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Abstract
Analytical studies of fuzzy fractional differential equations (FFDEs) of two different independent fractional orders are

often complex and difficult. It is essential to develop comprehensive schemes for the solutions of FFDEs with independent

orders. This article introduces and investigates the fully closed-form analytical solutions of FFDEs involving two different

independent fractional orders under the strongly generalized Hukuhara differentiability (SGHD). Based on the concept of

SGHD, we extract two possible solutions of FFDEs in terms of the Mittag-Leffler function. Potential solutions for

homogeneous and inhomogeneous FFDEs are obtained using the definition of the fuzzy Laplace transform technique. Some

interesting properties and results for the FFDEs are introduced using the concepts of SGHD. We illustrate some examples

as applications to explain the effectiveness of our proposed results. FFDE has a variety of applications in science and

engineering. To enhance the functional significance of this work, we solve the RLC circuit using the proposed technique in

a fuzzy setting to analyze and interpret the theoretical results.

Keywords Fuzzy differential equations with independent fractional orders � Caputo fractional derivative �
Strongly generalized Hukuhara differentiability � Laplace transform � Mittag-Leffler function

1 Introduction

1.1 Fuzzy differential equations

Every real-world problem is inherently based on uncer-

tainty. In a world full of uncertainty, it is often necessary to

accurately identify problems, modify and solve, infer and

interpret results. Generally speaking, there are several

problems in science and engineering that are completely

solved by fuzzy differential equations (FDE). Dubios and

Prade (1982) initially introduced the the concept of FDEs.

These differential equations are based on the definition of

fuzzy derivative which is called the Dubois-Prade

derivative. Subsequently, a number of definitions of fuzzy

derivatives were introduced including Puri and Ralescu

(1983) derivative (for short H-derivative), the Goetschel

and Voxman (1986) derivative, Seikkala (1987) derivative

and Friedman et al. (1996) derivative. Although these

derivatives are defined in different forms from one another,

but all of them gave equivalent results for fuzzy functions.

The most common derivatives are the Seikkala and Puri-

Ralescu derivative. The Puri-Ralescu derivative is defined

using H-difference while the Seikkala derivative defined by

a-level set of fuzzy functions. Yue and Guangyuan (1998)

introduced the ’same and reverse’ order derivative

approach to solve the challenges caused from H-derivative.

Bede and Gal (2005) developed the concept of SGHD. This

structure provides two types of differentiability from the

fuzzy function. These two types of differentiability are

usually called the first and second forms of differentiabil-

ity. The first form is corresponding to the H-differentia-

bility and the second form corresponds to the non-

decreasing diameter of fuzzy function. Allahviranloo and

Ghanbari (2020), Haq et al. (2022) and Wasques et al.
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(2020) introduced the reliable and ABC approach to extract

the fuzzy solutions of FFDEs with their applications.

1.2 Fuzzy fractional differential equations

Fractional calculus is a branch of mathematics that inves-

tigates the different properties of derivatives and integrals

with fractional order (or non-integer orders). A broader

understanding for fractional calculus allows us to evaluate

the dynamic behavior of real-world problems both in the-

oretical and practical point of view. Fractional calculus has

been effectively applied for modeling to solve many

complicated problems. In this field of study, the idea and

techniques for solving non-integer differential equations

with the unknown function are particularly important.

Several researchers, including Miller and Ross (1993),

Kilbas et al. (2006) and Magin (2006) investigated new

techniques for solving many complicated problems related

to the real-world. The revolution of non-integer orders (or

fractional orders) has been found to be useful in repre-

senting complicated systems, despite the fact that the

computational effects are vague. In many areas of frac-

tional calculus, the computational process is not straight-

forward. For this reason, Ahmad et al. (2021) developed

the solution procedure for solving the fuzzy fractional

dimensionless Fisher equation. Ghaffari et al. (2021)

introduced the analytical technique for time-fractional

problems in uncertain environments. Ezadi and Allahvi-

ranloo (2020) proposed an efficient technique to solve

FFDEs. Khakrangin et al. (2021) developed a numerical

scheme for the fuzzy solution of FFDEs. Melliani et al.

(2021) analyzed the Ulam–Hyers–Rassias stability to solve

fuzzy fractional integral-differential equations in the sense

of Caputo gH-differentiability. Vu and Hoa (2019) studied

FFDEs on time scales using granular differentiability.

Agarwal et al. (2010) studied the solution of FFDEs using

Riemann–Liouville (R–L) derivative. Fuzzy fractional

initial value problem using Caputo derivative was intro-

duced by Ngo et al. (2018). Generalized Hukuhara frac-

tional differentiation using interval numbers was developed

by Hoa et al. (2017). Laplace transform in fuzzy environ-

ments was established by Allahviranloo and Ahmadi

(2010). In addition, Salahshour and Allahviranloo (2013)

discussed the application of fuzzy Laplace transform.

Allahviranloo et al. (2014) developed the solution proce-

dure for FFDEs using Caputo’s definition. Akram et al.

(2022, 2022); Akram and Ihsan (2022) interpreted the

solution of Pythagorean fuzzy ordinary and partial differ-

ential equations using SGHD. Furthermore, Akram et al.

(2022, 2023) extracted the solution procedure for fuzzy

Langevin and two dimensional system of differential

equations in Caputo’s derivative sense with their applica-

tions. Rahaman et al. (2021) and Dong et al. (2022)

investigated the solution procedure for finding the exact

solution and finite-time stability of FFDEs.

1.3 Motivation of the proposed technique

Many authors have drawn readers’s attention when solving

fractional differential equations (FrDE) involving inde-

pendent fractional orders discussed the existence of solu-

tions for FrDE. Ahmad et al. (2012) and Ahmad and Nieto

(2010) investigated the solution of FrDEs on different

Dirichlet boundary conditions and intervals. Moreover,

Mahmudov (2020) and Baghani and Nieto (2019) studied

the FrDEs containing two fractional independent orders on

various intervals. Fazli et al. (2020) determined the exis-

tence and uniqueness of FrDEs with different independent

fractional orders. So, determining the solution of FrDEs

with independent fractional order becomes more important

because of their cross-discipline research. On the other

hand, fuzzy models are used to represent the dynamical

behaviors that do not include randomness but do contain

some uncertain parameters. Some of these models naturally

result in FFDEs. FFDEs have received extensive attention

due to the vast majority in real-life problems including

science and engineering (Blackwell and Beck (2010)). This

uncertainty in FFDEs may cause due to measurement,

observation, environmental facts, or lack of information.

There are some mathematical models in the literature that

can deal with the uncertainty such as stochastic, or fuzzy

sets. Wang et al. (2015) studied that some problems exist

in the literature that can only analyzed using fuzzy math-

ematical models. Here, we extract the fully closed-form

analytical solution of FDEs with fractional orders to

overcome and analyze the uncertainty that arises in the

fuzzy mathematical model. Although, Diethelm et al.

(2002) and Diethelm and Ford (2004) determine the

approximate solution of FrDEs using various numerical

approaches and algorithms. We investigate the analytical

fuzzy solution of FFDEs with independent fractional orders

in terms of the M-LF using the tool of fuzzy Laplace

transform.

1.4 Novelty of the work

Nonetheless, some authors have developed many interest-

ing methods and schemes to address FFDE and its appli-

cations. This article emphasizes its uniqueness from the

following perspectives:

(i) A solution to an FFDE involving two independent

fractional orders.

(ii) Two possible solutions of FFDE are extracted on

the basis of SGHD.
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(iii) M-LF closed-form solutions for homogeneous and

heterogeneous FFDEs are discussed.

(iv) The fuzzy solution is determined using the fuzzy

Laplace transform technique.

(v) Several important concepts, facts and relationships

and their applications are analyzed.

(vi) Solution of RLC circuits in uncertain environ-

ments using the proposed method.

1.5 Structure of paper

The rest of this article is arranged as: Section 2 presents

some preliminaries and the basic concepts of fractional

calculus, fuzzy fractional calculus, and fractional differ-

ential operators in crisp and fuzzy environments. In Sect. 3,

we describe the concept of fuzzy Caputo SGHD using H-

difference. Section 4 contains the solution procedure for

FFDEs involving independent fractional order in terms of

the M-LF using first and second differentiability. In Sect. 5,

some examples are solved to check the validity and effi-

ciency of our proposed technique. The conclusions and

future directions are given in Sect. 6.

2 Basic concepts

We start this section by reviewing some fundamental

concepts and terminologies that are necessary for this

article.

F< ¼
�
h�: X �!: ½0; 1�

�
denotes the class of fuzzy

subset on <. Firmly, h� is convex because

h�ðhx1þð1�hÞx2Þ�min
�
h�ðx1Þ;h�ðx2Þ

�
;

8h;x1;x2 with h2 ½0;1�; x1;x22<;

where, h� is semi-continuous on upward such that fx1 2
<j h�ðx1Þ� kg is closed for every 0� k� 1; and there exist

x1 2 < such that h�ðx1Þ ¼ 1; ½h��0 ¼ fx1 2 <j h�ðx1Þ[ 0g is

compact. The support of h� is fx 2 <j h�ðxÞ[ 0g.

Definition 1 Smadi et al. (2021) The a-level set of h�2
F< is defined as

½h��a ¼
fx1 2 <j h�ðx1Þ� ag; 8a 2 ð0; 1�;

fx1 2 <j h�ðx1Þ[ 0g; a ¼ 0:

8
><

>:

½h��a is bounded and closed interval such that

½h��a ¼
�
h�1ðaÞ; h�2ðaÞ

�
; 8a 2 ½0; 1�.

Definition 2 Goetschel and Voxman (1986) The triangular

fuzzy number (TFN) t 2 F< is characterized in the para-

metric form
�
h�1ðaÞ; h�2ðaÞ

�
, 0� a� 1. The functions h�1ðaÞ

and h�2ðaÞ fulfil the following axioms:

(i) The lower parametric fuzzy function h�1ðaÞ is left
continuous, bounded and monotonic increasing.

(ii) The upper parametric fuzzy function h�2ðaÞ is left
continuous, bounded and monotonic decreasing.

(iii) h�1ðaÞ� h�2ðaÞ.

