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Abstract
Fuzzy time series is a dynamic process in time series forecasting due to which it has gained a lot of attention from

researchers. In this process, prediction accuracy is influenced by factors such as defining and partitioning the universe of

discourse, fuzzification, and construction of the rule base, forecasting and defuzzification. Although numerous research

have been provided in the literature, choosing the order of fuzzy time series and interval length is still a challenging task.

This paper presents a computational forecasting model that overcomes the hassle of searching for the appropriate interval

length and order of fuzzy time series. Particle swarm optimization is employed to search for the optimum interval length

for the partitioning of the universe of discourse. Also, how changing its parameters affects the forecasting process is being

investigated, which has never been done previously. A dynamic order approach is used for the selection of the order of

fuzzy time series in the proposed model. In the proposed model, a sequence of orders is obtained in the training phase based

upon forecast accuracy and then it is used for forecasting based upon certain rules. The model is tested on different actual

time series, which include the benchmark data set of enrolments of Alabama University, the Taiwan stock exchange

capitalization weighted stock index and also West Texas Intermediate crude oil prices. Different frequency datasets (e.g.,

yearly, monthly and daily) have been selected for this paper to check the robustness of the model. The root-mean-squared

error is used as a performance parameter for the comparison of forecasting accuracy. The experimental results show that

the proposed model performs better than the existing models in terms of forecasting accuracy.
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1 Introduction

Time series forecasting is the process of future observation

prediction through the critical analysis of historical data.

To predict future observations, the models are built and

observations are made on historical data. There are many

existing classical forecasting models such as linear

regression, exponential smoothing, moving average models

which work on basic assumption that the time series is

stationary. But in real life situations, time series are com-

plex in nature due to the fact that at times there is uncer-

tainty in data. This uncertainty in data could also be

possible due to inaccuracy in data. To handle the

uncertainty in data, fuzzy set theory is an effective tool. A

fuzzy set theory was proposed by Zadeh (1965) in which

the linguistic terms are used for uncertain observations.

Later, this theory was utilized in time series forecasting and

termed as fuzzy time series (FTS). FTS forecasting models

are dynamic in nature due to their rule-based structure.

Song and Chissom (1993a) proposed the concept of FTS

with both the time-invariant and time-variant models and

applied it to the enrollment of University of Alabama. The

model proposed by Song and Chissom (1993b, 1994) uses

the max–min operation that is computationally expensive.

Then, Chen (1996) proposed a model using simple arith-

metic operations that became popular among researchers.

Since then a lot of significant work has been done towards

the improvement of forecasting accuracy. The following

are the major steps in the process of modeling fuzzy time

series forecasting: (1) Defining and partitioning of Uni-

verse of Discourse (UoD), (2) Process of fuzzification, (3)
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Rule base construction and (4) Forecasting and defuzzifi-

cation process. Numerous novel models have been pro-

posed and tested till now in diverse problem domains such

as enrollment (Bisht and Kumar 2021), crop production

(Singh and Borah 2014), stock market (Goyal and Bisht

2021), load forecasting (Sadaei et al. 2019) and shipping

market time series (Gao et al. 2021).

Various models have been proposed in which different

partitioning techniques are employed. In the partitioning

process, the length of the interval is an important param-

eter. Some researchers have considered equal lengths of

intervals while others have taken unequal lengths of

intervals. Initially, Song and Chissom (1993b, 1994) and

Chen (1996, 2002) gave the forecasting model using equal

lengths of intervals. However, the impact of interval length

was investigated by Huarng (2001). He gave the distribu-

tion and average based techniques whereas Huarng and Yu

(2006) gave ratio-based technique to obtain length of

interval. In the process of partitioning, along with arith-

metic approaches, evolutionary algorithms have also been

used to optimize the length (Lee et al. 2008; Kuo et al.

2009; Eğrioğlu 2012; Duru and Bulut 2014; Egrioglu et al.

2019; Zeng et al. 2019). The most commonly used evolu-

tionary algorithms are genetic algorithms (GA) and particle

swarm optimization (PSO). Many authors applied them in

the fuzzy time series forecasting model in different pro-

cesses such as partitioning of UoD, fuzzification of data

points and construction of the rule base (Chen and Wang

2010; Aladag et al. 2012; Chen and Jian 2017; Chen and

Phuong 2017; Chen et al. 2019; Pant and Kumar 2021a, b).

