (x; o) (15)
= q" 105 0) = L[Z4(x,7(x); )]

and

" [ (x; 0)] — ¢" (02 (0; @) + ™[ (x; )] (16)
— 4" (05 ) = L [Zo(x, 1i(x); )],

where,

Z,(x,7i(x); ) = min {Z(x, u): u € i (x;0), i (x; oc)]}

and

Zy(x,fi(x);00) = max {Z(x,u) : u € [ (x; ), 2 (x; 00)] }.

To solve the linear system of Eqs. (15-16) and after
some manipulation, we have
1 (s 0)] = my (i) and  [i(x;e)] = ny(ps o)

(17)

Taking inverse Laplace transform to the Eq. (17), we get

mxo) =" [n(pie)] and To(xo) =1 [ny(p;0)].

(18)
Case II. If 77 is CFFDF of second form. Then using the
second status of Theorem 3.1 Akram et al. (2022), we
have

— (¢" 'mo(0))e( — ¢" 2 [r(%)]) - (¢" 'm(0))e
(—q"2[nW)]) = £[Z(x,7(x))].
(19)

The above expression can be written in form of lower
and upper FVFs as

q" 1[I (x;0)] — " Ti0)2(0; ) + g™ 1 [T (x; )]

—q" i (0y0) = L[Z,(x, 7i(x); 0)] (20)
and
q" 17 (x5 0)] — ¢ oy (05 0) + g1 [ (x; )] 1)
— " "1 (050) = L[Zy(x, 7i(x); )],
where,
Z, (o (x,7i(x)) = min {Z(x,u) : u € [\ (x;0), 702 (x;0)] }
and

(111 (x; 00), 712 (x; 1) }.

Loy (x, 71(x)) = max {Z(x,u) : u€

To solve the linear system of Egs. (20-21) and after

some manipulation, we have
i (o) = (pso) and [ (x;0)] = ny(p; )

(22)
Taking inverse Laplace transform to the Eq. (22), we get

(o) =1"[np;0)] and 7(x0)=1"[n(p;a)].
(23)

Consider the general non-homogeneous fuzzy fractional
initial value problem

Dy fi(x) + Dy i(x) =

7o (0) = 7ip (0; ) = (71 ) ( )%

Mo (0;2)), 701(0) =
u= (1 (2), uy(a))-

(24)

4.1 Deterministic the analytical solution of FFDEs

with independent fractional order

To solve the aforementioned problem 24, we restrict our
concentration to the analysis of the following cases:

(1) 191<’l92, (11) ¥ > 19, and (111) o :192, (25)
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where, 0 < ¥, < 1. We discuss these cases in the form of
the following results.

Theorem 3 Let 7i: & — F%, e €7 (&) N &7 (8). If
Y1 <9, and # is Caputo differentiable function of first
form. Then the system (24) have the following solution

()] = [(o13, 9, 1) (x520)] + [770)(0)]

(" Egygy a1 (=277)) + [y (0)] By (—x"77).

If ¥, <, and # is Caputo differentiable function of the
second form. Then the system (24) have the following
solution Since o-level values are arbitrary. Therefore,
above expression completely be written as

[7(0] = [(oX, 0, 1) (5] © (= i) (0))
(x192—19|E19271917ﬂ27ﬁ]+1 (_x192—191 ))6
( - [ﬁ(l)(o)})Eﬁrﬁl,l(*x’gz”g‘).

Proof First we assume t; <v,. Applying fuzzy Laplace
transformation on both sides of Eq. (24), we obtain the
following

19]

2[Dy ()] + £ [“Dyl(x)] = (26)

ZL[f(x;u)].

— If 7ris CFFDF of first form, Then using the status first of
Theorem 3.1 Akram et al. (2022), we get

q" & [(x)|og" "1 (0) + ¢ £ [7i(x)]
©¢" "1 (0) = Z[f(x;0)].

