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Abstract
In this study, we put forward the dual Maclaurin symmetric mean (DMSM) and the Maclaurin symmetric mean (MSM)

operators with the context of the probabilistic dual hesitant fuzzy set (PDHFS), which can address the issues in previous

probabilistic dual hesitant fuzzy aggregation operators. Some novel operators based on MSM and DMSM for aggregating

PDHF information are prepared, followed by several properties and special cases. Namely, the PDHFMSM, weighted

PDHFMSM (WPDHFMSM), PDHFDMSM, weighted PDHFDMSM (WPDHFDMSM) operators. Furthermore, some

necessary characteristics and exceptional cases concerning different parametric values of these operators are discussed.

Additionally, two new methods based on the WPDHFMSM and WPDHFDMSM operators have been developed with the

help of COPRAS technique to deal with multi-attribute group decision-making problems. Lastly, the validity and effec-

tiveness of the intended methods are demonstrated through a case study on selecting the best photovoltaic cells.

Keywords Maclaurin symmetric mean � Dual Maclaurin symmetric mean � Probabilistic hesitant fuzzy set �
Multi-criteria group decision-making

1 Introduction

Multi-attribute group decision-making (MAGDM) evolved

into a powerful course that assists many decision-makers

(DMs) in finding the best possible outcomes. Because of

the complexity and haziness of human perception, it is

challenging to use accurate values to represent alternative

attribute values in MAGDM problems. Many ideas have

been developed to solve the issue described above; Zadeh

(1965) addresses the uncertain information using fuzzy sets

(FSs), which involves the degree of membership to eval-

uate alternatives and has been studied widely. However,

FSs only have a degree of membership, and disclosing

more complex and vague information is usually difficult.

Many extensions have been made based on these FSs to

deal with this situation. For example, Torra & Narukawa

(2009) presented the notion of hesitant FSs (HFSs), in

which the degree of membership has a collection of several

possible values. Zhu et al (2012) extended HFSs to novel

Dual HFSs (DHFSs). It allows DMs to deliver multiple-

preference values for both the membership and non-

membership functions. So DHFSs can help the DMs to

capture the original information as much as possible.

However, the importance of membership and non-mem-

bership degree values, which signify the preference infor-

mation of DMs, are not considered in above-mentioned

FSs. This ignorance will lead to loss of information, and

the decisions’ consequences will be affected. Thus, it is

necessary to describe the importance degree of each value.

To address the issue, Hao et al (2017) proposed PDHFSs as

a powerful tool to represent incomplete information by

embedding the characteristics of DHFSs and their occur-

rence probability.
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In every decision-making problem, the critical part is the

fusion of data from the experts/group. The problem is

solved by merging all the input values into a collective

value using aggregation operators (Grabisch et al 2009 and

Komornikova & Mesiar 2011). For different fuzzy envi-

ronments, separate aggregation operators were proposed,

such as geometric mean, arithmetic mean, Bonferroni mean

(2017), power aggregation, MSM, and DMSM (2015)

operators, and so forth. Most of them presume no corre-

lation between the multi-input values. Remarkably, the

MSM and DMSM operators have a desirable characteristic

to seize the interdependence between multiple-preference

values (2020). In contrast, the power-mean operators,

geometric mean operators, and arithmetic mean operators

do not capture the interrelationship between input argu-

ments. Bonferroni mean operators can only reflect the

interdependence among two arguments. Thus, many

extensions regarding MSM and DMSM operators have

been made. For example, Li et al (2016) put forward the

MSM operator to handle the HF information, proposed two

novel operators, HFMSM and weighted HFMSM opera-

tors, and examined its desirable properties. Qin & Liu

(2015) designed the intuitionistic fuzzy MSM operators

and discussed their monotonicity, commutativity, idempo-

tency, and boundedness. For the linguistic information, Ju

et al (2016) put forward the MSM operators for the lin-

guistic environment to fuse information. Zhang (2020)

investigates the MSM within the context of dual hesitant

fuzzy sets and develops the dual hesitant fuzzy Maclaurin

symmetric mean. Recently Darko & Liang (2020) extended

the MSM and DMSM operators for the DHF environment

in aggregating the fuzzy information and put forward

several new operators, namely DHFMSM, weighted

DHFMSM (WDHFMSM), DHFDMSM, and weighted

DHFDMSM (WDHFDMSM). By utilizing the MSM and

DMSM operators, Darko & Liang (2020) also extend the

COPRAS method. The analysis clearly shows that the

MSM and DMSM are valuable tools for analyzing DMs’

risk attitudes and accurately depicting the interrelationship

among multi-input arguments.

However, some drawbacks in aggregation methods of

PDHFSs need to be addressed.

(a) The existing methods (operators) do not examine the

association of the multiple-preference values throughout

the process of aggregation. PDHF weighted averaging

(PDHFWA) operator presented by Hao et al (2017) is

based upon the independent postulate that the input values

are not associated. Moreover, the PDHF weighted Einstein

averaging (PDHFWEA), and the PDHF weighted Einstein

geometric (PDHFWEG) operators given by Garg & Kaur

(2018) consider only the correlation among the two input

arguments. There are situations where multiple-preference

values are interrelated in the real world, not just one or two.

Consequently, the existing operators in different fuzzy

environments cannot handle the issue.

(b) Furthermore, operators designed for PDHFSs do not

have an internal mechanism for modelling DMs’ risk

behaviour. It is vital because the DMs’ risky attitude

greatly affects the decision’s outcome.

The analysis, as mentioned earlier, clearly depicted that

many studies on PDHFSs cannot capture the interrela-

tionship of multiple-preference values throughout the

aggregation process. Hence, there is a dire need to find

solutions to the problems given below.

1. How can DMs model the interdependence between

multiple-preference values throughout decision-mak-

ing under a PDHF environment?

2. How can the risk attitude of DMs be considered while

aggregating PDHF information?

In the light of the MSM and DMSM characteristics, we put

these operators into the PDHF environment and originated

some novel operators, namely PDHFMSM, PDHFDMSM,

weighted PDHFMSM (WPDHFMSM), and weighted

PDHFDMSM (WPDHFDMSM).

Many fuzzy decision-making techniques like ELECTRE

(2019), TOPSIS (2013), WASPAS (2019) and VIKOR

(2020), MABAC, VIKOR (2022), complex proportional

assessment COPRAS (1994) and analytical hierarchy pro-

cess (AHP) have been established to address MAGDM

under different fuzzy environments. The purpose of these

methods is to provide DMs with an appropriate way to rank

the desired alternative. COPRAS has recently attracted a

great deal of interest among these methods. This method

permits DMs to assess the relative significance and utility

degree among alternatives involving their weights, multiple

criteria, and performance values of the alternatives con-

cerning all the attributes. Chatterjee et al (2011) conducted

a comparative analysis among different techniques. They

revealed that the COPRAS-based approach is much better

than AHP, TOPSIS, and VIKOR because it takes less

estimation time and is straightforward. There are many

applications in the literature based on the COPRAS tech-

nique. For instance, Goswami & Behera (2021) proposed a

hybrid method, COPRAS-ARAS, by integrating the

COPRAS and additive ratio assessment (ARAS). With the

help of integrated COPRAS and ARAS, they solve an

industry’s material-handling equipment selection problem.

Kumari & Mishra (2020) use the COPRAS-based method

to select green suppliers based on intuitionistic fuzzy

information. Balali et al (2021) proposed a novel mecha-

nism to solve practical risks on human resources threats in

natural gas projects using the COPRAS method. Using

fuzzy COPRAS, Garg et al (2018) developed MADM

based parametric technique for selecting and ranking

e-learning websites. Literature analysis reveals that no
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COPRAS method exists to resolve the decision-making

problems under a PDHF framework. Moreover, the exist-

ing methods fail to model the interrelationship of the

multiple-input arguments under the PDHF environment.

Thus, addressing the above-mentioned issue in the decision

analysis requires an operator to capture the interdepen-

dence of multiple inputs is necessary.

In the light of this, we intensify the COPRAS approach

to impact it to modify the PDHF environment. The main

advantages of this approach are as follows.

(a) Due to the balanced assessment, it makes decisions

based on two aspects of attributes: cost and benefit.

(b) Its feature to find the utility degree of the alternatives

makes it easy to ascertain the distance between each

alternative and select the optimal one. By using the

capacity of COPRAS, MSM, and DMSM, this article aims

to resolve the shortcomings of the DHFS by presenting two

new MAGDM approaches. We proposed the COPRAS

approaches by employing the WPDHFMSM and

WPDHFDMSM operators to integrate the multiple-pref-

erences values. The presented approach cannot only dis-

tinguish optimal alternatives but also solve the interrelation

problem between multiple-preferences values in real situ-

ations. The main contributions of this article are summa-

rized below.

1. To model the interdependence of the PDHF informa-

tion, we develop novel operators with the aid of MSM

and DMSM.

2. This article reflects the risk attitude of DMs based on

the monotonicity regarding parameters in the MSM

and DMSM operators.

3. To solve MAGDM, this article structures two novel

methods utilizing the WPDHFMSM, WPDHFDMSM,

and COPRAS.

4. The strengths and weaknesses of the proposed

MAGDM framework are realized in the theoretical

and numeric sense by comparison with other methods.

Accordingly, the remaining part of the article is arranged as

follows. In Sect. 2, fundamental definitions connected to

PDHFSs, MSM, and DMSM operators are elaborated. The

following section shows the details of the PDHFMSM

operator and its weighted structure WPDHFMSM. Sec-

tion 4 examines PDHFDMSM aggregation operators with

their weighted form, WPDHFDMSM, and desirable fea-

tures. In Sect. 5, stages of the COPRAS method are given

in detail to resolve the MAGDM problems with the help of

WPDHFMSM and WPDHFDMSM operators. Section 6

applies the developed methods to rank the best photo-

voltaic cells, including case background, comparison,

implementation, and discussion. The last section sketches

the ultimate results and possible directions for further

study.

2 Preliminaries

We begin this section by reviewing some existing concepts,

including DHFSs, PDHFSs, MSM, and DMSM.

Definition 1 (Zhu et al. 2012) For any set X, DHFS D on

X is described as

D ¼ x; h xð Þ; g xð Þh i j x 2 Xf g;

where h(x) and g(x) are the degree of membership and non-

membership to the set D respectively, having finite set of

values in [0, 1]. Also, there is

0� c; g� 1; 0� cþ þ gþ � 1;

where c 2 hðxÞ, g 2 gðxÞ, cþ ¼ maxfc j c 2 hðxÞg and

gþ ¼ max g j g 2 gðxÞ for all x 2 X. For ease of use, the

pair dðxÞ ¼ ðh xð Þ; g xð ÞÞ is called the DHFE and denoted by

d ¼ ðh; gÞ along with the conditions: c 2 h , g 2 g and

c; g 2 ½0; 1�. Apparently, if g ¼ / and h 6¼ /;then the

DHFS turn down to HFS; if h and g have only single

element, then DHFS turn down to the IFS.

Definition 2 Consider d1 ¼ h1; g1ð Þ and d2 ¼ h2; g2ð Þ are
two DHFEs. The elementary operations of the DHFEs are

described as

1. The complement of the DHFS:

dc1 ¼ [c2h;g2g g; cð Þ
� �

2. The ��union of the DHFS:

d1 � d2 ¼ [c12h1;c22h2 c1 þ c2 � c1c2ð Þ;
�

[g12g1;g22g2 g1g2ð Þ
�

3. The ��intersection of the DHFS:

d1 � d2 ¼ [c12h1;c22h2 c1c2ð Þ;
�

[g12g1;g22g2 g1 þ g2 � g1g2ð Þ
�

4. kd1 ¼ [c12h1 1� 1� c1ð Þk
� �

;[g12g1 gk1
� �n o

; k� 0

5. dk1 ¼ [c12h1 c1ð Þk;[g12g1 1� 1� g1ð Þk
� �n o

; k� 0.

According to many DMs, preferences usually based on

DHFS are not homogeneous which causes problems in

decision-making results. Thus, to strengthen the prefer-

ences issues in decision-making based on DHFS, Hao et al

(2017) introduced the concept of PDHFS described as:

Definition 3 (Hao et al 2017) Suppose X be any set,

PDHFS on X can be expressed by an expression

Dp ¼ x; h xð Þ j p xð Þ; g xð Þ j q xð Þ : x 2 Xh if g;

where h(x) and g(x) are two sets of finite values in [0, 1],

symbolize the membership and the non-membership

degrees of x 2 X to the set D, respectively. p xð Þ and q xð Þ
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are the corresponding probabilities for these two types of

degrees and satisfies the following requirements:

1. c; g 2 0; 1½ � and 0� cþ þ gþ � 1;

2. pi 2 0; 1½ �; qj 2 0; 1½ � and
P#h

i¼1 pi ¼ 1;
P#g

j¼1 qj ¼ 1,

where c 2 hðxÞ, g 2 gðxÞ, cþ ¼ maxfc j c 2 hðxÞg, gþ ¼
max g j g 2 gðxÞ; pi 2 p xð Þ and qi 2 q xð Þ for all x 2 X. #h

and #g represents the number of elements in h xð Þ j p xð Þ
and g xð Þ j q xð Þ, respectively. For convenience, we call the

pair dpðxÞ ¼ ðh xð Þ j p xð Þ; g xð Þ j q xð ÞÞ as the PDHFE, rep-

resented by P ¼ ðh j p; g j qÞ.

To compare two PDHFEs, Hao et al (2017) proposed

the definitions of score and deviation function for PDHFEs.

Definition 4 The score function for the given PDHFE P ¼
ðhjp; gjqÞ; is calculated as

s Pð Þ ¼
X#h

ci2h
cipi �

X#g

gj2g
gjqj:

Definition 5 For the given a PDHFE P ¼ ðhjp; gjqÞ;
deviation function is calculated as

r Pð Þ ¼
X#h

ci2h
ci � sð Þ2pi þ

X#g

gj2g
gj � s
� �2

qj

0

@

1

A

1
2

:

According to the score and deviation function, two

PDHFEs, P1 and P2; are compared as follows:

1. If s P1ð Þ[ s P2ð Þ; then P1 [P2 and vice versa.

2. If s P1ð Þ ¼ s P2ð Þ; and r P1ð Þ[ r P2ð Þ; then P1\P2 and

vice versa.

3. If s P1ð Þ ¼ s P2ð Þ; and r P1ð Þ ¼ r P2ð Þ; then P1 ¼ P2:

Definition 6 Consider P ¼ hjph; gjqg
� �

; P1 ¼
h1jph1 ; g1jqg1
� �

and P2 ¼ h2jph2 ; g2jqg2
� �

are three

PDHFEs. The basic operations between the PDHFEs are

outlined as below:

1. The complement of the DHFS:

Pc ¼ [c2h;g2g g j qg; c j pc
� �� �

2. The �� union of the DHFS:

P1 � P2 ¼ [c12h1;c22h2 c1 þ c2 � c1c2ð Þ j pc1pc2 ;
�

[g12g1;g22g2 g1g2ð Þ j qg1qg2
�

3. The �� intersection of the DHFS:

P1 � P2 ¼ [c12h1;c22h2 c1c2ð Þ j pc1pc2 ;
�

[g12g1;g22g2 g1 þ g2 � g1g2ð Þ j qg1qg2
�

4. kP ¼ [c2h 1� 1� cð Þk
� �

j pc;[g2g gk
� �

j qg
n o

; k� 0

5. Pk ¼ [c2h cð Þkj pc;[g2g 1� 1� gð Þk
� �

j qg
n o

; k� 0

2.1 Maclaurin symmetric mean operator

The MSM operator was initially presented by Maclaurin

Maclaurin (1729), a traditional mean type operator utilized

in the theory of information fusion and appropriate to

integrate numeric values. It can reflect the interdependence

of multiple-input arguments, as described below:

Definition 7 The MSM operator is the relation for a set of

numbers aj j ¼ 1; 2; 3; :::; nð Þ defined as

MSM mð Þ a1;a2;a3;:::;anð Þ¼
P

1�i1�i2�:::�im�n

Qm
j¼1aij

n

m

� 	

0

BBB@

1

CCCA

1
m

;

where i1; i2; :::; imð Þ traverses all the k-tuple combination of

1; 2; 3; :::; nð Þ;m ¼ 1; 2; 3; :::n and
n
m

� 	
denotes the

binomial coefficient (BC). The useful features of the MSM

operator are given below:

1. MSM mð Þ 0; 0; 0; :::; 0ð Þ ¼ 0;

2. MSM mð Þ a; a; a; :::; að Þ ¼ a;

3. If aj � bj; then MSM mð Þ a1; a2; a3; :::; anð Þ
�MSM mð Þ b1; b2; b3; :::; bnð Þ for all j;

4. minj aj
� �

�MSM mð Þ a1; a2; a3; :::; anð Þ� maxj aj
� �

:

2.2 Dual Maclaurin symmetric mean operator

Qin & Liu (2015) introduced the DMSM operator, which is

the result of the combination of geometric mean and the

MSM, defined as follows:

Definition 8 (2015) Consider a set of positive numbers

aj j ¼ 1; 2; 3; :::; nð Þ. The DMSM operator is defined by the

relation

DMSM mð Þ a1; a2; a3; :::; anð Þ

¼ 1

m

Y
1� i1 � i2 � :::� im � n

Xk

j¼1

aij

 !
1

n

m

� 	0

BBB@

1

CCCA
;
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where i1; i2; :::; imð Þ traverses all the k-tuple combination of

1; 2; 3; :::; nð Þ;m ¼ 1; 2; 3; :::n and
n
m

� 	
denotes the BC.