Definition 3 Ngo et al. (2018) Suppose h�1; h�2 2 F<, if

there exist h�3 2 F< such that h�1 ¼ h�2 þ h�3. Then h�3 will

be the H-difference of ðh�1; h�2Þ. We will compose the

standard notation of H-difference as h�1 �H h�2. Indeed, if
H-difference h��H j exists, then

½h��H j�a ¼ ½h�1ðaÞ � j1ðaÞ; h�2ðaÞ � j2ðaÞ�. Throughout this
article, we depict the sign ‘‘�00 to denote H-difference.

Let CF<
and LF<

ðEÞ be the class of continuous and

integrable fuzzy-valued functions (FVFs) on E ¼ ½a; b�,
respectively.

Definition 4 Ngo et al. (2018) Suppose

h�2 CF<
ðEÞ \ LF<

ðEÞ. The fuzzy R–L fractional integral

of order # 2 C, Reð#Þ[ 0 is defined

�
I#aþh

��ðxÞ ¼ 1

Cð#Þ

Z x

a

ðx� sÞ#�1h�ðsÞds;

for x[ a; # 2 ð0; 1�:
ð1Þ

Recall that the a-level form of fuzzy-valued function

(FVF) h� is defined as: ½h�ðxÞ�a ¼
�
h�1ðx; aÞ; h�2ðx; aÞ

�
.

On the base of lower and upper FVF, we describe the

fuzzy R–L fractional integral as:

Definition 5 Salahshour et al. (2012) Let

h�2 CF<
ðEÞ \ LF<ðEÞ. The fuzzy R–L fractional integral

for FVF h�of order # 2 C, Reð#Þ[ 0 is defined as

�
�
I#aþh

��ðxÞ
	ðaÞ

¼
�
�
I#aþh

�
1

�
ðx; aÞ;

�
I#aþh

�
2

�
ðx; aÞ

	
;

a 2 ½0; 1�; x[ a;

ð2Þ

where the lower and upper FVFs is defined as
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�
I#aþh

�
1

�
ðx; aÞ ¼ 1

Cð#Þ

Z x

a

ðx� sÞ#�1h�1ðs; aÞds;
�
I#aþh

�
2

�
ðx; aÞ

¼ 1

Cð#Þ

Z x

a

ðx� sÞ#�1h�2ðs; aÞds:

3 Caputo’s SGH-differentiability

In this section, we define fuzzy Caputo SGH-differentia-

bility under H-difference. We attempt to develop some

basic definitions and terminologies which are similar to the

classical context in fuzzy environment.

Definition 6 Bede and Gal (2005) Assume h�2 CF<
ðEÞ \

LF<
ðEÞ and wðxÞ ¼ 1

Cð1� #Þ

Z x

a

h�ðqÞ � h�ð0Þ
ðx� qÞ#

dq. The

FVF h�ðxÞ is said to be the Caputo fuzzy fractional differ-

entiable function (CFFDF) of order 0\#� 1 at x 2 ða; bÞ
in the first form, if there exists CD#h�ðxÞ 2 F< such that:

(i) For every s positive, the functions wðxþ sÞ � wðxÞ
and wðxÞ � wðx� sÞ both exists such that

CD#h�ðxÞ ¼ lim
s&0þ

wðxþ sÞ � wðxÞ
s

¼ lim
s&0þ

wðxÞ � wðx� sÞ
s

:

ð3Þ

Or, h�ðxÞ is called CFFDF of order 0\#\1 at

x 2 ða; bÞ in the second form, if there exists
CD#h�ðxÞ 2 F< such that

(ii) For every s positive, the expressions wðxÞ � wðxþ
sÞ and wðx� sÞ � wðxÞ both exists such that

CD#h�ðxÞ ¼ lim
s&0þ

wðxÞ � wðxþ sÞ
�s

¼ lim
s&0þ

wðx� sÞ � wðxÞ
�s

:

ð4Þ

Indeed, h�is differentiable on the open interval (a, b) if h�is

differentiable for every point in the interval (a, b).

Note 1 Fuzzy R–L fractional derivative of FVF h�ðxÞ is

denoted by RLD#h�ðxÞ and is defined same as the above

Definition 6.

For the sake of convenient, we depict the following

definition as:

Definition 7 Let h�2 CF<
ðEÞ \ LF<

ðEÞ such that the

following status can be obtained:

(i) h�is first differentiable on E, if h�is differentiable at

first status of the Definition 6.

(ii) h�is second differentiable on E, if h�is differentiable

at second status (ii) of the Definition 6.

Based on Allahviranloo et al. (2012), we define the

following theorem without its proof.

Theorem 1 Let h�2 CF<
ðEÞ \ LF<

ðEÞ such that the fol-

lowing status can be achieved:

(i) If h�is CFFDF of the first form, then their lower and

upper FVF is also fractional differentiable and

½CD#h�ðxÞ�ðaÞ ¼
��

CD#h�1
�
ðx; aÞ;

�
CD#h�2

�
ðx; aÞ

	
:

(ii) If h� is CFFDF of the second form, then their lower

and upper FVF is also fractional differentiable and

½CD#h�ðxÞ�ðaÞ ¼
��

CD#h�2
�
ðx; aÞ;

�
CD#h�1

�
ðx; aÞ

	
;

where,

�
CD#h�1

�
ðx; aÞ ¼ 1

Cð1� #Þ

Z x

a

ðx� sÞ�#h�0

1ðs; aÞds

and

�
CD#h�2

�
ðx; aÞ ¼ 1

Cð1� #Þ

Z x

a

ðx� sÞ�#h�0

2ðs; aÞds;

0\#� 1:

The fuzzy R–L fractional derivative is defined as:

Definition 8 Salahshour et al. (2012) Let

h�2 CF<
ðEÞ \ LF<

ðEÞ. If a FVF h� is fractional differen-

tiable function of first form. Then the fuzzy R–L fractional

derivative of order # 2 C, Reð#Þ� 0 is defined as

��
RLD

#

aþh
��ðxÞ

	ðaÞ

¼
�
dm

dxm
�
Im�#
aþ h�1

�
ðx; aÞ; d

m

dxm
�
Im�#
aþ h�2

�
ðx; aÞ

	
;

for x[ a:

ð5Þ

If a FVF h� is fractional differentiable function of second

form. Then the fuzzy R–L fractional derivative of order

# 2 C, Reð#Þ� 0 is defined as

��
RLD

#

aþh
��ðxÞ

	ðaÞ

¼
�
dm

dxm
�
Im�#
aþ h�2

�
ðx; aÞ; d

m

dxm
�
Im�#
aþ h�1

�
ðx; aÞ

	
;

for x[ a;

ð6Þ

where, the integral in Eqs. (5) and (6) is defined in
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Definition 5 and m� 1�Reð#Þ\m such that m is natural

number. If 0\#\1 and a ¼ 0 then the above definition is

defined for first and second differentiability as

��
RLD

#

aþh
��ðxÞ

	ðaÞ
¼

�
1

Cð1� #Þ
d

dx

Z x

0

ðx� sÞ�#h�1ðs; aÞds;

1

Cð1� #Þ
d

dx

Z x

0

ðx� sÞ�#h�2ðs; aÞds
	
; for x[ 0

and

��
RLD

#

aþh
��ðxÞ

	ðaÞ
¼

�
1

Cð1� #Þ
d

dx

Z x

0

ðx� sÞ�#h�2ðs; aÞds;

1

Cð1� #Þ
d

dx

Z x

0

ðx� sÞ�#h�1ðs; aÞds
	
; for x[ 0:

Definition 9 Podlubny (1999) Let h�2 CF<
ðEÞ \ LF<

ðEÞ.
If a FVF h� is differentiable in the first form. Then the

CFFDF of order # 2 C, Reð#Þ� 0 is defined as

��
CD

#

aþh
��ðxÞ

	ðaÞ

¼
�
�
Im�#
aþ

� dm

dxm
h�1
��
ðx; aÞ;

�
Im�#
aþ

� dm

dxm
h�2
��
ðx; aÞ

	
;

for x[ a:

ð7Þ

If a FVF h� is differentiable in second form. Then the

CFFDF of order # 2 C, Reð#Þ� 0 is defined as

��
CD

#

aþh
��ðxÞ

	ðaÞ

¼
��
Im�#
aþ

� dm

dxm
h�2
��
ðx; aÞ;

�
Im�#
aþ

� dm

dxm
h�1
��
ðx; aÞ

	
;

for x[ a;

ð8Þ

where, the integral in Eqs. (5) and (6) is defined in Defi-

nition 5 and m� 1�Reð#Þ\m such that m is natural

number. If 0\#\1 and a ¼ 0 then the above definition is

defined for first and second differentiability as

��
CD

#

aþh
��ðxÞ

	ðaÞ
¼

�
1

Cð1� #Þ

Z x

0

ðx� sÞ�#h�01ðs; aÞds;

1

Cð1� #Þ

Z x

0

ðx� sÞ�#h�02ðs; aÞds
	
; for x[ 0:

and

��
CD

#

aþh
��ðxÞ

	ðaÞ
¼

�
1

Cð1� #Þ

Z x

0

ðx� sÞ�#h�0

2ðaÞðs; aÞds;

1

Cð1� #Þ
d

dx

Z x

0

ðx� sÞ�#h�0

1ðaÞðs; aÞds
	
; for x[ 0:

Definition 10 Let h�2 CF<
ðEÞ \ LF<ðEÞ. The fuzzy

fractional integral (base on Ahmadova et al. (2021)) in

terms of M-LF is defined as

�
aI

�;g1
l;m h

��ðxÞ ¼
Z x

a

ðx� sÞm�1E�
l;m

�
g1ðx� sÞl

�
h�ðsÞds; u[ a;

where l; m[ 0 and �; g1 are real parameters.

Definition 11 Allahviranloo and Ahmadi (2010) Let

h�2 CF<
ðEÞ \ LF<

ðEÞ. Assume that
R1
0

e�quh�ðuÞdu is

fuzzy Riemann integrable. Then this integral is called the

fuzzy Laplace transform of h� and their symbolic

representation

L½h�ðxÞ� ¼
Z 1

0

e�suh�ðuÞdu; q[ 0: ð9Þ

Since,
Z 1

0

e�quh�ðuÞdu ¼
� Z 1

0

e�qu½h�1ða; uÞ�du;
Z 1

0

e�qu½h�2ða; uÞ�du
	
:

Therefore, Eq. (9) takes the following form

L½h�ðxÞ� ¼
�
lðh�1ðx; aÞÞ; lðh�2ðx; aÞÞ

	
;

where,

lðh�1ðx; aÞÞ ¼
Z 1

0

e�qu½h�1ða; uÞ�du;

lðh�2ðx; aÞÞ ¼
Z 1

0

e�qu½h�2ða; uÞ�du

and lðh�ðxÞÞ is the classical notation in crisp environment of

the function h�ðxÞ.