Eğrioğlu (2012) proposed a time-invariant model that used

both FCM and GA, whereas Aladag et al. (2012) proposed

a time-invariant model that used both FCM and PSO.

When the results of these two models are compared, it is

clear that the model with PSO outperforms the model with

GA. But for respective evolutionary algorithms, how

parameters affect the FTS model has not been investigated.

For this study, we have focused on PSO for the following

reasons: PSO has an in-built guidance strategy, which

results in faster convergence of PSO solutions, whereas GA

does not have such a mechanism. PSO stores the previous

best solutions obtained by each particle in memory, making

the algorithm very robust. GA, on the other hand, does not

use memory to keep track of solutions across generations.

In process of fuzzification, the crisp values are converted to

fuzzy sets. The impact of different fuzzy sets in fuzzy time

series modeling has been observed by Bisht and Kumar

(2016), Egrioglu et al. (2019) and Guan et al. (2019). Some

researchers employed clustering algorithms to find clusters

along with membership of each data point (Li et al. 2008;

Askari and Montazerin 2015). Rule base is determined to

identify the pattern of the time series. Different structures

have been proposed in the literature for the identification of

fuzzy logical relationships (FLR). Song and Chissom

(1993b, 1994) gave the rule base in matrix form whereas

Markov transition matrix was employed by Sullivan and

Woodall (1994). Artificial neural network (ANN) and its

variants have been used for the identification of FLR in the

FTS model (Huarng and Yu 2006; Aladag et al. 2009;

Singh 2018). While determining the rule base, the order of

FTS plays an important role. The order of FTS boosts the

accuracy of the model. This was tested by Chen (2002) in

his extended work of Chen (1996). Thereafter, multiple

researchers have used fixed high-order fuzzy time series to

improve the model’s accuracy (Aladag et al. 2009; Egri-

oglu et al. 2010; Panigrahi and Behera 2020). Generally, it

was found that higher the order, better is the accuracy. But

then arises the issue of over fitting on a training data set.

The most common approach used for the process of

defuzzification, i.e., reverse process fuzzification, is cen-

troid method (Chen 1996; Huarng 2001).

From the above study, it has been observed that very

less work is done in time-variant FTS models and appro-

priate partitioning technique along with order of FTS is still

a challenging task. Also, for hybrid FTS models, how

parameters of evolutionary algorithm affects FTS model

has not been investigated. The present study presents a

model that accommodates the following research

objectives:

1. Partitioning technique and selection of appropriate

order

2. Efficiency of model and

3. Optimal forecasting error.

A computationally robust model is proposed by com-

bining particle swarm optimization and dynamic order

algorithm. For partitioning of universe of discourse, parti-

cle swarm optimization is used as it has fewer parameters

when compared with other nature inspired optimizations.

Our study is about the effect of parameters of PSO when

applied in fuzzy time series for optimization of partitioning

of universe of discourse. Also, study on its parameters is

done when PSO is combined with FTS model. And for the

selection of an appropriate order, a dynamic order algo-

rithm is used to auto-adjust the order of FTS model

(Wagner et al. 2007). Also, proposed model minimizes the

search for suitable defuzzification process.

The organization of the paper is done in the following

ways: Basic definitions of FTS are defined in Sect. 2.

Sections 3 and 4 describe particle swarm optimization and

dynamic order algorithms, respectively. The proposed

model is described in detail in Sect. 5. In Sect. 6, the model

is tested on different frequency data sets and empirical

study is presented in it. Finally, Sect. 7 is the conclusion.
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2 Fuzzy time series

FTS is the concept proposed by Song and Chissom

(1993a, b, 1994) based on fuzzy theory for the forecasting

of time series. It can handle the forecasting of linguistic

variable problems. The basic definitions are discussed

below:

Definition 1 Let U be the UoD, where U ¼
fu1; u2; . . .; ung on which fuzzy sets are defined as

Aj ¼
lAj

u1ð Þ
u1

þ
lAj

u2ð Þ
u2

þ � � �
lAj

unð Þ
un

; ð1Þ

where, lAj
unð Þ 2 0; 1ð Þ is membership degree of un in Aj.

Then the collection of fuzzy sets Aj is known as FTS on U,

represented by F(t).

