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Abstract
In a number of fuzzy systems, knowledge measures have been extensively investigated. However, no research on

knowledge measures derived from divergence for standard fuzzy sets has been done. This study develops and validates a

new generalized divergence measure for fuzzy sets based on the mathematical structure of Csiszár’s divergence. Some of

its specific cases, mathematical properties, and performance comparisons are discussed. In addition, exploiting Csiszár’s

divergence idea, a class of fuzzy knowledge measures has been established. The proposed fuzzy generalized divergence is

then used to derive a new fuzzy generalized knowledge measure. Its efficacy in capturing the amount of useful information

in fuzzy sets was demonstrated by comparing it to some strategic information measures. In uncertain multi-criteria

decision-making (MCDM) situations, fuzzy entropy is typically adopted to compute the objective weights of criteria.

However, it frequently provides unsatisfactory results. New optimization models for generating the objective weights based

on the two proposed measures are implemented. These models incorporate both the principles of maximizing deviation and

knowledge measures. This research also presents a novel approach based on a single ideal point for integrating Gray

Relational Analysis (GRA) with VIKOR (Vlsekriterijumska Optimizacija I KOmpromisno Resenje). The developed

technique focuses on discovering the most advantageous alternative, whose performance meets almost every benefit

criterion, as well as identifying the criteria that make an alternative less effective. The consistency and rationality of the

proposed approach are demonstrated through a numerical illustration along with sensitivity and comparative analysis.

Keywords Fuzzy divergence measure � Fuzzy multi-criteria decision-making � Fuzzy knowledge measure �
GRA � VIKOR

1 Introduction

Decision-making processes that are more adaptable and

less limited are needed to support growth in a number of

crucial industries, including those related to transportation,

health, economy, etc. However, experts typically offer

evaluations that are sensitive to their subjectivity, resulting

in ambiguity. In such cases, standard MCDM approaches

fail, and appropriate uncertainty management techniques

are always needed. Bellman and Zadeh (1970) extended the

fuzzy set theory to MCDM to address the intrinsic sub-

jectivity of decision- makers. Therefore, linguistic concepts

that produce fuzzy values or fuzzy sets are employed to

describe alternatives performances under criteria. Fuzzy

multi-criteria decision-making (FMCDM) may aid in

understanding how decision-makers analyze alternatives

and select the best one (Wang and Lee 2009). Numerous

methods of conventional MCDM have been expanded to

fuzzy atmosphere as fuzzy TOPSIS (technique for order

preference by similarity to ideal solution) (Chen 2000),

fuzzy VIKOR (Wang and Chang 2005), fuzzy MOORA

(multi-objective optimization based on ration analysis)

(Brauers and Zavadskas 2006), fuzzy AHP (Analytic

Hierarchy Process) (Lazarevic 2001), and GRA (gray

relational analysis) (Ju-Long 1982). Since then, multiple
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FMCDM have been extensively researched (e.g.,Chen et al.

2019; Zeng et al. 2010; Shahhosseini and Sebt 2011).

The subjective nature of human perception always

generates uncertainties in the information gathered about

the importance of criteria while decision-making process.

Thus, the criteria are differently estimated by decision-

makers. Therefore, they should not consider criteria

equally important. In addition, the appropriate assessment

of criteria weights is crucial in MCDM problems since

weight variations might affect the final ranking of alter-

natives (Hwang and Yoon 1981). In other words, the

optimum solution is inextricably linked to changes in the

preference order of criteria. In fact, weighting strategies

can have a substantial impact on the final ranking. In this

context, objective methods calculate the criteria weighting

coefficients based on the information integrated into the

decision matrix with mathematical models without

considering the decision-maker’s opinions. Among the

objective techniques are entropy methods (Xia and Xu

2012; Garg et al. 2015); fuzzy linear programming

(Mikhailov 2000); maximizing deviation methods (Xu and

Da 2005; Wei 2008). Shannon’s entropy-based technique is

the most renowned strategy. Entropy (Shannon 1948) was

initially intended to assess the average level of uncertainty

embedded in random variable outputs. Zadeh (1968) was

the first to quantify the uncertainty of a fuzzy set,

describing the entropy of a fuzzy event in terms of its

probability distribution and membership function. Based

on Shannon’s function, De Luca and Termini (1972) pro-

posed the most well-known formulation of fuzzy entropy as

the first attempt to evaluate the uncertainty associated with

a fuzzy set in a non-probabilistic environment. Since then,

fuzzy entropy has been widely used in weight criterion

determination (e.g.,Garg et al. 2015; Wang and Lee 2009).

Moreover, Xia and Xu (2012) developed a new approach

for evaluating criteria weights based on entropy and fuzzy

cross-entropy, also known as discrimination information.

Kullback (1951) initiated the concept of cross-entropy to

estimate the extent of discrimination between two proba-

bility distributions. Subsequently, Bhandari and Pal (1993)

proposed a fuzzy discrimination measure to quantify dis-

criminatory information between fuzzy sets in line with the

Kullback’s probabilistic discrimination. Its symmetrical

expression is called a fuzzy divergence measure. A fuzzy

divergence measure is a valuable tool for obtaining dis-

criminating information in a wide range of fields. It can

potentially expand experts’ knowledge and skills. In recent

year, researchers have developed new fuzzy divergence

measures for FMCDM. Ohlan and Ohlan (2016) presented

Hellinger’s fuzzy generalized divergence measure based on

Hellinger’s generalized divergence measure for the prob-

ability distributions reported in Taneja (2013). Verma and

Maheshwari (2017) developed a method for solving

MCDM problems using a new fuzzy Jensen-exponential

divergence measure. Mishra et al. (2018) presented a new

divergence measure applied to MCDM in an intuitionistic

environment to improve cellular mobile telephone service

providers. Kadian and Kumar (2022) proposed a new pic-

ture fuzzy divergence measure based on Jensen–Tsallis

function between picture fuzzy sets, which is applied in

MCDM. Umar and Saraswat (2022) developed a new

picture fuzzy divergence and applied it to decision-making

in machine learning such as pattern recognition, medical

diagnosis and clustering.

According to Arya and Kumar (2020), a knowledge

measure may capture some essential information that

expresses the amount of certainty or precision in a fuzzy

set. That can also be evaluated as the average degree of

discrimination between a fuzzy set and the most fuzzy set.

Several earlier studies on knowledge measures have been
Fig. 2 Sensitivity analysis outcomes related to q at m ¼ 0:5

Fig. 1 Monotonic behavior of Dm w.r.t m
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Table 1 Results of comparative assessment for Dm

m hmðA;BÞ LmðA;BÞ dmðA;BÞ Dq¼2
m

DmðA;BÞ

0 6:4037 � 10�2 0.9207 – – 6:4037 � 10�2

1 5:6681 � 10�2 1.0718 – – 2:3198 � 10�3

2 2:5598 � 10�2 0.5010 0.6895 7. 8732 4:1347 � 10�4

3 1:2565 � 10�2 1.1868 1.8070 6.0075 8:0685 � 10�5

7 7:8126 � 10�4 0.5583 8.2080 5.8399 1:2801 � 10�7

38 3:6380 � 10�13 2169 65.7061 5.8399 2:7488 � 10�29

..

. ..
. ..

. ..
. ..

. ..
.

50 8:8818 � 10�17 31533 88.0350 5.8399 1:1259 � 10�37

..

. ..
. ..

. ..
. ..

. ..
.

80 8:2718 � 10�26 2:5469 � 107 143.8600 5.8399 1:2089 � 10�58

Table 2 Resulting comparative values

Fuzzy set H0:5
2 ðAÞ H15

0:5ðAÞ H2
BPðAÞ K3

SGðAÞ

A0:5 0.7975 0.6762 0.5956 - 0.3344

A 0.7448 0.6148 0.5198 - 0.2000

A2 0.5032 0.4080 0.2816 0.3184

A3 0.3350 0.2656 0.1562 0.6076

A4 0.2297 0.1803 0.0908 0.7619

Table 3 KmðAÞ values for m ¼ 1; 2; 3

Fuzzy set K1ðAÞ K2ðAÞ K3ðAÞ

A0:5 3:539 � 10�3 3:1574 � 10�4 3:1252 � 10�5

A 8:7030 � 10�3 1:1073 � 10�3 1:6377 � 10�4

A2 0.1290 6:0977 � 10�2 3:1804 � 10�2

A3 0.3181 0.2186 0.1592

A4 0.4815 0.3862 0.3219

Table 4 The resulting comparative values

Fuzzy set HHðBÞ HPPðBÞ H0:5
BPðBÞ KSGðBÞ S(B) K1ðBÞ K2ðBÞ K3ðBÞ

B0:5 0.3838 0.5252 0.4844 0.4828 0.5683 0.1732 0.1498 0.1447

B 0.3976 0.5379 0.4874 0.4695 0.5553 0.1744 0.1504 0.1449

B2 0.5057 0.5545 0.4388 0.4471 0.5331 0.2996 0.2569 0.2269

B3 0.4373 0.5264 0.4007 0.4756 0.5613 0.3821 0.3607 0.3420

B4 0.3751 0.4630 0.3701 0.5408 0.6236 0.4160 0.4055 0.3980
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Table 5 Fuzzy decision matrix Joshi and Kumar (2014)