In the following section, we develop an analytical

technique to solve FFDEs with independent fractional

order.
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4 Solution procedure for FFDEs involving
independent fractional order

In this section, first we develop some categorial structure

for closed-form fuzzy solutions of FFDEs with independent

fractional orders. To this end, we demonstrate the follow-

ing results, which are required to find the fuzzy Laplace

transform (FLT) of the fuzzy fractional derivative.

Although, the following theorem has already proof using

fuzzy R–L fractional derivative ( Salahshour et al. (2012)).

We proof in the sense of Caputo derivative as:

Theorem 2 Let h�: E �! F<, h�2 CF<
ðEÞ \ LF<

ðEÞ. If
h�ðxÞ is CFFDF of first form. Then

L

�
CD

#

aþh
�ðxÞ

	
¼ q#HðqÞ � q#�1h�ð0Þ: ð10Þ

If h�ðxÞ is CFFDF of second form. Then

L

�
CD

#

aþh
�ðxÞ

	
¼ ð�1Þq#�1h�ð0Þ � ð�1Þq#HðqÞ: ð11Þ

Proof Suppose h�ðxÞ is CFFDF of first form. Then

q#HðqÞ � q#�1h�ð0Þ ¼
�
q#H1ða; qÞ � q#�1h�1ð0; aÞ; q#H2ða; qÞ

� q#�1h�2ð0; aÞ
	

¼
�
q#l

�
h�1ðx; aÞ

�
� q#�1h�1ð0; aÞ; q#l

�
h�2ðx; aÞ

�
� q#�1h�2ð0; aÞ

	

¼
�
l
�
CD

#

aþ
�
h�1ðx; aÞ

��
; l
�
CD

#

aþ
�
h�2ðx; aÞ

��
	
:

By linearity of L, we have

q#HðqÞ � h�ð0Þ ¼ L

�
CD

#

aþ
�
h�1ðx; aÞ

�
; CD

#

aþ
�
h�2ðx; aÞ

�	
:

This leads to the following expression

q#HðqÞ � q#�1h�ð0Þ ¼ L

�
CD

#

aþ
�
h�ðxÞ

�	a
:

Since a-values are arbitrary. Therefore, we get the above

equation as

q#HðqÞ � q#�1h�ð0Þ ¼ L

�
CD

#

aþh
�ðxÞ

	
:

If h�ðxÞ is CFFDF of second form. Then

�
� 1

�
q#�1h�ð0Þ �

�
� q#HðqÞ

�

¼
�
� q#�1h�2ð0; aÞ þ q#H2ða; qÞ;�q#�1h�1ð0; aÞ

þ q#H1ða; qÞ
	

¼
�
q#l

�
h�2ðx; aÞ

�
� q#�1h�2ð0; aÞ; q#l

�
h�1ðx; aÞ

�

� q#�1h�1ð0; aÞ
	

¼
�
l
�
CD

#

aþ
�
h�2ðx; aÞ

��
; l
�
CD

#

aþ
�
h�1ðx; aÞ

��	
:

By linearity of L, we have
�
� 1

�
q#�1h�ð0Þ �

�
� q#HðqÞ

�

¼ L

�
CD

#

aþ
�
h�2ðx; aÞ

�
; CD

#

aþ
�
h�1ðx; aÞ

�	
:

This leads to the following expression

�
� 1

�
q#�1h�ð0Þ �

�
� q#HðqÞ

�
¼ L

�
CD

#

aþ
�
h�ðxÞ

�	a
:

Since a-level values are arbitrary. Therefore, we get the

above equation as

�
� 1

�
q#�1h�ð0Þ �

�
� q#HðqÞ

�
¼ L

�
CD

#

aþh
�ðxÞ

	
:

This completes the proof. h

FFDEs with independent fractional orders play a sig-

nificant role to deal the uncertainty in uncertain fractional

model. Let us we assume the functional fuzzy structure of

FFDEs with independent fractional order in a general form

CD
#1

0þh
�ðxÞ þ CD

#2

0þh
�ðxÞ ¼ Zðx; h�ðxÞÞ;

h�0ðx0Þ ¼ h�0ðx0; aÞ ¼ ðh�ð0Þ1ðx0; aÞ; h�ð0Þ2ðx0; aÞÞ;
h�1ðx0Þ ¼ h�1ðx0; aÞ ¼ ðh�ð1Þ1ðx0; aÞ; h�ð1Þ2ðx0; aÞÞ;

8
><

>:

ð12Þ

where, x 2 ½x0;X� and 0\#1; #1\1. The mapping Z :
½x0;X� � < ! < is continuous and the initial conditionh�ð0Þ
is the fuzzy number. Here CD

#1

0þ and CD
#2

0þ are the Caputo

derivatives with arbitrary non-integer order. A mapping

h�: ½x0;X� � < ! F< such that h� is absolutely continuous

in the domain, then we call h�is the solution of FFDEs with

independent fractional order. According to Zadeh’s

extension principle when h�=h�ðxÞ is a fuzzy number

Zðx; h�ðxÞðsÞÞ ¼ sup
�
h�ðtÞ : s ¼ Zðx; tÞ

�
;

where, t 2 <. It follows that
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�
Zðx; h�ðxÞÞ

�a ¼
�
Z1ðx; h�ðxÞ; aÞ;Z2ðx; h�ðxÞ; aÞ

�
; 8a 2 ½0; 1�;

with lower and upper FVF defined as

Z1ðx; h�ðxÞ; aÞ ¼ min
�
Zðx; a; uÞ : u 2 ½h�1ðx; aÞ; h�2ðx; aÞ�

�
;

and

Z2ðx; h�ðxÞ; aÞ ¼ max
�
Zðx; a; uÞ : u 2 ½h�1ðx; aÞ; h�2ðx; aÞ�

�
:

Moreover, Ahmad et al. (2013) studied the existence and

uniqueness of FFDEs using extension principle.

Case I. To deterministic the solution of system 24.

Taking fuzzy Laplace transform on both sides of

Eq. (24), we get

L
�
CD

#1

0þh
�ðxÞ

�
þL

�
CD

#2

0þh
�ðxÞ

�
¼ L

�
Zðx; h�ðxÞÞ

�
:

ð13Þ

If h�is CFFDF of first form. Then using the status first of

Theorem 3.1 (Akram et al. 2022), it yields that

q#1L
�
h�ðxÞ

�
�q#1�1h�0ð0Þ þ q#2L

�
h�ðxÞ

�
�q#2�1h�1ð0Þ

¼ L
�
Zðx; h�ðxÞÞ

�
:

ð14Þ

Now we extend the aforementioned expression into the

following lower and upper FVF as:

q#1 l
�
h�1ðx; aÞ

�
� q#1�1h�ð0Þ1ð0; aÞ

þ q#2 l
�
h�1ðx; aÞ

�

� q#2�1h�ð1Þ1ð0; aÞ ¼ L
�
Z1ðx; h�ðxÞ; aÞ

�
ð15Þ

and

q#1 l
�
h�2ðx; aÞ

�
� q#1�1h�ð0Þ2ð0; aÞ þ q#2 l

�
h�2ðx; aÞ

�

� q#2�1h�ð1Þ2ð0; aÞ ¼ L
�
Z2ðx; h�ðxÞ; aÞ

�
;

ð16Þ

where,

Z1ðx; h�ðxÞ; aÞ ¼ min
�
Zðx; uÞ : u 2 ½h�1ðx; aÞ; h�2ðx; aÞ�

�

and

Z2ðx; h�ðxÞ; aÞ ¼ max
�
Zðx; uÞ : u 2 ½h�1ðx; aÞ; h�2ðx; aÞ�

�
:

To solve the linear system of Eqs. (15-16) and after

some manipulation, we have

l
�
h�1ðx; aÞ

�
¼ g1ðp; aÞ and l

�
h�2ðx; aÞ

�
¼ g2ðp; aÞ

ð17Þ

Taking inverse Laplace transform to the Eq. (17), we get

h�1ðx; aÞ ¼ l�1
�
g1ðp; aÞ

�
and h�2ðx; aÞ ¼ l�1

�
g2ðp; aÞ

�
:

ð18Þ

Case II. If h� is CFFDF of second form. Then using the

second status of Theorem 3.1 Akram et al. (2022), we

have

�
�
q#1�1h�0ð0Þ

�
�
�
� q#1L

�
h�ðxÞ

��
�
�
q#2�1h�1ð0Þ

�
�

�
� q#2L

�
h�ðxÞ

��
¼ L

�
Zðx; h�ðxÞÞ

�
:

ð19Þ

The above expression can be written in form of lower

and upper FVFs as

q#1 l
�
h�2ðx; aÞ

�
� q#1�1h�ð0Þ2ð0; aÞ þ q#2 l

�
h�2ðx; aÞ

�

� q#2�1h�ð1Þ2ð0; aÞ ¼ L
�
Z1ðx; h�ðxÞ; aÞ

� ð20Þ

and

q#1 l
�
h�1ðx; aÞ

�
� q#1�1h�ð0Þ1ð0; aÞ þ q#2 l

�
h�1ðx; aÞ

�

� q#2�1h�ð1Þ1ð0; aÞ ¼ L
�
Z2ðx; h�ðxÞ; aÞ

�
;

ð21Þ

where,

Z1ðaÞðx; h�ðxÞÞ ¼ min
�
Zðx; uÞ : u 2 ½h�1ðx; aÞ; h�2ðx; aÞ�

�

and

Z2ðaÞðx; h�ðxÞÞ ¼ max
�
Zðx; uÞ : u 2 ½h�1ðx; aÞ; h�2ðx; aÞ�

�
:

To solve the linear system of Eqs. (20-21) and after

some manipulation, we have

l
�
h�1ðx; aÞ

�
¼ g1ðp; aÞ and l

�
h�2ðx; aÞ

�
¼ g2ðp; aÞ:

ð22Þ

Taking inverse Laplace transform to the Eq. (22), we get

h�1ðx; aÞ ¼ l�1
�
g1ðp; aÞ

�
and h�2ðx; aÞ ¼ l�1

�
g2ðp; aÞ

�
:

ð23Þ

Consider the general non-homogeneous fuzzy fractional

initial value problem

CD
#1

0þh
�ðxÞ þ CD

#2

0þh
�ðxÞ ¼ fðx; uÞ;

h�0ð0Þ ¼ h�0ð0; aÞ ¼ ðh�ð0Þ1ð0; aÞ;
h�ð0Þ2ð0; aÞÞ; h�1ð0Þ ¼ h�1ð0; aÞ ¼ ðh�ð1Þ1ð0; aÞ; h�ð1Þ2ð0; aÞÞ;
u ¼ ðu1ðaÞ; u2ðaÞÞ:

8
>>>><

>>>>:

ð24Þ

4.1 Deterministic the analytical solution of FFDEs
with independent fractional order

To solve the aforementioned problem 24, we restrict our

concentration to the analysis of the following cases:

ðiÞ #1\#2; ðiiÞ #1 [#2 and ðiiiÞ #1 ¼ #2; ð25Þ
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where, 0\#1; #1\1. We discuss these cases in the form of

the following results.