Definition 2 Let F(t) be the FTS and < (t, t - 1) be a

fuzzy relation, then F(t) = F(t - 1) s < (t, t - 1) where

‘s’ is an operator means F(t) is caused by F(t - 1), rep-

resented by F(t - 1) ? F(t). It is known as first-order FTS

and if F(t) is caused by F(t - 1),

F(t - 2), …, F(t - m) m[ 0, it is known as mth-order

FTS which is represented by F(t - 1),

F(t - 2), …, F(t - m) ? F(t).

Definition 3 If for any time t, the fuzzy relation < (t,

t - 1) or < (t, t - m) is independent of t, then F(t) is

termed as the time-invariant FTS, else time-variant FTS.

Here, independent of t means at different times t1 and t2, <
(t1, t1 - 1) = < (t2, t2 - 1) or < (t1, t1 - m) = < (t2,

t2 - m).

Definition 4 Let F(t) be time-variant FTS, then relation is

expressed as F(t) = F(t - 1) s <d (t, t - 1), where d is

the order of the FTS model which affects the forecast.

3 Particle swarm optimization

Kennedy and Eberhart (1995) proposed an optimization

algorithm that mimics the swarm behavior known as par-

ticle swarm optimization (PSO). This optimization tech-

nique has an advantage over other nature inspired

optimization techniques as it has few parameters, which

makes it easy to implement. Also, in the process, no

assumptions are required to handle the specific task, and it

is computationally less expensive. PSO is an iterative

process that uses the velocity displacement model to opti-

mize a problem.

Initially in the algorithm, particles (solutions) are ran-

domly generated with randomized velocity within the

search space. The velocity and position of these particles

are then updated in each iteration, keeping track of both the

global and local best solutions until the termination criteria

are met. These solutions are updated according to the fol-

lowing two equations:

viðt þ 1Þ ¼ w � viðt þ 1Þ þ c1r1ðpliðtÞ � piðtÞÞ þ c2r2ðpgi ðtÞ
� piðtÞÞ;

ð2Þ
pi t þ 1ð Þ ¼ pi tð Þ þ vi t þ 1ð Þ; ð3Þ

where w is the inertia weight, c1 is the cognitive coefficient

and c2 is the social coefficient, r1 and r2 are randomly

generated numbers in the range [0, 1]. In Eq. (2),

c1r1 pli tð Þ � pi tð Þ
� �

is the personal influence and

c2r2ðpgi ðtÞ � piðtÞÞ is the social influence. The algorithm

works with static values c1 and c2 with their sum equal to 4.

Since c1 and c2 determine the inclination of search, a

higher value of c1 means greater local search ability,

whereas a higher c2 means greater global search ability. So,

they are generally assumed to be equal in keeping away

divergence and cyclic behavior. To avoid the quick con-

vergence of solutions, r1 and r2 are used. Premature con-

vergence may occur if the inertia weight is chosen

incorrectly, as its role is to explore and exploit. The value

of w is problem dependent and lies between 0 and 1.

4 Dynamic order algorithm

This paper proposes a dynamic order PSO-based fuzzy

time series model to auto-adjust the order of fuzzy time

series and partition the UoD. The selection of the order is

important to any forecasting model’s success. When the

forecasting problem is not well understood, automatic

determination of this window size is essential. The

dynamic order algorithm automatically adjusts its window

size with each slide of the window. The dynamic approach

used in this paper to select the appropriate order was pro-

posed by Wong et al. (2010). In each round of the training

phase, the order is adjusted dynamically. This is done in the

following manner.

1. Initialized by taking i ¼ 1 and n ¼ 1.

2. Then, two orders are selected as n and nþ i, and the

flag h = n, where both n and i are positive integers.
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3. With the selected two orders, the next data point is

forecast using the proposed model. Both orders’

predictive accuracy (PA) is computed using Eq. (4)

(PAn and PAnþi). Best solution among these two will

be selected to predict next order and flag.

Predictive Accuracy

¼ actual value� forecasted valuej j:
ð4Þ

4. Now select two more window sizes based on which

one had the best accuracy. If PAn � PAnþi, two new

orders are created: n and n� i, with flag h equal to

n� i. If n ¼ 0, then the process starts from the initial

step. If PAn\PAnþi, two new orders are created: nþ i

and nþ 2i, with flag h equal to nþ i.

5. To include the next time series observation, slide the h

to the right. Use the two new orders obtained to run

Fig. 1 Flowchart of proposed

model
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two more dynamic generations, predict future data, and

assess their accuracy.