Now we extend the Eq. (27) into the following lower and
upper FVF as following

(27)

q" 17 ()] — q" Ty (05 ) + g™ 1T (x; )] (28)
—q" " 1)1(050) = 1y () F(q)

and

q" [ (x; 2)] — ¢ 10205 0) + ™[ (x; ) (29
—q"" lﬁ(l)z(os ) = up () F(q)-

From Egs. (28) and (29), we get
91-1

1 (x;00) | = mh’(o)l(o; o) (30)

b (0 + 1)
and
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ql9171
l[ﬁz(x; ac)] — 76]19[ g

q"" oy ()& ()

* g’ + g% a2 (05 ) + g + g%’

ﬁ(o)z (0 0x) 61)
31

The solution of aforementioned equations after taking
inverse fuzzy Laplace transform and using Definition 10,
we get the following

ﬁl ()C' OC) (01119271,91 9 T) (X; Ll])

+ﬁ() (0 ) V2 7927191‘1927191+1(*x%iﬁ]) (32)
+ 7111 (0; &) Eg, g, 1 (—x"7")

and

1 (x; 00) = ua (o) (oI Yy, , ) ()

+ Ti(0)2(0; 0)x" " Ey, g, 9,9, 11 (—x" ") (33)
+ 11205 ) Ey—g, 1 (=7,

or

[ﬁl(xv ) ( )]

[(01119271191 Ui ) x 111 ( 1}2 1)1 R ) X 112)]

+ [#(0)1(0; ) ﬁ(o)z )]( ﬁlElgz 0, 192 g1 (—x"70)

+ [ﬁ(m(o 1 00) | Egy—py 1 (—x"77).
(34)
In the form of «-level values, we have
[ﬁ(x)]x [(o I 71191 ﬂlf) (x; u)]d
[ﬁ(O( )] ( V2= ﬁlEﬂo 19],193719|+1( xﬁz 191))4’ (35)

[ (O] E192 91,1 192_01)'

Since a-values are arbitrary. Therefore, above expression
completely be written as

[7100] = [(oL5 2y, 4,F) ()]
+ [71(0)(0)] (Xﬁz NEg, 9, 9,-0,01(
+ [11)(0)] Eg, 1 (—x"7).

— U=t )) (36)

— If 7 is CFFDF of second form. Then using the status
second of Theorem 3.1 Akram et al. (2022), we have

— 005~ ¢ 2 i)

o (- qﬂz-'mm)e( _ qﬂzz[m)]) — [i(x).
(37)

Now we split the aforementioned expression into the fol-
lowing upper and lower FVFs as
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q" 1[0 (x; )] — " o) (05 ) + g 1[0 (x; )]

9 (38)
—q" ) (0;52) = ui (o) F(q)
and
q" [t (x;e)] — q" Ty (05 00) + g™ [Ty (o 0)] (39)
*qﬂrlh’(l)l (0;00) = uz () F(q)-
From Egs. (38) and (39), we get
q’l9171
1Tty (x; )] = ———-T10)2(0; )
@ (40)
¥r—1 c
q” , w1 () §(q)
+qz91 + qz92 ﬁ(1>2(0’ OC) + qz91 + qz92
and
Y —1 Pr—1
q q
1 (x; =—M1(0;0) + ——
M) =g o @) + 5 (41)
() F(q)
ﬁ(l)l (0; Oﬁ) + W .

The solution of aforementioned equations after taking
inverse Laplace transform, we have

m(x;0) = (o v 7191 u,f) (x5 11) + 70y (05 2)
[x“z 191E1927ﬂh192,191+1(_xﬁz_qy,)] @)
H11)2(0; 2)Egy g, 1 (—x"7"1)
and
m(x;2) = (o0, 9, ) (x5102) + 01 (0; )

(X" Eg, gy gy, 01 (—x"7)] (43)

+ 1)1 (0; 1) Ey,—y, 1 (—x"270),

or

(715 oy o), 713 (o5 o0) | =[710)2(0; 1), Ti(0)1 (0; ) |
(" Eg,_g, gy-,01(—x"7")
+ [7(0)2(0; 1), 7)1 (0; )]
Epyoa (=x"7") + [(015 2, 1)
(1), (01192 9 ﬂlT) (x;u1)].