Theorem 3 Let h�: E �! F<, h�2 CF<
ðEÞ \ LF<

ðEÞ. If
#1\#2 and h� is Caputo differentiable function of first

form. Then the system (24) have the following solution
�
h�ðxÞ

�
¼

��
0I

1;�1
#2�#1;#1

f
�
ðx; uÞ

�
þ
�
h�ð0Þð0Þ

�

�
x#2�#1E#2�#1;#2�#1þ1ð�x#2�#1Þ

�
þ
�
h�ð1Þð0Þ

�
E#2�#1;1ð�x#2�#1Þ:

If #1\#2 and h� is Caputo differentiable function of the

second form. Then the system (24) have the following

solution Since a-level values are arbitrary. Therefore,

above expression completely be written as
�
h�ðxÞ

�
¼

��
0I

1;�1
#2�#1;#1

f
�
ðx; uÞ

�
�
�
� ½h�ð0Þð0Þ�

�

�
x#2�#1E#2�#1;#2�#1þ1ð�x#2�#1Þ

�
�

�
� ½h�ð1Þð0Þ�

�
E#2�#1;1ð�x#2�#1Þ:

Proof First we assume #1\#2. Applying fuzzy Laplace

transformation on both sides of Eq. (24), we obtain the

following

L
�
CD

#1

0þh
�ðxÞ

�
þL

�
CD

#2

0þh
�ðxÞ

�
¼ L

�
fðx; uÞ

�
: ð26Þ

– If h�is CFFDF of first form, Then using the status first of

Theorem 3.1 Akram et al. (2022), we get

q#1L
�
h�ðxÞ

�
�q#1�1h�0ð0Þ þ q#2L

�
h�ðxÞ

�

�q#2�1h�1ð0Þ ¼ L
�
fðx; uÞ

�
:

ð27Þ

Now we extend the Eq. (27) into the following lower and

upper FVF as following

q#1 l
�
h�1ðx; aÞ

�
� q#1�1h�ð0Þ1ð0; aÞ þ q#2 l

�
h�1ðx; aÞ

�

�q#2�1h�ð1Þ1ð0; aÞ ¼ u1ðaÞFðqÞ
ð28Þ

and

q#1 l
�
h�2ðx; aÞ

�
� q#1�1h�ð0Þ2ð0; aÞ þ q#2 l

�
h�2ðx; aÞ

�

�q#2�1h�ð1Þ2ð0; aÞ ¼ u2ðaÞFðqÞ:
ð29Þ

From Eqs. (28) and (29), we get

l
�
h�1ðx; aÞ

�
¼ q#1�1

q#1 þ q#2
h�ð0Þ1ð0; aÞ

þ q#2�1

q#1 þ q#2
h�ð1Þ1ð0; aÞ þ

u1ðaÞFðqÞ
q#1 þ q#2

ð30Þ

and

l
�
h�2ðx; aÞ

�
¼ q#1�1

q#1 þ q#2
h�ð0Þ2ð0; aÞ

þ q#2�1

q#1 þ q#2
h�ð1Þ2ð0; aÞ þ

u2ðaÞFðqÞ
q#1 þ q#2

:

ð31Þ

The solution of aforementioned equations after taking

inverse fuzzy Laplace transform and using Definition 10,

we get the following

h�1ðx; aÞ ¼
�
0I

1;�1
#2�#1;#1

f
�
ðx; u1Þ

þ h�ð0Þ1ð0; aÞx#2�#1E#2�#1;#2�#1þ1ð�x#2�#1Þ
þ h�ð1Þ1ð0; aÞE#2�#1;1ð�x#2�#1Þ

ð32Þ

and

h�2ðx; aÞ ¼ u2ðaÞ
�
0I

1;�1
#2�#1;#1

f
�
ðxÞ

þ h�ð0Þ2ð0; aÞx#2�#1E#2�#1;#2�#1þ1ð�x#2�#1Þ
þ h�ð1Þ2ð0; aÞE#2�#1;1ð�x#2�#1Þ;

ð33Þ

or
�
h�1ðx; aÞ; h�2ðx; aÞ

�

¼
��

0I
1;�1
#2�#1;#1

f
�
ðx; u1Þ;

�
0I

1;�1
#2�#1;#1

f
�
ðx; u2Þ

�

þ
�
h�ð0Þ1ð0; aÞ; h�ð0Þ2ð0; aÞ

��
x#2�#1E#2�#1;#2�#1þ1ð�x#2�#1Þ

�

þ
�
h�ð1Þ1ð0; aÞ; h�ð1Þ2ð0; aÞ

�
E#2�#1;1ð�x#2�#1Þ:

ð34Þ

In the form of a-level values, we have
�
h�ðxÞ

�a ¼
��

0I
1;�1
#2�#1;#1

f
�
ðx; uÞ

�a

þ
�
h�ð0Þð0Þ

�a�
x#2�#1E#2�#1;#2�#1þ1ð�x#2�#1Þ

�
þ

�
h�ð1Þð0Þ

�a
E#2�#1;1ð�x#2�#1Þ:

ð35Þ

Since a-values are arbitrary. Therefore, above expression

completely be written as
�
h�ðxÞ

�
¼

��
0I

1;�1
#2�#1;#1

f
�
ðx; uÞ

�

þ
�
h�ð0Þð0Þ

��
x#2�#1E#2�#1;#2�#1þ1ð�x#2�#1Þ

�

þ
�
h�ð1Þð0Þ

�
E#2�#1;1ð�x#2�#1Þ:

ð36Þ

– If h� is CFFDF of second form. Then using the status

second of Theorem 3.1 Akram et al. (2022), we have

� q#1�1h�ð0Þ�


� q#1L

�
h�ðxÞ

��

	
�
� q#2�1h�ð0Þ

�
�


� q#2L

�
h�ðxÞ

�
�

¼ L
�
fðx; uÞ

�
:

ð37Þ

Now we split the aforementioned expression into the fol-

lowing upper and lower FVFs as
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q#1 l
�
h�2ðx; aÞ

�
� q#1�1h�ð0Þ2ð0; aÞ þ q#2 l

�
h�2ðx; aÞ

�

�q#2�1h�ð1Þ2ð0; aÞ ¼ u1ðaÞFðqÞ
ð38Þ

and

q#1 l
�
h�1ðx; aÞ

�
� q#1�1h�ð0Þ1ð0; aÞ þ q#2 l

�
h�1ðx; aÞ

�

�q#2�1h�ð1Þ1ð0; aÞ ¼ u2ðaÞFðqÞ:
ð39Þ

From Eqs. (38) and (39), we get

l
�
h�2ðx; aÞ

�
¼ q#1�1

q#1 þ q#2
h�ð0Þ2ð0; aÞ

þ q#2�1

q#1 þ q#2
h�ð1Þ2ð0; aÞ þ

u1ðaÞFðqÞ
q#1 þ q#2

ð40Þ

and

l
�
h�1ðx; aÞ

�
¼ q#1�1

q#1 þ q#2
h�ð0Þ1ð0; aÞ þ

q#2�1

q#1 þ q#2

h�ð1Þ1ð0; aÞ þ
u2ðaÞFðqÞ
q#1 þ q#2

:

ð41Þ

The solution of aforementioned equations after taking

inverse Laplace transform, we have

h�2ðx; aÞ ¼
�
0I

1;�1
#2�#1;#1

f
�
ðx; u1Þ þ h�ð0Þ2ð0; aÞ

�
x#2�#1E#2�#1;#2�#1þ1ð�x#2�#1Þ

�

þh�ð1Þ2ð0; aÞE#2�#1;1ð�x#2�#1Þ
ð42Þ

and

h�1ðx; aÞ ¼
�
0I

1;�1
#2�#1;#1

f
�
ðx; u2Þ þ h�ð0Þ1ð0; aÞ

�
x#2�#1E#2�#1;#2�#1þ1ð�x#2�#1Þ

�

þ h�ð1Þ1ð0; aÞE#2�#1;1ð�x#2�#1Þ;
ð43Þ

or
�
h�2ðx; aÞ; h�1ðx; aÞ

�
¼
�
h�ð0Þ2ð0; aÞ; h�ð0Þ1ð0; aÞ

�

�
x#2�#1E#2�#1;#2�#1þ1ð�x#2�#1Þ

�

þ
�
h�ð0Þ2ð0; aÞ; h�ð0Þ1ð0; aÞ

�

E#2�#1;1ð�x#2�#1Þ þ
��

0I
1;�1
#2�#1;#1

f
�

ðx; u2Þ;
�
0I

1;�1
#2�#1;#1

f
�
ðx; u1Þ

�
:

ð44Þ

In the form of a-level values, we have
�
h�ðxÞ

�a ¼
��

0I
1;�1
#2�#1;#1

f
�
ðx; uÞ

�a �
�
� ½h�ð0Þð0Þ�a

�

�
x#2�#1E#2�#1;#2�#1þ1ð�x#2�#1Þ

�
�
�
� ½h�ð1Þð0Þ�a

�

E#2�#1;1ð�x#2�#1Þ
: ð45Þ

Since a-level values are arbitrary. Therefore, above

expression completely be written as

�
h�ðxÞ

�
¼

��
0I

1;�1
#2�#1;#1

f
�
ðx; uÞ

�

�
�
� ½h�ð0Þð0Þ�

��
x#2�#1E#2�#1;#2�#1þ1ð�x#2�#1Þ

�

�
�
� ½h�ð1Þð0Þ�

�
E#2�#1;1ð�x#2�#1Þ

: ð46Þ

This completes the proof. h

Theorem 4 Let h�: E �! F<, h�2 CF<
ðEÞ \ LF<

ðEÞ. If
#1 [#2 and h� is Caputo differentiable function of first

form. Then the system (24) have the following solution
�
h�ðxÞ

�
¼

��
0I

1;�1
#1�#2;#2

f
�
ðx; uÞ

�
þ
�
h�ð0Þð0Þ

�

�
x#1�#2E#1�#2;#1�#2þ1ð�x#1�#2Þ

�

þ
�
h�ð1Þð0Þ

�
E#1�#2;1ð�x#1�#2Þ:

If #1\#2 and h� is Caputo differentiable function of the

second form. Then the system (24) have the following

solution Since a-level values are arbitrary. Therefore,

above expression completely be written as
�
h�ðxÞ

�
¼

��
0I

1;�1
#1�#2;#2

f
�
ðx; uÞ

�

�
�
� ½h�ð0Þð0Þ�

��
x#1�#2E#1�#2;#1�#2þ1ð�x#1�#2Þ

�

�
�
� ½h�ð1Þð0Þ�

�
E#1�#2;1ð�x#1�#2Þ

:

Proof First we assume #2\#1. Applying fuzzy Laplace

transformation on both sides of Eq. (24), we obtain the

following

L
�
CD

#2

0þh
�ðxÞ

�
þL

�
CD

#1

0þh
�ðxÞ

�
¼ L

�
fðx; uÞ

�
: ð47Þ

– If h�is CFFDF of first form, Then using the status first of

Theorem 3.1 Akram et al. (2022), we get

q#2L
�
h�ðxÞ

�
�q#2�1h�0ð0Þ þ q#1L

�
h�ðxÞ

�

�q#1�1h�1ð0Þ ¼ L
�
fðx; uÞ

�
:

ð48Þ

Now we extend the Eq. (48) into the following lower and

upper FVF as following

q#2 l
�
h�1ðx; aÞ

�
� q#2�1h�ð0Þ1ð0; aÞ þ q#1 l

�
h�1ðx; aÞ

�

� q#1�1h�ð1Þ1ð0; aÞ ¼ u1ðaÞFðqÞ
ð49Þ

and

q#2 l
�
h�2ðx; aÞ

�
� q#2�1h�ð0Þ2ð0; aÞ þ q#1 l

�
h�2ðx; aÞ

�
� q#1�1

h�ð1Þ2ð0; aÞ ¼ u2ðaÞFðqÞ:
ð50Þ

From Eqs. (49) and (50), we get
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l
�
h�1ðx; aÞ

�
¼ q#2�1

q#2 þ q#1
h�ð0Þ1ð0; aÞ

þ q#1�1

q#2 þ q#1
h�ð1Þ1ð0; aÞ þ

u1ðaÞFðqÞ
q#2 þ q#1

ð51Þ

and

l
�
h�2ðx; aÞ

�
¼ q#2�1

q#2 þ q#1
h�ð0Þ2ð0; aÞ þ

q#1�1

q#2 þ q#1
h�ð1Þ2ð0; aÞ

þ u2ðaÞFðqÞ
q#2 þ q#1

:

ð52Þ

The solution of aforementioned equations after taking

inverse fuzzy Laplace transform and using Definition 10,

we get the following

h�1ðx; aÞ ¼
�
0I

1;�1
#1�#2;#2

f
�
ðx; u1Þ þ h�ð0Þ1ð0; aÞ

x#1�#2E#1�#2;#1�#2þ1ð�x#1�#2Þ þ h�ð1Þ1ð0; aÞ
E#1�#2;1ð�x#1�#2Þ

ð53Þ

and

h�2ðx; aÞ ¼ u2ðaÞ
�
0I

1;�1
#1�#2;#2

f
�
ðxÞ

þ h�ð0Þ2ð0; aÞx#1�#2E#1�#2;#1�#2þ1ð�x#1�#2Þ þ h�ð1Þ2ð0; aÞ
E#1�#2;1ð�x#1�#2Þ;

ð54Þ

or
�
h�1ðx; aÞ; h�2ðx; aÞ

�

¼
��

0I
1;�1
#1�#2;#2

f
�
ðx; u1Þ;

�
0I

1;�1
#1�#2;#2

f
�
ðx; u2Þ

�

þ
�
h�ð0Þ1ð0; aÞ; h�ð0Þ2ð0; aÞ

��
x#1�#2E#1�#2;#1�#2þ1ð�x#1�#2Þ

�

þ
�
h�ð1Þ1ð0; aÞ; h�ð1Þ2ð0; aÞ

�
E#1�#2;1ð�x#1�#2Þ:

ð55Þ

In the form of a-level values, we have
�
h�ðxÞ

�a ¼
��

0I
1;�1
#1�#2;#2

f
�
ðx; uÞ

�a

þ
�
h�ð0Þð0Þ

�a�
x#1�#2E#1�#2;#1�#2þ1ð�x#1�#2Þ

�

þ
�
h�ð1Þð0Þ

�a
E#1�#2;1ð�x#1�#2Þ:

ð56Þ

Since a-values are arbitrary. Therefore, above expression

completely be written as
�
h�ðxÞ

�
¼

��
0I

1;�1
#1�#2;#2

f
�
ðx; uÞ

�
þ
�
h�ð0Þð0Þ

�

�
x#1�#2E#1�#2;#1�#2þ1ð�x#1�#2Þ

�
þ
�
h�ð1Þð0Þ

�
E#1

� #2; 1ð�x#1�#2Þ: ð57Þ

– If h� is CFFDF of second form. Then using the status

second of Theorem 3.1 Akram et al. (2022), we have

� q#2�1h�ð0Þ�


� q#2L

�
h�ðxÞ

��

	
�
� q#1�1h�ð0Þ

�
�


� q#1L

�
h�ðxÞ

��
¼ L

�
fðx; uÞ

�
:

ð58Þ

Now we split the aforementioned expression into the fol-

lowing upper and lower FVFs as

q#2 l
�
h�2ðx; aÞ

�
� q#2�1h�ð0Þ2ð0; aÞ þ q#1 l

�
h�2ðx; aÞ

�

� q#1�1h�ð1Þ2ð0; aÞ ¼ u1ðaÞFðqÞ
ð59Þ

and

q#2 l
�
h�1ðx; aÞ

�
� q#2�1h�ð0Þ1ð0; aÞ þ q#1 l

�
h�1ðx; aÞ

�

� q#1�1h�ð1Þ1ð0; aÞ ¼ u2ðaÞFðqÞ:
ð60Þ

From Eqs. (59) and (60), we get

l
�
h�2ðx; aÞ

�
¼ q#2�1

q#2 þ q#1
h�ð0Þ2ð0; aÞ

þ q#1�1

q#2 þ q#1
h�ð1Þ2ð0; aÞ þ

u1ðaÞFðqÞ
q#2 þ q#1

ð61Þ

and

l
�
h�1ðx; aÞ

�
¼ q#2�1

q#2 þ q#1
h�ð0Þ1ð0; aÞ

þ q#1�1

q#2 þ q#1
h�ð1Þ1ð0; aÞ þ

u2ðaÞFðqÞ
q#2 þ q#1

:

ð62Þ

The solution of aforementioned equations after taking

inverse Laplace transform, we have

h�2ðx; aÞ ¼
�
0I

1;�1
#1�#2;#2

f
�
ðx; u1Þ þ h�ð0Þ2ð0; aÞ

�
x#1�#2E#1�#2;#1�#2þ1ð�x#1�#2Þ

�
þ h�ð1Þ2ð0; aÞE#1�#2;1ð�x#1�#2Þ

ð63Þ

and

h�1ðx; aÞ ¼
�
0I

1;�1
#1�#2;#2

f
�
ðx; u2Þ

þ h�ð0Þ1ð0; aÞ
�
x#1�#2E#1�#2;#1�#2þ1ð�x#1�#2Þ

�

þ h�ð1Þ1ð0; aÞE#1�#2;1ð�x#1�#2Þ;
ð64Þ

or
�
h�2ðx; aÞ; h�1ðx; aÞ

�
¼
�
h�ð0Þ2ð0; aÞ; h�ð0Þ1ð0; aÞ

�

�
x#1�#2E#1�#2;#1�#2þ1ð�x#1�#2Þ

�

þ
�
h�ð0Þ2ð0; aÞ; h�ð0Þ1ð0; aÞ

�

E#1�#2;1ð�x#1�#2Þ þ
��

0I
1;�1
#1�#2;#2

f
�

ðx; u2Þ;
�
0I

1;�1
#1�#2;#2

f
�
ðx; u1Þ

�
:

ð65Þ

In the form of a-level values, we have
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�
h�ðxÞ

�a ¼
��

0I
1;�1
#1�#2;#2

f
�
ðx; uÞ

�a

�
�
� ½h�ð0Þð0Þ�a

��
x#1�#2E#1�#2;#1�#2þ1ð�x#1�#2Þ

�

�
�
� ½h�ð1Þð0Þ�a

�
E#1�#2;1ð�x#1�#2Þ

:

ð66Þ

Since a-level values are arbitrary. Therefore, above

expression completely be written as
�
h�ðxÞ

�
¼
��

0I
1;�1
#1�#2;#2

f
�
ðx; uÞ

�

�
�
� ½h�ð0Þð0Þ�

��
x#1�#2E#1�#2;#1�#2þ1ð�x#1�#2Þ

�

�
�
� ½h�ð1Þð0Þ�

�
E#1�#2;1ð�x#1�#2Þ:

ð67Þ

This completes the proof. h

Theorem 5 Let h�: E �! F<, h�2 CF<
ðEÞ \ LF<

ðEÞ. If
#1 ¼ #2 ¼ [ and h�is CFFDF of first form. Then the system

(24) have the following solution

h�ðxÞ ¼ 1

2

�
u
�


� Z x

0

fðsÞds
�
þ 1

2

�
h�ð0Þð0Þ

�
þ 1

2

�
h�ð1Þð0Þ

�
:

If #1 ¼ #2 ¼ [ and h� is CFFDF of second form. Then the

system (24) have the following solution

h�ðxÞ ¼ 1

2

�
u
�


� Z x

0

fðsÞds
�
�
�
ð�1Þ 1

2
�
h�0ð0Þ

��
�
�
ð�1Þ 1

2

�
h�1ð0Þ

��
:

Proof Suppose that #1 ¼ #2 ¼ [. Taking fuzzy LT on both

sides of Eq. (24), we have

L
�
CD

[

0þh
�ðxÞ

�
þL

�
CD

[

0þh
�ðxÞ

�
¼ L

�
u
 fðxÞ

�
: ð68Þ

If h�is CFFDF of first form, then Eq. (68) can be written

as

q[L
�
h�ðxÞ

�
�q[�1h�ð0Þð0Þ þ q[

L
�
h�ðxÞ

�
�q[�1h�ð1Þð0Þ ¼ L

�
fðx; uÞ

�
:

ð69Þ

Now we extend the aforementioned expression into the

following lower and upper FVFs as

q[l
�
h�1ðx; aÞ

�
� q[�1h�ð0Þ1ð0; aÞ þ q[l

�
h�1ðx; aÞ

�

�q[�1h�ð1Þ1ð0; aÞ ¼ u1ðaÞFðqÞ
ð70Þ

and

q[l
�
h�2ðx; aÞ

�
� q[�1h�ð0Þ2ð0; aÞ þ q[l

�
h�2ðx; aÞ

�

�q[�1h�ð1Þ2ð0; aÞ ¼ u2ðaÞFðqÞ:
ð71Þ

From Eqs. (70) and (71), we get

l
�
h�1ðx; aÞ

�
¼ q[�1

2q[
h�ð0Þ1ð0; aÞ

þ q[�1

2q[
h�ð1Þ1ð0; aÞ þ

u1ðaÞFðqÞ
2q[

ð72Þ

and

l
�
h�2ðx; aÞ

�
¼ q[�1

2q[
h�ð0Þ2ð0; aÞ

þ q[�1

2q[
h�ð1Þ2ð0; aÞ þ

u2ðaÞFðqÞ
2q[

:

ð73Þ

The solution of aforementioned equations after taking

inverse fuzzy Laplace transform, we have

h�1ðx; aÞ ¼
1

2
h�ð0Þ1ð0; aÞ þ

1

2
h�ð1Þ1ð0; aÞ þ

1

2
u1ðaÞ

Z x

0

fðsÞds

ð74Þ

and

h�2ðx; aÞ ¼
1

2
h�ð0Þ2ð0; aÞ þ

1

2
h�ð1Þ2ð0; aÞ þ

1

2
u2ðaÞ

Z x

0

fðsÞds:

ð75Þ

The above expression takes the following form

�
h�1ðx; aÞ; h�2ðx; aÞ

�
¼ 1

2

�
u1ðaÞ; u2ðaÞ

�

� Z x

0

fðsÞds;
Z x

0

fðsÞds
�

þ 1

2

�
h�ð0Þ1ð0; aÞ; h�ð0Þ2ð0; aÞ

�
þ 1

2

�
h�ð1Þ1ð0; aÞ; h�ð1Þ2ð0; aÞ

�
:

ð76Þ

In the form of a-level values, we have

�
h�ðxÞ

�a ¼ 1

2

�
u
�



� Z x

0

fðsÞds
�a þ 1

2

�
h�ð0Þð0Þ

�a þ 1

2

�
h�ð1Þð0Þ

�a
:

ð77Þ

Since a-values are arbitrary. Therefore, above expression

completely be written as

�
h�ðxÞ

�
¼ 1

2

�
u
�


� Z x

0

fðsÞds
�
þ 1

2

�
h�ð0Þð0Þ

�
þ 1

2

�
h�ð1Þð0Þ

�
:

ð78Þ

– If h�is CFFDF of second form, then the Eq. (68) can be

written as
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� q[�1h�ð0Þ�


� q[L

�
h�ðxÞ

��

	
�
� q[�1h�ð0Þ

�
�


� q[L

�
h�ðxÞ

��
¼ L

�
fðx; uÞ

�
:

ð79Þ

The above equation can be written in the upper and lower

form

q[l
�
h�2ðx; aÞ

�
� q[�1h�ð0Þ2ð0; aÞ þ q[l

�
h�2ðx; aÞ

�

� q[�1h�ð1Þ2ð0; aÞ ¼ u1ðaÞFðqÞ:
ð80Þ

and

q[l
�
h�1ðx; aÞ

�
� q[�1h�ð0Þ1ð0; aÞ þ q[l

�
h�1ðx; aÞ

�

� q[�1h�ð1Þ1ð0; aÞ ¼ u2ðaÞFðqÞ
ð81Þ

From Eqs. (80) and (81), we get

l
�
h�2ðx; aÞ

�
¼ 1

2q
h�ð0Þ2ð0; aÞ þ

1

2q
h�ð1Þ2ð0; aÞ þ

u1ðaÞFðqÞ
2q[

ð82Þ

and

l
�
h�1ðx; aÞ

�
¼ 1

2q
h�ð0Þ1ð0; aÞ þ

1

2q
h�ð1Þ1ð0; aÞ þ

u2ðaÞFðqÞ
2q[

:

ð83Þ

Taking inverse fuzzy Laplace transform, we get

h�2ðx; aÞ ¼
1

2
u1ðaÞ

Z x

0

fðsÞdsþ 1

2
h�ð0Þ2ð0; aÞ þ

1

2
h�ð1Þ2ð0; aÞ

ð84Þ

and

h�1ðx; aÞ ¼
1

2
u2ðaÞ

Z x

0

fðsÞdsþ 1

2
h�ð0Þ1ð0; aÞ þ

1

2
h�ð1Þ1ð0; aÞ:

ð85Þ

The aforementioned Eq. (85) in the form of FVF
�
h�2ðx; aÞ; h�1ðx; aÞ

�

¼
�
1

2
u1ðaÞ

Z x

0

fðsÞdsþ 1

2
h�ð0Þ2ð0; aÞ þ

1

2
h�ð1Þ2ð0; aÞ;

1

2
u2ðaÞ

Z x

0

fðsÞdsþ 1

2
h�ð0Þ1ð0; aÞ þ

1

2
h�ð1Þ1ð0; aÞ

	

¼ 1

2

�
u1ðaÞ

Z x

0

fðsÞds; 1
2
u2ðaÞ

Z x

0

fðsÞds
	

þ 1

2

�
h�ð0Þ2ð0; aÞ; h�ð0Þ1ð0; aÞ

	
þ 1

2

�
h�ð1Þ2ð0; aÞ; h�ð1Þ1ð0; aÞ

	
:

ð86Þ

In a-level form, we have

�
h�ðxÞ

�a ¼ 1

2

�
u
�


� Z x

0

fðsÞds
�a �

�
ð�1Þ 1

2

�
h�0ð0Þ

�a�

�
�
ð�1Þ 1

2

�
h�1ð0Þ

�a�
:

ð87Þ

Since a-values are arbitrary. Therefore, above expression

completely be written as

�
h�ðxÞ

�
¼ 1

2

�
u
�


� Z x

0

fðsÞds
�
�
�
ð�1Þ 1

2
�
h�0ð0Þ

��
�
�
ð�1Þ 1

2

�
h�1ð0Þ

��
:

ð88Þ

This completes the proof. h

Fig. 1 Graphical presentation of the solution of Application 1 taking fðxÞ ¼ x and fðxÞ ¼ x2, m ¼ 0, different values for a and space variable

h�ðxÞ,respectively
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Fig. 2 At x ¼ 0 : 0:01 : 1 and a ¼ 0; 0:1; 0:2; 0:3; � � � ; 1. We depict the graph of h�ðxÞ in Fig. 2. If we change the value of a continuously, we have
the graph of the given fuzzy functions in crisp environment

Fig. 3 Graphical presentation of the solution of Application 2 taking fðxÞ ¼ x and fðxÞ ¼ x2, m ¼ 0, different values for a and space variable

h�ðxÞ, respectively

Fig. 4 At x ¼ 0 : 0:01 : 1 and a ¼ 0; 0:1; 0:2; 0:3; � � � ; 1. We depict the graph of h�ðxÞ in Fig. 4. If we change the value of a continuously, we have
the graph of the given fuzzy functions in crisp environment
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5 Applications

Application 1 As an application of Theorem 3, for

#1\#2. For instance #1 ¼
1

3
and #2 ¼

1

2
. We consider the

non-homogeneous FFDEs with independent fractional

order

CD
1
3

0þh
�ðxÞ þ CD

1
2

0þh
�ðxÞ ¼ ðaþ 4; 6� aÞ 
 fðxÞ;

CD
1
3
�1

0þ h�ðaÞðx0Þ ¼ h�ð0Þ ¼ ðaþ 5; 7� aÞ;

CD
1
2
�1

0þ h�ðaÞðx0Þ ¼ h�ð0Þ ¼ ðaþ 5; 7� aÞ:

8
>>>>>>><

>>>>>>>:

ð89Þ

If 1
3
\ 1

2
. In accordance with Theorem 3, analytical solutions

for the initial value problem are given as follows:

h�ðxÞ ¼ ðaþ 4; 6� aÞ




X1

m¼0

Cð1þ mÞ
Cð1Þ ð�1Þm0I

m
6
þ1

3fðxÞ
�

þ ðaþ 5; 7� aÞ
�
x
1
6E1

6
;7
6
ð�x

1
6Þ þ E1

6
;1ð�x

1
6Þ
�

and

h�ðxÞ ¼ ðaþ 4; 6� aÞ 


X1

m¼0

Cð1þ mÞ
Cð1Þ ð�1Þm0I

m
6
þ1

3fðxÞ
�

� ð�1Þð7� a; aþ 5Þ
�
x
1
6E1

6
;7
6
ð�x

1
6Þ þ E1

6
;1ð�x

1
6Þ
�
:

As an application of Theorem 4, for #1 [#2. For

instance #1 ¼
1

2
and #2 ¼

1

3
.