The following are the obvious properties of the MSM

operator:

1. DMSM mð Þ 0; 0; 0; :::; 0ð Þ ¼ 0;

2. DMSM mð Þ a; a; a; :::; að Þ ¼ a;

3. If aj � bj; then

DMSM mð Þ a1; a2; a3; :::; anð Þ�DMSM mð Þ b1; b2; b3; :::; bnð Þ

for all j;

4. minj aj
� �

�DMSM mð Þ a1; a2; a3; :::; anð Þ� maxj aj
� �

:

Due to the ability to reflect the interrelationship among

multiple-preference values, MSM and DMSM operators

have received more attention from researchers in many

fields. The emergence of different extended forms of MSM

and DMSM operators enables DMs to express their eval-

uation information about alternatives more comprehen-

sively. For instance, by utilizing these operators, Darko &

Liang (2020) extended the COPRAS method and proposed

two novel ways, DHFMSM-COPARS and DHFDMSM-

COPRAS, to rank the alternatives. Wei & Lu (2018) put

forward the MSM operator for the Pythagorean fuzzy

environment. Moreover, Feng et al (2019) studied 2-tuple

linguistic FSs in view of MSM operators. Besides, Liu &

Li (2019) studied a MADM method based on a generalized

MSM operator for probabilistic linguistic information.

3 Probabilistic dual hesitant fuzzy Maclaurin
symmetric mean

There exist many circumstances where the preferences are

presented by PDHF information. From now on, we incor-

porate the MSM operator to accommodate the PDHF

information and accordingly propose new operators,

investigating its properties and operational laws in this

section. The details and specific contents are described

below:

3.1 PDHFMSM

Definition 9 Given Pj j ¼ 1; 2; 3; :::; nð Þ be a set of

PDHFEs, then the PDHFMSM operator is defined as

follows:

PDHFMSM mð Þ P1;P2;P3; :::;Pnð Þ

¼
P

1� i1 � i2 � :::� im � n

Qm
j¼1 Pij

n

m

� 	

0

BBB@

1

CCCA

1
m

;

where i1; i2; :::; imð Þ traverses all the k-tuple combination of

1; 2; 3; :::; nð Þ;m ¼ 1; 2; 3; :::n and
n
m

� 	
denotes the BC.

Based on the operation laws of the PDHFSs given in

Definition 6, we develop the following results from the

Definition 9.

Proposition 1 Let Pj ¼ hjjphj ; gjjqgj
� �

j ¼ 1; 2; 3; :::; nð Þ
are the group of PDHFEs, where m ¼ 1; 2; 3; :::; n: On the

basis of MSM, we have:

b
m

j¼1
Pij ¼ [cij2hj

Ym

j¼1

cij

� �
(

j
Ym

j¼1

pcij ;[gij2gj

1�
Ym

j¼1

1� gij

� �
 !

j
Ym

j¼1

qgij

)

:

Proof Consider any two PDHFEs Pj ¼ hjjphj ; gjjqgj
� �

and

Pk ¼ hkjphk ; gkjqgk
� �

:

Pij � Pik ¼ [cij2hj;cik2hk cijcik

� �
j pcij pcik ;[gij2gj;gik2gk

n

gij þ gik � gijgik

� �
j qgij qgik

o

¼ [cij2hj;cik2hk cijcik

� �
j pcij pcik ;

n

[gij2gj;gik2gk 1� 1� gij

� �
1� gik
� �� �

j qgij qgik
o

¼ [cij2hj
Ym

j¼1

cij

� �
j
Ym

j¼1

pcij ;

(

[gij2gj 1�
Ym

j¼1

1� gij

� �
 !

j
Ym

j¼1

qgij

)

:

h

Proposition 2 Let Pj ¼ hjjphj ; gjjqgj
� �

j ¼ 1; 2; 3; :::; nð Þ
are the group of PDHFEs, where m ¼ 1; 2; 3; :::; n: On the

basis of Definition 7, we have
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a
1� i1 � i2 � :::� im � n

b
m

j¼1
Pij

� �

¼
[cij2hj 1�

Q

1� i1 � i2 � :::� im � n

1�
Qm

j¼1

cij

� �
 ! !

j
Qm

j¼1

pcij ;

[gij2gj
Q

1� i1 � i2 � :::� im � n

1�
Qm

j¼1

1� gij

� �
 ! !

j
Qm

j¼1

qgij :

8
>>>>><

>>>>>:

9
>>>>>=

>>>>>;

Proof Consider the two parameters 1ð Þ j; and 2ð Þ t: By
utilizing the above Proposition 1, we have:

b
m

j¼1
Pij ¼ [cij2hj

Ym

j¼1

cij

� �
j
Ym

j¼1

pcij ;

(

[gij2gj 1�
Ym

j¼1

1� gij

� �
 !

j
Ym

j¼1

qgij

)

;

b
m

t¼1
Pit ¼ [cit2ht

Ym

t¼1

cit
� �

j
Ym

t¼1

pcit ;

(

[git2gt 1�
Ym

t¼1

1� git
� �

 !

j
Ym

t¼1

qgit

)

:

Based on the operation law of PHFEs given in Definition 6,

the sum is computed as follows:

b
m

j¼1
Pij

� �
a b

m

t¼1
Pit

� �

¼
[cij2hj

Qm

j¼1

cij

� �
j
Qm

j¼1

pcij ;[gij2gj 1�
Qm

j¼1

1�gij

� � !

j
Qm

j¼1

qgij

( )

a [cit2ht
Qm

t¼1

cit
� �

j
Qm

t¼1

pcit ;[git2gt 1�
Qm

t¼1

1�git
� �� 	

j
Qm

t¼1

qgit


 �

0

BBBB@

1

CCCCA

¼
[cij2hj;cit2ht

Qm

j¼1

cij

� �
þ
Qm

t¼1

cit
� �

�
Qm

j¼1

cij

� �Qm

t¼1

cit
� �

 !

jpcij pcit

( )

;

[gij2gj;git2gt 1�
Qm

j¼1

1�gij

� �
 !

1�
Qm

t¼1

1�git
� �� 	

jqgij qgit

( )

0

BBBBB@

1

CCCCCA

¼
[cij2hj;cit2ht 1� 1�

Qm

j¼1

cij

� �
 !

1�
Qm

t¼1

cit
� �� 	 !

jpcij pcit

( )

;

[gij2gj;git2gt 1�
Qm

j¼1

1�gij

� �
 !

1�
Qm

t¼1

1�git
� �� 	

jqgij qgit

( )

0

BBBBB@

1

CCCCCA

¼
[cij2hj 1�

Q

1�i1�i2�:::�im�n

1�
Qm

j¼1

cij

� � ! !

j
Qm

j¼1

pcij

( )

;

[gij2gj
Q

1�i1�i2�:::�im�n

1�
Qm

j¼1

1�gij

� �
 ! !

j
Qm

j¼1

qgij

( )

0

BBBBB@

1

CCCCCA

which completes the proof of Proposition. h

Proposition 3 Let Pj ¼ hjjphj ; gjjqgj
� �

j ¼ 1; 2; 3; :::; nð Þ
are the group of PDHFEs, where m ¼ 1; 2; 3; :::; n: On the

basis of Definition 7, we have

1

m

n

� 	 a
1� i1� i2� :::� im�n

b
m

j¼1
Pij

� �� �

¼

[cij2hj 1�
Q

1� i1� i2� :::� im�n

1�
Qm

j¼1

cij

� �
 !

1

n

m

� 	0

BBB@

1

CCCA
j
Qm

j¼1

pcij ;

[gij2gj
Q

1� i1� i2� :::� im�n

1�
Qm

j¼1

1� gij

� �
 !

1

n

m

� 	0

BBB@

1

CCCA
j
Qm

j¼1

qgij

8
>>>>>>>>>>>>><

>>>>>>>>>>>>>:

9
>>>>>>>>>>>>>=

>>>>>>>>>>>>>;

:

Proof By utilizing the above Proposition 2 and operation

of PDHFEs given in Definition 6, we have

1

m

n

� 	 a
1�i1�i2�:::�im�n

b
m

j¼1
Pij

� �� �

¼ 1

m

n

� 	
[cij2hj 1�

Q
1�i1�i2�:::�im�n 1�

Qm
j¼1 cij

� �� �� �
j
Qm

j¼1pcij ;

[gij2gj
Q

1�i1�i2�:::�im�n 1�
Qm

j¼1 1�gij

� �� �� �
j
Qm

j¼1qgij

8
><

>:

9
>=

>;
:

¼

[cij2hj 1�
Q

1�i1�i2�:::�im�n 1�
Qm

j¼1 cij

� �� �

1

n

m

� 	0

BBB@

1

CCCA
j
Qm

j¼1pcij ;

[gij2gj
Q

1�i1�i2�:::�im�n 1�
Qm

j¼1 1�gij

� �� �

1

n

m

� 	0

BBB@

1

CCCA
j
Qm

j¼1qgij :

8
>>>>>>>>>>>>><

>>>>>>>>>>>>>:

9
>>>>>>>>>>>>>=

>>>>>>>>>>>>>;

Thus, proof of Proposition is completed. h

Theorem 1 Let Pj ¼ hjjphj ; gjjqgj
� �

j ¼ 1; 2; 3; :::; nð Þ are

the group of PDHFEs, where m ¼ 1; 2; 3; :::; n; Then the

accumulated result using the PDHFMSM operator is also

PDHFE, described as

638 Granular Computing (2023) 8:633–666

123



PDHFMSM mð Þ P1;P2;P3; :::;Pnð Þ

¼

[cij2hj 1�
Q

1� i1 � i2 � :::� im � n

1�
Qm

j¼1

cij

� �
 !

1

n

m

� 	0

BBB@

1

CCCA

1
m

j
Qm

j¼1 pcij ;

[gij2gj 1� 1�
Q

1� i1 � i2 � :::� im � n

1�
Qm

j¼1

1� gij

� �
 !

1

n

m

� 	0

BBB@

1

CCCA

1
m

0

BBBB@

1

CCCCA
j
Qm

j¼1

qgij

8
>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>:

9
>>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>>;

:

Proof Form the Proposition 3 and operational law of PDHFEs given in Definition 6,

1

m

n

� 	 a
1� i1 � i2 � :::� im � n

b
m

j¼1
Pij

� �� �

0

BBB@

1

CCCA

1
m

¼

[cij2hj 1�
Q

1� i1 � i2 � :::� im � n

1�
Qm

j¼1

cij

� �
 !

1

n

m

� 	0

BBB@

1

CCCA
j
Qm

j¼1

pcij ;

[gij2gj
Q

1� i1 � i2 � :::� im � n

1�
Qm

j¼1

1� gij

� �
 !

1

n

m

� 	0

BBB@

1

CCCA
j
Qm

j¼1

qgij

8
>>>>>>>>>>>>><

>>>>>>>>>>>>>:

9
>>>>>>>>>>>>>=

>>>>>>>>>>>>>;

1
m

¼

[cij2hj 1�
Q

1� i1 � i2 � :::� im � n

1�
Qm

j¼1

cij

� �
 !

1

n

m

� 	0

BBB@

1

CCCA

1
m

j
Qm

j¼1

pcij ;

[gij2gj 1� 1�
Q

1� i1 � i2 � :::� im � n

1�
Qm

j¼1

1� gij

� �
 !

1

n

m

� 	0

BBB@

1

CCCA

1
m

0

BBBB@

1

CCCCA
j
Qm

j¼1

qgij :

8
>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>:

9
>>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>>;

h

In view of Theorem 1, few particular remarks with respect to the parameter m are explained below.

Remark 1 When m ¼ 1, the PDHFMSM operator turn down to PDHF average operator as follows:
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PDHFMSM 1ð Þ P1;P2;P3; :::;Pnð Þ

¼

[cij2hj 1�
Q

1� i1 � n

1�
Q1

j¼1

cij

� �
 !

1

n

1

� 	0

BBB@

1

CCCA

1
1

j
Q1

j¼1

pcij ;

[gij2gj 1� 1�
Q

1� i1 � n

1�
Q1

j¼1

1� gij

� �
 !

1

n

1

� 	0

BBB@

1

CCCA

1
1

0

BBBB@

1

CCCCA
j
Q1

j¼1

qgij

8
>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>:

9
>>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>>;

¼ [ci12h1 1�
Y

1� i1 � n

1� ci1
� �� �1

n

 !

j pci1 ;[gi12g1
Y

1� i1 � n

1� 1� gi1
� �� �1

n

� �
 !

j qgi1

( )

¼ [ci12h1 1�
Y

1� i1 � n

1� ci1
� �� �1

n

 !

j pci1 ;[gi12g1
Y

1� i1 � n

gi1
� �1

n

 !

j qgi1

( )

:

Let i1 ¼ i; Then

¼ [ci2hi 1�
Qn

i¼1 1� cið Þð Þ
1
n

� �
j
Qn

i¼1 pci ;[gi2gi
Qn

i¼1

gið Þ
1
n

� 	
j
Qn

i¼1 qgi


 �
:

Remark 2 When m ¼ 2, the PDHFMSM operator turn into the PDHF Bonferroni mean (PDHFBM) operator as follows:

PDHFMSM 2ð Þ P1;P2;P3; :::;Pnð Þ

¼

[cij2hj 1�
Q

1� i1 � i2 � n

1�
Q2

j¼1

cij

� �
 !

1

n

2

� 	0

BBB@

1

CCCA

1
2

j
Q2

j¼1

pcij ;

[gij2gj 1� 1�
Q

1� i1 � i2 � n

1�
Q2

j¼1

1� gij

� �
 !

1

n

2

� 	0

BBB@

1

CCCA

1
2

0

BBBB@

1

CCCCA
j
Q2

j¼1

qgij

8
>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>:

9
>>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>>;

¼

[ci12h1;ci22h2 1�
Q

1� i1 � i2 � n

1� ci1ci2
� �� � 2

n n�1ð Þ

 !1
2

j pci1 pci2 ;

[gi12g1;gi22g2 1� 1�
Q

1� i1 � i2 � n

1� 1� gi1
� �

1� gi2
� �� � 2

n n�1ð Þ

 !1
2

0

@

1

A j qgi1 qgi2

8
>>>>>><

>>>>>>:

9
>>>>>>=

>>>>>>;

¼

[ci12h1;ci22h2 1�
Qn

i1;i2¼1;i1 6¼i2

1� ci1ci2
� �� �1

2
: 2
n n�1ð Þ

 !1
2

j pci1 pci2 ;

[gi12g1;gi22g2 1� 1�
Qn

i1;i2¼1;i1 6¼i2

1� 1� gi1
� �

1� gi2
� �� �1

2
: 2
n n�1ð Þ

 !1
2

0

@

1

A j qgi1qgi2

8
>>>>>><

>>>>>>:

9
>>>>>>=

>>>>>>;

¼

[ci12h1;ci22h2 1�
Qn

i1;i2¼1;i1 6¼i2

1� ci1ci2
� �� � 1

n n�1ð Þ

 !1
2

j pci1 pci2 ;

[gi12g1;gi22g2 1� 1�
Qn

i1;i2¼1;i1 6¼i2

1� 1� gi1
� �

1� gi2
� �� � 1

n n�1ð Þ

 !1
2

0

@

1

A j qgi1 qgi2

8
>>>>>><

>>>>>>:

9
>>>>>>=

>>>>>>;

¼ PDHFBM1;1 P1;P2;P3; :::;Pnð Þ:
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Remark 3 When m ¼ n, the PDHFMSM operator take shape of the PDHF geometric mean (PDHFGM) operator as

follows:

PDHFMSM nð Þ P1;P2;P3; :::;Pnð Þ

¼

[cij2hj 1�
Q

1� i1 � i2 � :::� n

1�
Qn

j¼1

cij

� �
 !