6. This process is repeated till the sequence of flags is

obtained for all historical data.

5 Proposed model

In this paper, a computational FTS model is presented in

which PSO is used to search for the optimal partitioning of

UoD and a dynamic order approach has been used for the

order selection of FTS. PSO is employed to optimize the

length of interval by determining the boundary points of

interval because optimization of interval length has a great

impact on the fuzzification process and the accuracy of

results. The problem of selecting an appropriate order for

the model is resolved using a dynamic order approach in

which a sequence of orders is obtained in training algo-

rithm and then in the forecasting algorithm, the order is

selected from this sequence based on certain rules. The

methodology consists of two phases which involve pre-

processing, defining and partitioning of the UoD, fuzzifi-

cation, and construction of the rule base, forecasting and

defuzzification. The steps of the proposed model are

explained below and also explained using

flowchart (Fig. 1).

Phase 1: Pre-processing, defining and partitioning of

UoD, fuzzification, construction of rule base

Step 1 The process is initiated by checking the outliers

in the time series using the generalized extreme studentized

deviate (ESD) test, an extension of the Grubbs test (Grubbs

1950). And the outliers found are replaced using linear

interpolation.

Step 2 Define UoD based on range values of the data

series defined by U,

U ¼ Xlb;X
ub

� �
; ð5Þ

where Xlb ¼ Xmin � l, Xub ¼ Xmax þ l and l ¼Pn

i¼1
jXiþ1�Xij
n�1

, n is the total number of data points.

Step 3 U is now partitioned into mþ 1 intervals:

i1; i2; . . .; imþ1 using PSO. The optimal partition vector P ¼
½p1; p2; p3; . . .; pm� is obtained to get the optimal partition of

intervals i1; i2; . . .; imþ1 where i1 ¼ ½Xlb; p1�,i2 ¼ ½p1; p2�
i3 ¼ ½p2; p3�, …, imþ1 ¼ ½pm;Xub� from the following pro-

cedure. The parameter values are taken as c1 ¼ c2 ¼ 2,

inertia weight is varied in range 0–1 and the fitness func-

tion is root-mean-squared error (RMSE).

Step 3.1 Initially, m particles are generated with position

vectors and velocity vectors randomly.

Step 3.2 Calculate the RMSE of each particle.

Step 3.3 Next, if RMSE of each particle’s current

position is better than its personal best position vector, then

personal best position is updated.

Step 3.4 Particle having least RMSE is chosen as the

best particle.

Step 3.5 Now the elements of velocity vector are

updated based on Eq. (2) and position vector’s elements

are updated based on equation Eq. (3).

Step 3.6 The process from steps 3.2 to 3.5 is repeated

until the termination criteria are satisfied. Here, the process

is terminated when the number of iteration reaches the

predefined value.

Step 4 Once m particles are obtained, m?1 intervals are

formed and based on it, m triangular fuzzy sets are defined.

Step 5 Fuzzify the data and establish the fuzzy logical

relation between time t and t ? 1 as Ai ! Aj in training

phase and Ai ! # in forecasting phase.

Phase 2: Forecasting and defuzzification

Step 6 Now in this step, we have training phase and

forecasting phase algorithm.

Step 6.1 In training phase, for each data, two orders are

determined using dynamic order algorithm and then fore-

casted values for those two orders are determined with the

help of training algorithm. Based on forecasting accuracy,

the one with higher accuracy is selected. Dynamic order

algorithm is initialized by taking i ¼ 1 and n ¼ 1.

Following are the notations used in both training and

forecasting algorithms:

Ik represents kth interval

X(t) is the actual data value at time t

[lAk] defines the lower bound of interval Ik
[mAk] defines the middle value of interval Ik
[uAk] defines the upper bound of interval Ik
Y(t ? 1) is forecasted value at time t ? 1

h is the dynamic order

c is count; s is sum and d is deviation
?RN,

-RN,
?PN,

-PN are fuzzy predictors

p is number of steps to be computed.
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Step 6.2 From the training phase algorithm, the

sequence of order is obtained reflecting the trend of pre-

diction. In forecasting phase, the forecasting algorithm

forecasts two values, where the order and forecasted value

is determined by undermentioned rules, considering

sequence of flags.

1. If ht = 1, then order selected for time t ? 1 is 1 and 2.

2. If ht = k and ht C ht-1, then order selected for time

t ? 1 is k and k ? 1.