(44)

In the form of «-level values, we have

[ﬁ(x)] = [(01192 191,191f) (X; u)]a S (_ [h’((])(o)]a>
(xﬂZi&lET’z*ﬂl,ﬂZ*%Jrl(_X%H%)) S (_ [h’(l)(o)]u) : (45)

Eﬁz ol (_x192 - )

Since o-level values are arbitrary. Therefore, above

expression completely be written as

(0] = [(oLi, 9, F) ()]
o (= [i) (0)]) (x> " Eg,—g, 9,0, +1(
© ( - [ﬁ(l)(o)])E%—ﬁl,l (_xmﬂm)

This completes the proof. O

—x27)) . (46)

Theorem 4 Let 7i: & — F %, e €7 (&) N &7 (8). If
% >, and T is Caputo differentiable function of first
form. Then the system (24) have the following solution

[760)] = (015, 0,F) (s 0] + [770)(0)]
(xﬂ'7792E191—192,191—192+1(— 19'7192))

+ [0y (0)] Egy—g,1 (—x" 7).

If ¥ <, and # is Caputo differentiable function of the
second form. Then the system (24) have the following

solution Since o-level values are arbitrary. Therefore,
above expression completely be written as

[7100] = [(oL5 2,0, ) ()]
© ( - [ﬁ(()) (0)]) (xﬁ]7ﬂ2E191 Vp,01— 17o+1(
O (= 1) (0)]) Eg,—gp1 (—x"77)

,xﬂlfﬁ‘z» .

Proof First we assume v, <1;. Applying fuzzy Laplace
transformation on both sides of Eq. (24), we obtain the
following

2[Dr] + 2Dy = L[] @)

— If 71 is CFFDF of first form, Then using the status first of
Theorem 3.1 Akram et al. (2022), we get

q" L [7(x)|6q" 1 (0) + ¢ & [fi(x)]
oq" " '11(0) = Z[f(x;w)].

Now we extend the Eq. (48) into the following lower and
upper FVF as following

g 1[f (x;00) ] — " o)1 (05 00) + ¢ 1]y (x; 1)

(48)

49
—q" )1 (050) = 11 () F(q) )
and
"1 (x;0)] = " (05 ) + " [ (x; )] — g" !
1)2(0;20) = 1w () F(q)-
(50)

From Eqgs. (49) and (50), we get
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q"! 9 )
l[ﬁ] (X; (Z)] = ﬁﬁ(O)l (O, OC) — q1 2_1ﬁ(0)@ ( - C]1 2 Y [h’(x)})
@t (51)
9 -1
q w (2)&(q) -1 ) _ .
+Wﬁ(l)l(0, OC)+W 2] (—61 h’(0>)@ -9 g[h’(xﬂ - g[f(x,u)].
and (58)
g gt Now we split the aforementioned expression into the fol-
1Ty (x; )] = Wﬁ(o)z(o; ) + Wﬁ(1)2(05 o) lowing upper and lower FVFs as
L 1)) q"1[m(x;2)] = ¢" Tiep(0;0) + ¢ 1[0 (x; )] (59)
9 o -
a=+q —q"  (0;2) = i (2)F(g)
(52)
and
The solution of aforementioned equations after taking 9 91 9
inverse fuzzy Laplace transform and using Definition 10, ¢ 1 (x;0)] — ¢ oy (05 ) + g™ 1[0 (x; ) (60)
we get the following - C]ﬂlilﬁ(l)l (0;00) = uz(2) F(q)-
Ty (x; o) = (01119:’1111927,92f) (¢ u1) 4 701 (0; ) From Egs. (59) and (60), we get
X E g gyoy—1 (—X"77) + 711 (05 ) (53) q"!
09—, l[ﬁz()ﬁ 0‘)] =73 ] ﬁ(0)2(03 o)
E’l91—’l92,l( X ) q 2 +q ! (61)
and + 7(119]_1 205 0) + W\ 3\d) (4)5(9)
- g" + ¢" (12 g" + q"
T ('x; OC) = uz(“) (0119’11192,192 f) (x) and
+ 702 (05 0)x" " Ey, g, g, 9,11 (—x" ") + Ti(12(0; ) g
Eg, g, 1(—x"17"), 1 (x; )] = —5 o oy (0;)
q +4q (62)
BO T e 4 2B
or g+ W g g
[ﬁl (x; 00), T (x; oc)] The solution of aforementioned equations after taking
-1 inverse Laplace transform, we have
= [(011917197 ﬂzf) (x

sur), (oL Yy, 0,T) (65 10)]
)