C1 C2 C3 C4 C5

A1 0.2846 0.7500 0.2340 0.2300 0.2400

A2 0.3180 0.2480 0.7660 0.0970 0.7600

A3 0.7590 0.7500 0.3150 0.3200 0.2780

A4 0.2410 0.4370 0.4100 0.1550 0.3940

Table 6 The normalized fuzzy decision matrix

C1 C2 C3 C4 C5

A1 0.3150 0.6390 0.7299 0.4705 0.7423

A2 0.3519 0.2113 0.1159 0.7767 0.1841

A3 0.8400 0.6390 0.6364 0.2634 0.7015

A4 0.2667 0.3723 0.5267 0.6432 0.5770

Table 7 Criteria weights computation for m ¼ 1

Pp
i¼1

1
p�1

Pp
k¼1 Dm¼1ðAij;AkjÞ

Pp
i¼1 Km¼1ðAijÞ w�

j

C1 5:5672 � 10�2 3:5750 � 10�2 0.2480

C2 1:6453 � 10�2 1:3218 � 10�2 0.0803

C3 7:2272 � 10�2 6:6672 � 10�2 0.3761

C4 2:0596 � 10�2 1:4696 � 10�2 0.0955

C5 4:2152 � 10�2 2:6745 � 10�2 0.1865

Table 8 Criteria weights computation for m ¼ 2

Pp
i¼1

1
p�1

Pp
k¼1 Dm¼2ðAij;AkjÞ

Pp
i¼1 Km¼2ðAijÞ w�

j

C1 1:0768 � 10�2 4:1624 � 10�3 0.2511

C2 1:7877 � 10�3 9:6136 � 10�4 0.0462

C3 1:8372 � 10�2 1:3137 � 10�2 0.5300

C4 2:4787 � 10�3 8:7424 � 10�4 0.0564

C5 4:5688 � 10�3 2:3369 � 10�3 0.1161

Table 9 The weighted normalized fuzzy decision matrix w.r.t m

C1 C2 C3 C4 C5

m ¼ 1 A1 0.0781 0.0513 0.2745 0.0449 0.1384

A2 0.0872 0.0169 0.0436 0.0742 0.0343

A3 0.2083 0.0513 0.2394 0.0251 0.1308

A4 0.0661 0.0299 0.1981 0.0614 0.1076

m ¼ 2 A1 0.0791 0.0295 0.3868 0.0265 0.0862

A2 0.0883 0.0097 0.0614 0.0438 0.0213

A3 0.2109 0.0295 0.3373 0.0148 0.0814

A4 0.0669 0.0172 0.2791 0.0362 0.0670
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undertaken using intuitionistic fuzzy sets (IFS). Indeed,

Szmidt et al. (2011, 2014) questioned the duality of entropy

and knowledge measures in an intuitionistic framework

and defined a new knowledge measure which is effectively

a dual measure of entropy. In addition, based on the dis-

tance described in (Szmidt and Kacprzyk 2000) between

two IFSs, Nguyen (2015) proposed a novel knowledge-

based measure of IFSs as the distance of an IFS from the

most intuitionistic fuzzy set. Das et al. (2016) devised a

novel technique for estimating the criteria weights based on

a new intuitionistic fuzzy knowledge measure. Wan et al.

(2016) proposed a new risk attitudinal ranking method of

IFSs and applied it to multi-attribute decision-making

(MADM) with incomplete weight information using new

measures of information amount and reliability of IF val-

ues. The concept of knowledge measure was extended to

Pythagorean and hesitant fuzzy context (e.g., Singh and

Ganie 2022; Wan et al. 2020; Sharma et al. 2022).

Recently, Singh et al. (2019) introduced a novel fuzzy

knowledge measure and demonstrated its duality to a fuzzy

entropy measure in a fuzzy setting. In addition, it was used

to determine the objective criteria weights in MCDM. An

accuracy measure was also developed and used in image

thresholding. Singh et al. (2020) established a generaliza-

tion of the fuzzy knowledge measure previously proposed

in their first paper and integrated it into MCDM for setting

Table 11 The ranking results using our method (case1)

Si Ri Qi Rank

m ¼ 1 A1 0.1729 0.1659 0.1836 2

A2 0.7605 0.3762 1.0000 4

A3 0.0956 0.0955 0.0000 1

A4 0.2573 0.2480 0.3933 3

m ¼ 2 A1 0.1177 0.1168 0.1075 2

A2 0.7555 0.5300 1.0000 4

A3 0.0564 0.0564 0.0000 1

A4 0.2522 0.2511 0.3456 3

Table 12 The ranking results using our method (case2)

Si Ri Qi Rank

m ¼ 1 A1 0.2135 0.2058 0.1658 2

A2 0.7611 0.2500 0.6134 4

A3 0.1000 0.1000 0.0000 1

A4 0.3087 0.2900 0.3014 3

m ¼ 2 A1 0.1485 0.13867 0.0427 2

A2 0.7619 0.3280 1.0000 4

A3 0.1000 0.1000 0.0000 1

A4 0.2204 0.2080 0.2787 3

Table 10 Gray relation coefficients of each alternative (case 1)

C1 C2 C3 C4 C5

m ¼ 1 A1 0.8193 1.0000 1.0000 0.9928 1.0000

A2 0.7215 0.9253 0.3333 1.0000 0.6885

A3 1.0000 1.0000 0.9998 0.9023 1.0000

A4 0.7300 0.9935 0.9946 0.9998 0.9990

m ¼ 2 A1 0.9730 1.0000 1.0000 0.9985 1.0000

A2 0.9854 0.9928 0.5000 1.0000 0.9391

A3 1.0000 1.0000 1.0000 1.0000 1.0000

A4 0.9420 0.9995 0.9989 1.0000 0.9999
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criteria weights. A comparison was performed with con-

ventional VIKOR, TOPSIS, and compromise-typed vari-

able weight (Yu et al. 2018). Singh and Ganie (2021)

proposed a two-parametric generalized fuzzy knowledge

measure and a two-parametric generalized accuracy mea-

sure, all of which have been incorporated into the MOORA

technique. Joshi (2022) suggested a new entropy-based

fuzzy knowledge measure, which has been used to deter-

mine objective criteria weights. He also provided some

other information measures. The key motivations and

contributions for introducing this manuscript are:

• Proximity-based compromise programming approaches

are commonly used in MCDM problem-solving. Con-

sequently, developing a versatile and effective fuzzy

divergence measure for a wide range of applications is

still required. Therefore, based on Csiszár’s work, this

study suggests a new generalized f-divergence measure

for fuzzy sets.

• A fuzzy knowledge measure is also an important topic

in fuzzy information theory and may play an essential

role in a variety of study domains. Since it is a dual

measure of fuzzy entropy, it can provide accurate

information about a fuzzy set. In line with its axiomatic

definition, a knowledge measure evaluates the extent to

which a fuzzy set deviates from the most fuzzy set.

From this standpoint, We suggest developing a new

class of knowledge measures based on Csiszár’s

divergence. Then, the suggested fuzzy generalized

divergence is used to generate a new fuzzy generalized

knowledge measure. A comparative analysis was car-

ried out to evaluate each of their performances.

• Although the entropy-based method is the most widely

used procedure to determine the objective weights of

criteria, in some circumstances it can result in insuffi-

cient weights. Therefore, we provide a new objective

method that incorporates the suggested fuzzy diver-

gence and the proposed knowledge measure. This

methodology aims to accumulate as much information

about criterion importance as possible since the

suggested divergence can indicate to experts how well

a criterion discriminates between alternatives, and the

knowledge measures can help experts to increase their

understanding of the alternative performance under

criteria.

• One of the difficulties in addressing a multi-criteria

problem with competing criteria, is finding a solution

that meets all the criteria simultaneously. The primary

way to illustrate such conditions is through a Pareto

proficient solution, which requires that improving one

criterion deteriorates at least one other criterion (Pareto

et al. 1964). Consistent with the compromise program-

ming concept, this work provides a new fuzzy MCDM

strategy that combines GRA and VIKOR, based on the

Table 15 The ranking results

using our approach on the Kuo

and Liang’s example for

q ¼ 0:5

m ¼ 0 m ¼ 0:5 m ¼ 1

Option Qi Rank 1 Rank 1 Qi Rank 1 Rank 2 Qi Rank 1 Rank 2

HKG 0.7535 3 4 0.5536 3 4 0.3537 3 3

KIX 0.0000 1 1 0.0000 1 1 0.0000 1 1

NRT 0.4034 2 2 0.2876 2 2 0.1718 2 2

PEK 1.0000 7 1 1.0000 7 7 1.0000 7 7

SEL 0.7891 5 5 0.7865 5 5 0.7838 5 5

SHA 0.9481 6 6 0.8939 6 6 0.8398 6 6

TPE 0.7609 4 3 0.6044 4 3 0.4480 4 4

1Rank by our method

2Rank by Kuo and Liang (2011) method

Table 14 Comparison of

ranking order of options from

various procedures

Methods Rank Best option

F-TOPSIS Chen (2000) A3 [A1 [A4 [A2 A3

TOPSIS Hwang and Yoon (1981) A3 [A1 [A4 [A2 A3

IF-TOPSIS Joshi and Kumar (2014) A3 [A1 [A4 [A2 A3

Mishra and Rani (2017) method A3 [A1 [A4 [A2 A3

Rani et al. (2020) method A3 [A1 [A4 [A2 A3

Proposed method A3 [A1 [A4 [A2 A3
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proposed fuzzy generalized divergence and on a single

ideal point (positive ideal solution). It consists first of

transforming cost criteria into benefit criteria and then

determining the reference sequence (ideal point).

Second, applying GRA to get gray relational coeffi-

cients that express the closeness of each alternative

performance to that of the ideal solution under each

benefit criterion. Finally, apply VIKOR to the resulting

gray relational coefficients table and then explain the

findings according to the VIKOR principles. The main

goal of this procedure is to determine the optimal

alternative whose performance under the criteria is

closest to that of the desired reference sequence and can

discriminate between high-performing and outstand-

ingly poor-performing alternatives. Furthermore, the

suggested integrated GRA and VIKOR requires less

processing computation than Kuo and Liang’s. The

novel FMCDM technique’s consistency is proved using

a real-world scenario, as well as sensitivity analysis for

various GRA and VIKOR coefficient values. For

comparison, the suggested integrated GRA and VIKOR

is applied to the numerical example in Kuo and Liang

(2011).

This study is structured into four sections. Section 2 briefly

reviews some fundamental concepts related to fuzzy set

theory as well as fuzzy information measures. Section 3

introduces a new fuzzy generalized divergence measure of

Csiszár’s divergence type with proof of its validity and

appropriateness also investigated. Section 4 discusses a

new class of knowledge measures for fuzzy sets derived

from the Csiszár’s class of divergence, then a new

knowledge measure is deduced from the proposed fuzzy

divergence. In Sect. 5, we investigate the applicability of

both proposed measures to FMCDM problem-solving.