3. If ht = k and ht B ht-1, then order selected for time

t ? 1 is k and k - 1.

4. If ht C ht-1 and Xt C Xt-1, then Yt?1 is max of two

forecasted values.

5. If ht\ ht-1 and Xt\Xt-1, then Yt?1 is min of two

forecasted values.

6. If ht C ht-1 and Xt B Xt-1 or ht B ht-1 and Xt C Xt-1,

then Yt?1 is mean of two forecasted values.
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123



6 Empirical study

In this paper, the model is tested on seven datasets which

includes the benchmark data set of enrolments of Alabama

University and the Taiwan stock exchange capitalization

weighted stock index (TAIEX) and also West Texas

Intermediate (WTI) crude oil prices. The data set of

enrolments of Alabama University is yearly data whereas

dataset of TAIEX is daily dataset and WTI crude oil prices

dataset is monthly dataset. The descriptive statistics of each

dataset is briefly described in Table 1. The comparison of

proposed FTS model with the existing models is done in

terms of RMSE. The benchmark FTS models selected for

comparison are exponentially weighted FTS (Sadaei et al.

2014), improved weighted FTS (Efendi et al. 2013), con-

ventional FTS (Chen 1996), trend-weighted FTS (Cheng

et al. 2009), and weighted FTS (Yu 2005). Moreover, mean

fitness value is considered over 30 runs of each experiment

to check the robustness of the model. Also, the number of

intervals and inertial weight is varied in the experiment. To

the best of our knowledge, there is no fixed method of

selecting the number of fuzzy sets. The cognitive constant

and social constant are set to 2, based on the literature.

Table 2 describes the parameters setting of the proposed

model. Further, Fig. 2 illustrates the graph between fitness

obtained by proposed model and number of iterations. It is

observed from the figure that it is decreasing but not lin-

early which means model is achieving better solution

precision.

Table 1 Characteristics of all

datasets
Datasets Maximum Minimum Median Mean STD Skewness Kurtosis

Enrollment 19,337.00 13,055.00 15,732.00 16,194.18 1816.49 0.36 - 0.54

TAIEX 1999 8608.91 5474.79 7590.43 7408.65 739.46 - 0.76 - 0.21

TAIEX 2000 10,202.20 4614.62 8390.33 7904.31 1602.79 - 0.56 - 0.96

TAIEX 2001 6104.24 3446.26 5057.06 4911.54 701.76 - 0.30 - 1.01

TAIEX 2002 6462.29 3850.04 5316.04 5246.58 663.45 - 0.04 - 1.18

TAIEX 2003 6142.31 4139.5 5095.24 5151.75 607.87 - 0.005 - 1.43

TAIEX 2004 7034.10 5316.87 5936.53 6032.27 412.84 0.52 - 0.43

WTI crude oil 133.88 11.35 30.71 44.05 29.26 0.87 - 0.37
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6.1 Enrolments of Alabama University

The benchmark dataset of enrolments of Alabama

University is a yearly data from 1971 to 1992. The data are

divided into 2 parts: 80% training and 20% testing. In

Fig. 3, graphs represent the effect of w on RMSE for

different numbers of fuzzy sets on test data whereas Fig. 4

shows the varying RMSE when number of fuzzy sets are

changing. The comparative results of RMSE on test data

are shown in Table 3. It is observed that results from

proposed model are better when number of fuzzy sets are 7.

Also, variation in RMSE is very low when number of fuzzy

sets are varied from proposed model as compared to

existing models.

Table 2 Parameter setting of the proposed model

Parameter Value

Number of runs 30

Population size 50

Number of iterations 100

Cognitive constant (c1) 2

Social constant (c2) 2

Inertia weight (w) 0.2, 0.4, 0.6, 0.8, 1

Number of fuzzy sets 7, 8, 9, 10

Fig. 2 Fitness over iterations

Fig. 3 RMSE vs inertia weight

(w) for different number of

fuzzy sets of enrollment dataset

of University of Alabama

Fig. 4 RMSE vs number of fuzzy sets of enrollment dataset of

University of Alabama

Table 3 Comparison of the RMSE of enrollment dataset of University

of Alabama for different numbers of fuzzy sets

Models Number of fuzzy sets

7 8 9 10

Yu (2005) 326.92 259.33 224.41 215.25

Cheng et al. (2009) 326.92 259.33 224.41 215.25

Sadaei et al. (2014) 326.92 259.33 224.41 215.25

Chen (1996) 326.92 259.33 224.41 215.25

Efendi et al. (2013) 326.92 259.33 224.41 215.25

Proposed model 290.15 310.37 341.96 297.00
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6.2 Taiwan stock exchange capitalization
weighted stock index (TAIEX)