Application 2 We consider the non-homogeneous FFDEs

with independent fractional order

CD
1
4

0þh
�ðxÞ þ CD

1
5

0þh
�ðxÞ ¼ ðaþ 4; 6� aÞ 
 fðxÞ;

CD
1
4
�1

0þ h�ðaÞðx0Þ ¼ h�ð0Þ ¼ ðaþ 5; 7� aÞ;

CD
1
5
�1

0þ h�ðaÞðx0Þ ¼ h�ð0Þ ¼ ðaþ 5; 7� aÞ:

8
>>>>>>><

>>>>>>>:

ð90Þ

If 1
4
[ 1

5
. In accordance with Theorem 4, analytical solu-

tions for the initial value problem are given as follows:

h�ðxÞ ¼ ðaþ 4; 6� aÞ




X1

m¼0

Cð1þ mÞ
Cð1Þ ð�1Þm0I

m
20
þ1

5fðxÞ
�

þ ðaþ 5; 7� aÞ
�
E 1

20
;1ð�x

1
20Þ þ E 1

20
;1ð�x

1
20Þ
�

and

h�ðxÞ ¼ ðaþ 4; 6� aÞ 


X1

m¼0

Cð1þ mÞ
Cð1Þ ð�1Þm0I

m
20
þ1

5fðxÞ
�

� ð�1Þð7� a; aþ 5Þ
�
E 1

20
;1ð�x

1
20Þ þ E 1

20
;1ð�x

1
20Þ
�
:

If #1 ¼ #2. Then the following application converges to

the Theorem 5. For instance #1 ¼ #2 ¼
1

4
.

Application 3 We consider the non-homogeneous FFDEs

with independent fractional order

Fig. 5 Graphical presentation of the solution of Application 3 taking fðxÞ ¼ x and fðxÞ ¼ x2 with different values for a and space variable h�ðxÞ
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CD
1
4

0þh
�ðxÞ þ CD

1
4

0þh
�ðxÞ ¼ ðaþ 4; 6� aÞ 
 fðxÞ;

CD
1
4
�1

0þ h�ðaÞðx0Þ ¼ h�ð0Þ ¼ ðaþ 5; 7� aÞ;

CD
1
4
�1

0þ h�ðaÞðx0Þ ¼ h�ð0Þ ¼ ðaþ 5; 7� aÞ:

8
>>>>>>><

>>>>>>>:

ð91Þ

If [ ¼ 1
4
. In accordance with Theorem 5, analytical solu-

tions for the initial value problem are given as follows:

h�ðxÞ ¼ 1

2
ðaþ 4; 6� aÞ 


Z x

0

fðsÞdsþ ðaþ 5; 7� aÞ

and

h�ðxÞ ¼ 1

2
ðaþ 4; 6� aÞ 


Z x

0

fðsÞds� ð�1Þð7� a; aþ 5Þ:

The underlying annotations can be seen in the graphs of

Figs. 1, 2, 3, 4 and 5. All plots behave the same. The plots

fit each other very well. Especially when considering

FFDEs with independent fractional order. The solution is a

fuzzy function for each point in the domain, and FFDEs

with independent fractional order has a strong connection

to the model profile. To determine the general solution for

homogeneous FFDEs with independent fractional order,

we consider the following homogeneous FFDEs with

independent fractional order with fuzzy initial-value

problem.

CD
#1

0þh
�ðxÞ þ CD

#2

0þh
�ðxÞ ¼ k
 h�ðxÞ; k[ 0;

h�0ð0Þ ¼ h�0ð0; aÞ ¼ ðh�ð0Þ1ð0; aÞ; h�ð0Þ2ð0; aÞÞ;
h�1ð0Þ ¼ h�1ð0; aÞ ¼ ðh�ð1Þ1ð0; aÞ; h�ð1Þ2ð0; aÞÞ:

8
><

>:
ð92Þ

We give the following corollaries regarding the homoge-

neous system without these proofs. The reader can find

their solution easily using above analysis.

Corollary 1 Let h�: E �! F<, h�2 CF<
ðEÞ \ LF<

ðEÞ. If
#1 [#2. Then the aforementioned system (92) have the

following solution

h�ðxÞ ¼h�0ð0ÞE1
#1;#1�#2;1

ðkx#1 ;�x#1�#2Þ
þ h�1ð0Þx#1�#2þ1E1

#1;#1�#2;#1�#2þ1ðkx#1 ;�x#1�#2Þ:

Corollary 2 Let h�: E �! F<, h�2 CF<
ðEÞ \ LF<

ðEÞ. If
#1\#2. Then the aforementioned system (92) have the

following solution

h�ðxÞ ¼h�0ð0Þx#2�#1E1
#2;#2�#1;#2�#1þ1ðkx#2 ;�x#2�#1Þ

þ h�1ð0ÞE1
#2;#2�#1;1

ðkx#2 ;�x#2�#1Þ:

Now, we solve an RLC electrical circuit in fuzzified

version that already studied Devi and Jakhar (2020) in

classical environment. An inductor, resistor and capacitor

are connected in the form of series with electromotive force

of E volts. Suppose the current (and charge on the capac-

itor) in the circuit is zero. Now, we determine and analyze

the uncertainty in charge and current when time increase.

Suppose Q and I is the charge and current at a specific

time. Second-order ordinary differential equation is

LQ
00 ðtÞ þRQ

0 ðtÞ þ 1

C
QðtÞ ¼ EðtÞ: ð93Þ

We construct a fuzzified form of the above Eq. (93). So, the

fractional model of the above initial-value problem can be

represented as

LCD
a1
0þQðtÞ þRCD

a2
0þQðtÞ þ 1

C
QðtÞ ¼ EðtÞ;

Qð0Þ ¼ ðQ1ð0; aÞ;Q2ð0; aÞÞ; Qð1Þð0Þ ¼ ðQð1Þ
1 ð0; aÞ;Qð1Þ

2 ð0; aÞÞ;

8
<

:

ð94Þ

with the uncertain initial condition Qð0Þ ¼ Q0 and

Qð1Þð0Þ ¼ Q
ð1Þ
0 are fuzzy number. The model given in

Eq. (94) is a special case of the model given in Eq. (4) with

fractional orders 0\a1 � 2 and 0\a2 � 1.

Suppose QðtÞ ¼ h�ðxÞ, EðtÞ ¼ fðxÞ and assume arbitrary

values for each parameter as: a1 ¼ 0:7, a2 ¼ 0:5,

Qð0Þ ¼ ða; 2� aÞ, Qð1Þð0Þ ¼ ða; 2� aÞ, L ¼ R ¼ 1. Let

us consider that the value of C is large enough. Then the

above problem (94) can be written as

CD
0:7
0þ h
�ðxÞ þ CD

0:5
0þ h
�ðxÞ ¼ fðxÞ;

h�ð0Þ ¼ ða; 2� aÞ; h�ð1Þð0Þ ¼ ða; 2� aÞ;

(

ð95Þ

The system (95) is an application of the Theorem 4. The

solution of the system (95) for the first form of differen-

tiability is given by

h�ðxÞ ¼
��

0I
1;�1
0:2;0:5

f
�
ðxÞ

�
þ
�
h�ð0Þð0Þ

��
x0:2E0:2;1:2ð�x0:2Þ

�

þ
�
h�ð1Þð0Þ

�
E0:2;1ð�x0:2Þ:

ð96Þ

The solution of the system (95) for the second form of

differentiability

h�ðxÞ ¼
��

0I
1;�1
0:2;0:5f

�
ðxÞ

�
�
�
� ½h�ð0Þð0Þ�

�

�
x0:2E0:2;1:2ð�x0:2Þ

�
�
�
� ½h�ð1Þð0Þ�

�
E0:2;1ð�x0:2Þ

: ð97Þ

This solution is almost close to the crisp solution, and we

obtain the exact solution in the crisp environment by taking
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a equal to 1. In a broader sense, uncertainty in FFDE may

be due to measurements, observations, environmental facts,

or lack of information. Since the initial conditions have

some uncertainty due to the measurement. This solution

also satisfies the solution in a crisp environment with a

slight modification of the initial conditions. This study

shows how fuzzification of non-integer order differential

equations can help researchers maintain tolerance. The

research also has important implications for dealing with

uncertainty in Brownian motion.

6 Conclusions

Fractional calculus is a useful subfield of mathematical

analysis. This is a generalization of usual calculus that

allows non-integer order. It has become the focus of

attention of mathematicians, physicists and engineers. In

this article, we have analyzed and investigated a fully

closed-form solution for FFDEs with independent frac-

tional order in terms of the Mittage-Leffler function using

SGHD. We have classified this solution into first and sec-

ond differentiability according to the concept of SGHD. A

potential solution of homogeneous and inhomogeneous

FFDEs with independent fractional order has been deter-

mined using a fuzzy Laplace transform approach. Several

significant concepts, facts, and relationships have been

introduced and analyzed. To grasp the considered tech-

nique, some illustrative examples have been studied and

analyzed to visualize and support the theoretical results.

The proposed technique has some sort of drawbacks which

can be explained as follows: The SGHD generates two

types of differentiability which are usually called the first

and second forms of differentiability. The H-derivative

corresponds to the first form, and the non-decreasing

diameter of a differentiable fuzzy function is the second

form of differentiability (if it exists). However, when we

apply the fuzzy Laplace transform approach to arrive at a

proposed solution, the second differentiability adds the

difficulty. In general, certain results are only valid in

specific conditions when we use the second differentiabil-

ity. In future, one can discuss the uncertainty and vague-

ness of Brownian motion using the proposed approach.

Data availability No data were used to support this study.

Declarations

Conflict of interest The authors declare no conflicts of interest.

References

Agarwal RP, Lakshmikantham V, Nieto JJ (2010) On the concept of

solution for fractional differential equations with uncertainty.