Finally, Sect. 6 provided a conclusion to this work.

In the next section, we review some necessary concepts

and definitions

2 Necessary theoretical tools

Entropy has been involved in much research since it was

established by Shannon (1948) to deal with probabilistic

uncertainty. It measures the degree of relative ambiguity

caused by a misunderstanding of the occurrence of random

experimental results. For any discrete probability distri-

bution P, where

P 2 Pn ¼ P ¼ ðp1; p2; . . .; pnÞj pi [ 0;
Xn

i¼1

pi ¼ 1

( )

:

ð1Þ

The entropy H(P) is given by:

HðPÞ ¼ �
Xn

i¼1

pi log pi: ð2Þ

Later, based on Shannon’s entropy, Kullback (1951)

defined the concept of relative entropy measure, namely

directed divergence, that estimates dissimilarity between

two probability distributions ðP;QÞ 2 Pn �Pn: as:

DKLðP;QÞ ¼
Xn

i¼1

pi log
pi

qi
: ð3Þ

Csiszár (1967) introduced an important class of divergence

measures for probability distributions named Csiszár’s f-

divergence measures defined by a convex function f :

Rþ ! Rþ as follows:

Cf ðP;QÞ ¼
Xn

i¼1

qif
pi

qi

� �

: ð4Þ

Theorem 1 (Csiszár and Korner 1981) If the function f is a

convex and normalized, i.e., f ð1Þ ¼ 0; then the f-diver-

gence Cf ðP;QÞ is non-negative and convex in the pair of

probability distributions ðP;QÞ 2 Cn � Cn:

The undefined expressions of f are interpreted according

to Csiszár and Korner (1981) by:

f ð0Þ ¼ lim
t!0þ

f ðtÞ; 0f
0

0

� �

¼ 0; and

0f
a

0

� �
¼ a lim

t!þ1

f ðtÞ
t

; a[ 0:

ð5Þ

Zadeh (1965) provided mathematical theory and appro-

priate techniques to set up the groundwork for fuzzy set

theory as an extension of Boolean logic, to aid in

approaching human perception and account for inaccura-

cies and uncertainties.

Definition 1 (Zadeh 1965) Let X ¼ x1; x2; . . .; xnf g be a

finite universe of discourse. A fuzzy set (FS) A is defined

as:

A ¼ ðx; lAðxÞÞj x 2 Xf g;

where lA : X ! ½0; 1� is the membership function of A. The

belonging degree of x to A is lAðxÞ 2 ½0; 1�.

If lAðxÞ ¼ 1, then x belongs to A without ambiguity, and

if lAðxÞÞ ¼ 1
2

then there is maximum fuzziness or ambi-

guity whether x belongs to A or not. The family of all fuzzy

sets defined on X is denoted F(X). The following are some

characterizations of fuzzy sets:

Definition 2 Let A, B 2 FðXÞ, then we have:

1. A � B, if and only if lAðxÞ� lBðxÞ,
2. lAcðxÞ ¼ 1 � lAðxÞ; 8 x 2 X; Ac expresses the com-

plement of A,
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3. lA[BðxÞ ¼ max
�
lAðxÞ; lBðxÞ

�
; 8 x 2 X;

4. lA\BðxÞ ¼ min
�
lAðxÞ; lBðxÞ

�
; 8 x 2 X;

5. ½a� 2 FðXÞ a 2 ½0; 1�ð Þ, l½a�ðxÞ ¼ a, 8x 2 X;

6. A ¼ 1
2

� 	
is called the most fuzzy set.

The most prominent axiomatic definition of the fuzzy

entropy measure was developed by De Luca and Termini

(1972).

Definition 3 (De Luca and Termini 1972) An entropy on

F(X) is a real-valued function E : FðXÞ ! ½0; 1� satisfying

the following axioms:

(e1) For all A 2 FðXÞ, EðAÞ ¼ 0 if and only if A is a

crisp set,

(e2) EðAÞ ¼ 1 if and only if A is the most fuzzy set,

(e3) EðA�Þ�EðAÞ for all A 2 FðXÞ, where A� is the

sharpened version of A,

(e4) EðAÞ ¼ EðAcÞ, Ac denotes the complement of A.

De Luca and Termini (1972) also provided the most

renowned statement of fuzzy entropy based on Shannon’s

function. It is stated as:

HðAÞ ¼ �
Xn

i

lAðxiÞ lnðlAðxiÞ
�

þ
�
1 � lAðxiÞ

�
ln
�
1 � lAðxiÞ

�
:

ð6Þ

Given two fuzzy sets A and B Bhandari and Pal (1993)

were the first to use Kullback’s probabilistic divergence to

evaluate the average fuzzy information for discrimination

in favor of A versus B, given by:

IðA;BÞ ¼
Xn

i¼1

lAðxiÞ ln
lAðxiÞ
lBðxiÞ




þð1 � lAðxiÞÞ ln
1 � lAðxiÞ
1 � lBðxiÞ

�

:

ð7Þ

Then, they put forward a fuzzy divergence measure as the

total average of fuzzy information for discrimination

between A and B, which is the symmetric version of I(A, B)

and provided as:

DBHðA;BÞ ¼ IðA;BÞ þ IðB;AÞ: ð8Þ

Afterwards, Montes et al. (2002) established a characteri-

zation of a fuzzy divergence, which must validate the

following postulates.

Definition 4 (Montes et al. 2002) A mapping D : FðXÞ �
FðXÞ �! Rþ is a divergence measure between fuzzy sets

if for each A; B; C 2 FðXÞ; it satisfies the following

properties:

(D1) D(A, B) is non-negative,

(D2) DðA;BÞ ¼ 0, if and only if lAðxiÞ ¼ lBðxiÞ,
(D3) DðA;BÞ ¼ DðB;AÞ.
(D4) maxfDðA [ C;B [ CÞ;DðA \ C;B \ CÞg�

DðA;BÞ:

A fuzzy distance measure has become important due to

its significant applications in various imprecise

frameworks.

Definition 5 (Fan and Xie 1999) A real function d :

FðXÞ � FðXÞ ! Rþ is called a distance measure on F(X),

if d satisfies the following properties

(d1) dðA;BÞ ¼ dðB;AÞ 8A; B 2 FðXÞ,
(d2) dðA;AÞ ¼ 0; 8 A 2 FðXÞ,
(d3) dðN;NcÞ ¼ max

A;B2FðXÞ
dðA;BÞ; N is a crisp set,

(d4) 8A;B;C 2 FðXÞ, if A � B � C, then

dðA;BÞ� dðA;CÞ and dðB;CÞ� dðA;CÞ.

Fan and Xie (1999) also investigated the relationship

between fuzzy entropy, distance and fuzzy similarity

measure where, a similarity measure S defined on F(X) is

related to distance (expressed in normalized scale) by the

following relationship: SðA;BÞ ¼ 1 � dðA;BÞ. It is worth

mentioning that a fuzzy similarity measure is extensively

studied in multiple fuzzy environments (e.g.,Chen and

Chen 2001; Cheng et al. 2015; Chen and Jian 2017).

Recently, Singh et al. (2019) put forward an axiomatic

definition of the knowledge measure for fuzzy sets, which

behaves as a dual measure of fuzzy entropy. Indeed, this

measure is used to evaluate the correctness or precision of

fuzzy sets (Arya and Kumar 2020; Singh et al. 2020). From

an other point of view, knowledge measure can be con-

sidered as discrimination measure between a fuzzy set and

the most fuzzy set.

Definition 6 (Singh et al. 2019) Let A 2 FðXÞ; a real

function K : FðXÞ ! Rþ is called a knowledge measure if

it satisfies the following four postulates:

(k1) K(A) is maximum if and only if A is a crisp set,
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(k2) K(A) is minimum if and only if A is the most fuzzy

set,

(k3) KðA�Þ	KðAÞ, A� is the sharpened version of A,

(k4) KðAcÞ ¼ KðAÞ:, where Ac is the complement of A.

3 A new fuzzy generalized divergence
measure

The purpose of this section is to develop a new fuzzy

generalized divergence measure of Csiszár’s f-divergence

type. A convex and normalized function f must be intro-

duced, according to Theorem 1. Therefore, we proposed

the function fm in Eq. (9) to define the proposed fuzzy

generalized divergence. Consider the function fm : Rþ !
Rþ where:

fmðxÞ ¼
ffiffiffi
x

p
� 1ð Þ2mþ2

ðx þ 1Þm ; ð9Þ

verifying fmð1Þ ¼ f 0mð1Þ ¼ 0 with the undefined expression

given as in Eq. (5). It should be noted that fm was inspired

by the generating function of a probabilistic divergence

measure defined in Taneja (2013). For two arbitrary fuzzy

sets A and B 2 FðXÞ, where the membership values are,

respectively: lAðxiÞ, and lBðxiÞ, i ¼ 1; 2; . . .; n. We get the

expression below:

DmðA;BÞ ¼ 1

2n

Xn

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffi
lAðxiÞ

p
�

ffiffiffiffiffiffiffiffiffiffiffiffi
lBðxiÞ

p� �2mþ2

ðlAðxiÞ þ lBðxiÞÞm

"

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � lAðxiÞ

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � lBðxiÞ

p� �2mþ2

ð2 � lAðxiÞ � lBðxiÞÞm

#

;

where m 2 N:

ð10Þ

Theorem 2 DmðA;BÞ defined in Eq. (10) is a valid fuzzy

generalized divergence measure.

Proof Dm is a divergence measure if it satisfies the prop-

erties (D1)–(D4) of Definition 4.

(D1) For any A;B 2 FðXÞ and for m 2 N, we have from

Eq. (10) that DmðA;BÞ is the sum of non-negative

terms, thus DmðA;BÞ	 0. This proves (D1)

(D2) Assume that DmðA;BÞ ¼ O thus we get from

Eq. (10)

ffiffiffiffiffiffiffiffiffiffiffiffi
lAðxiÞ

p
�

ffiffiffiffiffiffiffiffiffiffiffiffi
lBðxiÞ

p� �2mþ2

ðlAðxiÞ þ lBðxiÞÞm ¼ 0

and
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � lAðxiÞ

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � lBðxiÞ

p� �2mþ2

ð2 � lAðxiÞ � lBðxiÞÞm ¼ 0

8
>>>>>><

>>>>>>:

ð11Þ

Eq. (11) holds if lAðxiÞ ¼ lBðxiÞ. Now, it is evi-

dent that if lAðxiÞ ¼ lBðxiÞ this implies

DðA;BÞ ¼ 0. This proves (D2).