1

n

n

� 	0

BBB@

1

CCCA

1
n

j
Qn

j¼1

pcij ;

[gij2gj 1� 1�
Q

1� i1 � i2 � :::� n

1�
Qn

j¼1

1� gij

� �
 !

1

n

n

� 	0

BBB@

1

CCCA

1
n

0

BBBB@

1

CCCCA
j
Qn

j¼1

qgij

8
>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>:

9
>>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>>;

¼

[cij2hj 1� 1�
Qn

j¼1

cij

� �
 !

1

n

n

� 	0

BBB@

1

CCCA

1
n

j
Qn

j¼1

pcij ;

[gij2gj 1� 1� 1�
Qn

j¼1

1� gij

� �
 !

1

n

n

� 	0

BBB@

1

CCCA

1
n

0

BBBB@

1

CCCCA
j
Qn

j¼1

qgij :

8
>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>:

9
>>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>>;

Let ij ¼ i; then

¼
[ci2hi 1� 1�

Qn

i¼1

cið Þ
� 	� 	1

n

j
Qn

i¼1 pci ;

[gi2gi 1� 1� 1�
Qn

i¼1

1� gið Þ
� 	� 	1

n

 !

j
Qn

i¼1 qgi

8
>>>><

>>>>:

9
>>>>=

>>>>;

¼ [ci2hi
Yn

i¼1

cið Þ
1
nj
Yn

i¼1
pci ; [gi2gi 1�

Yn

i¼1

1� gið Þ
1
n

 !

j
Yn

i¼1

qgi

( )

:

In the following, we use an example to show the characteristic using the PDHFMSM operator.

Example 1 Let P1 ¼ 0:4 j 1ð Þ; 0:1 j 0:6; 0:3 j 0:4ð Þf g;P2 ¼ 0:1 j 0:4; 0:2 j 0:6ð Þ; 0:6 jf 0:8; 0:7 j 0:2g; and P3 ¼
0:6 j 0:8; 0:7 j 0:2ð Þ; 0:4 j 1ð Þf g are the three PDHFEs. For m ¼ 2, the accumulated PDHFEs utilizing the PDHFMSM

operator given in the above Theorem 1, is calculated as
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PDHFMSM 2ð Þ P1;P2;P3ð Þ

¼

[cij2hj 1�
Q

1� i2 � 3

1�
Q2

j¼1

cij

� �
 !

1

3

2

� 	0

BBB@

1

CCCA

1
2

j
Q2

j¼1 pcij ;

[gij2gj 1� 1�
Q

1� i2 � 3

1�
Q2

j¼1

1� gij

� �
 !

1

3

2

� 	0

BBB@

1

CCCA

1
2

0

BBBB@

1

CCCCA
j
Q2

j¼1 qgij

8
>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>:

9
>>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>>;

¼

1� 1� 0:4	 0:1ð Þð Þ
1
3	 1� 0:4	 0:6ð Þð Þ

1
3	 1� 0:1	 0:6ð Þð Þ

1
3

� �1
2j1	 0:4	 0:8;

1� 1� 0:4	 0:1ð Þð Þ
1
3	 1� 0:4	 0:7ð Þð Þ

1
3	 1� 0:1	 0:7ð Þð Þ

1
3

� �1
2j1	 0:4	 0:2;

1� 1� 0:4	 0:2ð Þð Þ
1
3	 1� 0:4	 0:6ð Þð Þ

1
3	 1� 0:2	 0:6ð Þð Þ

1
3

� �1
2j1	 0:6	 0:8;

1� 1� 0:4	 0:2ð Þð Þ
1
3	 1� 0:4	 0:7ð Þð Þ

1
3	 1� 0:2	 0:7ð Þð Þ

1
3

� �1
2j1	 0:6	 0:2;

0

BBBBBBBBBB@

1

CCCCCCCCCCA

;

1� 1� 1� 1� 0:1ð Þ 1� 0:6ð Þð Þ
1
3	 1� 1� 0:1ð Þ 1� 0:4ð Þð Þ

1
3	 1� 1� 0:6ð Þ 1� 0:4ð Þð Þ

1
3

� �1
2j0:6	 0:8	 1;

1� 1� 1� 1� 0:1ð Þ 1� 0:7ð Þð Þ
1
3	 1� 1� 0:1ð Þ 1� 0:4ð Þð Þ

1
3	 1� 1� 0:7ð Þ 1� 0:4ð Þð Þ

1
3

� �1
2j0:6	 0:2	 1;

1� 1� 1� 1� 0:3ð Þ 1� 0:6ð Þð Þ
1
3	 1� 1� 0:3ð Þ 1� 0:4ð Þð Þ

1
3	 1� 1� 0:6ð Þ 1� 0:4ð Þð Þ

1
3

� �1
2j0:4	 0:8	 1;

1� 1� 1� 1� 0:3ð Þ 1� 0:7ð Þð Þ
1
3	 1� 1� 0:3ð Þ 1� 0:4ð Þð Þ

1
3	 1� 1� 0:7ð Þ 1� 0:4ð Þð Þ

1
3

� �1
2j0:4	 0:2	 1

0

BBBBBBBBBB@

1

CCCCCCCCCCA

8
>>>>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>>>>:

9
>>>>>>>>>>>>>>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>>>>>>>>>>>>>>;

¼ 0:3437 j 0:32; 0:3701 j 0:08; 0:3866 j 0:48; 0:4136 j 0:12ð Þ; 0:3732 j 0:48; 0:4089 j 0:12; 0:4362 j 0:32; 0:4724 j 0:08ð Þf g:

In subsequent, we scrutinize some useful properties of PDHFMSM operator.

Property 1. ½Idem� potency� Let Pj ¼ hjjphj ; gjjqgj
� �

j ¼ 1; 2; 3; :::; nð Þ be a collection of PDHFEs. If all Pj are equal, i.e.

Pj ¼ P ¼ hjph; gjqg
� �

for all j, then

PDHFMSM mð Þ P1;P2;P3; :::;Pnð Þ ¼ P ¼ hjph; gjqg
� �

Property 2. ½Monotonic� Let Pj ¼ hjjphj ; gjjqgj
� �

and P
0
j ¼ h

0
j j ph0j ; g

0
j j qg0j

� �
j ¼ 1; 2; 3; :::; nð Þ be two group of PHFSs. For

each element in the Pj and P
0
j; there are chj � ch0j

and ggj � gg0j
while the probabilities are same, i.e. phj ¼ ph0j

and

qgj ¼ qg0j
: Then take advantage of PDHFMSM operator,

PDHFMSM mð Þ P1;P2;P3; :::;Pnð Þ�PDHFMSM mð Þ P
0

1;P
0

2;P
0

3; :::;P
0

n

� �

Property 3. ½Commutative� Suppose Pj ¼ hj j phj ; gj j qgj
� �

j ¼ 1; 2; 3; :::; nð Þ be a set of PDHFEs, and P
0

j is any

permutation of Pj j ¼ 1; 2; 3; :::; nð Þ; then

PDHFMSM mð Þ P1;P2;P3; :::;Pnð Þ ¼ PDHFMSM mð Þ P
0

1;P
0

2;P
0

3; :::;P
0

n

� �
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3.2 Weighted PDHFMSM

From Definition 9, it can easily be observed that the PDHFMSM operator does not consider the weights of the multiple-input

arguments. Nevertheless, in many decision-making problems, particularly in MADM, the importance of arguments con-

tribute significantly to the process of aggregation. Next, we address the shortcomings of the PDHFMSM operator and

propose the weighted PDHFMSM (WPDHFMSM) operator as follows:

Definition 10 Given Pj j ¼ 1; 2; 3; :::; nð Þ be the set of PDHFEs, then there exist a weight vector wj ¼ w1;w2;w3; :::;wnð ÞT

satisfying wj [ 0 and
Pn

j¼1 wj ¼ 1; where wj represents the importance degree of Pj: Then the WPDHFMSM operator is

defined as follows:

WPDHFMSM mð Þ P1;P2;P3; :::;Pnð Þ ¼
P

1� i1 � i2 � :::� im � n

Qm
j¼1 wij :Pij

� �

n

m

� 	

0

BBB@

1

CCCA

1
m

;

where i1; i2; :::; imð Þ traverses all the k-tuple combination of 1; 2; 3; :::; nð Þ;m ¼ 1; 2; 3; :::n and
n
m

� 	
denotes the BC.

According to the Definition 10, 6, and Theorem 1, we can set up the following theorem:

Theorem 2 Given Pj j ¼ 1; 2; 3; :::; nð Þ be the collection of PDHFEs, then there exist a weight vector wj ¼
w1;w2;w3; :::;wnð ÞT satisfying wj [ 0 and

Pn
j¼1 wj ¼ 1; where wj represents the importance degree of Pj; then the accu-

mulated results by employing the WPDHFMSM is also a PDHFE,and we have

WPDHFMSM mð Þ P1;P2;P3; :::;Pnð Þ ¼

[cij2hj 1�
Q

1� i1 � i2 � :::� im � n

1�
Qm

j¼1

1� 1� cij

� �wij
� �

 !
1

n
m

� 	0

BBB@

1

CCCA

1
m

j
Qm

j¼1 pcij ;

[gij2gj 1� 1�
Q

1� i1 � i2 � :::� im � n

1�
Qm

j¼1

1� g
wij

ij

� �
 !

1

n
m

� 	0

BBB@

1

CCCA

1
m

0

BBBB@

1

CCCCA
j
Qm

j¼1 qgij

8
>>>>>>>>>>>>>><

>>>>>>>>>>>>>>:

9
>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>;

Proof By utilizing the laws given in the Definition 6, we have

wijPij ¼ wij [cij2hj cij j pcij
� �

;[gij2gj gij j qgij
� �n o

¼ [cij2hj 1� 1� cij

� �wij
� �

j pcij ;[gij2gj g
wij

ij
j qgij

� �n o

Now from the sequel of Definition 9 and Theorem 1, we obtain:
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WPDHFMSM mð Þ P1;P2;P3; :::;Pnð Þ ¼
P

1� i1 � i2 � :::� im � n

Qm
j¼1 wij :Pij

� �� �

n

m

� 	

0

BBB@

1

CCCA

1
m

¼
P

1� i1 � i2 � :::� im � n

Qm
j¼1 [cij2hj 1� 1� cij

� �wij
� �

j pcij ;[gij2gj g
wij

ij
j qgij

� �n o

n

m

� 	

0

BBB@

1

CCCA

1
m

¼

[cij2hj 1�
Q

1� i1 � i2 � :::� im � n 1�
Qm

j¼1 1� 1� cij

� �wij
� �� �

1

n

m

� 	0

BBB@

1

CCCA

1
m

j
Qm

j¼1 pcij ;

[gij2gj 1� 1�
Q

1� i1 � i2 � :::� im � n 1�
Qm

j¼1 1� g
wij

ij

� �� �

1

n

m

� 	0

BBB@

1

CCCA

1
m

0

BBBB@

1

CCCCA
j
Qm

j¼1 qgij

8
>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>:

9
>>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>>;

Hence, proof is completed. h

According to the different values of parameter m, we can figure out the following remarks from Theorem 2:

Remark 4 When m ¼ 1; the WPDHFMSM operator come into being the weighted PDHF average operator as follows:

WPDHFMSM 1ð Þ P1;P2;P3; :::;Pnð Þ

¼

[cij2hj 1�
Q

1� i1 � n

1�
Q1

j¼1

1� 1� cij

� �wij
� �

 !
1

n

1

� 	0

BBB@

1

CCCA

1
1

j
Q1

j¼1 pcij ;

[gij2gj 1� 1�
Q

1� i1 � n

1�
Q1

j¼1

1� g
wij

ij

� �
 !

1

n

1

� 	0

BBB@

1

CCCA

1
1

0

BBBB@

1

CCCCA
j
Q1

j¼1

qgij

8
>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>:

9
>>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>>;

¼ [cij2hj 1�
Yn

i¼1

1� cij

� �wij

 !1
n

j
Yn

i¼1

pcij ;[gij2gj
Yn

i¼1

g
wij

ij

� �1
nj
Yn

i¼1

qgij

8
<

:

9
=

;

Remark 5 When m ¼ 2; the WPDHFMSM operator come into being the weighted PDHF Bonferoni mean (WPDHFBM)

operator as follows:
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WPDHFMSM 2ð Þ P1;P2;P3; :::;Pnð Þ

¼

[cij2hj 1�
Q

1� i1 � i2 � n

1�
Q2

j¼1

1� 1� cij

� �wij
� �

 !
1

n

2

� 	0

BBB@

1

CCCA

1
2

j
Q2

j¼1 pcij ;

[gij2gj 1� 1�
Q

1� i1 � i2 � n

1�
Q2

j¼1

1� g
wij

ij

� �
 !

1

n

2

� 	0

BBB@

1

CCCA

1
2

0

BBBB@

1

CCCCA
j
Q2

j¼1

qgij

8
>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>:

9
>>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>>;

¼

[ci12h1;ci22h2 1�
Qn

i1;i2¼1;i1 6¼i2

1� 1� 1� ci1
� �wi1

� �
1� 1� ci2

� �wi2
� �� � 1

n n�1ð Þ

 !1
2

j pci1pci2 ;

[gi12g1;gi22g2 1� 1�
Qn

i1;i2¼1;i1 6¼i2

1� 1� g
wi1
i1

� �
1� g

wi2
i2

� �� � 1
n n�1ð Þ

 !1
2

0

@

1

A j qgi1qgi2

8
>>>>>><

>>>>>>:

9
>>>>>>=

>>>>>>;

Remark 6 When m ¼ n; the WPDHFMSM operator come into being the weighted PDHF geometric mean (WPDHFGM)

operator as follows:

WPDHFMSM nð Þ P1;P2;P3; :::;Pnð Þ

¼

[cij2hj 1�
Q

1� i1 � i2 � :::� in � n

1�
Qn

j¼1

1� 1� cij

� �wij
� �

 !
1

n

n

� 	0

BBB@

1

CCCA

1
n

j
Qn

j¼1

pcij ;

[gij2gj 1� 1�
Q

1� i1 � i2 � :::� in � n

1�
Qn

j¼1

1� g
wij

ij

� �
 !

1

n

n

� 	0

BBB@

1

CCCA

1
n

0

BBBB@

1

CCCCA
j
Qn

j¼1

qgij

8
>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>:

9
>>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>>;

¼ [ci2hi
Yn

i¼1

cwi
i

 !

j
Yn

i¼1

pci ;[gi2gi 1�
Yn

i¼1

1� gwi
ið Þ

 !

j
Yn

i¼1

qgi

( )

In the following, we use an example to show the characteristic using the WPDHFMSM operator.

Example 2 Let P1 ¼ 0:4 j 1ð Þ; 0:1 j 0:6; 0:3 j 0:4ð Þf g;P2 ¼ 0:1 j 0:4; 0:2 jðf 0:6Þ; 0:6 j 0:8; 0:7 j 0:2g and P3 ¼
0:6 j 0:8; 0:7 j 0:2ð Þ; 0:4 j 1ð Þf g are the three PDHFEs and weight vector for these elements is w ¼ 0:5; 0:2; 0:3ð ÞT . For

m ¼ 2, the accumulated PDHFEs utilizing the WPDHFMSM operator given in Theorem 2, is calculated as
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WPDHFMSM 2ð Þ P1;P2;P3ð Þ

¼

[cij2hj 1�
Q

1� i2�3

1�
Q2

j¼1

1� 1�cij

� �wij
� �

 !
1

3

2

� 	0

BBB@

1

CCCA

1
2

j
Q2

j¼1

pcij ;

[gij2gj 1� 1�
Q

1� i2�3

1�
Q2

j¼1

1�g
wij

ij

� �
 !