Nonlinear Anal Theory Methods Appl 72(6):2859–2862

Ahmad MZ, Hassan MK, Abbasbanday S (2013) Solving fuzzy

fractional differential equations using Zadeh’s extension princi-

ple. Sci World J 2013:1–11

Ahmad A, Nieto JJ (2010) Solvability of nonlinear Langevin equation

involving two fractional orders with Dirichlet boundary condi-

tions. Int J Differ Equ 1649486

Ahmad B, Nieto JJ, Alsaedi A, El-Shahed M (2012) A study of

nonlinear Langevin equation involving two fractional orders in

different intervals. Nonlinear Anal Real World Appl 13:599–606

Ahmad S, Ullah A, Ullah A, Akgül A, Abdeljawad T (2021)

Computational analysis of fuzzy fractional order non-dimen-

sional Fisher equation. Phys Scr 96(8):084004

Ahmadova A, Huseynov IT, Fernandez A, Mahmudov NI (2021)

Trivariate Mittag-Leffler functions used to solve multi-order

systems of fractional differential equations. Commun Nonlinear

Sci Numer Simul 97:105735

Akram M, Allahviranloo T, Pedrycz W, Ali M (2021) Methods for

solving LR-bipolar fuzzy linear systems. Soft Comput 25:85–108

Akram M, Ihsan T, Allahviranloo T (2022) Solving Pythagorean

fuzzy fractional differential equations using Laplace transform.

Granul Comput. https://doi.org/10.1007/s41066-022-00344-z

Akram M, Ihsan T, Allahviranloo T, Al-Shamiri MMA (2022)

Analysis on determining the solution of fourth-order fuzzy initial

value problem with Laplace operator. Math Biosci Eng

19(12):11868–11902

Akram M, Ihsan T (2022) Solving Pythagorean fuzzy partial

fractional diffusion model using the Laplace and Fourier

transforms. Granul Comput. https://doi.org/10.1007/s41066-

022-00349-8

Akram M, Muhammad G, Allahviranloo T, Ali G (2022) New

analysis of fuzzy fractional Langevin differential equations in

Caputo’s derivative sense. AIMS Math 7(10):18467–18496

Akram M, Muhammad G, Allahviranloo T, Ali G (2023) A solving

method for two-dimensional homogeneous system of fuzzy

fractional differential equations. AIMS Math 8(1):228–263

Allahviranloo T, Ahmadi MB (2010) Fuzzy laplace transforms. Soft

Comput 14(3):235

Allahviranloo T, Armand A, Gouyandeh Z (2014) Fuzzy fractional

differential equations under generalized fuzzy Caputo derivative.

J Intell Fuzzy Syst 26(3):1481–1490

Allahviranloo T, Ghanbari B (2020) On the fuzzy fractional

differential equation with interval Atangana-Baleanu fractional

derivative approach. Chaos Solit Fractals 130:109397

Allahviranloo T, Salahshour S, Abbasbandy S (2012) Explicit

solutions of fractional differential equations with uncertainty.

Soft Comput 16(2):297–302

Baghani H, Nieto JJ (2019) On fractional Langevin equation

involving two fractional orders in different intervals. Nonlinear

Anal Model 24:884–897

Bede B, Gal SG (2005) Generalizations of the differentiability of

fuzzy-number-valued functions with applications to fuzzy

differential equations. Fuzzy Sets Syst 151(3):581–599

Blackwell B, Beck J (2010) A technique for uncertainty analysis for

inverse heat conduction problems. Int J Heat Mass Transf

53(4):753–759

Chen A, Chen Y (2011) Existence of solutions to nonlinear Langevin

equation involving two fractional orders with boundary value

conditions. Bound Value Probl 3:1–17

824 Granular Computing (2023) 8:809–825

123

https://doi.org/10.1007/s41066-022-00344-z
https://doi.org/10.1007/s41066-022-00349-8
https://doi.org/10.1007/s41066-022-00349-8


Devi A, Jakhar M (2020) Analytic solution of fractional order

differential equation arising in RLC electrical circuit. Malaya J

Matematik 8(2):421–426

Diethelm K (2010) The analysis of fractional differential equations:

an application-oriented exposition using differential operators of

Caputo type. Series on complexity, nonlinearity and chaos.

Springer, Heidelberg

Diethelm K, Ford NJ (2004) Multi-order fractional differential

equations and their numerical solution. Appl Math Comput

154:621–640

Diethelm K, Ford NJ, Freed AD (2002) A predictor-corrector

approach for the numerical solution of fractional differential

equations. Nonlinear Dyn 29:3–22

Dong NP, Son NTK, Allahviranloo T, Tam HTT (2022) Finite-time

stability of mild solution to time-delay fuzzy fractional differ-

ential systems under granular computing. Granul Comput.

https://doi.org/10.1007/s41066-022-00325-2

Dubios D, Prade H (1982) Towards fuzzy differential calculus part 3:

differentiation. Fuzzy Sets Syst 8(3):225–233

Ezadi S, Allahviranloo T (2020) Artificial neural network approach

for solving fuzzy fractional order initial value problems under

gH-differentiability. Math Methods Appl Sci

Friedman M, Ming M, Kandel A (1996) Fuzzy derivatives and fuzzy

Cauchy problems using LP metric. Fuzzy Logic Found Ind Appl

8:57–72

Fazli H, Sun H, Nieto JJ (2020) Fractional Langevin equation

involving two fractional orders: existence and uniqueness.

Mathematics 8(5):743

Ghaffari M, Allahviranloo T, Abbasbandy S, Azhini M (2021) On the

fuzzy solutions of time-fractional problems. IJFS 18(3):51–66

Goetschel R Jr, Voxman W (1986) Elementary fuzzy calculus. Fuzzy

Sets Syst 18(1):31–43

Haq EU, Hassan QMU, Ahmad J, Ehsan K (2022) Fuzzy solution of

system of fuzzy fractional problems using a reliable method.

Alex Eng J 61(4):3051–3058

Hoa NV, Lupulescu V, O’Regan D (2017) Solving interval-valued

fractional initial value problems under Caputo gH-fractional

differentiability. Fuzzy Sets Syst 309:1–34

Khakrangin S, Allahviranloo T, Mikaeilvand N, Abbasbandy S (2021)

Numerical solution of fuzzy fractional differential equation by

Haar wavelet. Int J Appl Math 16(1):14

Kilbas AA, Srivastava HM, Trujillo JJ (2006) Theory and applica-

tions of fractional differential equations, 20th edn, vol 204.

Elsevier Science, Amsterdam, pp 1–523

Magin RL (2006) Fractional calculus in bioengineering. Begell House

Publisher Inc, Connecticut

Mahmudov NI (2020) Fractional Langevin type delay equations with

two fractional derivatives. Appl Math Lett 106215

Melliani S, Arhrrabi E, Elomari MH, Chadli LS (2021) Ulam-Hyers-

Rassias stability for fuzzy fractional integrodifferential equations

under Caputo gH-differentiability. Int J Optim Appl 51

Miller KS, Ross B (1993) An introduction to the fractional calculus

and differential equations. Wiley, New York

Ngo HV, Lupulescu V, O’Regan D (2018) A note on initial value

problems for fractional fuzzy differential equations. Fuzzy Sets

Syst 347:54–69

Podlubny I (1998) Fractional differential equations: an introduction to

fractional derivatives, fractional differential equations, to meth-

ods of their solution and some of their applications. Elsevier,

Amsterdam

Podlubny I (1999) Fractional differential equations. Academic Press,

San Diego

Prabhakar TR (1971) A singular integral equation with a generalized

Mittag-Leffler function in the kernel. Yokohama Math J

Puri ML, Ralescu DA (1983) Differentials of fuzzy functions. J Math

Anal Appl 91(2):552–558

Rahaman M, Mondal SP, Alam S, Khan NA, Biswas A (2021)

Interpretation of exact solution for fuzzy fractional non-homo-

geneous differential equation under the Riemann-Liouville sense

and its application on the inventory management control

problem. Granul Comput 6(4):953–976

Salahshour S, Allahviranloo T (2013) Applications of fuzzy Laplace

transforms. Soft comput 17(1):145–158

Salahshour S, Allahviranloo T, Abbasbandy S (2012) Solving fuzzy

fractional differential equations by fuzzy Laplace transforms.

Commun Nonlinear Sci Numer Simul 17(3):1372–1381

Samko SG, Kilbas AA, Marichev OI (1993) Fractional integrals and

derivatives: theory and applications. Gordon & Breach Science

Publishers, Yverdon

Seikkala S (1987) On the fuzzy initial value problem. Fuzzy Sets Syst

24(3):319–330

Smadi MA, Arqub OA, Zeidan D (2021) Fuzzy fractional differential

equations under the Mittag-Leffler kernel differential operator of

the ABC approach: Theorems and applications. Chaos Solit

Fractals 146:110891

Vu H, Hoa NV (2019) Uncertain fractional differential equations on a

time scale under granular differentiability concept. Comput Appl

Math 38(3):1–22

Wang C, Qiu Z, He Y (2015) Fuzzy interval perturbation method for

uncertain heat conduction problem with interval and fuzzy

parameters. Int J Numer Methods Eng 104(5):330–34

Wasques V, Laiate B, Pedro FS, Esmi E, Barros LCD (2020)

Interactive fuzzy fractional differential equation: application on

HIV dynamics. In: International conference on information

processing and management of uncertainty in knowledge-based

systems. Springer, Cham, pp 198–211

Yue Z, Guangyuan W (1998) Time domain methods for the solutions

of N-order fuzzy differential equations. Fuzzy Sets Syst

94(1):77–92

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds

exclusive rights to this article under a publishing agreement with the

author(s) or other rightsholder(s); author self-archiving of the

accepted manuscript version of this article is solely governed by the

terms of such publishing agreement and applicable law.

Granular Computing (2023) 8:809–825 825

123

https://doi.org/10.1007/s41066-022-00325-2

	Analysis of incommensurate multi-order fuzzy fractional differential equations under strongly generalized fuzzy Caputo’s differentiability
	Abstract
	Introduction
	Fuzzy differential equations
	Fuzzy fractional differential equations
	Motivation of the proposed technique
	 Novelty of the work
	Structure of paper

	Basic concepts
	Caputo’s SGH-differentiability
	Solution procedure for FFDEs involving independent fractional order
	Deterministic the analytical solution of FFDEs with independent fractional order

	Applications
	Conclusions
	Data availability
	References