The proposed model is applied to TAIEX from year 1999

to 2004. Further, it is divided in 2 parts: 80% training and

20% testing for each year. In Figs. 5, 6, 7, 8, 9 and 10,

graphs represent the effect of w on RMSE for different

number of fuzzy sets on test data whereas Fig. 11 shows

the varying RMSE when number of fuzzy sets are chang-

ing. Figures 5 and 6 are graphs representing the effect of w

on RMSE for different number of fuzzy sets in forecasting

TAIEX 1999 and TAIEX 2000. Figures 7 and 8 are graphs

representing the effect of w on RMSE for different number

of fuzzy sets in forecasting TAIEX 2001 and TAIEX 2002.

Figures 9 and 10 are graphs representing the effect of w on

RMSE for different number of fuzzy sets in forecasting

TAIEX 2003 and TAIEX 2004.

The comparative results of RMSE on test data for dif-

ferent number of fuzzy sets for TAIEX 1999 is shown in

Table 4, for TAIEX 2000 is shown in Table 5, for TAIEX

2001 is shown in Table 6, for TAIEX 2002 is shown in

Table 7, for TAIEX 2003 is shown in Table 8, for TAIEX

2004 is shown in Table 9. It is observed that results from

proposed model are better than the existing models. Also,

when number of fuzzy sets changes, there is less variation

in RMSE from proposed model as compared to existing

models. The comparison between the actual and forecasted

data of TAIEX 1999 and TAIEX 2000 is shown in Figs. 12

and 13. The comparison between the actual and forecasted

data of TAIEX 2001 and TAIEX 2002 is shown in Figs. 14

Fig. 5 RMSE vs inertia weight

(w) for different number of

fuzzy sets of TAIEX 1999

Fig. 6 RMSE vs inertia weight

(w) for different number of

fuzzy sets of TAIEX 2000
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Fig. 7 RMSE vs inertia weight

(w) for different number of

fuzzy sets of TAIEX 2001

Fig. 8 RMSE vs inertia weight

(w) for different number of

fuzzy sets of TAIEX 2002

Fig. 9 RMSE vs inertia weight

(w) for different number of

fuzzy sets of TAIEX 2003
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Fig. 10 RMSE vs inertia weight

(w) for different number of

fuzzy sets of TAIEX 2004

Fig. 11 RMSE vs number of fuzzy sets of TAIEX dataset

Table 4 Comparison of the RMSE of TAIEX 1999 test data for

different numbers of fuzzy sets

Models Number of fuzzy sets

7 8 9 10

Yu (2005) 147.29 158.91 132.16 124.64

Cheng et al. (2009) 143.04 167.56 140.79 122.59

Sadaei et al. (2014) 149.67 156.32 128.59 125.95

Chen (1996) 181.69 190.17 159.85 146.51

Efendi et al. (2013) 147.72 164.86 137.79 124.54

Proposed model 131.95 130.61 128.53 128.98

Table 5 Comparison of the RMSE of TAIEX 2000 test data for

different numbers of fuzzy sets

Models Number of fuzzy sets

7 8 9 10

Yu (2005) 250.03 245.70 225.29 239.03

Cheng et al. (2009) 253.43 238.16 229.02 241.98

Sadaei et al. (2014) 249.31 245.73 227.35 239.14

Chen (1996) 461.01 371.47 322.31 298.15

Efendi et al. (2013) 261.88 241.70 230.41 245.07

Proposed model 209.24 205.43 191.35 193.66
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and 15.The comparison between the actual and forecasted

data of TAIEX 2003 and TAIEX 2004 is shown in Figs. 16

and 17.

6.3 WTI crude oil prices

The dataset of Cushing, Oklahoma, U.S. is considered as

the largest oil storage tank farm in the world. The amount

of crude oil stored at Oklahoma, controls its price all over

the world and because of that Cushing is pricing point for

WTI oil prices. The data is collected from the site https://

www.eia.gov/ from January 1986 to August 2019. It is

divided into 2 parts: 80% training and 20% testing data.