1

3

2

� 	0

BBB@

1

CCCA

1
2

0

BBBB@

1

CCCCA
j
Q2

j¼1

qgij

8
>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>:

9
>>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>>;

¼

1� 1� 1� 1�0:4ð Þ0:5
� �

	 1� 1�0:1ð Þ0:2
� �� �1

3	 1� 1� 1�0:4ð Þ0:5
� �

	 1� 1�0:6ð Þ0:3
� �� �1

3	 1� 1� 1�0:1ð Þ0:2
� �

	 1� 1�0:6ð Þ0:3
� �� �1

3

� 	1
2

j1:0	0:4	0:8;

1� 1� 1� 1�0:4ð Þ0:5
� �

	 1� 1�0:1ð Þ0:2
� �� �1

3	 1� 1� 1�0:4ð Þ0:5
� �

	 1� 1�0:7ð Þ0:3
� �� �1

3	 1� 1� 1�0:1ð Þ0:2
� �

	 1� 1�0:7ð Þ0:3
� �� �1

3

� 	1
2

j1:0	0:4	0:2;

1� 1� 1� 1�0:4ð Þ0:5
� �

	 1� 1�0:2ð Þ0:2
� �� �1

3	 1� 1� 1�0:4ð Þ0:5
� �

	 1� 1�0:6ð Þ0:3
� �� �1

3	 1� 1� 1�0:2ð Þ0:2
� �

	 1� 1�0:6ð Þ0:3
� �� �1

3

� 	1
2

j1:0	0:6	0:8;

1� 1� 1� 1�0:4ð Þ0:5
� �

	 1� 1�0:2ð Þ0:2
� �� �1

3	 1� 1� 1�0:4ð Þ0:5
� �

	 1� 1�0:7ð Þ0:3
� �� �1

3	 1� 1� 1�0:2ð Þ0:2
� �

	 1� 1�0:7ð Þ0:3
� �� �1

3

� 	1
2

j1:0	0:6	0:2;

0

B
BBBBBBBBBBBBB@

1

C
CCCCCCCCCCCCCA

;

1� 1� 1� 1�0:10:5
� �

1�0:60:2ð Þ
� �1

3	 1� 1�0:10:5
� �

1�0:40:3ð Þ
� �1

3	 1� 1�0:60:2ð Þ 1�0:40:3ð Þð Þ
1
3

� �1
2j0:6	0:8	1:0;

1� 1� 1� 1�0:10:5
� �

1�0:70:2ð Þ
� �1

3	 1� 1�0:10:5
� �

1�0:40:3ð Þ
� �1

3	 1� 1�0:70:2ð Þ 1�0:40:3ð Þð Þ
1
3

� �1
2j0:6	0:2	1:0;

1� 1� 1� 1�0:30:5
� �

1�0:60:2ð Þ
� �1

3	 1� 1�0:30:5
� �

1�0:40:3ð Þ
� �1

3	 1� 1�0:60:2ð Þ 1�0:40:3ð Þð Þ
1
3

� �1
2j0:4	0:8	1:0;

1� 1� 1� 1�0:30:5
� �

1�0:70:2ð Þ
� �1

3	 1� 1�0:30:5
� �

1�0:40:3ð Þ
� �1

3	 1� 1�0:70:2ð Þ 1�0:40:3ð Þð Þ
1
3

� �1
2j0:4	0:2	1:0

0

BBBBBBBBBB@

1

CCCCCCCCCCA

8
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

9
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>;

¼ 0:1469 j0:32;0:1640 j0:08;0:1583 j0:48;0:1756 j0:12ð Þ; 0:7057 j0:48;0:7203 j0:12;0:7563 j0:32;0:7698 j0:08ð Þf g

4 Probabilistic dual hesitant fuzzy dual Maclaurin symmetric mean

To manage the situation where the arguments are represented by PDHF information. Hereinafter referred, we incorporate the

DMSM, to accommodate the PDHF information and accordingly propose novel aggregation operators, investigating its

properties and operation laws in this section. Therefore, we propose the PDHFDMSM and the WPDHFDMSM aggregation

operators. The details and specific content are defined as follows:

4.1 PDHFDMSM

Based on Definition 3 and 8, we can develop the PDHFDMSM operator as follows:

Definition 11 Suppose Pj j ¼ 1; 2; 3; :::; nð Þ be a set of PDHFEs, and m ¼ 1; 2; 3; :::; nð Þ: If

PDHFDMSM mð Þ P1;P2;P3; :::;Pnð Þ ¼ 1

m

Y
1� i1 � i2 � :::� im � n

Xm

j¼1

Pij

 !
1

n

m

� 	0

BBB@

1

CCCA
;

where i1; i2; :::; imð Þ traverses all the k-tuple combination of 1; 2; 3; :::; nð Þ; and n
m

� 	
denotes the BC.

In accordance with operational laws of the PDHFS given in Definition 6, we develop the following results from the

Definition 11.

Proposition 4 Suppose Pj ¼ hj j phj ; gj j qgj
� �

j ¼ 1; 2; 3; :::; nð Þ are the group of PDHFEs, where m ¼ 1; 2; 3; :::; n: On the

basis of Definition , we have
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a
n

j¼1
Pij ¼ [cij2hj 1�

Ym

j¼1

1� cij

� �
 !

j
Ym

j¼1

pcij ;[gij2gj
Ym

j¼1

gij

� �
 !

j
Ym

j¼1

qgij

( )

Proof Consider any two PDHFEs Pj ¼ hj j phj ; gj j qgj
� �

and Pk ¼ hk j phk ; gk j qgk
� �

:

Pij�Pik ¼ [cij2hj;cik2hk cij þ cik � cijcik

� �
j pcij pcik ;[gij2gj;gik2gk gijgik

� �
j qgij qgik

n o

¼ [cij2hj;cik2hk 1� 1� cij

� �
1� cik
� �� �

j pcij pcik ;[gij2gj;gik2gk gijgik

� �
j qgij qgik

n o

¼ [cij2hj
Ym

j¼1

1� cij

� �
j
Ym

j¼1

pcij ;[gij2gj
Ym

j¼1

gij

� �
j
Ym

j¼1

qgij

( )

Hence, proof of proposition is completed. h

Proposition 5 Suppose Pj ¼ hj j phj ; gj j qgj
� �

j ¼ 1; 2; 3; :::; nð Þ are the group of PDHFEs, where m ¼ 1; 2; 3; :::; n: On the

basis of Definition 11, we have

a
n

j¼1
Pij

� �

1

n

m

� 	

¼ [cij2hj 1�
Ym

j¼1

1� cij

� �
 !

1

n

m

� 	

j
Ym

j¼1

pcij ;[gij2gj 1� 1�
Ym

j¼1

gij

� �
 !

1

n

m

� 	0

BBB@

1

CCCA
j
Ym

j¼1

qgij

8
>>><

>>>:

9
>>>=

>>>;

:

Proof In consideration of Proposition 4 and the operational laws given in the Definition 6, we get

a
n

j¼1
Pij

� �

1

n
m

� 	

¼ [cij2hj 1�
Ym

j¼1

1� cij

� �
 !

j
Ym

j¼1

pcij ;[gij2gj
Ym

j¼1

gij

� �
 !

j
Ym

j¼1

qgij

( )
1

n
m

� 	

¼ [cij2hj 1�
Ym

j¼1

1� cij

� �
 !

1

n
m

� 	

j
Ym

j¼1

pcij ;[gij2gj 1� 1�
Ym

j¼1

gij

� �
 !

1

n
m

� 	0

BBB@

1

CCCA
j
Ym

j¼1

qgij

8
>>><

>>>:

9
>>>=

>>>;

Hence, completed. h

Proposition 6 Suppose Pj ¼ hj j phj ; gj j qgj
� �

j ¼ 1; 2; 3; :::; nð Þ are the group of PDHFEs, where m ¼ 1; 2; 3; :::; n: On the

basis of Definition 11, we have

b
1� i1 � i2 � :::� im � n a

n

j¼1
Pij

� �

1

n

m

� 	

¼

[cij2hj
Q

1� i1 � i2 � :::� im � n

1�
Qm

j¼1

1� cij

� �
 !

1

n

m

� 	

j
Qm

j¼1

pcij ;

[gij2gj 1�
Q

1� i1 � i2 � :::� im � n

1�
Qm

j¼1

gij

� �
 !

1

n

m

� 	0

BBB@

1

CCCA
j
Qm

j¼1

qgij :

8
>>>>>>>>>>><

>>>>>>>>>>>:

9
>>>>>>>>>>>=

>>>>>>>>>>>;

Proof Consider the two parameters (1) j; and (2) t, make use of the Proposition 5, we get
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a
n

j¼1
Pij

� �

1

n

m

� 	

¼ [cij2hj 1�
Ym

j¼1

1� cij

� �
 !

1

n

m

� 	

j
Ym

j¼1

pcij ;[gij2gj 1� 1�
Ym

j¼1

gij

� �
 !

1

n

m

� 	0

BBB@

1

CCCA
j
Ym

j¼1

qgij

8
>>><

>>>:

9
>>>=

>>>;

a
n

t¼1
Pit

� �

1

n

m

� 	

¼ [cit2ht 1�
Ym

t¼1

1� cit
� �

 !
1

n

m

� 	

j
Ym

t¼1

pcit ;[git2gt 1� 1�
Ym

t¼1

git
� �

 !
1

n

m

� 	0

BBB@

1

CCCA
j
Ym

t¼1

qgit

8
>>><

>>>:

9
>>>=

>>>;

Based on the operation law of PHFEs given in Definition 6, the product is computed as follows:

a
n

j¼1
Pij

� �

1

n

m

� 	

� a
n

t¼1
Pit

� �

1

n

m

� 	

¼

[cij2hj 1�
Qm

j¼1

1� cij

� �
 !

1

n

m

� 	

j
Qm

j¼1 pcij ;[gij2gj 1� 1�
Qm

j¼1 gij

� �� �

1

n

m

� 	0

BBB@

1

CCCA
j
Qm

j¼1 qgij

8
>>><

>>>:

9
>>>=

>>>;

�

[cit2ht 1�
Qm

t¼1

1� cit
� �

� 	
1

n

m

� 	

j
Qm

t¼1

pcit ;[git2gt 1� 1�
Qm

t¼1

git
� �

� 	
1

n

m

� 	0

BBB@

1

CCCA
j
Qm

t¼1

qgit

8
>>><

>>>:

9
>>>=

>>>;

0

BBBBBBBBBBBBB@

1

CCCCCCCCCCCCCA

¼

[cij2hj;cit2ht 1�
Qm

j¼1

1� cij

� �
 !

1

n

m

� 	

1�
Qm

t¼1

1� cit
� �� 	

1

n

m

� 	0

BBB@

1

CCCA
j pcij pcit ;

[gij2gj;git2gt 1� 1�
Qm

j¼1

gij

� �
 !

1

n

m

� 	

1�
Qm

t¼1

git
� �� 	

1

n

m

� 	0

BBB@

1

CCCA
j qgij qgit

8
>>>>>>>>>>>>><

>>>>>>>>>>>>>:

9
>>>>>>>>>>>>>=

>>>>>>>>>>>>>;

¼

[cij2hj
Q

1� i1 � i2 � :::� im � n

1�
Qm

j¼1

1� cij

� �
 !

1

n

m

� 	

j
Qm

j¼1

pcij ;

[gij2gj 1�
Q

1� i1 � i2 � :::� im � n

1�
Qm

j¼1

gij

� �
 !

1

n

m

� 	0

BBB@

1

CCCA
j
Qm

j¼1

qgij

8
>>>>>>>>>>><

>>>>>>>>>>>:

9
>>>>>>>>>>>=

>>>>>>>>>>>;

Hence, ended. h

As stated in operations of PDHFEs given in Definition 6, we can extract a theorem below:

Theorem 3 Suppose Pj ¼ hj j phj ; gj j qgj
� �

j ¼ 1; 2; 3; :::; nð Þ are the group of PDHFEs, where m ¼ 1; 2; 3; :::; n; Then the

accumulated result by using the PDHFDMSM operator is also PDHFE, described as
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PDHFDMSM mð Þ P1;P2;P3; :::;Pnð Þ

¼

[cij2hj 1� 1�
Q

1� i1 � i2 � :::� im � n

1�
Qm

j¼1

1� cij

� �
 !

1

n

m

� 	0

BBB@

1

CCCA

1
m

0

BBBB@

1

CCCCA
j
Qm

j¼1 pcij ;

[gij2gj 1�
Q

1� i1 � i2 � :::� im � n

1�
Qm

j¼1

gij

� �
 !

1

n

m

� 	0

BBB@

1

CCCA

1
m

j
Qm

j¼1 qgij

8
>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>:

9
>>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>>;

Proof In the light of Proposition 6 and the Definition 6, we get

1

m
b

1� i1 � i2 � :::� im � n a
n

j¼1
Pij

� �

1

n

m

� 	0

BBB@

1

CCCA

¼ 1

m

[cij2hj
Q

1� i1 � i2 � :::� im � n

1�
Qm

j¼1

1� cij

� �
 !

1

n

m

� 	

j
Qm

j¼1 pcij ;

[gij2gj 1�
Q

1� i1 � i2 � :::� im � n

1�
Qm

j¼1

gij

� �
 !

1

n

m

� 	0

BBB@

1

CCCA
j
Qm

j¼1

qgij

8
>>>>>>>>>>><

>>>>>>>>>>>:

9
>>>>>>>>>>>=

>>>>>>>>>>>;

¼

[cij2hj 1� 1�
Q

1� i1 � i2 � :::� im � n

1�
Qm

j¼1

1� cij

� �
 !

1

n

m

� 	0

BBB@

1

CCCA

1
m

0

BBBB@

1

CCCCA
j
Qm

j¼1

pcij ;

[gij2gj 1�
Q

1� i1 � i2 � :::� im � n

1�
Qm

j¼1

gij

� �
 !

1

n

m

� 	0

BBB@

1

CCCA

1
m

j
Qm

j¼1

qgij

8
>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>:

9
>>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>>;

Hence, proved. h

In the light of the Theorem 3, we can find some exceptional remarks of the PDHFDMSM operator centered on different

values of the parameter m.

Remark 7 When m ¼ 1; the PDHFDMSM operator come into being the PDHF geometric mean operator as follows:
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PDHFDMSM 1ð Þ P1;P2;P3; :::;Pnð Þ

¼

[cij2hj 1� 1�
Q

1� i1 � n

1�
Q1

j¼1

1� cij

� �
 !

1

n

1

� 	0

BBB@

1

CCCA

1
1

0

BBBB@

1

CCCCA
j
Q1

j¼1 pcij ;

[gij2gj 1�
Q

1� i1 � n

1�
Q1

j¼1

gij

� �
 !

1

n

1

� 	0

BBB@

1

CCCA

1
1

j
Q1

j¼1 qgij

8
>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>:

9
>>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>>;

¼ [ci12h1
Y

1� i1 � n

1� 1� ci1
� �� �1

n

 !

j pci1 ; [gi12g1 1�
Y

1� i1 � n

1� gi1
� �� �1

n

 !

j qgi1

( )

¼ [ci12h1
Y

1� i1 � n

ci1
� �1

n

 !

j pci1 ; [gi12g1 1�
Y

1� i1 � n
1� gi1

� �� �1
n

� �
j qgi1

( )

Let i1 ¼ i; Then

¼ [ci2hi
Qn

i¼1

cið Þ
1
n

� 	
j
Qn

i¼1

pci ; [gi2gj 1�
Qn

i¼1 1� gið Þð Þ
1
n

� �
j
Qn

i¼1 qgi


 �

Remark 8 When m ¼ 2; the PDHFDMSM operator come into being the PDHF geometric Bonferroni mean (PDHFGBM)

operator as follows:

PDHFDMSM 2ð Þ P1;P2;P3; :::;Pnð Þ

¼

[cij2hj 1� 1�
Q

1� i1 � i2 � n

1�
Q2

j¼1

1� cij

� � !
1

n

2

� 	0

BBB@

1

CCCA

1
2

0

BBBB@

1

CCCCA
j
Q2

j¼1 pcij ;

[gij2gj 1�
Q

1� i1 � i2 � n

1�
Q2

j¼1

gij

� �
 !