(D3) It is easy to verify that: DmðA;BÞ ¼ DmðB;AÞ thus,

Dm is symmetric, hence (D3) is satisfied.

(D4) Let us check (D4) which is equivalent to verify the

convexity of Dm in A and B.

f 00mðxÞ ¼ ¼ ð2x þ 2m
ffiffiffi
x

p
þ 2mx

3
2 þ 4mx þ x2 þ 1Þ

4x
3
2ðx þ 1Þmþ2

� ðm þ 1Þð
ffiffiffi
x

p
� 1Þ2m:

ð12Þ

From Eq. (12), we get f 00mðxÞ	 0, 8x 2 ð0;1Þ, and

8m 2 N, it follows that fm is a convex function.

Thus from Theorem 1, Dm is jointly convex in A

and B. (D1)–(D4) are verified, so Dm is a valid

fuzzy divergence measure.

h

At particular values of the parameter m, Dm is reduced to

some well-known fuzzy divergence measures.

1. m ¼ �1, Dm¼�1ðA;BÞ = R(A, B), where R(A, B) is

Fuzzy Arithmetic mean divergence measure (Tomar

and Ohlan 2014b) given by:

RðA;BÞ ¼
Xn

i¼1

lAðxiÞ þ lBðxiÞ
2

þ 2 � lAðxiÞ � lBðxiÞ
2


 �

:

ð13Þ

2. m ¼ 0, Dm¼0ðA;BÞ ¼ 2hðA;BÞ where h(A, B) is the

Hellinger’s fuzzy discrimination (Beran 1977) defined

as:

hðA;BÞ ¼
Xn

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffi
lAðxiÞ

p
�

ffiffiffiffiffiffiffiffiffiffiffiffi
lBðxiÞ

p

2

"

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � lAðxiÞ

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � lBðxiÞ

p

2

#

:

ð14Þ
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Remarque 1 For m ¼ 1, Dm¼1 can be expressed as:

Dm¼1ðA;BÞ ¼ 4hðA;BÞ � DðA;BÞ; where DðA;BÞ is the

fuzzy triangular discrimination measure (Dragomir 2003)

given by:

DðA;BÞ ¼
Xn

i¼1

lAðxiÞ � lBðxiÞð Þ2

� 1

ðlAðxiÞ þ lBðxiÞÞ
þ 1

ð2 � lAðxiÞ � lBðxiÞÞ


 �

:

ð15Þ

In addition, note that the proposed fuzzy divergence

measure satisfies the same properties given in Theorems

4.1–4.3 reported in Verma and Maheshwari (2017).

Theorem 3 The proposed fuzzy divergence Dm, is a dis-

tance measure if it verifies the following properties :

1. DmðN;NcÞ ¼ max
A;B2FðXÞ

DmðA;BÞ, where N is a crisp set,

2. Let A, B and C 2 FðXÞ, if A � B � C, then

DmðA;BÞ�DmðA;CÞ and DmðB;CÞ�DmðA;CÞ:

Proof For x 2 Rþ and m 2 N, the derivative of f is :

f 0mðxÞ ¼ ð
ffiffiffi
x

p
� 1Þ2mð

ffiffiffi
x

p
� 1Þm þ x þ m

ffiffiffi
x

p
þ 1

ffiffiffi
x

p
ðx þ 1Þmþ1

: ð16Þ

1. From Eq. (16), the sign of f 0m depends on the sign of

ð
ffiffiffi
x

p
� 1Þ, this implies that fm is decreasing on (0, 1) and

increasing on ð1;þ1Þ: In addition, let us put x ¼ lAðxiÞ
lBðxiÞ and

from Eq. (5), x ¼ 0 holds if lAðxiÞ ¼ 0 and lBðxiÞ is

arbitrary 2 ½0; 1� in particular, if lBðxiÞ ¼ 1 � lAðxiÞ,
from Eq. (9), it is clear that fmð0Þ ¼ 1. On the other hand,

when lAðxiÞ ¼ 1 and lBðxiÞ ¼ 0 thus x ! 1, using

Eq. (5), DmðA;BÞ ¼ 1
n

Pn
i¼1 0fm

1
0

� �
¼ 1. Thus

DmðN;NcÞ ¼ max
A;B2FðXÞ

DmðA;BÞ:

2. To prove DmðA;BÞ�DmðA;CÞ, let us consider t1 ¼
lAðxiÞ
lBðxiÞ and t2 ¼ lAðxiÞ

lCðxiÞ and from A � B � C we get

lAðxiÞ� lBðxiÞ� lCðxiÞ 8xi 2 X, thus

0� t2 � t1 � 1 and since fmðxÞ is decreasing on (0, 1)

(see Eq. (16)), this gives fmðt1Þ� fmðt2Þ then

DmðA;BÞ�DmðA;CÞ: In the same manner, to prove

that DmðB;CÞ�DmðA;CÞ, we consider t1 ¼ lBðxiÞ
lCðxiÞ and

t2 ¼ lAðxiÞ
lCðxiÞ, as lAðxiÞ� lBðxiÞ for all xi 2 X then we get

1	 t1 	 t2 	 0, then since fmðtÞ is decreasing over

(0, 1), this gives fmðt1Þ� fmðt2Þ, that is,

DmðB;CÞ�DmðA;CÞ.
h

3.1 Comparative assessment for the suggested
divergence measure

To demonstrate the usability of the proposed divergence

Dm, it has been compared with some prevalent fuzzy

divergence measures given below.

Bajaj and Hooda (2010) proposed a measure of fuzzy

directed divergence based on the probabilistic divergence

given in Renyi et al. (1961), defined for m[ 0 and m 6¼ 1

as:

dmðA;BÞ ¼ 1

m � 1

Xn

i¼1

ln lAðxiÞmlBðxiÞ1�m
h

þð1 � lAðxiÞÞmð1 � lBðxiÞÞ1�m
i
:

ð17Þ

Bhatia and Singh (2012) developed a new (m, q) class of

divergence measure with m[ 0; m 6¼ 1 and q[ 0; q 6¼ 1 :

Dq
mðA;BÞ ¼ 1

q � 1

Xn

i¼1

ðlm
A ðxiÞl1�m

B ðxiÞ
�

þð1 � lAðxiÞÞmð1 � lBðxiÞÞ1�mÞ
q�1
m�1 � 1

i
;

m[ 0; m 6¼ 1 and q[ 0; q 6¼ 1: ð18Þ

Ohlan (2015) introduced the parametric generalized mea-

sure of fuzzy divergence as:

LmðA;BÞ ¼
Xn

i¼1

ðlAðxiÞ � lBðxiÞÞ2

2m

� ðlAðxiÞ þ lBðxiÞÞm

ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lAðxiÞlBðxiÞ

p
Þmþ1

"

þ ð2 � lAðxiÞ � lBðxiÞÞm

ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 � lAðxiÞÞð1 � lBðxiÞÞ

p
Þmþ1

#

;

m 2 N:

ð19Þ

Ohlan and Ohlan (2016) proposed the generalized Hellin-

ger’s divergence measure defined by:

hmðA;BÞ ¼
Xn

i¼1

ð
ffiffiffiffiffiffiffiffiffiffiffiffi
lAðxiÞ

p
�

ffiffiffiffiffiffiffiffiffiffiffiffi
lBðxiÞ

p
Þ2ðmþ1Þ

ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lAðxiÞlBðxiÞ

p
Þm

"

þ ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � lAðxiÞ

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � lBðxiÞ

p
Þ2ðmþ1Þ

ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 � lAðxiÞÞð1 � lBðxiÞ

p
ÞÞm

#

;

n 2 N:

ð20Þ
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The analysis is performed using two fuzzy sets defined

on the universe of discourse X ¼ f1; 2; 3; 4; 5g, that is A

and B given as: A ¼ f0:3; 0:4; 0:2; 0:1; 0:5g,

B ¼ f0:2; 0:2; 0:3; 0:4; 0:4g.

By carefully examining the results in Table 1, it is found

that the divergence Dq¼2
m is constant for m[ 7. Concerning

LmðA;BÞ, we note that the disparity values are reasonable

when compared with the other measures for a few values of

the parameter m (i.e., m ¼ 0; . . .; 7). On the other hand,

from m ¼ 38, Lm rises quickly, likewise for dm. However,

hm and Dm are more helpful, their efficiency is depicted by

the minimization of degrees of divergence (Tomar and

Ohlan 2014a). Figure 1 illustrates how Dm is superior to

the previously mentioned divergence measures. In fact, the

capacity of Dm to detect even the smallest difference

between two fuzzy sets increases as m rises.

4 A new class of Csiszáz’s divergence-based
knowledge measures

The focus of this section is to develop a novel class of

Csiszár’s f-divergence-based knowledge measures and then

to deduce a new generalized knowledge measure from the

suggested fuzzy divergence Dm. Let A and B be two fuzzy

sets of F(X), and assume that Df is a fuzzy Csiszár’s f-

divergence characterized by:

Df ðA;BÞ ¼
Xn

i¼1

qif
pi

qi

� �

; ð21Þ

where f : Rþ �! Rþ is a convex function and twice dif-

ferentiable on Rþ with f ð1Þ ¼ f 0ð1Þ ¼ 0, where its unde-

fined expression are interpreted as in Eq. (5). Now,

consider B ¼ ½1
2
� the most fuzzy set In F(X), then in term of

membership functions of A and B we get :

Df A;
1

2


 �� �

¼
Xn

i¼1

1

2
f ð2lAðxiÞÞ þ f ð2ð1 � lAðxiÞÞÞ½ �:

ð22Þ

Consider the function g : ½0; 1� ! Rþ, such as

gðlAðxiÞÞ ¼
1

2

�
f ðlAðxiÞÞ þ f ð2ð1 � lAðxiÞÞÞ

	
:

Then for A 2 FðXÞ, we define

Kf ðAÞ ¼ c
Xn

i¼1

gðlAðxiÞÞ; c 2 Rþ; ð23Þ

where c is a constant of normalization.

