
ORIGINAL PAPER

Analysis of domination in the environment of picture fuzzy
information

Naeem Jan1 • Muhammad Asif1 • Abdul Nasir1 • Sami Ullah Khan1 • Abdu Gumaei2,3

Received: 9 August 2021 / Accepted: 11 October 2021 / Published online: 15 November 2021
� The Author(s), under exclusive licence to Springer Nature Switzerland AG 2021

Abstract
Picture fuzzy graph (PFG) is a useful tool in fuzzy graph theory that can be used to model a variety of real-world problems

involving uncertainty caused by unknown, changing, and indeterminate data. PFG might be more fruitful at solving

confusing problems than fuzzy graph (FG) and intuitionistic fuzzy graph (IFG). In this study, some interesting properties

and results for the PFGs have been presented by using the concepts of strong arcs. The notions of covering in a PFG, strong

node covering, strong arc covering, strong independent set, and matching number have been introduced for PFG.

Moreover, we also devised the conception of paired domination, strong paired domination, and strong paired dominating

set for a PFG. Furthermore, many interesting properties of these conceptions are established. Additionally, the strong

paired domination numbers of complete PFG and complete bipartite PFG have been worked out. In addition, many various

intriguing aspects of strong paired domination have been examined.

Keywords Covering � Matching number � Paired domination � Picture fuzzy graph � Strong arcs

1 Introduction

Inmany fields, the graphical framework is important because

graphs conveniently describe data. Due to their usefulness,

graphs have got significant importance in many fields,

besidesmathematics. Several serious issues are easily solved

by describing them graphically. Graph theory is one of the

most significant branches of mathematics and combina-

torics. Chartrand and Zang (2006). Introduction to graph

theory, Tata McGraw-Hill Edition. It is useful in a variety of

domains, including networking, set theory, economics, data

mining, image segmentation, grouping, image processing,

and so on. Picture fuzzy set (PFS) is an extension fuzzy set

(FS), an intuitionistic fuzzy set (IFS), When comparing the

fuzzy models, the picture fuzzy models provide more accu-

racy, consistency, and reliability.

Zadeh (1965) presented the idea of the fuzzy set (FS) that

is useful in a wide range of research fields. The fuzzy set’s

structure consists of a membership function that describes

the truth value of an entity in the fuzzy set. This truth value is

also called the value of membership. Atanassov (1986) ini-

tialized the concept of an intuitionistic fuzzy set (IFS) as a

generalization of the FS. An IFS involves the value of

membership as well as the value of non-membership. Coung

and Kreinovich (2013) initialized the concepts of picture

fuzzy set (PFS) that adds in the neutral value to the structure

of IFS. Thus, a PFS consists of three mappings; value of

membership, neutral value, value of non-membership, that

take on values from the interval ½0,1� given that their sum also

belongs to the unit interval.

Rosenfield (1975) introduced the idea of the fuzzy graph

(FG), which was first initiated by Kauffman (1973).

Rosenfeld also found the fuzzy relationships between the

FSs. As a special case of Atanassov’s IFG, Karunambigai

and Parvathi (2006) developed an intuitionistic fuzzy

graph.
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The definition of intuitionistic fuzzy relation (IFR) was

introduced by Atanassov (2012). The notion of an intu-

itionistic fuzzy competition graph was discussed by Sahoo

and Pal (2015). Cen Zuo et al. (2019) introduced the idea of

picture fuzzy graphs (PFG). PFG is an enhanced version of

IFG that is used to model uncertain real-world problems that

IFG might not be able to adequately model. PFG has been

used in different areas, including computer science, chem-

istry, engineering, economics, statistics, and many more.

After Rosenfield (1975) the FG theory has been worked

out by many researches, such as fuzzy tolerance graphs by

Samanta and Pal (2011), fuzzy threshold graphs by Samanta

and Pal (2011), bipolar fuzzy graphs by Rashmanlou et al.