Figure 18 is the graph representing the effect of w on

RMSE for different numbers of fuzzy sets on test data

whereas Fig. 19 shows the varying RMSE when number of

fuzzy sets are changing. The comparative results of RMSE

on test data is shown in Table 10. It is observed that results

from proposed model are better when number of fuzzy sets

are 7 and 8. Also, variation in RMSE is less when number

of fuzzy sets are varied from proposed model as compared

to existing models. Figure 20 shows the comparison

between the actual and forecasted data.

Table 6 Comparison of the RMSE of TAIEX 2001 test data for

different numbers of fuzzy sets

Models Number of fuzzy sets

7 8 9 10

Yu (2005) 147.75 148.34 109.97 143.18

Cheng et al. (2009) 160.16 153.36 112.93 154.39

Sadaei et al. (2014) 135.73 142.07 106.74 136.33

Chen (1996) 160.82 165.34 117.79 147.64

Efendi et al. (2013) 156.00 150.39 112.26 149.08

Proposed model 144.55 139.32 139.83 136.97

Table 7 Comparison of the RMSE of TAIEX 2002 test data for

different numbers of fuzzy sets

Models Number of fuzzy sets

7 8 9 10

Yu (2005) 92.16 85.71 88.39 73.18

Cheng et al. (2009) 116.73 88.96 102.19 84.52

Sadaei et al. (2014) 90.35 93.66 89.95 71.70

Chen (1996) 122.06 101.14 108.5 86.54

Efendi et al. (2013) 99.31 85.78 94.89 80.55

Proposed model 83.60 81.22 80.69 78.91

Table 8 Comparison of the RMSE of TAIEX 2003 test data for

different numbers of fuzzy sets

Models Number of fuzzy sets

7 8 9 10

Yu (2005) 96.73 79.73 82.39 67.97

Cheng et al. (2009) 103.09 97.14 89.91 67.37

Sadaei et al. (2014) 94.31 74.68 81.46 72.99

Chen (1996) 144.75 102.01 107.8 85.6

Efendi et al. (2013) 100.08 89.32 89.7 68.25

Proposed model 68.32 65.63 64.41 63.39

Table 9 Comparison of the RMSE of TAIEX 2004 test data for

different numbers of fuzzy sets

Models Number of fuzzy sets

7 8 9 10

Yu (2005) 70.12 70.62 62.07 72.84

Cheng et al. (2009) 74.1 75.78 67.75 78.53

Sadaei et al. (2014) 70.6 68.04 61.44 73.55

Chen (1996) 77.06 152.6 110.99 120.39

Efendi et al. (2013) 72.89 76.86 65.73 77.71

Proposed model 69.72 67.98 67.37 65.41
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Fig. 12 Graphical comparison between actual and forecasted data of TAIEX 1999

Fig. 13 Graphical comparison between actual and forecasted data of TAIEX 2000
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Fig. 14 Graphical comparison between actual and forecasted data of TAIEX 2001

Fig. 15 Graphical comparison between actual and forecasted data of TAIEX 2002
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Fig. 16 Graphical comparison between actual and forecasted data of TAIEX 2003

Fig. 17 Graphical comparison between actual and forecasted data of TAIEX 2004
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7 Conclusion

This study suggests a computational fuzzy time series

model that combines particle swarm optimization and

dynamic order algorithm. PSO was applied to optimize the

interval length. The presented study is based on a dynamic

order algorithm in which the order selection of FTS is

adaptive and the hassle of the defuzzification process is

reduced. The advantage of the proposed method is that it is

adaptive in nature, optimal length of interval is obtained by

PSO and provides the forecasted value in crisp form which

reduces the need of defuzzification process. The model is

tested and evaluated on enrolments of University of Ala-

bama, stock indices of the Taiwan Stock Exchange, and

Cushing, WTI spot prices of crude oil. The data were

divided into 2 parts: 80% for training and 20% for testing.

This study investigated the effects of inertia weight and the

number of fuzzy sets on RMSE. The comparison of results

is done on the basis of RMSE with the existing models (Yu

2005; Cheng et al. 2009; Sadaei et al. 2014; Chen 1996;

Efendi et al. 2013), and it is observed that the proposed

model performs better than the existing models. Graphs

show how inertia weight and the number of fuzzy sets

affect the fitness of FTS models. Also, less variation was

observed in the results, which shows the robustness of the

model. This work can be expanded by applying deep

learning models to fuzzy time series and examining the

effects of their parameters on the FTS model.