Theorem 4 Kf ðAÞ in Eq. (23) is a valid fuzzy knowledge

measure.

Proof For more simplicity, Let put c ¼ 1 and ti ¼ lAðxiÞ
such as

gðtiÞ ¼
1

2

�
f ð2tiÞÞ þ f ð2ð1 � tiÞÞ

	
; ð24Þ

the derivative of g is:

g0ðtiÞ ¼ f 0ð2tiÞ � f 0ð2ð1 � tiÞÞ: ð25Þ

Since, f is convex then f 0 is increasing on Rþ, thus for

ti 2 ½0; 0:5Þ f 0ð2tiÞ\f 0ð2ð1 � tiÞÞ ) g0ðtiÞ\0, and for

ti 2 ð0:5; 1� f 0ð2tiÞ[ f 0ð2ð1 � tiÞÞ ) g0ðtiÞ[ 0.

Also, we get g0ðtiÞ ¼ 0 at ti ¼ 0:5. In addition, note that

g is a convex function on [0, 1] thus, g(0.5) is a global

minimum of g. On the other hand, g attains its maximum at

ti ¼ 0 or ti ¼ 1, such as max
½0;1�

gðtiÞ ¼
1

2

�
f ð0Þ þ f ð2Þ

	
:

Now, from Definition 6 of knowledge measure on F(X),

Kf ðAÞ should verify (k1)-(k4).

(k1) First, we assume that Kf ðAÞ is maximum, that is,

gðlAðxiÞÞ is maximum, this implies that lAðxiÞ ¼ 0

or lAðxiÞ ¼ 1 for all xi 2 X. Thus, A is crisp set.

Inversely, assume that A is crisp set, that is,

lAðxiÞ ¼ 1 or lAðxiÞ ¼ 0, thus gðlAðxiÞÞ is maxi-

mum. Hence Kf ðAÞ is maximum. This proves (k1).

(k2) Since, g attains its unique minimum at ti ¼ 0:5, that

is, gð0:5Þ ¼ 0 since f ð1Þ ¼ 0. Thus if A ¼ ½1
2
� for all

xi 2 X, we get Kf ðAÞ ¼ 0. Conversely, if

Kf ðAÞ ¼ 0, this implies that gðlAðxiÞÞ ¼ 0 this

implies that f ð2lAðxiÞÞ ¼ f ð2ð1 � lAðxiÞÞÞ ¼ 0 this

is holds if lAðxiÞ ¼ 1
2

as f ð1Þ ¼ 0. Hence (k2) holds.

(k3) Consider A� the sharpened version of A, i.e.,

lA� ðxiÞ� lAðxiÞ if lAðxÞ�
1

2
;

and

lA� ðxiÞ	 lAðxiÞ if lAðxÞ	
1

2
:

Since, g is decreasing on ½0; 1
2
� and increasing on

½1
2
; 1�, so gðlA� ðxiÞÞ	 gðlAðxiÞÞ on ½0; 1

2
� and

gðlA� ðxiÞÞ	 gðlAðxiÞÞ on ½1
2
; 1�. Hence

Kf ðA�Þ	Kf ðAÞ. Thus, (k3) is checked.

(k4) Since for all ti 2 ½0; 1� we have gð1 � tiÞ ¼ gðtiÞ, so

(k4) is verified.

As (k1)–(k4) are verified Kf ðAÞ is a valid fuzzy knowledge

measure. h

For example, let consider the fuzzy triangular discrim-

ination DðA;BÞ given in Eq. (15). From the preceding, for

this Csiszár’s f-divergence, its deduced knowledge mea-

sure is set by:
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KDðAÞ ¼
Xn

i¼1

2ð2lAðxiÞ � 1Þ2

ð2lAðxiÞ þ 1Þð3 � lAðxiÞÞ
: ð26Þ

It is obvious that KDðAÞ verifies (k1)-(k4). Thus KDðAÞ is a

valid knowledge measure.

Next, based on Theorem 4, a new fuzzy generalized

knowledge measure Km is inferred from the suggested

fuzzy generalized divergence Dm, as stated in the following

theorem.

Theorem 5 For all A 2 FðXÞ,

KmðAÞ ¼
c

4n

Xn

i¼1

ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lAðxiÞ

p
� 1Þ2mþ2

ð2lAðxiÞ þ 1Þm

"

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1 � lAðxiÞÞ

p
� 1

� �2mþ2

ð3 � 2lAðxiÞÞm

#

;

ð27Þ

where c and is a constant of normalization, and m 2 N:

1. KmðAÞ is valid generalized knowledge measure on F(X)

deduced from Dm:

2. KmðA [ BÞ þ KmðA \ BÞ ¼ KmðAÞ þ KmðBÞ,
8A;B 2 FðXÞ:

For m ¼ 1 and A 2 FðXÞ, we get the knowledge

measure:

Km¼1ðAÞ ¼C
Xn

i¼1

ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lAðxiÞ

p
� 1Þ4

2lAðxiÞ þ 1

"

þ ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1 � lAðxiÞÞ

p
� 1Þ4

3 � 2lAðxiÞ

#

;

ð28Þ

where C ¼ 3

ðð
ffiffi
2

p
�1Þ4þ3Þn : Now, we need to examine the

relationship between knowledge measures defined in

Eq. (23) and fuzzy entropy. For this, let us recall the fol-

lowing theorem.

Theorem 6 (Ebanks 1983) LetE : FðXÞ ! Rþ. Then E

satisfies (e1)–(e4) if and only if E has the form EðAÞ ¼
Pn

i¼1 GðlAðxiÞÞ for some function G : ½0; 1� ! Rþ that

satisfies:

(a) Gð0Þ ¼ Gð1Þ, and GðtÞ[ 0 for all t 2 ð0; 1Þ,
(b) GðtÞ\Gð0:5Þ for all t 2 ½0; 1� � 0:5,

(c) G is non-deceasing on [0, 0.5) and non-increasing on

(0.5, 1],

(d) GðtÞ ¼ Gð1 � tÞ for all t 2 ½0; 1�.

Consider a fuzzy Knowledge measure Kf ðAÞ as in

Eq. (23) and a fuzzy entropy E(A) defined in Theorem 6.

Assume that both of them are normalized (normalized

scale), so we get the following relationship between

functions G and g, that is, GðtÞ ¼ 1 � gðtÞ. Thus, we may

announce this theorem:

Theorem 7 Consider on F(X), an entropy measure

E(A) defined as in Theorem 6, and Kf ðAÞ a knowledge

measure as in Theorem 4. Then we have :

EðAÞ ¼ 1 � Kf ðAÞ: ð29Þ

4.1 Comparative analysis for the proposed
knowledge measure

To assess the capacity and usefulness of the proposed

generalized knowledge measure, Km(.) is compared to

some prevailing information measures using linguistic

hedges. To achieve this, we set its generalization parameter

m to 1, 2, 3.

Consider a linguistic variable represented by a fuzzy set

V. A linguistic modifier, also known as a hedge, is an

operator T that transforms fuzzy set V into another fuzzy

set T(V), where lTðVÞðxÞ ¼ WTðlVðxÞÞ, and WT is a math-

ematical transformation. The first modifiers were intro-

duced by Zadeh (1972) as ‘‘very’’, ‘‘more or less’’, ‘‘quite

very’’ and ‘‘very very’’.

Consider a fuzzy set A in X ¼



1; 2; 3; 4; 5; 6
�

defined

as:

A ¼


ð1; 0:15Þ; ð2; 0:45Þ; ð3; 0:65Þ; ð4; 0:25Þ; ð5; 0:3Þ

�
:

Linguistic hedges on A are: A0:5 may be interpreted as

‘‘more or less A’’, A2 may be interpreted as ‘‘very A’’, A3

may be interpreted as ‘‘Quite very (A)’’, and A4 may be

interpreted as ‘‘very very (A)’’. Linguistic hedges appear to

reduce the uncertainty of a fuzzy set while increasing the

amount of useful information. Thus, an effective fuzzy

entropy H or knowledge measure K must meet the fol-

lowing requirements respectively:

HðA0:5Þ[HðAÞ[HðA2Þ[HðA3Þ[HðA4Þ: ð30Þ

KðA0:5Þ\KðAÞ\KðA2Þ\KðA3Þ\KðA4Þ: ð31Þ

The following are some prevalent information measures

utilized in comparative evaluation:

HHðAÞ ¼
1

nð1 � e�0:5Þ
Xn

i¼1

1 � e�ð1�lAðxiÞÞ
� �h

�I½lAðxiÞ	 0:5�

þ 1 � e�lAðxiÞ
� �

I½lAðxiÞ\0:5�

i
:

ð32Þ

(Hwang and Yang 2008)
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Ha
BðAÞ ¼

1

ð1 � aÞn
Xn

i¼1

ln laAðxiÞ þ ð1 � lAðxiÞÞa
� 	

a[ 0; a 6¼ 1

ð33Þ

(Bhandari and Pal 1993)

HPPðAÞ ¼
1

nð
ffiffiffi
e

p
� 1Þ

Xn

i¼1

lAðxiÞe1�lAðxiÞ
h

þ ð1 � lAðxiÞÞelAðxiÞ � 1
i
:

ð34Þ

(Pal and Pal 1989)

HS
RðAÞ ¼

R � S

nðR � SÞ
Xn

i¼1

lS
AðxiÞ þ ð1 � lAðxiÞÞS

� �1
S




� lR
AðxiÞ þ ð1 � lAðxiÞÞR� �1

R

i

R[ 1 and 0\S\1 or 0\R\1 and S[ 1:

ð35Þ

(Joshi and Kumar 2018)

KSGðAÞ ¼
1

n

Xn

i¼1

2
�
l2

AðxiÞ þ ð1 � lAðxiÞÞ2
	
� 1: ð36Þ

(Singh et al. 2019)

SðAÞ ¼ 1

ln 2
ln

2

n

Xn

i¼1

lAðxiÞ2 þ ð1 � lAðxiÞÞ2

" #

: ð37Þ

(Arya and Kumar 2020)

Ka
SGðAÞ ¼

1

n

Xn

i¼1

2
�
laAðxiÞ þ ð1 � lAðxiÞÞa

	
� 1;

a[ 1:

ð38Þ

(Singh et al. 2020)

KmðAÞ ¼
k

4n

Xn

i¼1

ð
ffiffiffiffiffi
2x

p
� 1Þ2mþ2

ð2x þ 1Þm

"

þð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1 � xÞ

p
� 1Þ2mþ2

ð3 � 2xÞm

#

; m 2 N:

Our generalized knowledge measure

ð39Þ

Based on the results in Table 2, we observe that for

a[ 2, Ka
SG is a non-positive real-valued function. From

Tables 2 and 3, the order sequences below indicate that

the entropy measures H0:5
2 ðAÞ, H15

0:5ðAÞ and H2
BPðAÞ are

designed to meet the requirement in Eq. (30). The

requirement in Eq. (31) is verified by the proposed

knowledge measure KmðAÞ for m ¼ 1; 2; 3.