(2015), Dubois and Prade (2005) described interval-valued

Fuzzy Sets. (a) Mendel et al. (2006) made the interval type-2

fuzzy (IT2F) logic system simple. Based on T2FSs. (b) Chen

et al. (2012) describes Fuzzy rules interpolation for sparse

fuzzy rule-based systems. (c) Chen and Hong (2014)

described the TOPSIS method and fuzzy multiple attribute

decision making established on IT2FSs’ ranking. (d) Chen

and Lee (2011) proposed the fuzzy interpolative reasoning

for sparse fuzzy rule-based systems. Akram et al. (2011)

proposed interval-valued fuzzy graphs. Pramanik et al.

(2016a, b) interval-valued fuzzy planar graphs, highly

irregular interval-valued fuzzy graphs by Rashmanlou and

Pal (2013a, b), isometry and interval-valued fuzzy graphs by

Rashmanlou and Pal (2014). Balanced interval-valued fuzzy

graph by Rashmanlou and Pal (2013a, b). Nasir et al.

(2021a, b) applied the interval-valued fuzzy sets and inter-

val-valued intuitionistic fuzzy sets for medical diagnosis and

cyber security in industrial control systems, respectively. Jan

et al. (2021) introduced the complex intuitionistic fuzzy sets

and applied them to investigate the cyber security and cyber-

threats in petroleum sectors. Knyazeva et al. (2018) worked

out the topological ordering on IT2FG. Samanta and Pal

(2013), worked out Fuzzy k-competition and p-competition

fuzzy graph. New concept of fuzzy planner graph by

Samanta et al. (2014) and Samanta and Pal (2015) Fuzzy

planar graph, bipolar fuzzy hypergraph and Irregular bipolar

fuzzy graphs by, Samanta and Pal (2012a, b), m-set fuzzy

competition graph by Samanta et al. (2015a, b), complete-

ness and regularity graph of generalization fuzzy graph by

Samanta et al. (2016), fuzzy phi- tolerance completion fuzzy

graph by Pramanik et al. (2016a, b) and so on. Presents the

new idea of fuzzy coloring is given by Samanta et al.

(2015a, b). Nayeem and Pal (2005) proposed the shortest

path problem on a network with imprecise arc weights.

Strong intuitionistic fuzzy graphs were defined by Akram

and Davvaz (2012). Akram and Dudek (2013) also talked

about intuitionistic fuzzy hypergraphs and their applications.

Intuitionistic fuzzy graph structures were defined by Akmal

and Akram (2017). The idea of covering, matching, and

paired domination plays a significant role in both applied and

theoretical picture fuzzy graphs. Sahoo et al. (2017) intro-

duced the concept of covering and paired domination in IFG.

Khan et al. (2021) carried out the graphical analysis of

covering and paired domination in the environment of neu-

trosophic information.

The main contributions of this paper are the introduction

of concepts of covering and paired domination in PFGs. This

study describes the strong arcs and then used this concept to

introduce the innovative conceptions of covering; strong arc

covering and strong node covering. In addition, the strong

independent set, strong matching, matching number, and

independent numbers have been formulated. These concepts

have been supported by suitable examples and graphical

illustrations. Many intriguing results have also been pre-

sented. Moreover, we also developed the idea of paired

domination using strong arcs. In addition, the strong paired

domination, strong paired dominating set, and strong paired

domination number are defined. The idea of defining a strong

modeling technique motivated me to write this research

article.We chose the PFG for our study because it is themost

generalized structure. The picture fuzzy information is based

on three mappings, membership, neutral, and non-member-

ship. Thus, we prioritized to use a structure that has a broader

domain and covers all of the other structures in fuzzy set and

fuzzy graph theory. On the other hand, the FGs only discuss

the membership values, IFG talk about the membership and

non-membership values. These structures have certain lim-

itations. Therefore, PFGs are the best among the other con-

tenders. Henceforth, we defined all the innovative concepts

for the PFGs.