1

n

2

� 	0

BBB@

1

CCCA

1
2

j
Q2

j¼1 qgij

8
>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>:

9
>>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>>;

¼

[ci12h1;ci22h2 1� 1�
Q

1� i1 � i2 � n

1� 1� ci1
� �

1� ci2
� �� � 2

n n�1ð Þ

 !1
2

0

@

1

A j pci1 pci2 ;

[gi12g1;gi22g2 1�
Q

1� i1 � i2 � n

1� gi1
� �

gi2
� �� � 2

n n�1ð Þ

 !1
2

j qgi1qgi2

8
>>>>>><

>>>>>>:

9
>>>>>>=

>>>>>>;

¼

[ci12h1;ci22h2 1� 1�
Q

i1;i2¼1;i1 6¼i2

1� 1� ci1
� �

1� ci2
� �� �

 !1
2

2
n n�1ð Þ

0

@

1

A

1
2

0

B@

1

CA j pci1pci2 ;

[gi12g1;gi22g2 1�
Q

i1;i2¼1;i1 6¼i2

1� gi1
� �

gi2
� �� �

 !1
2

2
n n�1ð Þ

0

@

1

A

1
2

j qgi1qgi2

8
>>>>>>>><

>>>>>>>>:

9
>>>>>>>>=

>>>>>>>>;

¼

[ci12h1;ci22h2 1� 1�
Q

i1;i2¼1;i1 6¼i2

1� 1� ci1
� �

1� ci2
� �� �

 ! 1
n n�1ð Þ

0

@

1

A

1
2

0

B@

1

CA j pci1pci2 ;

[gi12g1;gi22g2 1�
Q

i1;i2¼1;i1 6¼i2

1� gi1
� �

gi2
� �� �

 ! 1
n n�1ð Þ

0

@

1

A

1
2

j qgi1qgi2

8
>>>>>>>><

>>>>>>>>:

9
>>>>>>>>=

>>>>>>>>;

¼ PDHFGBM 1;1ð Þ P1;P2;P3; :::;Pnð Þ
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Remark 9 When m ¼ n, the PDHFDMSM operator takes the form of the PDHF mean operator as described below:

PDHFDMSM nð Þ P1;P2;P3; :::;Pnð Þ

¼

[cij2hj 1� 1�
Q

1� i1 � i2 � :::� in � n

1�
Qn

j¼1

1� cij

� �
 !

1

n

n

� 	0

BBB@

1

CCCA

1
n

0

BBBB@

1

CCCCA
j
Qn

j¼1 pcij ;

[gij2gj 1�
Q

1� i1 � i2 � :::� in � n

1�
Qn

j¼1

gij

� �
 !

1

n

n

� 	0

BBB@

1

CCCA

1
n

j
Qn

j¼1 qgij

8
>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>:

9
>>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>>;

¼

[cij2hj 1� 1� 1�
Qn

j¼1

1� cij

� �
 !1

1

0

@

1

A

1
n

0

B@

1

CA j
Qn

j¼1 pcij ;

[gij2gj 1� 1�
Qn

j¼1

gij

� �
 !1

1

0

@

1

A

1
n

j
Qn

j¼1 qgij

8
>>>>>>>><

>>>>>>>>:

9
>>>>>>>>=

>>>>>>>>;

¼ [cij2hj 1�
Yn

j¼1

1� cij

� �1
n

 !

j
Yn

j¼1

pcij ; [gij2gj
Yn

j¼1

gij

� �1
nj
Yn

j¼1
qgij

( )

For a better understanding of PDHFDMSM, we provide an example to show the calculation of the proposed operator.

Example 3 Let P1 ¼ 0:4 j 1ð Þ; 0:1 j 0:6; 0:3 j 0:4ð Þf g; P2 ¼ 0:1 j 0:4; 0:2 j 0:6ð Þ; 0:6 j 0:8; 0:7 j 0:2f g; and P3 ¼
0:6 j 0:8; 0:7 j 0:2ð Þ; 0:4 j 1ð Þf g are the three PDHFEs. For m ¼ 2, the accumulated PDHFEs utilizing the PDHFDMSM

operator given in the above Theorem 3 is calculated as

PDHFDMSM 2ð Þ P1;P2;P3ð Þ

¼

[cij2hj 1� 1�
Q

1� i1 � i2 � 3

1�
Q2

j¼1

1� cij

� �
 !

1

3

2

� 	0

BBB@

1

CCCA

1
2

0

BBBB@

1

CCCCA
j
Q2

j¼1 pcij ;

[gij2gj 1�
Q

1� i1 � i2 � 3

1�
Q2

j¼1

gij

� �
 !

1

3

2

� 	0

BBB@

1

CCCA

1
2

j
Q2

j¼1 qgij

8
>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>:

9
>>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>>;

¼

1� 1� 1� 1� 0:4ð Þ 1� 0:1ð Þð Þ
1
3	 1� 1� 0:4ð Þ 1� 0:6ð Þð Þ

1
3	 1� 1� 0:1ð Þ 1� 0:6ð Þð Þ

1
3

� �1
2j 1	 0:4	 0:8;

1� 1� 1� 1� 0:4ð Þ 1� 0:1ð Þð Þ
1
3	 1� 1� 0:4ð Þ 1� 0:7ð Þð Þ

1
3	 1� 1� 0:1ð Þ 1� 0:7ð Þð Þ

1
3

� �1
2j 1	 0:4	 0:2;

1� 1� 1� 1� 0:4ð Þ 1� 0:2ð Þð Þ
1
3	 1� 1� 0:4ð Þ 1� 0:6ð Þð Þ

1
3	 1� 1� 0:2ð Þ 1� 0:6ð Þð Þ

1
3

� �1
2j 1	 0:6	 0:8;

1� 1� 1� 1� 0:4ð Þ 1� 0:2ð Þð Þ
1
3	 1� 1� 0:4ð Þ 1� 0:7ð Þð Þ

1
3	 1� 1� 0:2ð Þ 1� 0:7ð Þð Þ

1
3

� �1
2j 1	 0:6	 0:2

0

BBBBBBBBBB@

1

CCCCCCCCCCA

;

1� 1� 0:1	 0:6ð Þð Þ
1
3	 1� 0:1	 0:4ð Þð Þ

1
3	 1� 0:6	 0:4ð Þð Þ

1
3

� �1
2j 0:6	 0:8	 1;

1� 1� 0:1	 0:7ð Þð Þ
1
3	 1� 0:1	 0:4ð Þð Þ

1
3	 1� 0:7	 0:4ð Þð Þ

1
3

� �1
2j 0:6	 0:2	 1;

1� 1� 0:3	 0:6ð Þð Þ
1
3	 1� 0:3	 0:4ð Þð Þ

1
3	 1� 0:6	 0:4ð Þð Þ

1
3

� �1
2j 0:4	 0:8	 1;

1� 1� 0:3	 0:7ð Þð Þ
1
3	 1� 0:3	 0:4ð Þð Þ

1
3	 1� 0:7	 0:4ð Þð Þ

1
3

� �1
2j 0:4	 0:2	 1;

0

BBBBBBBBBB@

1

CCCCCCCCCCA

8
>>>>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>>>>:

9
>>>>>>>>>>>>>>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>>>>>>>>>>>>>>;

¼ 0:3732 j 0:32; 0:4089 j 0:08; 0:4045 j 0:48; 0:4404 j 0:12ð Þ; 0:3437 j 0:48; 0:3701 j 0:12; 0:4260 j 0:32; 0:4539 j 0:08ð Þf g
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In the following, we scrutinize some useful characteristics of the PDHFDMSM operator.

Property 5. ½Idempotent� Let Pj ¼ hj j phj ; gj j qgj
� �

j ¼ 1; 2; 3; :::; nð Þ be a collection of PDHFEs. If all Pj are equal, i.e.

Pj ¼ P ¼ h j ph; g j qg
� �

for all j, then

PDHFDMSM mð Þ P1;P2;P3; :::;Pnð Þ ¼ P ¼ h j ph; g j qg
� �

Property 6. ½Monotonic� Let Pj ¼ hj j phj ; gj j qgj
� �

and P
0
j ¼ h

0
j j ph0j ; g

0
j j qg0j

� �
j ¼ 1; 2; 3; :::; nð Þ be two group of PHFSs.

For each element in the Pj and P
0

j; there are chj � ch0j
and ggj � gg0j

while the probabilities are same, i.e. phj ¼ ph0j
and qgj ¼ qg0j

: Then take advantage of PDHFMSM operator,

PDHFDMSM mð Þ P1;P2;P3; :::;Pnð Þ�PDHFDMSM mð Þ P
0

1;P
0

2;P
0

3; :::;P
0

n

� �

Property 7. ½Commutative� Let Pj ¼ hj j phj ; gj j qgj
� �

j ¼ 1; 2; 3; :::; nð Þ be a collection of PDHFEs, and P
0

j is any

permutation of Pj j ¼ 1; 2; 3; :::; nð Þ; then

PDHFDMSM mð Þ P1;P2;P3; :::;Pnð Þ ¼ PDHFDMSM mð Þ P
0

1;P
0

2;P
0

3; :::;P
0

n

� �

4.2 Weighted PDHFDMSM

From the Definition 11, it can easily be observed that the PDHFMSM operator does not account for the weights of the

multiple-input values. Nevertheless, in many decision-making problems, particularly in MADM, the importance of argu-

ments contribute a significant role in the aggregation process. Therefore, we propose the weighted PDHFDMSM

(WPDHFDMSM) operator as described below:

Definition 12 Given Pj j ¼ 1; 2; 3; :::; nð Þ be the collection of PDHFEs, then there exist a weight vector wj ¼
w1;w2;w3; :::;wnð ÞT satisfying wj [ 0 and

Pn
j¼1 wj ¼ 1; where wj represents the importance degree of Pj: Then the

WPDHFDMSM operator is defined as follows:

WPDHFDMSM mð Þ P1;P2;P3; :::;Pnð Þ ¼ 1

m

Y
1� i1 � i2 � :::� im � n

Xm

j¼1

P
wij

ij

� �
 ! n

m

� 	0

BBB@

1

CCCA
;

where i1; i2; :::; imð Þ traverses all the k-tuple combination of 1; 2; 3; :::; nð Þ;m ¼ 1; 2; 3; :::n and
n
m

� 	
denotes the BC.

According to the consequence of Definition 12, the operational laws given in Definition 6 and Theorem 3, we can set up

the following theorem:Theorem 4 Given Pj j ¼ 1; 2; 3; :::; nð Þ be the collection of PDHFEs, then there exist a weight vector

wj ¼ w1;w2;w3; :::;wnð ÞT satisfying wj [ 0 and
Pn

j¼1 wj ¼ 1; where wj represents the importance degree of Pj; then the

accumulated results by employing the WPDHFDMSM is also a PDHFE, and we have
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WPDHFDMSM mð Þ P1;P2;P3; :::;Pnð Þ ¼

[cij2hj 1� 1�
Q

1� i1 � i2 � :::� im � n

1�
Qm

j¼1

1� c
wij

ij

� �
 !

1

n
m

� 	0

BBB@

1

CCCA

1
m

0

BBBB@

1

CCCCA
j
Qm

j¼1 pcij ;

[gij2gj 1�
Q

1� i1 � i2 � :::� im � n

1�
Qm

j¼1

1� 1� gij

� �wij
� �

 !
1

n
m

� 	0

BBB@

1

CCCA

1
m

j
Qm

j¼1 qgij

8
>>>>>>>>>>>>>><

>>>>>>>>>>>>>>:

9
>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>;

Proof By utilizing the laws given in the Definition 6, we obtain:

Pij

� �wij¼ [cij2hjcij j pcij ; [gij2gj gij j qgij
� �n owij¼ [cij2hj c

wij

ij

� �
j pcij ; [gij2gj 1� 1� gij

� �wij
� �

j qgij
n o

Now from the sequel of Definition 11 and Theorem 3, we can obtain:

WPDHFDMSM mð Þ P1;P2;P3; :::;Pnð Þ ¼ 1

m

Y
1� i1 � i2 � :::� im � n

Xm

j¼1

P
wij

ij

� �
 ! n

m

� 	0

BBB@

1

CCCA

¼ 1

m

Y
1� i1 � i2 � :::� im � n

Xm

j¼1

[cij2hj c
wij

ij

� �
j pcij ;[gij2gj 1� 1� gij

� �wij j qgij
� �n o

 ! n

m

� 	0

BBB@

1

CCCA

¼

[cij2hj 1� 1�
Q

1� i1 � i2 � :::� im � n

1�
Qm

j¼1

1� c
wij

ij

� �
 !

1

n

m

� 	0

BBB@

1

CCCA

1
m

0

BBBB@

1

CCCCA
j
Qm

j¼1 pcij ;

[gij2gj 1�
Q

1� i1 � i2 � :::� im � n

1�
Qm

j¼1

1� 1� gij

� �wij
� �

 !
1

n

m

� 	0

BBB@

1

CCCA

1
m

j
Qm

j¼1 qgij

8
>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>:

9
>>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>>;

Hence, completed. h

For different values of parameter m, we can figure out the following remarks from Theorem 4:Remark 10 When m ¼ 1;

the WPDHFMSM operator come into being the WPDHF geometric mean operator as given below:

WPDHFDMSM 1ð Þ P1;P2;P3; :::;Pnð Þ ¼

[cij2hj 1� 1�
Q

1� i1 � n

1�
Q1

j¼1

1� c
wij

ij

� �
 !

1

n

1

� 	0

BBB@

1

CCCA

1
1

0

BBBB@

1

CCCCA
j
Q1

j¼1 pcij ;

[gij2gj 1�
Q

1� i1 � n

1�
Q1

j¼1

1� 1� gij

� �wij
� �

 !
1

n

1

� 	0

BBB@

1

CCCA

1
1

j
Q1

j¼1 qgij

8
>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>:

9
>>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>>;

¼ [ci2hi
Yn

i¼1

cwi
ið Þ j

Yn

i¼1

pci ; [gi2gi 1�
Yn

i¼1

1� gið Þwi

 !

j
Yn

i¼1

qgi

( )

:
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Remark 11 When m ¼ 2; the WPDHFDMSM operator come into being the WPDHF geometric Bonferroni mean

(WPDHFGBM) operator as follows:

WPDHFDMSM 2ð Þ P1;P2;P3; :::;Pnð Þ ¼

[cij2hj 1� 1�
Q

1� i1 � i2 � n

1�
Q2

j¼1

1� c
wij

ij

� �
 !

1

n

2

� 	0

BBB@

1

CCCA

1
2

0

BBBB@

1

CCCCA
j
Q2

j¼1 pcij ;

[gij2gj 1�
Q

1� i1 � i2 � n 1�
Q2

j¼1

1� 1� gij

� �wij
� �

 !
1

n

2

� 	0

BBB@

1

CCCA

1
2

j
Q2

j¼1 qgij

8
>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>:

9
>>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>>;

¼

[ci12h1;ci22h2 1� 1�
Q

i1;i2¼1;i1 6¼i2

1� 1� c
wi1
i1

� �
1� c

wi2
i2

� �� � 1
n n�1ð Þ

 !1
2

0

@

1

A j pci1 pci2 ;

[gi12g1;gi22g2 1�
Q

i1;i2¼1;i1 6¼i2

1� 1� 1� gi1
� �wi1

� �
1� 1� gi2

� �wi2
� �� � 1

n n�1ð Þ

 !1
2

j qgi1 qgi2

8
>>>>>><

>>>>>>:

9
>>>>>>=

>>>>>>;

Remark 12 When m ¼ n; the WPDHFDMSM operator come into being the WPDHF geometric mean operator as follows:

WPDHFDMSM nð Þ P1;P2;P3; :::;Pnð Þ ¼

[cij2hj 1� 1�
Q

1� i1 � i2 � :::� in � n

1�
Qn

j¼1

1� c
wij

ij

� �
 !