H0:5
2 ðA0:5Þ[H0:5

2 ðAÞ[H0:5
2 ðA2Þ[H0:5

2 ðA3Þ[H0:5
2 ðA4Þ;

H15
0:5ðA0:5Þ[H15

0:5ðAÞ[H15
0:5ðA2Þ[H15

0:5ðA3Þ[H15
0:5ðA4Þ;

H2
BPðA0:5Þ[H2

BPðAÞ[H2
BPðA2Þ[H2

BPðA3Þ[H2
BPðA4Þ;

K1ðA0:5Þ\K1ðAÞ\K1ðA2Þ\K1ðA3Þ\K1ðA4Þ;

K2ðA0:5Þ\K2ðAÞ\K2ðA2Þ\K2ðA3Þ\K2ðA4Þ;

K3ðA0:5Þ\K3ðAÞ\K3ðA2Þ\K3ðA3Þ\K3ðA4Þ:

Now, consider another fuzzy set B defined on X ¼
f1; 2; 3; 4; 5; 6g given by:

B ¼


ð1; 0:08Þ; ð2; 0:116Þ; ð3; 0:73Þ; ð4; 0:85Þ;

ð5; 0:68Þ; ð6; 0:7Þ; ð7; 1Þ
�
:

HHðB0:5Þ\HHðBÞ\HHðB2Þ[HHðB3Þ[HHðB4Þ;

HPPðB0:5Þ\HPPðBÞ\HPPðB2Þ[HPPðB3Þ[HPPðB4Þ;

H0:5
BP ðB0:5Þ\H0:5

PP ðBÞ[H0:5
BP ðB2Þ[H0:5

BP ðB3Þ[H0:5
BP ðB4Þ;

KSGðB0:5Þ[KSGðBÞ[KSGðB2Þ\KSGðB3Þ\KSGðB4Þ;

SðB0:5Þ[ SðBÞ[ SðB2Þ[ SðB3Þ\SðB4Þ;

K1ðB0:5Þ\K1ðBÞ\K1ðB2Þ\K1ðB3Þ\K1ðB4Þ;

K2ðB0:5Þ\K2ðBÞ\K2ðB2Þ\K2ðB3Þ\K2ðB4Þ;

K3ðB0:5Þ\K3ðBÞ\K3ðB2Þ\K3ðB3Þ\K3ðB4Þ:

Following the values in Table 4, we observe that, con-

sistent with the order sequence above, the entropy measures

HHYðBÞ, HBPðBÞ, and HPPðBÞ do not perform well, nor do the

knowledge measures S(B) and KSGðBÞ, since these infor-

mation measures do not verify the respective order sequence

given in Eqs. (30) and (31). Whereas, our proposed knowl-

edge measure Km performs well and appears to be effective

for assessing the useful information.

5 Applicability of the proposed measures
in MCDM

In MCDM, there are two main goals: generating criterion

weights and selecting an optimal option from a set of

feasible options. Using an appropriate decision-making

strategy, on the other hand, may aid in making more

rational and relevant conclusions. In this regard, this sec-

tion provides:first, a new optimization models for deter-

mining the objective weights of criteria. Second, a new

method for combining GRA and VIKOR techniques. to

find the best alternative, which must be both closest to the

ideal alternative and perform the best under almost all

benefit criteria. In order to understand our method, let us

review VIKOR and GRA.
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5.1 Gray relational analysis method

Gray Relational Analysis (GRA) is a part of Deng’s gray

system theory (Ju-Long 1982; Julong 1989). It is used to

investigate problems with complex interrelationships

between multiple factors provided as discrete data. GRA

has been used successfully in a number of MCDM prob-

lems (Olson and Wu 2006; Jiang et al. 2002; Chen et al.

2005). The gray relational (GRA) algorithm transforms the

performance xij of each Ai under criterion Cj into a com-

parability sequences when (i ¼ 1; . . .; p) and (j ¼ 1; . . .; n):

Lager the better: rij ¼
xij � min

j
ðxijÞ

max
j
ðxijÞ � min

j
ðxijÞ

;

Smaller the better: rij ¼
min

j
ðxijÞ � xij

max
j

ðxijÞ � min
j
ðxijÞ

:

Then, the reference sequence is determined as:

R ¼ ðrþ1 ; rþ2 ; . . .; r
þ
n Þ; where rþj ¼ max

i
ðrijÞ

for j ¼ 1; . . .; n:

Note that the reference sequence can also be any other

desired target. further, the gray relational coefficient is

given as follows:

nij ¼
min

i
min

j
ðdijÞ þ qmax

i
max

j
ðdijÞ

dij þ qmax
i

max
j
ðdijÞ

;

where dij ¼ jrþj � rijj; q 2 ½0; 1�;

q is a resolving coefficient.

For Each Ai, the gray relational degree is computed as:

Ci ¼
X

j¼1

wjnij;

wj is the weight criterion Cj. Larger the value of Ci, the

better the alternative.

5.2 VIKOR technique

VIKOR is a compromise programming method (Yu 1973),

it was originated by Opricovic and Tzeng (2004), and

extended to a fuzzy background by Wang and Chang

(2005). The VIKOR method is focused on selecting and

ranking a set of alternatives subjected to competing crite-

ria. By introducing a raking index based on the particular

measure of ‘‘closeness’’ to the ideal ‘‘solution’’ (Tzeng

et al. 2005), a compromise ranking list is, thus, produced.

The compromise ranking measures are developed from The

Lq-metric defined by:

Lq;i ¼
Xn

i¼1

ð
wjðrþj � xijÞ

rþj � r�j
Þq

( )1
q

1� q�1: ð40Þ

The VIKOR technique is conducted as follows:

(1) For each criterion determine the best and the worst

value given, respectively, by: :

rþj ¼ max
i

xij and r�j ¼ min
i

xij:

(2) Compute the values of group utility and individual

regret over the alternatives Aiði ¼ 1; 2; . . .; pÞ by:

L1;i ¼Si ¼
X

j¼1

wj

rþj � xij

rþj � r�j
; i ¼ 1; . . .; n; ð41Þ

L1;i ¼Ri ¼ max
j
ðwj

rþj � xij

rþj � r�j
Þ; i ¼ 1; . . .; n; ð42Þ

(3) Calculate the compromise measure value Qi

(i ¼ 1; . . .; p) for each option using the given

formulae:

Qi ¼ m
Si � S�

Sþ � S� þ ð1 � mÞ Ri � R�

Rþ � R� ; ð43Þ

where S� ¼ min
i

Si, Sþ ¼ max
i

Sþ, R� ¼ min
i

Ri,

Rþ ¼ max
i

Ri and m is the weight of the strategy of

the majority of criteria or the maximum group utility.

Without loss of generality, it takes the value 0.5.

(4) Rank the alternatives Aiði ¼ 1; 2; . . .; pÞ according to

the values of Si , Ri and Qi. The results are three

ranking lists.

(5) Determinate the best solution or a compromise

solution. It is clear that the smaller the value of Qi,

the better the solution is. To ensure the uniqueness of

the optimal option, the following two qualifications

must be satisfied simultaneously: (ACDV) Accept-

able advantage: QðAð2ÞÞ � QðAð1ÞÞ 	DQ where

DQ ¼ 1
p�1

, p is the number of options and Að1Þ and

Að2Þ are the alternatives with the first and second

positions, respectively, in the ranking list Qi .

(ACST) Acceptable Stability: Að1Þ should also be

the best ranked by Si and Ri. Nevertheless, these two

requirements are frequently not achieved simultane-

ously. Thus, a set of compromise solutions are

derived. If the condition (ACDV) is not met, then we

shall explore the maximum value of m according to

the equation: QðAðmÞÞ � QðAð1ÞÞ\DQ: All the alter-

natives AðiÞði ¼ 1; 2; . . .;mÞ are the compromise

solutions. If the condition (ACST) is not satisfied,

then the alternatives Að1Þ and Að2Þ are the compro-

mise solutions.
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5.3 A novel MCDM method based
on the suggested measures

For the following, consider alternatives A1;A2; . . .;Ap and

C1;C2; . . .;Cn are competing criteria, where aij denotes the

performance of each alternative Ai under criterion Cj,

which is weighted wj, verifying that wj [ 0 for all

j ¼ 1; 2; . . .; n and
Pn

i¼1 wj ¼ 1.

Most multi-criteria methods require a definition of

quantitative weights for the different criteria to assess their

relative importance (Opricovic and Tzeng 2004). In addi-

tion, the proper assessment of weights of criteria plays an

important role in (MCDM), since the variation of weights

may affect the final ranking of alternatives (Hwang and

Yoon 1981). Here, we present a new procedure, involving

the two proposed measure Dm and Km to determine criteria

weights based on the idea of maximum deviation (Wei

2008). The steps below illustrate the novel approach.