Fig. 18 RMSE vs inertia weight

(w) for different number of

fuzzy sets of WTI crude oil

prices test data

Fig. 19 RMSE vs number of fuzzy sets of WTI crude oil prices test

data

Table 10 Comparison of the RMSE of WTI crude oil price test data

for different numbers of fuzzy sets

Models Number of fuzzy sets

7 8 9 10

Yu (2005) 7.31 7.48 6.22 6.23

Cheng et al. (2009) 7.03 6.67 5.84 6.05

Sadaei et al. (2014) 7.35 7.38 6.25 6.18

Chen (1996) 6.95 6.07 6.5 5.88

Efendi et al. (2013) 7.11 6.76 5.97 5.89

Proposed model 6.40 6.22 6.08 6.007
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Eğrioğlu E (2012) A new time-invariant fuzzy time series forecasting

method based on genetic algorithm. Adv Fuzzy Syst

2012:785709

Egrioglu E, Aladag CH, Yolcu U et al (2010) Finding an optimal

interval length in high order fuzzy time series. Expert Syst Appl

37:5052–5055

Egrioglu E, Yolcu U, Bas E (2019) Intuitionistic high-order fuzzy

time series forecasting method based on pi-sigma artificial neural

networks trained by artificial bee colony. Granul Comput

4:639–654

Gao R, Duru O, Yuen KF (2021) High-dimensional lag structure

optimization of fuzzy time series. Expert Syst Appl 173:114698

Goyal G, Bisht DC (2021) Strong a-cut and associated membership-

based modeling for fuzzy time series forecasting. Int J Model

Simul Sci Comput 12:2050067

Grubbs FE (1950) Sample criteria for testing outlying observations.

Ann Math Stat 21:27–58

Guan H, He J, Guan S, Zhao A (2019) Neutrosophic soft sets

forecasting model for multi-attribute time series. IEEE Access

7:25575–25588

Huarng K (2001) Effective lengths of intervals to improve forecasting

in fuzzy time series. Fuzzy Sets Syst 123:387–394

Huarng K, Yu TH-K (2006) Ratio-based lengths of intervals to

improve fuzzy time series forecasting. IEEE Trans Syst Man

Cybern Part B (cybern) 36:328–340

Kennedy J, Eberhart R (1995) Particle swarm optimization. In:

Proceedings of ICNN’95-international conference on neural

networks. IEEE, pp 1942–1948

Kuo I-H, Horng S-J, Kao T-W et al (2009) An improved method for

forecasting enrollments based on fuzzy time series and particle

swarm optimization. Expert Syst Appl 36:6108–6117

Lee L-W, Wang L-H, Chen S-M (2008) Temperature prediction and

TAIFEX forecasting based on high-order fuzzy logical relation-

ships and genetic simulated annealing techniques. Expert Syst

Appl 34:328–336

Li S-T, Cheng Y-C, Lin S-Y (2008) A FCM-based deterministic

forecasting model for fuzzy time series. Comput Math Appl

56:3052–3063

Panigrahi S, Behera HS (2020) A study on leading machine learning

techniques for high order fuzzy time series forecasting. Eng Appl

Artif Intell 87:103245

Fig. 20 Graphical comparison between actual and forecasted data of WTI crude oil prices

Granular Computing (2023) 8:373–390 389

123

https://doi.org/10.1007/s12065-021-00656-0
https://doi.org/10.1007/s12065-021-00656-0


Pant M, Kumar S (2021a) Fuzzy time series forecasting based on

hesitant fuzzy sets, particle swarm optimization and support

vector machine-based hybrid method. Granul Comput 1–19

Pant M, Kumar S (2021b) Particle swarm optimization and

intuitionistic fuzzy set-based novel method for fuzzy time series

forecasting. Granul Comput 7:1–19

Sadaei HJ, Enayatifar R, Abdullah AH, Gani A (2014) Short-term

load forecasting using a hybrid model with a refined exponen-

tially weighted fuzzy time series and an improved harmony

search. Int J Electr Power Energy Syst 62:118–129

Sadaei HJ, de Lima e Silva PC, Guimarães FG, Lee MH (2019) Short-
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