+ [ﬁ(0)1(0§ OC),h’(O)Z 0; o ] (xﬂ'_ﬂzElgl,ﬂzﬁl,gZJrl(—xﬁ‘_ﬁz))
+ [ﬁ(1)1 (O; OC), ﬁ(l)z(o; OC)]Elyl,gz,l (—xﬁl_ﬁz).
(55)
In the form of «-level values, we have
7)) = [(oL~,,0,7) ()]
[0 (0)]" (5"~ Ep, —g,., 011 (—x" ")) (56)
[ﬁ(])(o)]aEﬂl—ﬂbl (_xﬁliﬁz)'

Since a-values are arbitrary. Therefore, above expression
completely be written as

[706)] = [0 =,.0.) (s 20)] + [0)(0)]

(x191_192E1917192,1917192+1 (_xﬂl—ﬂz)) + [ﬁ(])(O)] E191
. 7927 l(_x’ﬂl*’ﬁz). (57)

+
_|_

— If 7 is CFFDF of second form. Then using the status
second of Theorem 3.1 Akram et al. (2022), we have
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m(x;0) = (olll;';lﬁzﬂzf) (x;101) + Tr02(0; )
(X" "By, gy 9,—0p1 (—x"7")] 4+ Fi12(05 ) Eg,—gy 1 (—x" )

(63)
and
7y (x; o) = (01119:;1192,192f) (x12)
+ ﬁ(O)l (0; ) [Xﬂl_ﬂzEﬂl — 0,0, —0a+1 (—xﬂl_ﬂz)] (64)

+ ﬁ(l)l(o;@)Eﬁl—ﬂz,l(—xﬁl_ﬁz)»

or

[712(x; 00), 711 (o5 o0) | = [TH(0)2 (05 t), 7201 (0; 1) ]
(X" E g, gy, -1 (—"77)
+ [710)2(0; ), 2(0)1 (05 1) |
Eg, g1 (—x"17") + [(01119;;11;2,192 )
(), (oL Yy, . F) (ximy)].

(65)

In the form of «-level values, we have
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o 1;—-1 . o p—1
[ﬁ(X)] h [(Olﬂlfﬂz’ﬂzﬂ (= u)] . l[ﬁl(xé “)] _‘12 b 7i(0)1 (0; )
S ( - [ﬁ(o) (O)]a) (x191_192E01*192~,191*192+1 (_xv]_dz)) ’ h—1 7 (72)
_ - uy (o)
& (= 110y (0))) Eg, g (—x" ") +q27ﬁ<1>1(0; o) + 1(?5((1)
(66)
and
Since o-level values are arbitrary. Therefore, above i
. . -1
expression completely be written as l[ﬁz (x; oc)} _ 612 . T1(0y2(0; )
[700)] = [0l ~,.0.T) (0] - (73)
91— Y1—1, + q—ﬁ (0 OC) + M
© ( - [ﬁ(()) (0)]) ()C ) 51917192,1917192+1(*x )) 2C]b ()2 qu ’
& (= i) (0)]) Eg,—op1 (=2 77). . : : .
67 The solution of aforementioned equations after taking
(67) inverse fuzzy Laplace transform, we have
This completes the proof. O

Theorem 5 Let 7i: 6 — F X, i€ (S'ﬂ(@”) N Qﬂ(ﬁ). If
Y1 =9 = b and i is CFFDF of first form. Then the system
(24) have the following solution

filx) = % o [/OX f(e)dt] + % [0 (0)] +% i) (0)]-

If ¥; = ¥, =b and # is CFFDF of second form. Then the
system (24) have the following solution

i =5l [ [ i o (-1

[ﬁo( ) e ((—1)5[’71(0)])~

Proof Suppose that ¢; = ¥, = b. Taking fuzzy LT on both
sides of Eq. (24), we have

2[Dy 1)) + L[D )] = L[uoiw].  (68)

If 7 is CFFDF of first form, then Eq. (68) can be written
as

7L [(x)|eq 1ie)(0) + ¢’
Z[f(x)|eg" 1i)(0) = Z[i(x;u)].