This article is arranged as; Sect. 2 covers the essential

definitions and illustrations of FG, IFG, PFS, and PFG. In

Sect. 3, strong node cover (SNC), strong arc (SA), strong

independent set (SIS), strong matching (SM) utilizing SAs,

and numerous interesting properties are defined. In Sect. 4,

we introduced paired domination (PD) and strong paired

domination (SPD) in PFGs. The investigation is finally

concluded in Sect. 5.

2 Preliminaries

In this section, we will review some essential definitions of

graphs are examined with illustrations, including fuzzy

graph (FG), intuitionistic fuzzy graph (IFG), picture fuzzy

set (PFS), and picture fuzzy graph (PFG).

Definition 1 (Chartrand and Zang 2006). The collection of

nodes and arcs is called a graph and it’s denoted by

�G ¼ U; Ê
� �

;

where U represents the collection of nodes and Ê shows the

set of arcs.
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Example 1 Let a graph �G ¼ U; Ê
� �

where U ¼
u1; u2; u3; u4ð Þ are the collections of nodes and Ê ¼
c1; c2; c3; c4f g are the set of arc, shown in Fig. 1.

Definition 2 (Rosenfield 1975) A FG is of the form �G ¼
U; Ê
� �

where

i.

U ! fu1; u2; u3. . .:; ung such that a1 : U ! 0,1½ � where
a1 represents the value of membership,

ii.

Ê � U � U where a2 : U � U ! 0,1½ � are such that

a2 ui; uj
� �

� min a1 uð Þ; a1 uj
� �� �

: ð1Þ

And satisfy the condition,

0� a2 ui; uð Þ� 1: ð2Þ

Example 2 Let �G ¼ ðU; ÊÞ be a FG, where U ¼
u1; u2; u3f g are nodes and Ê ¼ c1; c2; c3f g is the set of arcs

then fuzzy graph shown in Fig. 2.

Definition 3 (Parvathi and Karunambigai 2006) An IFG is

of the form �G ¼ U; Ê
� �

where

(i) U! fu1; u2; u3. . .:; ung such that a1 : U ! 0,1½ � and
b1 : U ! 0,1½ � show the value of membership and

nonmembership of the factor ui�U,i ¼ ð1,2; . . .::nÞ cor-

respondingly and

0� a1 uið Þ þ b1 uið Þ� 1; ð3Þ

For every ui�Ui ¼ ð1; 2; . . .::nÞ

(ii) Ê � U � U where a2 : U � u ! 0,1½ � and b2 : U �
U ! 0,1½ � are in the such that

a2 ui; uj
� �

� min a1 uið Þ; a1 uj
� �� �

; ð4Þ

b2 ui; uj
� �

� max b1 uið Þ; b1 uj
� �� �

; ð5Þ

and

0� a2 ui; uj
� �

þ b2 ui; uj
� �

� 1: ð6Þ

Note: �G is not an IFG if one or more of the inequalities

(3), (4), (5), or (6) are not fulfilled.

Example 3 Let �G ¼ U; Ê
� �

be an IFG, where U ¼
fu1; u2; u3g are nodes and Ê ¼ c1; c2; c3f g is the set of arcs

then IFG shown in Fig. 3.

Definition 4 (Cuong and Kreinovich 2013) Let C be a

PFS. C in L is defined by C ¼ l; a1ðlÞ; c1ðlÞ; b1ðlÞjl�Lf g
where a1 lð Þ 2 0,1½ � is called the membership value, c1 lð Þ 2
0,1½ � is called neutral value and b1 lð Þ 2 0,1½ � is called the

nonmembership value of l in C and satisfies the following

condition.

8l �L; 0 � a1 lð Þ þ c1 lð Þ þ b1 lð Þ� 1: ð7Þ

Now, 1� ða1ðlÞ þ c1ðlÞ þ b1ðlÞ is said to be the refusal

value.