1

n
n

� 	0

BBB@

1

CCCA

1
n

0

BBBB@

1

CCCCA
j
Qn

j¼1

pcij ;

[gij2gj 1�
Q

1� i1 � i2 � :::� in � n

1�
Qn

j¼1

1� 1� gij

� �wij
� �

 !
1

n
n

� 	0

BBB@

1

CCCA

1
n

j
Qn

j¼1 qgij

8
>>>>>>>>>>>>>><

>>>>>>>>>>>>>>:

9
>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>;

¼ [ci2hi 1�
Yn

i¼1

1� cið Þwi

 !

j
Yn

i¼1

pci ; [gi2gi
Yn

i¼1

gið Þwi j
Yn

i¼1

qgij

( )

Now an example is given below to better understand the action of the WPDHFDMSM operator.

Example 4 Let P1 ¼ 0:4 j 1ð Þ; 0:1 j 0:6; 0:3 j 0:4ð Þf g; P2 ¼ 0:1 j 0:4; 0:2 j 0:6ð Þ; 0:6 jf 0:8; 0:7 j 0:2g; and P3 ¼
0:6 j 0:8; 0:7 j 0:2ð Þ; 0:4 j 1ð Þf g are the three PDHFEs and weight vector for these elements is w ¼ 0:5; 0:2; 0:3ð ÞT . For

m ¼ 2, the accumulated PDHFEs utilizing the WPDHFDMSM operator given in Theorem 4, is calculated as
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WPDHFDMSM 2ð Þ P1;P2;P3ð Þ¼

[cij2hj 1� 1�
Q

1�i2�3

1�
Q2

j¼1

1�c
wij

ij

� �
 !

1

3

2

� 	0

BBB@

1

CCCA

1
2

0

BBBB@

1

CCCCA
j
Q2

j¼1pcij ;

[gij2gj 1�
Q

1�i2�3

1�
Q2

j¼1

1� 1�gij

� �wij
� �

 !
1

3

2

� 	0

BBB@

1

CCCA

1
2

j
Q2

j¼1qgij

8
>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>:

9
>>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>>;

¼

1� 1� 1� 1�0:40:5
� �

1�0:10:2ð Þ
� �1

3	 1� 1�0:40:5
� �

1�0:60:3ð Þ
� �1

3	 1� 1�0:10:2ð Þ 1�0:60:3ð Þð Þ
1
3

� �1
2j1	0:4	0:8;

1� 1� 1� 1�0:40:5
� �

1�0:10:2ð Þ
� �1

3	 1� 1�0:40:5
� �

1�0:70:3ð Þ
� �1

3	 1� 1�0:10:2ð Þ 1�0:70:3ð Þð Þ
1
3

� �1
2j1	0:4	0:2;

1� 1� 1� 1�0:40:5
� �

1�0:20:2ð Þ
� �1

3	 1� 1�0:40:5
� �

1�0:60:3ð Þ
� �1

3	 1� 1�0:20:2ð Þ 1�0:60:3ð Þð Þ
1
3

� �1
2j1	0:6	0:8;

1� 1� 1� 1�0:40:5
� �

1�0:20:2ð Þ
� �1

3	 1� 1�0:40:5
� �

1�0:70:3ð Þ
� �1

3	 1� 1�0:20:2ð Þ 1�0:70:3ð Þð Þ
1
3

� �1
2j1	0:6	0:2

0

BBBBBBBBBB@

1

CCCCCCCCCCA

;

1� 1� 0:10:5	0:60:2
� �� �1

3	 1� 0:10:5	0:40:3
� �� �1

3	 1� 0:60:2	0:40:3ð Þð Þ
1
3

� �1
2j0:6	0:8	1;

1� 1� 0:10:5	0:70:2
� �� �1

3	 1� 0:10:5	0:40:3
� �� �1

3	 1� 0:70:2	0:40:3ð Þð Þ
1
3

� �1
2j0:6	0:2	1;

1� 1� 0:30:5	0:60:2
� �� �1

3	 1� 0:30:5	0:40:3
� �� �1

3	 1� 0:60:2	0:40:3ð Þð Þ
1
3

� �1
2j0:4	0:8	1;

1� 1� 0:30:5	0:70:2
� �� �1

3	 1� 0:30:5	0:40:3
� �� �1

3	 1� 0:70:2	0:40:3ð Þð Þ
1
3

� �1
2j0:4	0:2	1;

0

BBBBBBBBBB@

1

CCCCCCCCCCA

8
>>>>>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

9
>>>>>>>>>>>>>>>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>>>>>>>>>>>>>>>;

¼ 0:7155 j0:32;0:7330 j0:08;0:7459 j0:48;0:7633 j0:12ð Þ; 0:1151 j0:48;0:1276 j0:12;0:1574 j0:32;0:1719 j0:08ð Þf g

5 Extended COPRAS method based on the PDHFMSM and PDHFDMSM

The COPRAS approach is a MAGDM technique first introduced by Zavadskas et al (1994) has recently attracted much

investigation. In practical application, COPRAS is used to maximize and minimize the values of the index to consider the

effect of maximizing and minimizing the attribute index on separate evaluations of results. Because of the excellent

characteristic of the COPRAS method, we modify this method by employing the WPDHFMSM and WPDHFDMSM

operators to integrate the evaluation values, and the ranking procedure for the MAGDM problem is defined as follows:

5.1 The description of the MAGDM problems under PDHF environment

Assume that experts el l ¼ 1; 2; 3; :::nð Þ give the evaluations values Pij ¼ hijjpij; gijjqij
� �

of each alternative

Ai i ¼ 1; 2; 3; :::; sð Þ relative to each attribute bj j ¼ 1; 2; 3; :::; tð Þ in the form of PDHFEs. w ¼ w1;w2;w3; :::;wtð ÞT represents

the weights attribute with conditions wj [ 0 and
Pt

j¼1 wj ¼ 1 and k ¼ k1; k2; k3; :::; knð ÞT are the weights information of the

experts with the requirements wl [ 0 and
Pm

l¼1 kl ¼ 1: The evaluation information is summarize in the decision matrix

Ml ¼ Pl
ij

h i

s	t
as follows:

Ml ¼

A1

A2

..

.

As

Pl
11 ¼ hl11 j p11; gl11 j q11

� �
Pl
12 ¼ hl12 j p12; gl12 j q12

� �
� � � Pl

1t ¼ hl1t j p1t; gl1t j q1t
� �

Pl
21 ¼ hl21 j p21; gl21 j q21

� �
Pl
22 ¼ hl22 j p22; gl21 j q22

� �
� � � Pl

2t ¼ hl2t j p2t; gl2t j q2t
� �

..

. ..
.

� � � ..
.

Pl
s1 ¼ hls1 j ps1; gls1 j qs1

� �
Pl
s2 ¼ hls2 j ps2; gls2 j qs2

� �
� � � Pl

st ¼ hlst j pst; glst j qst
� �

;

2
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where Pl
ij ¼ hlij j pij; glij j qij

� �
indicate the grade value of the alternative Ai relative to the attribute bj given by the experts.

5.2 COPRAS technique with PDHFMSM

In this subsection, an extended COPRAS method is presented for PDHF information. First, we get the individual PDHF

decision matrices from the experts. Under the WPDHFMSM and WPDHFDMSM operators, we get the group decision

matrix by combining the separate decision matrices. Taking advantage of the WPDHFMSM or the WPDHFDMSM operator,

the collective value of alternatives Ai for attribute bj is calculated according to the result 2 as follows:

Pij ¼ WPDHFMSM mð Þ P1
ij;P

2
ij;P

3
ij; :::;P

n
ij

� �
¼

P
1� i1 � i2 � :::� im � g

Qn

l¼1

kij :P
l
ij

� �� 	

n

m

� 	

0

BBB@

1

CCCA

1
m

¼

[cij2hj 1�
Q

1� i1 � i2 � :::� im � n

1�
Qn

l¼1

1� 1� clij

� �kij
� 	� 	

1

n

m

� 	0

BBB@

1

CCCA

1
m

j
Qn

l¼1 pcij ;

[gij2gj 1� 1�
Q

1� i1 � i2 � :::� im � n

1�
Qn

l¼1

1� glij

� �kij
� 	� 	

1

n

m

� 	0

BBB@

1

CCCA

1
m

0

BBBB@

1

CCCCA
j
Qn

l¼1 qgij :

8
>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>:

9
>>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>>;

ð1Þ

If the DMs go for the WPDHFDMSM operator, then the collective value of alternatives Ai with respect to attribute bj is
calculated according to the result 4 as follows:

Pij ¼ WPDHFDMSM mð Þ P1
ij;P

2
ij;P

3
ij; :::;P

n
ij

� �
¼ 1

m

Y
1� i1 � i2 � :::� im � n

Xn

l¼1

Pl
ij

� �kij
 ! n

m

� 	

¼

[cij2hj 1� 1�
Q

1� i1 � i2 � :::� im � n

1�
Qn

l¼1

1� clij

� �kij
� 	� 	

1

n

m

� 	0

BBB@

1

CCCA

1
m

0

BBBB@

1

CCCCA
j
Qn

l¼1

pcij ;

[gij2gj 1�
Q

1� i1 � i2 � :::� im � n

1�
Qn

l¼1

1� 1� gij

� �kij
� 	� 	

1

n

m

� 	0

BBB@

1

CCCA

1
m

j
Qn

l¼1 qgij

8
>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>:

9
>>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>>;

ð2Þ

Now, from Eqs. 1 and 2, we can find the group decision matrix C as follows:

C ¼

A1

A2

..

.

As

P11 ¼ h11 j p11; g11 j q11ð Þ P12 ¼ h12 j p12; g12 j q12ð Þ � � � P1t ¼ h1t j p1t; g1t j q1tð Þ

P21 ¼ h21 j p21; g21 j q21ð Þ Pl
22 ¼ h22 j p22; g21 j q22ð Þ � � � P2t ¼ h2t j p2t; g2t j q2tð Þ

..

. ..
.

� � � ..
.

Ps1 ¼ hs1 j ps1; gs1 j qs1ð Þ Ps2 ¼ hs2 j ps2; gs2 j qs2ð Þ � � � Pst ¼ hst j pst; gst j qstð Þ:

2
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Group decision matrix C represents the collective information of the experts in the form of the PDHF matrix. To categorize

the information given in the group decision matrix, we propose two new extended COPRAS methods under the PDHF

environment, based on the PDHFMSM and PDHFDMSM operators as shown below:

– If the attribute bj belongs to the benefit type, then

– Based on 2 and the WPDHFMSM operator the summation of the benefit attributes

Bi ¼ s

P
1� i1 � i2 � :::� im � u

Qm

j¼1;j2NB
wij

:Pijð Þ
� �

u
m

� 	

0

BB@

1

CCA

1
m

¼ s

[cij2hj 1�
Q

1� i1 � i2 � :::� im � u

1�
Qm

j¼1;j2NB

1� 1� cij

� �wij
� �

 !
1

u

m

� 	0

BBB@

1

CCCA

1
m

j
Qm

j¼1;j2NB
pcij ;

[gij2gj 1� 1�
Q

1� i1 � i2 � :::� im � u

1�
Qm

j¼1;j2NB

1� gij

� �wij
� �

 !
1

u

m

� 	0

BBB@

1

CCCA

1
m

0

BBBB@

1

CCCCA
j
Qm

j¼1;j2NB
qgij

0

BBBBBBBBBBBBBB@

1

CCCCCCCCCCCCCCA

ð3Þ

– If the WPDHFDMSM operator and 4 are used then the summation of the benefit attributes

Bi ¼ s 1
m

Q
1� i1 � i2 � :::� im � u

Pm
j¼1;j2NB

Pij

� �wij

� � u
m

� 	0

B@

1

CA

¼

[cij2hj 1� 1�
Q

1� i1 � i2 � :::� im � u

1�
Qm

j¼1;j2NB

1� cij

� �wij
� �

 !
1

u

m

� 	0

BBB@

1

CCCA

1
m

0

BBBB@

1

CCCCA
j
Qm

j¼1;j2NB
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[gij2gj 1�
Q

1� i1 � i2 � :::� im � u

1�
Qm

j¼1;j2NB

1� 1� gij

� �wij
� �

 !
1

u

m

� 	0

BBB@

1

CCCA

1
m

j
Qm

j¼1;j2NB

qgij

8
>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>:

9
>>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>>;

ð4Þ

– If the attribute bj belongs to the cost type, then

– Based on 2 and the WPDHFMSM operator the summation of the cost attributes

Si ¼ s

P
1� i1 � i2 � :::� im � t�u

Qm

j¼1;j2NC
wij

:Pijð Þ
� �

t � u
m

� 	

0

BB@

1

CCA

1
m

¼ s

[cij2hj 1�
Q

1� i1 � i2 � :::� im � t�u

1�
Qm

j¼1;j2NC

1� 1� cij

� �wij
� �

 !
1

t � u

m

� 	0

BBB@

1

CCCA

1
m

j
Qm

j¼1;j2NC
pcij ;

[gij2gj 1� 1�
Q

1� i1 � i2 � :::� im � t�u

1�
Qm

j¼1;j2NC

1� gij

� �wij
� �

 !
1

t � u

m

� 	0

BBB@

1

CCCA

1
m

0

BBBB@

1

CCCCA
j
Qm

j¼1;j2NC

qgij

0

BBBBBBBBBBBBBB@

1

CCCCCCCCCCCCCCA

ð5Þ

Granular Computing (2023) 8:633–666 657

123



– If the WPDHFDMSM operator and 4 are used then the summation of the cost attributes

Si ¼ s 1
m

Q
1� i1 � i2 � :::� im � t�u

Pm
j¼1;j2NC

Pij

� �wij

� � t � u
m

� 	0

B@

1

CA

¼

[cij2hj 1� 1�
Q

1� i1 � i2 � :::� im � t�u

1�
Qm

j¼1;j2NC

1� cij

� �wij
� �

 !
1

t � u

m

� 	0

BBB@

1

CCCA

1
m

0

BBBB@

1

CCCCA
j
Qm

j¼1;j2NC

pcij ;

[gij2gj 1�
Q

1� i1 � i2 � :::� im � t�u

1�
Qm

j¼1;j2NC

1� 1� gij

� �wij
� �

 !
1

t � u

m

� 	0

BBB@

1

CCCA

1
m

j
Qm

j¼1;j2NC
qgij

8
>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>:

9
>>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>>;

ð6Þ

From the Definition of 4 and 5, the score of 3, 4, 5, and 6 can easily be ascertained.

Moreover, the relative significance (RS) Ri of every alternate Ai i ¼ 1; 2; 3; :::; sð Þ can be acquire as follows:

Ri ¼ Bi þ
Ps

i¼1 Si

Si
Ps

i¼1
1

Si

: ð7Þ

The RS of Ri represents the satisfaction level of each alternative. Mani-festively, the greater the value of Ri will result in the

higher the importance of that alternative. Based on 7, we can find the maximal RS value R, i.e.

R ¼ max
1� i� s

Ri: ð8Þ

Therefore, the alternative having the highest RS value would be the best among all the alternatives. Furthermore, based on

the RS, the utility degree Ui of each alternative can be determined using the formula:

Ui ¼
Ri

R

� 	
	 100%: ð9Þ

Select the alternatives according to 9 and Make decisions, greater the value of Ui; the optimal the alternative would be.

5.3 Algorithm for decision-making

To resolve the MAGDM problem when the PDHFEs express attributes values, we summarize the COPRAS method using the

WPDHFMSM and WPDHFDMSM operators and design an algorithm to manage the decision-making problems. Suppose

the experts el l ¼ 1; 2; 3; :::nð Þ give the evaluations values in the form of PDHFEs for the discrete set of alternatives

Ai i ¼ 1; 2; 3; :::; sð Þ with respect to each attribute bj j ¼ 1; 2; 3; :::; tð Þ. Let w ¼ w1;w2;w3; :::;wtð ÞT represents the set of

attribute weight with conditions wj [ 0 and
Pt

j¼1 wj ¼ 1 and k ¼ k1; k2; k3; :::; knð ÞT are the weights information of the

experts with the requirements wl [ 0 and
Pm

l¼1 kl ¼ 1: Then evaluation information is summarize in the decision matrix as

Ml ¼ Pl
ij

h i

s	t
¼ hlij; g

l
ij

� �h i

s	t
: The following steps are used to obtain the most suitable alternative.

Step 1: In agreement with the value of m, group decision matrix C is obtained after integrate the values of the

individual matrices with the help of WPDHFMSM and 1 (or WPDHFDMSM and 2).