Now we extend the aforementioned expression into the
following lower and upper FVFs as

(69)

QU (x;0)] — ¢ i) (0500) + @1 [ (x; )
- (70)
—q" 1)1 (0;0) = w1 () F(q)
and
QU6 0)] — ¢ 005 0) + ¢l (x; )] 1)

—q" 12 (05 @) = 12(0) F(g).
From Egs. (70) and (71), we get

h’l(x;oc):%h’() (0; )+ ﬁ (1)1 1(0;

111 /T

74)
and
1 1 1 )‘
(o) = 5;7(0)2(0; o) + Eﬁ(l)z(O; o) + 5112(06)/ f(r)dr.
0
(75)
The above expression takes the following form
1
) ﬁg x OC)] = [111( ) 112(06)]
/ f(r)dt / f(r d‘c
1
t3 (7201 (05 ), 72(0)2 (0 )] 3 (72011 (05 ), 72(1)2(0; )]
(76)
In the form of «-level values, we have
a1
)" = o]
L1 , (77)
/ i@de]” +3 [0 (0)]" + 5 [ (0)]

Since o-values are arbitrary. Therefore, above expression
completely be written as

[h’(x)] = % [11] O] [/Ox f(f)d‘c] +% [ﬁ(o)(O)] -‘r% [ﬁ(l)(O)].

— If 77 is CFFDF of second form, then the Eq. (68) can be
written as
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— qb‘lﬁ(O)e( - qbﬁf[ﬁ(ﬂ])
(79)
o (0 m0)e( - 4[] ) = 7).

The above equation can be written in the upper and lower
form

Q1[5 2)] = 4 op(0:2) + ¢l (x; o)

80
- qbflﬁ(l)z((); o) = () F(g)- (80
and
@Uf(x;0)] — ¢ o)1 (05 00) + @1 [ (x; 1) 81)
— ¢ 111 (050) = 12 (2)F(q)
From Eqgs. (80) and (81), we get
1 1
[ (x; )] = 2_qﬁ<0)2(0; ) + 2_qﬁ(1)2(0; o) + %ﬁf(c])
(82)
and
1 1
1 052)] = 50590 + 5 (050 + 22000
(83)

Taking inverse fuzzy Laplace transform, we get

ﬁz(x; OC) = %ul(o‘) Ax f(‘[)d’[ + %ﬁ(0)2(07 O{) -+ %ﬁ(])z(o, O()
(84)

and

1 1
zﬁ(oﬂ (05 ) + = 72(1)1(0; ).

(o) = %uz(oc) /Ox f(r)dr + 5

(85)
The aforementioned Eq. (85) in the form of FVF
(122 (x; o), 7 (ox; )]

1 * 1 1 1
= {Eul(“)/o f(0)dt + 5 70)2(0; 2) + 51110 (05 ), Sua (@)

/0’“ f(T)dTJF%ﬁ(o)l(O% ) +%71'(1)1(& 0‘)] (86)

_ % {ul (2)

1

+3 |:ﬁ(0)2(07 o), fioy (05 )

g [ i)

1

0

In a-level form, we have
)" =5 ) @ [ [ itae)* o (=13 o))
1

S ((—1)5 [711(0)]%).
(87)

Since o-values are arbitrary. Therefore, above expression
completely be written as

5] =3[l o [ [ (0] & ((-1)

mo(0)]) & ((-1)5 [ 0)]).

This completes the proof. O

(88)

Fig. 1 Graphical presentation of the solution of Application 1 taking f(x) = x and f(x) = x>, m = 0, different values for o and space variable

7i(x),respectively
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2 sL I L I ! 1 1 ! 1 |
\ \ c

0 01 02 03 04 05 06 07 08 03

Fig.2 Atx=0:0.01:1andx=0,0.1,0.2,0.3,---, 1. We depict the graph of 7i(x) in Fig. 2. If we change the value of o continuously, we have
the graph of the given fuzzy functions in crisp environment

Fig. 3 Graphical presentation of the solution of Application 2 taking f(x) = x and f(x) = x>, m = 0, different values for o and space variable
7i(x), respectively

807 T T T 60y T

S0 =

wlf = N 4 N

3f ¥ X

kS 2

10 -

of of

ol 1 1 L 1 1 1 1 1 J sk L 1 1 1 1 1 1 |
0 01 02 03 04 03 06 07 08 08 1 0 ol 02 03 04 05 06 07 08 08