Definition 5 (Zuo et al. 2019) A PFG is of the form
�G ¼ U; Ê

� �
, here

(i) U ! u1; u2; u3; . . .:; unf g such that a1 : U ! 0,1½ � and
c1 : U ! 0,1½ � and b1 : U ! 0,1½ � show the membership

value, neutral value, and nonmembership value of the

factor ui�U, correspondingly
Fig. 1 Crisp graph

Fig. 2 Fuzzy graph
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0� a1ðuiÞ þ c1 uið Þ þ b1 uið Þ� 1:

(ii) Ê � U � U where a2 : U � U ! 0,1½ �, c2 :
U � U ! 0,1½ � and b2 : U � U ! 0,1½ � such that

a2 ui; uj
� �

� min a1 uið Þ; a1 uj
� �� �

; ð8Þ

c2 u; uj
� �

� min c1 uið Þ; uj
� �� �

; ð9Þ

b2 ui; uj
� �

� max b1 uið Þ; b1 uj
� �� �

; ð10Þ

and satisfy the condition,

0� a2 ui; uj
� �

þ c2 ui; uj
� �

þ b2 ui; uj
� �

� 1; ð11Þ

For any ui; uj
� �

�Ê.

Example 4 Let �G ¼ U; Ê
� �

be a PFG where U ¼
u1; u2; u3; u4f g are the set of nodes and Ê ¼ c1; c2; c3; c4f g

is the set of arcs then PFG shown in Fig. 4.

3 Covering and matching in picture fuzzy
graph

The definition of covering and matching are discussed in

this section. Strong arcs are used in picture fuzzy graphs

(PFGs). Many interesting results were discussed and

developed. Initially, we define strong node cover (SNC) in

PFG.

Definition 6 Let �G ¼ U; Ê
� �

be a PFG. A node and a

strong arc occurrence to it are said to strong cover each

other. The set �Z of the node that envelops all strong arcs

(SAs) of PFG �G is called SNC in �G:The membership value

of SNC �Z is defined a �M1
�Z

� �
¼

P
�u� �Za1 �u; uð Þ, the neutral

value of SNC �Z is defined as �M2
�Z

� �
¼

P
�u� �Zc1 �u; uð Þ and

nonmembership value of SNC �Z is defined as

�M3
�Z

� �
¼

P
�u� �Zb1 �u; uð Þ, where a1 �u; uð Þis the least value of

membership, c1 �u; uð Þ is the least value of neutral and

b1 �u; uð Þ is the greatest value of nonmembership. The strong

node covering the number of PFG �G is defined by X0
�Gð Þ ¼

X0 ¼ X10;X20;X30ð Þ; where (X10;X20) are the least mem-

bership and least neutral value of SNC of �G and X30 is the

greatest non-membership value of SNC of �G. A SNC with

the least membership value, least neutral value, and

greatest nonmembership value in a PFG �G are said to be

the least strong node cove.

Theorem 1 Suppose �G ¼ ðU; ÊÞ be a complete PFG

where X10;X20;X30 are defined as X10 ¼ ~n� 1ð Þa2 �u; uð Þ,
X20 ¼ ~n� 1ð Þc2 �u; uð Þ and, X30 ¼ ~n� 1ð Þb2 �u; uð Þ; where ~n

shows the number of nodes in �G. Where a2ð�u; uÞ, c2ð�u; uÞ
is membership value, neutral value, and b2 �u; uð Þ is non-

membership value of the weakest arc in �G.

Proof Since �G ¼ ðU; ÊÞ is a complete PFG then every

node is associated in �G and all of its arcs are strong. Hence,

the strong cover node of �G is shaped by any set of ðn� 1Þ
nodes. Let �u be a node in �G having the least membership

value, neutral value, and greatest nonmembership value.

Let u1; u2. . .un�1 be the node connected to�u. The arc is

�u; u1ð Þ; �u; u2ð Þ; . . .ð�u; tn�1Þ of all weakest arc of �G with

membership strength is a2 �u; uð Þ; neutral strength is c2 �u; uð Þ
and nonmembership strength of each arc is equal to

b2 �u; uð Þ where �Z� u1; u2. . .unf g: Hence the set of U is U ¼
u1; u2. . .::un�1f g nodes from SNC of �G with �M1

�Z
� �

¼

Fig. 3 IFG
Fig. 4 PFG
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P
ui� �Z

a2 �u; uið Þ; i ¼ 1; 2; . . . is the least value of member-

ship of SE incident on u1 then

X10 ¼ a2 �u; uð Þ þ a2 �u; uð Þ. . .::þ a2 �u; uð Þ n� 1ð Þtime½ �

where a2 �u; uð Þ is the weakest arc in �G0 s membership

value. Hence X10 ¼ n� 1ð Þa2 �u; uð Þ:

Similar to that.