Step 1 Formulate the decision-making prob-

lem and then create the comparability

sequence. Let A ¼ fA1;A2; . . .;Apg to

be a set of alternatives, C ¼
fC1;C2; . . .;Cng be a set of conflicting

criteria. Each option Ai is character-

ized in terms of criterion Cj by the

following fuzzy set:

Ai ¼ fðCj; aijÞ;Cj 2 Cg
8 i ¼ 1; 2; 3:. . .; p; 8
j ¼ 1; 2; 3; . . .; n:

aij evaluates how much Ai satisfies the

criterion Cj. Assume that w ¼
ðw1;w2; . . .;wnÞT

is the weighting

vector of criteria, where 0\wj\1,
Pn

j¼1 wj ¼ 1. The decision matrix is

given by M ¼ ½aij�; i ¼ 1; . . .; p; j ¼
1; . . .; n: Criteria can be classified into

two types: benefit and cost. Depending

on the nature of the criteria, we con-

vert the cost criterion into the benefit

criterion (Ohlan and Ohlan 2016).

This is accomplished by transforming

the fuzzy decision matrix M into a

normalized fuzzy decision matrix R by

vector normalization, as shown in

Eq. 44.

Aij ¼

aij
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1 a2
ij

q for benefit criteria

1 � aij
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1 a2
ij

q for cost criteria :

8
>>>><

>>>>:

ð44Þ

Step 2 a new way of generating criteria

weights Due to time constraints and

limitations on the expert’s skill,

information on the criteria weights

may be inadequate or completely

unknown. Therefore, developing opti-

mal optimization models is required to

discover the objective weight vector.

A number of strategies have been

devised. Wei (2008) proposed a

method which aims to maximize the

divergence between all available

options across a criterion. Ye (2010)

created an approach based on the

entropy/cross-entropy model. Wu

et al. (2021) provided a model that

calculates attribute weights in an

intuitionistic setting, utilizing both

distance and knowledge measures

based on the techniques in Xia and Xu

(2012). A knowledge measure is an

important tool in information theory

because it can provide some useful

information about criteria that have

insufficient weight information. A

fuzzy divergence measure also

informs experts about how success-

fully a criterion discriminates between

options; a criterion with a high degree

of divergence should be given the

highest weight. Given the foregoing,

we set up a model that combines the

proposed divergence and knowledge

measures into a single objective

function for providing objective crite-

ria weights. For the criterion Cj, the

average amount divergence of the

alternative Ai to all the other options is

given by:
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1

p � 1

Xp

k¼1

DmðAij;AkjÞ ð45Þ

and the total divergence between all

alternatives under the criterion Cj, is

provided as:

Xp

i¼1

1

p � 1

Xp

k¼1

DmðAij;AkjÞ
 !

: ð46Þ

The total amount of knowledge with

respect to criterion Cj is:

Xp

i¼1

KmðAijÞ: ð47Þ

As previously stated, if a criterion

gives a large amount of knowledge

across options, this signifies that the

information provided is more useful

for decision-making and should be

given greater weight. Otherwise, it

should be given the lowest weight. So,

when combining these two factors we

get:

Xp

i¼1

KmðAijÞ þ
1

p � 1

Xp

k¼1

DmðAij;AkjÞ
 !

:

ð48Þ

Therefore, based on this association

in Eq. (48), to generate the weight

vector w in the case where the infor-

mation about criterion weights is

completely unknown, we put forward

a non-linear programming model

expressed by:

(I)

max FðwÞ ¼
Xn

j¼1

wj

Xp

i¼1

ðKmðAijÞ
"

þ 1

p � 1

Xp

k¼1

DmðAij;AkjÞ
#

s.t wj 	 0; j ¼ 1; 2; . . .; n;
Xn

j¼1

w2
j ¼ 1:

8
>>>>>>>>>>><

>>>>>>>>>>>:

ð49Þ

The unique solution to the optimiza-

tion problem in Eq. (49) is given by:

wj ¼

Xp

i¼1

KmðAijÞ þ
1

p � 1

Xp

k¼1

DmðAij;AkjÞ
" #

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xn

j¼1

Xp

i¼1

KmðAijÞ þ
1

p � 1

Xp

k¼1

DmðAij;AkjÞ
" #2

v
u
u
t

:

ð50Þ

According to the constraint in the

model (I), we get the normalized

weight wj as:

w�
j ¼

Xp

i¼1

KmðAijÞ þ
1

p � 1

Xp

k¼1

DmðAij;AkjÞ
" #

Xn

j¼1

Xp

i¼1

KmðAijÞ þ
1

p � 1

Xp

k¼1

DmðAij;AkjÞ
" # :

ð51Þ

However, in instances where the

information about the weight vector is

partially available, we develop a linear

programming model (II) based on the

set of the known weight information

X, which is also a collection of

restriction requirements that the

weight value wj must meet in real-

world scenarios.

(II)

max FðwÞ ¼
Xn

j¼1

wj

Xp

i¼1

KmðAijÞ
"

þ 1

p � 1

Xp

k¼1

DmðAij;AkjÞ
#

s.t w 2 X; wj 	 0; j ¼ 1; 2; . . .; n;
Xn

j¼1

wj ¼ 1:

8
>>>>>>>>>>><

>>>>>>>>>>>:

ð52Þ

By solving the problem in (II), we get

the optimal vector weight

w ¼ ðw1;w2; . . .;wnÞT
.

Step 3 A new combination of GRA and

VIKOR Construct the weighted nor-

malized fuzzy decision matrix given

by:

#ij ¼ Aij wj i ¼ 1; 2; . . .; p ; j ¼ 1; 2; . . .; n:

ð53Þ

Then determine the reference

sequence as:

Aþ ¼ ð#þ
01; #

þ
02; . . .; #

þ
0nÞ;

where #þ
0j ¼ max

i
#ij;

8j ¼ 1; 2; . . .; n:

ð54Þ
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Step 4 Calculate the gray relational coeffi-

cient of Ai; i ¼ 1; . . .; p, using Eq. 55

nij ¼
min

i
min

j
ðDmð#ij; #þ

0jÞÞ þ qmax
i

max
j
ðDmð#ij; #þ

0jÞÞ

Dmð#ij; #þ
0jÞ þ qmax

i
max

j
ðDmð#ij; #þ

0jÞÞ
;

ð55Þ

where q is the resolving coefficient

defined in the range 0\q� 1, and it is

generally taken equal to 0.5. Note that

gray relational coefficients nij are cal-

culated to reflect correlations between

existent and desired option

evaluations.

Step 5 Determine the best and worst gray

relational coefficient for each crite-

rion. It is worth mentioning that a gray

relation coefficient attains its best

level when nij ¼ 1 and its worst level

when nij approaches 0. Hence using

Eq. (55) the best and worst level of

gray relational coefficient n�j and n�j
are, respectively, given as:

n�j ¼ max
i
ðnijÞ and n�j ¼ min

i
ðnijÞ:

Step 6 In general, the greater the degree of

discrimination between Aij and Aþ
j ,

that is, nij approaches zero, the poorer

the Aij is (i.e., Ai performs poorly

under criterion Cj); the less the degree

of discrimination between Aij and Aþ
j ,

that is, nij approaches one, the better

the Aij is (i.e., Ai has excellent per-

formance under Cj). According to the

forgoing. Calculate the group utility

Si, individual regret Ri and compro-

mise measure Qi which are given for

each alternative Aiði ¼ 1; . . .; pÞ by:

Si ¼
Xn

j¼1

wj

n�j � nij

n�j � n�j
; Ri ¼ max

j
ðwj

n�j � nij

n�j � n�j
Þ;

for i ¼ 1; 2; . . .; p; j ¼ 1; 2; . . .; n;

ð56Þ

Qi ¼m
S� � Si

S� � S�

� �

þ ð1 � mÞ R� � Ri

R� � R�

� �

;

for i ¼ 1; 2; . . .; p;

ð57Þ

where S� ¼ max
i

Si, S� ¼ min
i

Si,

R� ¼ max
i

Ri, R� ¼ min
i

Ri. The

parameter m 2 ½0; 1� represents the

weight of the strategy of maximum

group utility, while ð1 � mÞ is the

weight of individual regret. The m
value is adjusted with respect to the

nature of the MCDM issue. In general,

to determine the compromise solution,

(m ¼ 0:5) is preferred to incorporate

both aspects of maximum group utility

and minimum regret.

Step 7 Rank the alternatives. Sort the decreasing

values of Si, Ri, and Qi to obtain the

alternative rank. The best option is indi-

cated by the smallest value of the com-

promise measure, Qi. To ensure that the

best option is unique, determine the best

compromise solution. If the following

two conditions are met, Qi recommends

the best-ranked alternative Að1Þ, as a

compromise solution. (ACDV)

Acceptable advantage:

QðAð2ÞÞ � QðAð1Þ 	DQ, where DQ ¼
1

p�1
and Að2Þ is the alternative of second

position in the ranking list by Qi and p is

the number of alternatives. (ACST)

Acceptable stability in decision-

making: Alternative Að1Þ must also be

the best ranked by S or/and R. This

compromise solution is stable within a

decision-making process, which could be

‘‘voting by majority rule’’ (when m[ 0:5

is needed), or ‘‘by consensus’’ m 
 0:5,

or ‘‘with veto’’ (m\0:5). If one of the

conditions is not met, then a set of com-

promise solutions is proposed. It consists

of Alternatives Að1Þ and Að2Þ, if only the

requirement (ACST) is not satisfied, or of

Alternatives Að1Þ;Að2Þ;Að3Þ,. . .;AðMÞ, if

the requirement (ACDV) is not satisfied,

where AðMÞ is determined by the relation

QðAðMÞÞ � QðAð1ÞÞ\DQ for maximum

M (the positions of these alternatives are

‘‘in closeness’’).