Fig.4 Atx=0:0.01:1and«=0,0.1,0.2,0.3,- -, 1. We depict the graph of #(x) in Fig. 4. If we change the value of & continuously, we have
the graph of the given fuzzy functions in crisp environment
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Fig. 5 Graphical presentation of the solution of Application 3 taking f(x) = x and f(x) = x? with different values for o and space variable 7(x)

5 Applications

Application 1 As an application of Theorem 3, for
1 1
11 <1%,. For instance ¥, = 3 and ¥, = > We consider the

non-homogeneous FFDEs with independent fractional
order

D}, 7i(x) + D 7i(x) = (o + 4,6 — ) © §(x),

DY iy (x0) = (0) = (2 +5,7 — 20), (89)

11
CD6+ ﬁ(a)(XO) = ﬁ(O) = (OC + 57 T— OC).
If £ < 4. In accordance with Theorem 3, analytical solutions
for the initial value problem are given as follows:

Ax)=(a+4,6—0a)
o (M o)

nx)=(a+4,6—-0)0O <if(l{(7—:)m) (—l)mol'ﬁ'l*;f(x))

m=0

S (_1)(7 — a0+ 5) (xéEé%(—x%) + EéJ (—x%))

As an application of Theorem 4, for 9, > 1J,. For
1
inst Yy == and ¥, ==
instance v 5 and v, 3
Application 2 We consider the non-homogeneous FFDEs
with independent fractional order

@ Springer

D, 71(x) + CD i(x) = (o + 4,6 — ) © (),
Dy iy (x0) = 11(0) = (2 + 5,7 — 20, (90)

1]

B‘ ﬁ(a)(XO) = ﬁ(O) = (O( +5,7 — OC).

‘D,

If 1 > 1 In accordance with Theorem 4, analytical solu-
tions for the initial value problem are given as follows:

Ax)=(a+4,6—a)

X I(1+m) 1y B
o (SR i)

L L
+ (45,7 — o) (Ey 1 (=) + Ey 1 (—%))

and

F(x) = (24 4,6 — ) © (f}”}(ﬁ)’”) <—1>molé%+%f<x>)

m=0

& (—1)(7 — a, 04 5) (g (—x) + Ey 4 (—x)).

207

If ©; = ¥,. Then the following application converges to

1
the Theorem 5. For instance ¥, = 9, = T

Application 3 We consider the non-homogeneous FFDEs
with independent fractional order
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D} () + DY () = (44,6 — ) © (),

D} iy (x0) = 1(0) = (45,7 — ), (91)

1
Dy (x0) = 7(0) = (2 + 5,7 — ).

Ifb= %. In accordance with Theorem 5, analytical solu-
tions for the initial value problem are given as follows:

A(x) = (oc—|—4,6—oc)@/()xf(r)df+(ot+5,7—oc)

N | —

and

fi(x) :%(oc+4,6—ac) @/Oxf(r)dre (=D)(7 — o, +5).

The underlying annotations can be seen in the graphs of
Figs. 1, 2, 3, 4 and 5. All plots behave the same. The plots
fit each other very well. Especially when considering
FFDEs with independent fractional order. The solution is a
fuzzy function for each point in the domain, and FFDEs
with independent fractional order has a strong connection
to the model profile. To determine the general solution for
homogeneous FFDEs with independent fractional order,
we consider the following homogeneous FFDEs with
independent fractional order with fuzzy initial-value
problem.

D) f(x) + CDY A(x) = A O A(x), 4> 0,

110(0) = Tio(0; &) = (01 (05 )3 )2 (05 ),
711(0) = 711 (05 00) = (7111 (05 00); 71 12(0; 1) ).

(92)

We give the following corollaries regarding the homoge-
neous system without these proofs. The reader can find
their solution easily using above analysis.

Corollary 1 Let7i: & — F X, fi e Giﬂ(é”‘) N Q?%(ﬁ). If
Y% > ¥,. Then the aforementioned system (92) have the
following solution

ﬁ(x) :ﬁO(O)qu)l W=, 1 (}'xﬂ] ) _xﬂliﬁz)

Y1 —th+1 ol 1.9 I —1
+ 711 (0)x E, 09,0y 01 (227, =x7702).