Step 2: Interaction with 3 or 4, aggregate the values of benefit criteria by utilizing the group decision matrix C and

obtain Bi:

Step 3: Besides, with the help of Definition 4, 5 and 5 or 6, sum the arguments of the cost criteria and get Si:

Step 4: Now find the RS Ri by employing the result 7 for each alternatives Ai and identify the maximum RS value R.

Step 5: At this stage, compute the utility degree of every alternative using 9.

Step 6: Rank all the alternatives based on Definition 9, and sort them in descending order.
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6 An illustrative example

This section presents the proposed approach to selecting

the best photovoltaic cell under the PDHF context. The

effectiveness and benefits of the presented methods are

confirmed by analyzing the parameters and comparing

them with other techniques.

6.1 Problem description

With a lack of natural resources and environmental pro-

tection, renewable energy has become a promise to provide

clean and abundant energy. The photovoltaic cell is one of

the emerging renewable energies because it has virtually no

environmental impact, pollution, heat or noise, and short-

age. It is straightforward to wear and tear to maintain any

mechanical moving part. Choosing the best photovoltaic

cell is essential in maximizing revenue in grid-connected

systems (increasing production or efficiency), reducing

costs, and delivering at the same time high maturity and

reliability. In this context, this section aims to study and

analyze the proposed method used in choosing the best

photovoltaic cell. As reported by Socorro Garcı́a-Cascales

et al (2011), five different types of potential photovoltaic

cells are available as described below:

• A1 : photovoltaic cells with crystalline silicon

(mono-crystalline and poly-crystalline)

• A2 : photovoltaic cells with inorganic thin layer

(amorphous silicon)

• A3 : photovoltaic cells with inorganic thin layer

(cadmium tellurium/cadmium sulfide and copper indium

gallium diselenide/cadmium sulfide)

• A4 : photovoltaic cells with advanced III–V this

layer with tracking systems for solar concentration, and

• A5 : photovoltaic cells with advanced, low cost,

thin layers(organic and hybrid cells)

After analyzing the potential photovoltaic cells, the

criteria to be considered for diagnosing the decision

problem are as follows.

• b1 : Production cost

• b2 : Efficiency in energy conversion

• b3 : Emissions of green house gasses during

production

• b4 : Market share

• b5 : Energy playback time.

It is observed that b1; b3; and b5 are the cost criteria

while b2 and b4 are the benefit criteria. Three experts

e1; e2; e3ð Þ have been invited to examine the above five

possible photovoltaic cells with respect to these five cri-

teria. The weights of the three experts are assumed to be

equal, i.e. k ¼ k1; k2; k3ð ÞT¼ 1
3
; 1
3
; 1
3

� �
and the importance

degree of the criteria are subjectively given by the experts Ta
bl
e
1

P
D
H
F
d
ec
is
io
n
m
at
ri
x
M

1
p
re
sc
ri
b
ed

b
y
th
e
ex
p
er
t
e1

b
1

b 2
b 3

b
4

b
5

A
1

0
:4

j1
ð

Þ;
0
:1

j0
:6
;0
:3

j0
:4

ð
Þ

f
g

0
:6

j1
ð

Þ;
0
:1

j0
:6
;0
:3

j0
:4

ð
Þ

f
g

0
:5

j0
:2
;0
:6

j0
:8

ð
Þ;

0
:1

j0
:6
;0
:2

j0
:4

ð
Þ

f
g

0
:1

j1
ð

Þ;
0
:2

j0
:3
;0
:5

j0
:7

ð
Þ

f
g

0
:2

j0
:1
;0
:3

j0
:9

ð
Þ;

0
:6

j1
ð

Þ
f

g
A
2

0
:6

j0
:8
;0
:1

j0
:2

ð
Þ ;

0
:2

j0
:4
;0
:3

j0
:6

ð
Þ

f
g

0
:3

j0
:7
;0
:4

j0
:3

ð
Þ ;

f
0
:2

j0
:8
;0
:4

j0
:2

ð
Þg

0
:6

j0
:8
;0
:7

j0
:2

ð
Þ ;

0
:1

j0
:2
;0
:3

j0
:8

ð
Þ

f
g

0
:5

j0
:3
;0
:6

j0
:7

ð
Þ ;

0
:1

j1
ð

Þ
f

g
0
:4

j1
ð

Þ ;
0
:4

j0
:7
;0
:5

j0
:3

ð
Þ

f
g

A
3

0
:4

j0
:2
;0
:6

j0
:8

ð
Þ;

0
:3

j1
ð

Þ
f

g
0
:4

j0
:6
;0
:5

j0
:4

ð
Þ;

f
0
:2

j0
:6
;0
:3

j0
:4

ð
Þg

0
:4

j0
:1
;0
:6

j0
:9

ð
Þ;

0
:2

j0
:2
;0
:3

j0
:8

ð
Þ

f
g

0
:3

j0
:4
;0
:5

j0
:6

ð
Þ;

f
0
:1

j0
:6
;0
:2

j0
:4

ð
Þg

0
:5

j0
:7
;0
:6

j0
:3

ð
Þ;

0
:2

j0
:4
;0
:3

j0
:6

ð
Þ

f
g

A
4

0
:2

j0
:5
;0
:4

j0
:5

ð
Þ ;

0
:4

j0
:6
;0
:4

j0
:4

ð
Þ

f
g

0
:2

j0
:3
;0
:4

j0
:7

ð
Þ ;

0
:4

j1
ð

Þ
f

g
0
:5

j0
:4
;0
:6

j0
:6

ð
Þ ;

0
:2

j0
:6
;0
:3

j0
:4

ð
Þ

f
g

0
:6

j0
:5
;0
:7

j0
:5

ð
Þ ;

0
:2

j1
ð

Þ
f

g
0
:4

j0
:4
;0
:5

j0
:6

ð
Þ ;

0
:2

j0
:7
;0
:3

j0
:3

ð
Þ

f
g

A
5

0
:1

j0
:2
:0
:4

j0
:8

ð
Þ;

0
:6

j1
ð

Þ
f

g
0
:1

j0
:2
:0
:4

j0
:8

ð
Þ;

0
:6

j1
ð

Þ
f

g
0
:4

j0
:6
;0
:5

j0
:4

ð
Þ;

0
:2

j0
:2
;0
:3

j0
:8

ð
Þ

f
g

0
:5

j1
ð

Þ;
0
:2

j1
ð

Þ
f

g
0
:2

j0
:2
:0
:3

j0
:8

ð
Þ;

0
:5

j1
ð

Þ
f

g

Granular Computing (2023) 8:633–666 659

123



Ta
bl
e
2

P
D
H
F
d
ec
is
io
n
m
at
ri
x
M

2
p
re
sc
ri
b
ed

b
y
th
e
ex
p
er
t
e2

b 1
b
2

b 3
b 4

b
5

A
1

0
:1

j0
:5
;0
:2

j0
:5

ð
Þ;

0
:6

j0
:6
;0
:7

j0
:4

ð
Þ

f
g

0
:2

j0
:2
;0
:3

j0
:8

ð
Þ;

0
:4

j0
:5
;0
:5

j0
:5

ð
Þ

f
g

0
:6

j0
:2
;0
:7

j0
:8

ð
Þ;

0
:2

j0
:5
;0
:3

j0
:5

ð
Þ

f
g

0
:6

j0
:8
;0
:3

j0
:2

ð
Þ;

0
:1

j0
:3
;0
:2

j0
:7

ð
Þ

f
g

0
:4

j0
:3
;0
:5

j0
:7

ð
Þ;

0
:1

j0
:1
;0
:3

j0
:9

ð
Þ

f
g

A
2

0
:4

j0
:4
;0
:5

j0
:6

ð
Þ;

0
:2

j0
:2
;0
:3

j0
:8

ð
Þ

f
g

0
:4

j0
:4
;0
:5

j0
:6

ð
Þ;

0
:2

j0
:2
;0
:3

j0
:8

ð
Þ

f
g

0
:6

j1
ð

Þ;
0
:7

j0
:1
;0
:2

j0
:9

ð
Þ

f
g

0
:3

j0
:7
;0
:4

j0
:3

ð
Þ;

0
:4

j0
:5
;0
:5

j0
:5

ð
Þ

f
g

0
:2

j0
:6
;0
:3

j0
:4

ð
Þ;

0
:4

j0
:5
;0
:5

j0
:5

ð
Þ

f
g

A
3

0
:6

j0
:5
;0
:7

j0
:5

ð
Þ;

0
:1

j1
ð

Þ
f

g
0
:3

j1
ð

Þ;
0
:1

j0
:5
;0
:2

j0
:5

ð
Þ

f
g

0
:4

j1
ð

Þ;
0
:1

j0
:3
;0
:2

j0
:7

ð
Þ

f
g

0
:3

j0
:6
;0
:4

j0
:4

ð
Þ;

0
:4

j0
:2
;0
:5

j0
:8

ð
Þ

f
g

0
:5

j1
ð

Þ;
0
:2

j0
:2
;0
:3

j0
:8

ð
Þ

f
g

A
4

0
:5

j0
:2
;0
:6

j0
:8

ð
Þ;

0
:1

j0
:2
;0
:2

j0
:8

ð
Þ

f
g

0
:2

j0
:2
;0
:3

j0
:8

ð
Þ;

0
:4

j1
ð

Þ
f

g
0
:6

j0
:5
;0
:7

j0
:5

ð
Þ;

0
:3

j1
ð

Þ
f

g
0
:6

j1
ð

Þ;
0
:2

j1
ð

Þ
f

g
0
:5

j0
:3
;0
:6

j0
:7

ð
Þ;

0
:1

j1
ð

Þ
f

g
A
5

0
:1

j0
:2
;0
:2

j0
:8

ð
Þ;

0
:5

j0
:2
;0
:6

j0
:8

ð
Þ

f
g

0
:5

j1
ð

Þ;
0
:1

j0
:6
;0
:2

j0
:4

ð
Þ

f
g

0
:4

j0
:4
;0
:5

j0
:6

ð
Þ;

0
:2

j0
:5
;0
:3

j0
:5

ð
Þ

f
g

0
:4

j1
ð

Þ;
0
:3

j0
:2
;0
:5

j0
:8

ð
Þ

f
g

0
:7

j0
:2
;0
:8

j0
:8

ð
Þ;

0
:9

j0
:4
;0
:1

j0
:6

ð
Þ

f
g

Ta
bl
e
3

P
D
H
F
d
ec
is
io
n
m
at
ri
x
M

3
p
re
sc
ri
b
ed

b
y
th
e
ex
p
er
t
e3

b 1
b
2

b 3
b
4

b
5

A
1

0
:6

j0
:6
;0
:7

j0
:4

ð
Þ;

0
:1

j0
:5
;0
:2

j0
:5

ð
Þ

f
g

0
:3

j0
:6
;0
:4

j0
:4

ð
Þ;

0
:5

j1
ð

Þ
f

g
0
:3

j0
:6
;0
:4

j0
:4

ð
Þ;

0
:1

j1
ð

Þ
f

g
0
:3

j0
:7
;0
:5

j0
:3

ð
Þ;

0
:4

j0
:2
;0
:6

j0
:8

ð
Þ

f
g

0
:2

j0
:1
;0
:3

j0
:9

ð
Þ;

0
:4

j0
:4
;0
:5

j0
:6

ð
Þ

f
g

A
2

0
:1

j1
ð

Þ;
0
:6

j1
ð

Þ
f

g
0
:4

j0
:6
;0
:5

j0
:4

ð
Þ;

0
:2

j0
:2
;0
:3

j0
:8

ð
Þ

f
g

0
:5

j1
ð

Þ;
0
:3

j0
:6
;0
:4

j0
:4

ð
Þ

f
g

0
:5

j0
:1
;0
:7

j0
:9

ð
Þ;

0
:1

j1
ð

Þ
f

g
0
:3

j1
ð

Þ;
0
:4

j0
:4
;0
:5

j0
:6

ð
Þ

f
g

A
3

0
:6

j0
:6
;0
:7

j0
:4

ð
Þ;

0
:1

j0
:5
;0
:2

j0
:5

ð
Þ

f
g

0
:8

j1
ð

Þ;
0
:1

j1
ð

Þ
f

g
0
:4

j0
:1
;0
:5

j0
:9

ð
Þ;

0
:1

j0
:5
;0
:2

j0
:5

ð
Þ

f
g

0
:5

j1
ð

Þ;
0
:3

j0
:6
;0
:4

j0
:4

ð
Þ

f
g

0
:3

j0
:5
;0
:4

j0
:5

ð
Þ;

0
:3

j0
:5
;0
:4

j0
:5

ð
Þ

f
g

A
4

0
:5

j0
:6
;0
:7

j0
:4

ð
Þ;

0
:1

j0
:5
;0
:2

j0
:5

ð
Þ

f
g

0
:5

j0
:6
;0
:7

j0
:4

ð
Þ;

0
:2

j0
:3
;0
:3

j0
:7

ð
Þ

f
g

0
:1

j0
:1
;0
:3

j0
:9

ð
Þ;

0
:4

j0
:2
;0
:5

j0
:8

ð
Þ

f
g

0
:6

j0
:5
;0
:7

j0
:5

ð
Þ;

0
:1

j0
:3
;0
:2

j0
:7

ð
Þ

f
g

0
:3

j0
:4
;0
:4

j0
:6

ð
Þ;

0
:5

j1
ð

Þ
f

g
A
5

0
:1

j0
:2
;0
:3

j0
:8

ð
Þ;

0
:6

j1
ð

Þ
f

g
0
:3

j0
:6
;0
:4

j0
:4

ð
Þ;

0
:7

j0
:2
;0
:9

j0
:8

ð
Þ

f
g

0
:3

j1
ð

Þ;
0
:5

j0
:3
;0
:6

j0
:7

ð
Þ

f
g

0
:4

j0
:4
;0
:5

j0
:6

ð
Þ;

0
:3

j1
ð

Þ
f

g
0
:6

j1
ð

Þ;
0
:1

j0
:3
;0
:3

j0
:7

ð
Þ

f
g

660 Granular Computing (2023) 8:633–666

123



as w ¼ w1;w2;w3;w4;w5ð ÞT¼ 0:2; 0:4; 0:1; 0:1; 0:2ð ÞT . The
assessment values of the alternatives with respect to each

criterion given by the experts are assumed to represent by

PDHFS, because of the uncertainty, impression, and

incompleteness in the evaluation of these cells. Their

assessments are presented in the probabilistic DHF deci-

sion matrices Ml ¼ Pl
ij

h i

5	5
¼ hlij; g

l
ij

� �h i

5	5
in Tables 1, 2

and 3.

6.2 The process of deciding the selection
problem of photovoltaic cells
with WPDHFMSM

In the following, we utilize our developed method in Sect.

5 to solve the selection problem of photovoltaic cells.

Step 1: For the construction of the group decision

matrix C, utilize the information given by the

experts el l ¼ 1; 2; 3ð Þ mentioned in Tables 1,

2 and 3, the WPDHFMSM operator and Eq. 1

to normalize the evaluations values for m ¼ 2:

Because of the huge number of elements in

the decision process, here we only show the

detailed calculation of the alternative A1 with

respect to the criteria b2 as follows:

All the processed values of alternative A1 with respect to

criteria bj j ¼ 1; 2; 3; 4; 5ð Þ are given in Table 4.

Step 2: Taking into account the collective decision

matrix C, we sum the overall values of the

benefit attributes with the help of 3 and pick

up Bi i ¼ 1; 2; 3; 4; 5ð Þ: Due to lack of space,

we omit detailed results and calculations.

After obtaining the collective values of the

alternatives, we find that the score of each Bi

with the help of Definition 4.

Step 3: Similarly, the decision matrix C is used to find

the collective values of the cost attributes and

determine the values Si i ¼ 1; 2; 3; 4; 5ð Þ with

the aid of Eq. 5. Using the Definition 4, we

evaluate the score of each alternative.

Step 4: After finding the scores of the alternatives, we

find out the RS Ri i ¼ 1; 2; 3; 4; 5ð Þ; by using

the Eq. 7. According to the Eq. 8, the

maximum RS can be determined from the

RS Ri and the value of the maximum RS R is

given as:

R ¼ �1:7572

Step 5: Now the utility degree Ui i ¼ 1; 2; 3; 4; 5ð Þ of

each alternative can be derived by utilizing the

Eq. 9.