5.4 Numerical illustration

The numerical example is from Joshi and Kumar (2014).
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The applicability of The proposed approach is tested in

ranking four organizations (alternatives), Bajaj Steel (A1);

H.D.F.C Bank (A2); Tata Steel (A3); InfoTech Enterprises

(A4). The alternatives are rated on five criteria such as:

Earnings per share(EPS) (C1); Face value (C2); P/C (Put-

Call) Ratio (C3); Dividend (C4); P/E (Price-to-earnings)

ratio (C5) . It is worth noting that C1 and C2 are benefit

criteria; a high value indicates a positive growth outlook,

whereas the others are cost criteria; a low value indicates a

positive growth perspective.

the efficiency of the suggested method is examined for two

values m ¼ 1 and m ¼ 2 of the generalization parameter of

the generalized fuzzy Dm and Km, respectively.

Case 1. Criteria weights are completely unknown In

this instance, we can find the best possible alternative by

following the procedures below.

Step 1 The resulting fuzzy decision matrix is depicted in

Table 5 Then, using the vector normalization in

Eq. (44) on the data in Table 5, it results in the

normalized fuzzy decision matrix given in

Table 6.

Step 2 Use Eqs. (10) and (27) to get the total diver-

gence between all alternatives under criterion Cj,

as well as the overall amount of knowledge with

respect to the same criterion. Then, to get the

optimal weight vector w� use Eq. (51). The

results are summarized in Tables 7 and 8. A

detailed analysis of Tables 7 and 8 reveals that

criteria that allow for adequate discrimination

between alternatives and provide a high level of

knowledge about the options are given greater

weight than those that do not. Another model (I)

outcome is that for m ¼ 1 and m ¼ 2, the weights

are preserved in the same order of importance,

highlighting the effectiveness of the proposed

model for generating criteria weights and its

consistency with the established fuzzy informa-

tion measures.

Step 3 By Using Eq. (53), we determine the weighted

normalized fuzzy decision matrix given in

Table 9.

Step 4 According to Table 9, a reference sequence Aþ is

obtained using Eq. (54). Thus, we obtain for

m ¼ 1, Aþ ¼
0:2083; 0:0513; 0:2745; 0:0742; 0:1384ð Þ: For

m ¼ 2,

Aþ ¼ 0:2109; 0:0295; 0:3868; 0:0438; 0:0862ð Þ:
Step 5 Calculate the gray relational coefficient nij for Ai,

i ¼ 1; . . .; p and j ¼ 1; 2; . . .; n by using Eqs. (10)

and (55) and fixing the resolving coefficient

value of q at 0.5. The results are tabulated in

Table 10.

Step 6 For each alternative Ai, calculate group utility

Si, individual regret Ri, and compromise measure

Qi using Eqs. (56) and (57), with the weight

strategy m ¼ 0:5. Table 11 summarizes the

findings.

Step 7 For m ¼ 1 and m ¼ 2, Table 11 yields three

ranking lists at m ¼ 0:5, thus based on the

ascending values of Qi, the options are ranked

from the best to the worst as:

A3 [A1 [A4 [A2. However, to find a com-

promise solution, the two conditions (ACDV)

acceptable advantage and (ACST) accept-

able stability in decision-making, must be

examined. Indeed, for m ¼ 1, the condition

(ACDV) is not satisfied since, QðAð2ÞÞ �
QðAð1ÞÞ ¼ 0:18360\DQ as DQ ¼ 0:3333.

Hence,A3 and A1 are compromise solutions. In

addition, QðAð3ÞÞ � QðAð1ÞÞ ¼ 0:3933, that is, A3

and A4 are not the same compromise solutions as

DQ� 0:3933, and A3 has acceptable advantage

over A4 which is not included in the set of com-

promise solution. The condition (ACST) is con-

firmed because A3 is ranked highest by Si and Ri,

as indicated in Table 11. There is acceptable sta-

bility in decision-making by consensus since A3

is better ranked than A4 by Si and Ri. Therefore, a

decision-maker can give his preferred rank as :

A3 [A1 [A4 [A2: Furthermore, from

Table 10, we observe that for m ¼ 1; 2, option A3

performs better than the other three alternatives,

and for A2 the criteria C3 and C5 must be

improved, because these criteria make A2 the

worst option. As can be seen, the ranking order

remained unchanged even though the general-

ization parameter of the suggested fuzzy diver-

gence was changed. Note that according to the

findings for m = 2, the interpretations and ranking

are the same as those aforementioned.

Case 2. criteria weights are partially unknown

The relations below give the known weights

information:

X ¼ 0:25�w1 � 0:4; 0:16�w2 � 0:27;f
0:15�w3 � 0:25; 0:1�w4 � 0:18;

0:2�w5 � 0:35; w1 	 0:2w4;

w5 � w2 �w3;
Xn

j¼1

wj ¼ 1;

wj 	 0 8j ¼ 1; . . .5
�
:

ð58Þ

Using model (II), as in Eq. (52) we get For m ¼ 1,

w� ¼ 0:2900; 0:1600; 0:2500; 0:1000; 0:2000ð ÞT :
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For m ¼ 2, we get the weight vector that follows:

w� ¼ 0:2080; 0:0980; 0:3280; 0:1280; 0:2380ð ÞT
.

By following the steps of the proposed technique in the

case where criteria weights are partially unknown, taking

the resolving coefficient q ¼ 0:5 and the weight of the

decision-making strategy m ¼ 0:5. With respect to m ¼ 1

and m ¼ 2, Table 12 indicates that, the condition of

acceptable advantage (ACDV) is not verified for A1 and A4.

However, condition (ACST) is verified as A3 is the best

ranked by Si and Ri. Thus, there is acceptable stability

within decision-making by consensus. Consequently, the

set of compromise solutions includes A3, A1 and A4.

However, the final ranking by order preference can be

proposed as:

A3 [A1 [A4 [A2:

The consistency of the outcomes in the two scenarios

where the criterion weights are totally or partially unknown

indicates the robustness of the suggested technique.

5.5 Sensitivity analysis and comparison

A sensitivity analysis was performed to demonstrate the

robustness of the integrated GRA and VIKOR proposed in

this work. For this purpose, the gray relational coefficients

are determined by varying the value of the resolution

coefficient q in [0, 1] and setting the generalization

parameter of the proposed fuzzy divergence measure m to

1. An attentive examination of Table 13 reveals two

rankings related to m. Accordingly, for m ¼ 0:25 and

m ¼ 0:5, the final ranking consists of the compromise

solutions A3 and A1. The second option is A4, while the

worst option is A2. For m ¼ 0:75 there are a number of

compromise solutions, including A3, A1 and A4. The worst

is A2. In light of the sensitivity analysis findings, the

decision-makers can provide a confident ranking of the

options given as: A3 [A1 [A4 [A2. One of the main

results of this analysis was that variations in resolution

coefficient and strategy weight do not affect the final

ranking, as shown in Fig. 2.

A comparison with some known FMCDM processes

was performed to demonstrate the effectiveness of the

strategy presented in this work. These procedures are based

on the TOPSIS principle. From Table 14 these approaches

all resulted in the same final ranking of options, which is

also consistent with our proposed strategy. However,

unlike our method, these approaches do not examine the

advantages that the options have over each other from a

decision-making perspective. They also fail to point out the

criteria that make some alternatives to be ineffective.

Further, some of the algorithms involved in this evaluation,

generate the criteria weights by using the entropy method,

resulting in weights that do not correctly discriminate

between criteria in terms of importance.

Kuo and Liang (2011) Kuo developed an integrated

GRA and VIKOR approach for evaluating airport service

quality based on GRA and VIKOR. Aiming to compare our

combining GRA and VIKOR with Kuo and Liang’s

method, we undertook to apply our technique to the data in

Table 6 of Kuo and Liang’s paper. For this, we set the

resolving coefficient q to 0.5 and the strategy weight m to 0,

0.5, and 1. The results in Table 15 suggest that our strategy

yields the same ranking of international airports except for

HKG and TPE airports, which are positioned 3 and 4 by

our strategy, respectively, whereas these same airports are

positioned 4 and 3 by Kuo and Liang’s strategy. However,

they reported that when applying fuzzy SWA (Chen and

Hwang 1992; Triantaphyllou and Lin 1996) and fuzzy

TOPSIS (Chen 2000) to the same numerical data, the final

ranking for these methods is:

KIX [NRT [HKG[ TPE [ SEL[ SHA[PEK: It is

worth mentioning that the ranking by fuzzy SWA and

fuzzy TOPSIS is the same as final ranking obtained by our

combining GRA and VIKOR method. Finally, we should

mention that our technique is less computationally

demanding than Kuo and Liang’s.

6 Conclusion

Conflicting criteria and ambiguous information are typi-

cally present in any decision-making process. To be able to

process this information, it is crucial to develop powerful

tools to deal with uncertainties. In this study, a novel

generalized fuzzy divergence measure is proposed and

validated for classical fuzzy sets. In addition, to demon-

strate the efficacy of the proposed divergence, a compar-

ative analysis is performed using some well-known fuzzy

divergence measures as comparative benchmarks. An

interesting aspect that emerged from this analysis is that the

proposed divergence is extremely sensitive; it is able to

detect any discrepancy between two fuzzy sets. This shows

its superiority over the other measures of divergence.

Furthermore, this work is also innovative as it establishes a

new class of fuzzy knowledge measures derived from the

Csiszár’s divergence class. Therefore, the suggested fuzzy

divergence Dm is used to deduce a new fuzzy generalized

knowledge measure, Km, which is compared to some

prevalent information measures. The comparative exami-

nation demonstrated the applicability of the newly

designed knowledge measure for capturing the level of

precise information contained in a fuzzy set. Also, two new

optimization models for criterion weight computation have

been developed using the proposed measures. A numerical

illustration shows that neither changing the generalization
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parameters of the proposed measures nor the lack of

information about the weights of the criteria has any effect

on the preferential order of the criteria. In addition, to

address FMCDM concerns, a novel solution based on the

proposed divergence measure was created, including the

GRA and VIKOR techniques. To prove its efficiency, a

case study, a comparative assessment, and a sensitivity

analysis were provided. The proposed FMCDM approach

holds a great deal of potential since it can determine the

best option that matches almost all benefit criteria and

inform professionals about which criterion makes a par-

ticular option less efficient. It also makes it simple to

understand the advantages of some options over others

from a decision-making point of view. This FMCDM

technique does not require intensive computations and can

be explored and used in a variety of fuzzy circumstances.
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