Corollary 2 Let i: & — F%, e €7 (6)n &7 (6). If
Yy <v,. Then the aforementioned system (92) have the
following solution

D=1 1 9 9r—1)
ﬁ(x) :ﬁo(O)x ’ 1E1927?72*19|.,1927191+1(}*x 7, =X ])

") 02—
HI(0)E), g, g, 1 (2", —x"7").

Now, we solve an RLC electrical circuit in fuzzified
version that already studied Devi and Jakhar (2020) in
classical environment. An inductor, resistor and capacitor
are connected in the form of series with electromotive force
of £ volts. Suppose the current (and charge on the capac-
itor) in the circuit is zero. Now, we determine and analyze
the uncertainty in charge and current when time increase.
Suppose Q and 7 is the charge and current at a specific
time. Second-order ordinary differential equation is
£0' (0 + R (1) +3.00) = £). (93)
We construct a fuzzified form of the above Eq. (93). So, the
fractional model of the above initial-value problem can be
represented as

C
Q(0) = (Q1(0;2), ©2(0;0)), QV(0) = (1" (0;), Q5" (0;)),
(94)

{ LD 01 + REDE Q1) + Q1) = £(1),

with the uncertain initial condition Q(0) = Qp and

Q(1>(0) = Q(()l) are fuzzy number. The model given in
Eq. (94) is a special case of the model given in Eq. (4) with
fractional orders 0 <oy <2 and O<oap <1.

Suppose Q(#) = 7i(x), £(¢) = f(x) and assume arbitrary
values for each parameter as: o; =0.7, o, =0.5,
0(0) = (0,2 — ), QW (0) = (0,2 — ), L=R =1. Let
us consider that the value of C is large enough. Then the
above problem (94) can be written as

oy Ti(x) + CDy (x) = f(x),
1(0)

(95)
= (06,2 - OC), ﬁ(l)(o) = (OC,Z - OC),

The system (95) is an application of the Theorem 4. The
solution of the system (95) for the first form of differen-

tiability is given by

fi(x) = [(01(1):’27,(1).5

D] + [ (0)] (*Eoar2(—x"%))
+ [ﬁ(])(O)]EO‘z,l (—XO'Z).

The solution of the system (95) for the second form of
differentiability

(x) = [(ol2,057) ()] & (= () (0)]) _
(x()'2E042,142(_x0'2)) o ( _ [ﬁ(l)(o)])EOAZ,] (_x042)

This solution is almost close to the crisp solution, and we
obtain the exact solution in the crisp environment by taking

(96)

©7)
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o equal to 1. In a broader sense, uncertainty in FFDE may
be due to measurements, observations, environmental facts,
or lack of information. Since the initial conditions have
some uncertainty due to the measurement. This solution
also satisfies the solution in a crisp environment with a
slight modification of the initial conditions. This study
shows how fuzzification of non-integer order differential
equations can help researchers maintain tolerance. The
research also has important implications for dealing with
uncertainty in Brownian motion.

6 Conclusions

Fractional calculus is a useful subfield of mathematical
analysis. This is a generalization of usual calculus that
allows non-integer order. It has become the focus of
attention of mathematicians, physicists and engineers. In
this article, we have analyzed and investigated a fully
closed-form solution for FFDEs with independent frac-
tional order in terms of the Mittage-Leffler function using
SGHD. We have classified this solution into first and sec-
ond differentiability according to the concept of SGHD. A
potential solution of homogeneous and inhomogeneous
FFDEs with independent fractional order has been deter-
mined using a fuzzy Laplace transform approach. Several
significant concepts, facts, and relationships have been
introduced and analyzed. To grasp the considered tech-
nique, some illustrative examples have been studied and
analyzed to visualize and support the theoretical results.
The proposed technique has some sort of drawbacks which
can be explained as follows: The SGHD generates two
types of differentiability which are usually called the first
and second forms of differentiability. The H-derivative
corresponds to the first form, and the non-decreasing
diameter of a differentiable fuzzy function is the second
form of differentiability (if it exists). However, when we
apply the fuzzy Laplace transform approach to arrive at a
proposed solution, the second differentiability adds the
difficulty. In general, certain results are only valid in
specific conditions when we use the second differentiabil-
ity. In future, one can discuss the uncertainty and vague-
ness of Brownian motion using the proposed approach.
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