Step 6: According to the utility degree

Ui i ¼ 1; 2; 3; 4; 5ð Þ; we find that the ranking

of the alternatives Ai i ¼ 1; 2; 3; 4; 5ð Þ is:
U2 [U4 [U5 [U3 [U1:

Hence the alternatives according to the utility

ranking can be categorized as follows:

A2 [A4 [A5 [A3 [A1:

¼

1� 1� 1� 1�0:6ð Þ0:33
� �

	 1� 1�0:2ð Þ0:33
� �� �1

3	 1� 1� 1�0:6ð Þ0:33
� �

	 1� 1�0:3ð Þ0:33
� �� �1

3	 1� 1� 1�0:2ð Þ0:33
� �

	 1� 1�0:3ð Þ0:33
� �� �1

3

� 	1
2

j1:0	0:2	0:6;

1� 1� 1� 1�0:6ð Þ0:33
� �

	 1� 1�0:2ð Þ0:33
� �� �1

3	 1� 1� 1�0:6ð Þ0:33
� �

	 1� 1�0:4ð Þ0:33
� �� �1

3	 1� 1� 1�0:2ð Þ0:33
� �

	 1� 1�0:4ð Þ0:33
� �� �1

3

� 	1
2

j1:0	0:2	0:4;

1� 1� 1� 1�0:6ð Þ0:33
� �

	 1� 1�0:3ð Þ0:33
� �� �1

3	 1� 1� 1�0:6ð Þ0:33
� �

	 1� 1�0:3ð Þ0:33
� �� �1

3	 1� 1� 1�0:3ð Þ0:33
� �

	 1� 1�0:3ð Þ0:33
� �� �1

3

� 	1
2

j1:0	0:8	0:6;

1� 1� 1� 1�0:6ð Þ0:33
� �

	 1� 1�0:3ð Þ0:33
� �� �1

3	 1� 1� 1�0:6ð Þ0:33
� �

	 1� 1�0:4ð Þ0:33
� �� �1

3	 1� 1� 1�0:3ð Þ0:33
� �

	 1� 1�0:4ð Þ0:33
� �� �1

3

� 	1
2

j1:0	0:8	0:4;

0

BBBBBBBBBBBBBB@

1

CCCCCCCCCCCCCCA

;

1� 1� 1� 1�0:10:33ð Þ 1�0:40:33ð Þð Þ
1
3	 1� 1�0:10:33ð Þ 1�0:50:33ð Þð Þ

1
3	 1� 1�0:40:33ð Þ 1�0:50:33ð Þð Þ

1
3

� �1
2j0:6	0:5	1:0;

1� 1� 1� 1�0:10:33ð Þ 1�0:50:33ð Þð Þ
1
3	 1� 1�0:10:33ð Þ 1�0:50:33ð Þð Þ

1
3	 1� 1�0:50:33ð Þ 1�0:50:33ð Þð Þ

1
3

� �1
2j0:6	0:5	1:0;

1� 1� 1� 1�0:30:33ð Þ 1�0:40:33ð Þð Þ
1
3	 1� 1�0:30:33ð Þ 1�0:50:33ð Þð Þ

1
3	 1� 1�0:40:33ð Þ 1�0:50:33ð Þð Þ

1
3

� �1
2j0:4	0:5	1:0;

1� 1� 1� 1�0:30:33ð Þ 1�0:50:33ð Þð Þ
1
3	 1� 1�0:30:33ð Þ 1�0:50:33ð Þð Þ

1
3	 1� 1�0:50:33ð Þ 1�0:50:33ð Þð Þ

1
3

� �1
2j0:4	0:5	1:0

0

BBBBBBBBBB@

1

CCCCCCCCCCA

8
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

9
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>;

¼ 0:1373 j0:12;0:1544 j0:08;0:1546 j0:48;0:1717 j0:32ð Þ; 0:6796 j0:3;0:7026 j0:3;0:7356 j0:2;0:7556 j0:2ð Þf g
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From the above ranking it is clear that the alternative A2 is

the finest photovoltaic cell, while A1 is the worst among all

the photovoltaic cell.

6.3 The process of deciding the selection
problem of photovoltaic cells
with WPDHFDMSM

Step 1: For the construction of the group decision

matrix C, utilize the information given by the

experts el l ¼ 1; 2; 3ð Þ mentioned in Tables 1,

2 and 3, the WPDHFDMSM operator and

Eq. 2 to normalize the evaluations values for

m ¼ 2. Due to a large number of elements

present in the decision process, here we only

show the detailed calculation of the alternative

A1 concerning the criteria b2 as follows:

All the processed values of alternative A1

with respect to criteria bj j ¼ 1; 2; 3; 4; 5ð Þ are
given in Table 5.

Step 2: Considering the collective decision matrix C,

we sum the collective values of the benefit

attributes with the help of 4 and pick up

Bi i ¼ 1; 2; 3; 4; 5ð Þ: Due to lack of space, we

omit detailed calculations and results.

Step 3: After obtaining the collective values of the

alternatives, we find the score of each Bi with

the help of Definition 4. Similarly, the deci-

sion matrix C is used to find the collective

values of the cost attributes and determine the

values Si i ¼ 1; 2; 3; 4; 5ð Þ with the aid of

Eq. 6.

Step 4: Using the Definition 4, we evaluate the score

of each alternative. After finding the scores of

the alternatives, we find out the RS

Ri i ¼ 1; 2; 3; 4; 5ð Þ; by using the Eq. 7.

According to the Eq. 8, the maximum RS

can be determined from the RS Ri and the

value of the maximum RS R is given as

R ¼ 1:8792:

Step 5: Now the utility degree Ui i ¼ 1; 2; 3; 4; 5ð Þ of

each alternative can be derived by utilizing

Eq. 9.

Step 6: According to the utility degree

Ui i ¼ 1; 2; 3; 4; 5ð Þ; we find that the ranking

of the alternatives Ai i ¼ 1; 2; 3; 4; 5ð Þ is

U2 [U4 [U5 [U3 [U1

Hence the alternatives according to the utility

ranking can be categorized as follows:

A2 [A4 [A5 [A3 [A1:

From the above ranking it is also clear that the alter-

native A2 is the finest photovoltaic cell, while A1 is the

worst among all the photovoltaic cell.

¼

1� 1� 1� 1� 0:60:333ð Þ 1� 0:20:333ð Þð Þ
1
3	 1� 1� 0:60:333ð Þ 1� 0:30:333ð Þð Þ

1
3	 1� 1� 0:20:333ð Þ 1� 0:30:333ð Þð Þ

1
3

� �1
2j 1:0	 0:2	 0:6;

1� 1� 1� 1� 0:60:333ð Þ 1� 0:20:333ð Þð Þ
1
3	 1� 1� 0:60:333ð Þ 1� 0:40:333ð Þð Þ

1
3	 1� 1� 0:20:333ð Þ 1� 0:40:333ð Þð Þ

1
3

� �1
2j 1:0	 0:2	 0:4;

1� 1� 1� 1� 0:60:333ð Þ 1� 0:30:333ð Þð Þ
1
3	 1� 1� 0:60:333ð Þ 1� 0:30:333ð Þð Þ

1
3	 1� 1� 0:30:333ð Þ 1� 0:30:333ð Þð Þ

1
3

� �1
2j 1:0	 0:8	 0:6;

1� 1� 1� 1� 0:60:333ð Þ 1� 0:30:333ð Þð Þ
1
3	 1� 1� 0:60:333ð Þ 1� 0:40:333ð Þð Þ

1
3	 1� 1� 0:30:333ð Þ 1� 0:40:333ð Þð Þ

1
3

� �1
2j 1:0	 0:8	 0:4

0

BBBBBBBBBB@

1

CCCCCCCCCCA

;

1� 1� 0:10:333 	 0:40:333ð Þð Þ
1
3	 1� 0:10:333 	 0:50:333ð Þð Þ

1
3	 1� 0:40:333 	 0:50:333ð Þð Þ

1
3

� �1
2j 0:6	 0:5	 1:0;

1� 1� 0:10:333 	 0:50:333ð Þð Þ
1
3	 1� 0:10:333 	 0:50:333ð Þð Þ

1
3	 1� 0:50:333 	 0:50:333ð Þð Þ

1
3

� �1
2j 0:6	 0:5	 1:0;

1� 1� 0:30:333 	 0:40:333ð Þð Þ
1
3	 1� 0:30:333 	 0:50:333ð Þð Þ

1
3	 1� 0:40:333 	 0:50:333ð Þð Þ

1
3

� �1
2j 0:4	 0:5	 1:0;

1� 1� 0:30:333 	 0:50:333ð Þð Þ
1
3	 1� 0:30:333 	 0:50:333ð Þð Þ

1
3	 1� 0:50:333 	 0:50:333ð Þð Þ

1
3

� �1
2j 0:4	 0:5	 1:0;

0

BBBBBBBBBB@

1

CCCCCCCCCCA

8
>>>>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>>>>:

9
>>>>>>>>>>>>>>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>>>>>>>>>>>>>>;

¼ 0:7077 j 0:12; 0:7312 j 0:08; 0:7329 j 0:48; 0:7547 j 0:32ð Þ; 0:1225 j 0:3; 0:1381 j 0:3; 0:1560 j 0:2; 0:1722 j 0:2ð Þf g:
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6.4 Stress analysis

We assumed the parameter m ¼ 2 throughout the above

decision analysis. The final rankings are affected by using

the different parametric values. Therefore, we carefully

examine the effects of the additional parameter m on the

RS values of the alternatives using the WPDHFMSM-

COPRAS and the WPDHFDMSM-COPRAS methods; the

final results can be seen in Tables 6 and 7. We also

investigate the three different values of m, i.e., m ¼ 1; 2; 3.

The exploration shows that the RS of each alternative

calculated by the proposed COPRAS methods differs per

parameter m. Nonetheless, according to the different

parameters, the alternative A2 is the best among all the

rankings. Analysis reveals that our proposed method is

reliable while changing the parameter m. Furthermore, the

parameters m found in the proposed approaches may

carefully reflect the decision-maker’s risk preference.

6.5 Comparative studies

To confirm the superiority and feasibility of our developed

methods, we use various MAGDM techniques to resolve

the selection problem of the photovoltaic cell. After that,

we perform a comparative analysis by considering the

same issue. Under the PDHF framework, Hao et al (2017)

proposed the PDHF weighted averaging (PDHFWA)

operator. Later, Garg & Kaur (2018) developed the PDHF

weighted Einstein average (PDHFWEA) operator to

investigate the interdependence between attributes in

MAGDM. Here we utilize the PDHFWA and PDHFWEA

operators to integrate the multiple-preference values of

DMs. We carefully compute the scores of alternatives with

the aid of the presented methods and compare them with

our proposed approaches. Because of the limited space, we

have provided direct results.

Table 7 Ranking results with

parameters by utilizing the

WPDHFDMSM-COPRAS

method

Parameter Utility degree Ranking

m ¼ 1 U1 ¼ 99:9851; U2 ¼ 100; U3 ¼ 99:9912; A2 [A4 [A5 [A3 [A1

U4 ¼ 99:9949; U5 ¼ 99:9942

m ¼ 2 U1 ¼ 97:8433; U2 ¼ 100; U3 ¼ 98:3839; A2 [A4 [A5 [A3 [A1

U4 ¼ 99:0464; U5 ¼ 98:8465

m ¼ 3 U1 ¼ 85:4299; U2 ¼ 100; U3 ¼ 86:8011; A2 [A5 [A4 [A3 [A1

U4 ¼ 90:8863; U5 ¼ 94:7614

Table 8 Comparison of ultimate score values and ranking order of alternatives

Existing approaches Methods/operators Score values Ranking

Hao et al (2017) A1 ¼ 0:0862; A2 ¼ 0:1957; A3 ¼ 0:1567; A2 [A3 [A5 [A1 [A4

A4 ¼ 0:0433; A5 ¼ 0:1105

Garg & Kaur (2018) A1 ¼ 0:0498; A2 ¼ 0:1632; A3 ¼ 0:1528; A2 [A3 [A5 [A1 [A4

A4 ¼ �0:406; A5 ¼ 0:0541

Our proposed method with WPDHFMSM U1 ¼ 97:0031; U2 ¼ 100; U3 ¼ 97:6459; A2 [A4 [A5 [A3 [A1

U4 ¼ 98:2698; U5 ¼ 97:9851

Our proposed method with WPDHFDMSM U1 ¼ 97:8433; U2 ¼ 100; U3 ¼ 98:3839; A2 [A4 [A5 [A3 [A1

U4 ¼ 99:0464; U5 ¼ 98:8465

Table 6 Ranking results with

parameters by utilizing the

WPDHFMSM-COPRAS

method

Parameter Utility degree Ranking

m ¼ 1 U1 ¼ 99:9490; U2 ¼ 100; U3 ¼ 99:9658; A2 [A3 [A4 [A5 [A1

U4 ¼ 99:9652; U5 ¼ 99:9566

m ¼ 2 U1 ¼ 97:0031; U2 ¼ 100; U3 ¼ 97:6459; A2 [A4 [A5 [A3 [A1

U4 ¼ 98:2698; U5 ¼ 97:9851

m ¼ 3 U1 ¼ 80:3857; U2 ¼ 100; U3 ¼ 75:4767; A2 [A5 [A4 [A1 [A3

U4 ¼ 85:7054; U5 ¼ 87:5257
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Noticeably, the approach proposed by Hao et al (2017)

by making use of the PDHFWA operator figures out A2 as

the best alternative remains the same as that of our pro-

posed approach, and the least preferred is A4. Also, the

method defined by Garg & Kaur (2018) by utilizing the

PDHFWEA operator makes out A2 as the best alternative

remains the same as that of our proposed approach, and the

least preferred is A2. Furthermore, from Table 8, it is clear

that the best alternative selected by the proposed technique

remains the same as with existing techniques indicating

that the proposed methods are correct. Compared with the

PDHFWA and PDHFWEA operators, the superiority of the

proposed WPDHFMSM and WPDHFDMSM operators is

that they can capture the interdependence between the

multiple-preference values. In contrast, the existing oper-

ators can only present the interrelationship of two argu-

ments. Our proposed operators are a more flexible and

broader range of applications. Moreover, our proposed

operators have monotonicity concerning the parameter

m and can impact the risk attitude of the DMs. In other

words, the proposed operators can provide the chance for

DMs to choose the appropriate parameter value based on

their risk preferences. This fact verifies that the proposed

PDHFMSM and PDHFDMSM operators are reasonable

and valid for PDHF decision-making problems.

7 Conclusions

The survey shows that existing aggregation operators have

failed to address the interdependence of multiple-prefer-

ence values under the PDHF environment. To examine the

PDHF information given by the DMs and conclude more

likely results, we put forward several new aggregation

operators to manage complex decision problems by uti-

lizing MSM and DMSM operator, namely PDHFMSM and

PDHFDMSM operators to resolve the problem of the

interdependence between multiple-preference values in

MAGDM. To investigate the situation where the weights of

arguments are different, we have also proposed these

operators’ weighted forms, namely, WPDHFMSM and

WPDHFDMSM operators. Furthermore, we developed two

novel ranking methods, PDHFMSM-COPRAS and

PDHFDMSM-COPRAS, by integrating the weighted

operators and COPRAS technique to solve the MAGDM

problems under the PDHF framework. The main advan-

tages of this study over other methods are summarized

below.

1. Primarily, PDHFS depicts complex information, which

examines the preliminary information provided by

DMs in all possible aspects. Every membership and

non-membership value is considered with its associ-

ated probability.

2. According to the proportional assessment given by our

presented methods, DMs can make decisions based on

two features, namely cost and benefit types.

3. Moreover, the methods based on PDHFMSM and

PDHFDMSM operators have better adaptability and

generality as they can cover other operators by

regulating the parameters. The mechanism presented

in this study applies to several complex fields.

In future studies, applying the proposed method to solving

practical decision-making problems such as green supplier

selection, robot selection, and extensive data analysis will

be interesting. Furthermore, we can expand these operators

(MSM and DMSM) to various environments, for instance,

normal wiggly PHFS (2021), interval-valued PHFS. In

addition, we will consider the concept of consensus

between DMs and use it in addressing MAGDM issues.
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