�M2
�Z

� �
¼

P
ui� �M

c2 �u; uið Þ, i ¼ 1,2; 3; . . .n; is the least

neutral value of strong arc occurrence on u1 then X20 ¼
c2ð�u; uÞ þ c2ð�u; uÞ. . .:þ c2ð�u; uÞ½ðn� 1Þ time�:

Where c2 �u; uð Þ is the neutral value of the weakest arc in
�G. Hence X20 ¼ n� 1ð Þc2 �u; uð Þ:
Similar to that,

�M3
�Z

� �
¼

P
ui� �Z

b2 �u; uð Þ; i ¼ 1,2; 3; . . .::n; is the great-

est value of nonmembership of strong arc incident on u1
then X30 ¼ b2ð�u; uÞ; b2ð�u; uÞ. . .:b2ð�u; uÞ½ n� 1ð Þtime�
where b2 �u; uð Þ is the nonmembership value of the weakest

arc in �G:Hence X30 ¼ n� 1ð Þb1 �u; uð Þ:

Theorem 2 �j is complete bipartite PFG with partite set �U1

and �U2 then

X10 �jð Þ ¼ min �M1
�U1

� �
; �M1

�U2

� �� �
;

X20 �jð Þ ¼ min �M2
�U1

� �
; �M1

�U2

� �� �
;

X30 �jð Þ ¼ max �M3
�U1

� �
; �M3

�U2

� �� �
:

Proof Since �j is a complete bipartite PFG. Consequently,

all of its arcs are strong. Furthermore, each of the nodes in
�U1 is associated with all of the nodes in �U2, and vice versa.

The collection of all arcs of �j is the union of a set of all

arcs occurrence to every node in �U1 and the collection of

all arcs occurrence to every node in �U2:Also, �U1; �U2, and
�U1 [ �U2 are PFG in �j: It’s clear that,

�M1
�U1 [ �U2

� �
[ �M1

�U1

� �
and �M1

�U1 [ �U2

� �
[M1

�U2

� �
:

Therefore,

X10 �jð Þ ¼ min �M1
�U1

� �
; �M1

�U2

� �� �
:

And,

�M2
�U1 [ �U2

� �
[ �M2

�U1

� �
and �M2

�U1 [ �U2

� �
[ �M2

�U2

� �
:

Therefore,

X20 �jð Þ ¼ min �M2
�U1

� �
; �M2

�U2

� �� �
:

Similarly

�M3
�U1 [ �U2

� �
[ �M3

�U1

� �
and �M3ð �U1 [ �U2Þ[ �M3ð �U2Þ:

And

X30 �jð Þ ¼ max �M3
�U1

� �
; �M3

�U2

� �� �
:

Theorem 3 If �G ¼ U; Ê
� �

is a picture fuzzy cycle (PFC)

and g is a crisp cycle (CC) then

X10
�Gð Þ¼ min �M1ð �ZÞj �Z is anSNCin �Gwith j �Zj�d~n

2
e

� 	
;

X20
�Gð Þ¼ min �M2ð �ZÞj �Z is anSNCin �Gwith jXj�d~n

2
e

� 	
;

and

X30
�Gð Þ¼ max �M3ð �ZÞj �Z is anSNCin �Gwith j �Zj�d~n

2
e

� 	
:

Proof Every arc in a PFC is strong. The SNC number of �G

is d ~n
2
e because every arc is strong; while the number of

strong nodes in PFG and CC g are the same, since every arc

is strong in both graph. Consequently in the SNC of �G d ~n
2
e

is the smallest number of nodes so,

X10
�Gð Þ¼ min �M1ð �ZÞj �Z is anSNCin �Gwith j �Zj�d~n

2
e

� 	
;

X20
�Gð Þ¼ min �M2ð �ZÞj �Z is anSNCin �Gwith j �Zj�d~n

2
e

� 	
;

and

X30
�Gð Þ¼ max �M3ð �ZÞj �Z is anSNCin �Gwith j �Zj�d~n

2
e

� 	
:

Definition 7 If there is no strong arc between two nodes in

PFG �G; then they are said to be strongly independent. A

strong independent set (SIS) is defined as any collection in
�G that contains at least two strongly independent nodes.

Definition 8 In a PFG �G the membership value of SIS D is

defined as �M1 Dð Þ ¼ R �u�Da2 �u; uð Þ where a2 �u; uð Þ shows the
least value among the membership values of strong arcs

occurrence on �u and neutral value of an SIS D in a PFG �G

is defined as �M2 Dð Þ ¼ R �u�Dc2 �u; uð Þ where c2 �u; uð Þ denotes
the least value among the neutral values of strong arcs

occurrence on �u and nonmembership value of an SIS D in a

PFG �G is defined as �M3 Dð Þ ¼ R �u�Db2 �u; uð Þ where b2 �u; uð Þ
denotes the greatest value among the non-membership

values of strong arcs occurrence on �u. A0
�Gð Þ ¼ A0 ¼

A10;A20;A30ð Þ represents and defines the strong indepen-

dent number of a PFG �G where A20;A30ð Þ greatest mem-

bership values and greatest neutral values of D in �G and

A30 is least nonmembership values of D in �G:The strong
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independent set within the greatest membership values,

neutral values, and least nonmembership values in a PFG �G

is known as the greatest strong SIS of nodes.

Theorem 4 If PFG �G ¼ U; Ê
� �

is complete. Then A10 ¼
a2 �u; uð Þ;A20 ¼ c2 �u; uð Þ and A30 ¼ b2 �u; uð Þ where a2 �u; uð Þ;
c2 �u; uð Þ and b2 �u; uð Þ are the membership, neutral, and

nonmembership values of the weakest arc in �G.

Proof Since �G ¼ U; Ê
� �

is a complete PFG. Therefore, all

of the nodes are associated with each other vertices in �G,

and all of its arcs are strong. So, there is single SIS, which

is D ¼ �uf g: Therefore the result follows.

Theorem 5 �j is complete bipartite PFG with partite sets �U

1 and �U 2 then,

A10 �jð Þ ¼ max �M1
�U1

� �
; �M1

�U2

� �� �
;

A20 �jð Þ ¼ max �M2
�U1

� �
; �M2

�U2

� �� �
;

A30 �jð Þ ¼ min �M3
�U1

� �
; �M3

�U2

� �� �
:

Proof Since �j is a complete bipartite PFG. Consequently,

all of its arcs are strong Furthermore, each of the nodes in
�U1 is linked to all the nodes in �U2, and each of the nodes in
�U2 is linked to all of the nodes in �U1. Therefore �U1 and �U2

SISs in �j:Hence

A10 �jð Þ ¼ max �M1
�U1

� �
; �M1

�U2

� �� �
;

A20 �jð Þ ¼ max �M2
�U1

� �
; �M2

�U2

� �� �
;

and

A30 �jð Þ ¼ min �M3
�U1

� �
; �M3

�U2

� �� �
:

Theorem 6 Let �G ¼ ðU; ÊÞ is a PFC and g represents a

crisp cycle (CC) then

A10
�Gð Þ¼ max �M1ð �ZÞj �Z is anSNCin �Gwith j �Zj� ~n

2


 �� 	
;

A20
�Gð Þ¼ max �M2ð �ZÞj �Z is anSNCin �Gwith j �Zj� ~n

2


 �� 	
;

and

A30
�Gð Þ¼ min �M3ð �ZÞj �Z is anSNCin �Gwith j �Zj� ~n

2


 �� 	
:

Proof As so every arc in a PFC is strong. The SNC

number of �G is ~n
2

� �
because the number of nodes is SIS in g

and �G are the same. After all, in both graphs, each arc is a

strong arc. So, in the SNC in �G ~n
2

� �
is the greatest number of

nodes. Thus,

A10
�Gð Þ¼ max �M1ð �ZÞj �Z is anSNCin �Gwith j �Zj� ~n

2


 �� 	
;

A20
�Gð Þ¼ max �M2ð �ZÞj �Z is anSNCin �Gwith j �Zj� ~n

2


 �� 	
;

and

A30
�Gð Þ¼ min �M3ð �ZÞj �Z is anSNCin �Gwith j �Zj� ~n

2


 �� 	
:

Definition 9 Let �G ¼ ðUÊÞ be an associated PFG. The

collection ~N of strong arcs (SAs) that envelops all the

nodes of PFG �G is known as SAC in �G: �M1
~N

� �
¼

P
�u;uð Þ2 ~Na2ð�u; uÞ; �M2

~N
� �

¼
P

�u;uð Þ2 ~Nc2ð�u; uÞ and, �M3ð ~NÞ ¼P
�u;uð Þ2 ~Nb2ð�u; uÞ wherea2ð�u; uÞ, c2ð�u; uÞ show the mem-

bership, neutral values of SAC and b2ð�u; uÞ shows the non-
membership values of SAC ~N respectively.

X1ð �GÞ ¼ X1 ¼ ðX11;X21;X31Þ is the SAC number of a

PFG �G, where X11;X21 are the least values of membership,

least values of neutral in the SAC of PFG �G and X31 is the

greatest value of non-membership in SAC of PFG �G: A

SAC with the least membership value, neutral value, and

greatest non-membership value in a PFG �G is said to be the

least strong arc cover (SAC).

Theorem 7 If �G ¼ U; Ê
� �

is a complete PFG then

X11ð �GÞ¼ min �M1ð ~NÞj ~N is aSAC in �Gwith j ~Nj� ~n

2


 �� 	
;

X21
�Gð Þ¼ min �M2ð ~NÞj ~N is aSAC in �Gwith j ~Nj� ~n

2


 �� 	
;

and

X31
�Gð Þ¼ max �M3ð ~NÞj ~N is aSAC in �Gwith j ~Nj� ~n

2


 �� 	
:

Proof Every node in complete PFG �G is linked to each

node of �G; as well as its arcs are strong. Furthermore, the

SAC of number �G is d ~n
2
e; because all arcs are strong in

complete PFG and the crisp graph, so the number of strong

arcs in both graphs is the same. Thus, the smallest number

of arcs in �G is ~n
2

� �
. Therefore,

X11
�Gð Þ¼ min �M1ð ~NÞj ~N is aSAC in �Gwith j ~Nj� ~n

2


 �� 	
;
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X21
�Gð Þ ¼ min �M2ð ~NÞj ~N is a SAC in �G with j ~Nj � ~n

2


 �� 	
;

and

X31
�Gð Þ ¼ max �M3ð ~NÞj ~N is a SAC in �G with j ~Nj � ~n

2


 �� 	
:

Theorem 8 �j is complete bipartite PFG with a partite set
�U1 and �U2, then

X11 �jð Þ ¼ min �M1ð ~NÞj ~N is a SAC in �j with j ~Nj max � �U1

�� ��j �U2

� �� �
;

X21 �jð Þ ¼ min �M2ð ~NÞj ~N is a SAC in �j with j ~Nj max � �U1

�� ��j �U2

� �� �
;

and

X31 �jð Þ ¼ max �M3ð ~NÞj ~N is a SAC in �j with j ~Nj max � �U1

�� ��j �U2

� �� �
:

Proof Since �j is a complete bipartite PFG. Consequently,

all of its arcs are strong. Furthermore, all of the nodes in �U1

is associated to all of the nodes in �U2, and each of the

nodes �U2 is associated to all of the nodes in �U 1. The arc

covering a number of �j is �U1 ;j j �U2

�� ��� �
; since every arc is

strong in a complete bipartite PFG; in both graphs the

number of strong arcs is the same. As a result, the smallest

number of arcs in the SAC in �j is fj �U1j; j �U2jg: Thus,
X11 �jð Þ ¼ min �M1ð ~NÞj ~N is aSAC in �jwith j ~Njmax� �U1

�� ��j �U2

� �� �
;

X21 �jð Þ ¼ min �M2ð ~NÞj ~N is a SAC in �j with j ~Nj max � �U1

�� ��j �U2

� �� �
;

and

X31 �jð Þ ¼ max �M3ð ~NÞj ~N is a SAC in �j with j ~Nj max � �U1

�� ��j �U2

� �� �
:

Theorem 9 Let �G ¼ ðU; ÊÞ be a PFG and �g is a crisp cycle
(CC), then

X11
�Gð Þ ¼ min �M1ð ~NÞj ~N is a SAC in �j with j ~Nj � ~n

2


 �� 	
;

X21
�Gð Þ ¼ min �M2ð ~NÞj ~N is a SAC in �j with j ~Nj � ~n

2


 �� 	
;

and

X31
�Gð Þ ¼ max �M3ð ~NÞj ~N is a SAC in �j with j ~Nj � ~n

2


 �� 	
:

Proof Since every arc in a PFG is strong. Furthermore,

while the number of SAs in PFG and the CC �g are the

same, as each arc is strong in both graphs, so the SAC of �G

is d ~n
2
e: As a result, in the SAC of d ~n

2
e is the least number of

arcs. Hence

X21
�Gð Þ ¼ min �M1ð ~NÞj ~N is a SAC in �j with j ~Nj � ~n

2


 �� 	
;

X21
�Gð Þ ¼ min �M2ð ~NÞj ~N is a SAC in �j with j ~Nj � ~n

2


 �� 	
;

and

X31
�Gð Þ ¼ max �M3ð ~NÞj ~N is a SAC in �j with j ~Nj � ~n

2


 �� 	
:

Definition 10 A set of strong arcs is denoted by Q in a

PFG �G ¼ ðU; ÊÞ; is known as SIS of arcs since none of its

arcs allocates a node, in �G ¼ ðU; ÊÞQ is also known as

strong matching (SM).

Definition 11 If ð�u; uÞ 2 Q, here Q is SM in a PFG �G ¼
ðU; ÊÞ: Then it is stated that �u is strongly matched to u by

Q.

�M1 Qð Þ ¼
X

�u;u2Qa2 �u; uð Þ; �M2 Qð Þ ¼
X

�u;u2Qc2 �u; uð Þ;

and �M3ðQÞ ¼
P

�u;u2Qb2ð�u; uÞ are the membership, neutral,

and non-membership values of the SAC Q;

correspondingly.

A1ð �GÞ ¼ A1 ¼ ðA11;A21;A31Þ is the SA independent

number or SM number of PFG �G ¼ ðU; ÊÞ; where A11

and A21 are the greatest membership and neutral values of

the SMs of �G and A31 represents the least non-membership

value. An SM with the greatest membership value, greatest

neutral value, and least nonmembership value in a PFG �G
is said to be the greatest SM.

Theorem 10 Let �G ¼ ðU; ÊÞ be a complete PFG then

A11
�Gð Þ ¼ max �M1ðQÞjQ is an SM in �G with jQj � ~n

2


 �� 	
;

A21
�Gð Þ ¼ max �M2ðQÞjQ is an SM in �G with jQj � ~n

2


 �� 	
;

and

A31
�Gð Þ ¼ min �M3ðQÞjQ is an SM in �G with jQj � ~n

2


 �� 	
:

where ~n denotes the number of nodes in �G.
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Proof Every node in complete PFG is associated to each

other in �G, and all of its arcs are strong. Furthermore, the

SM number �G is ~n
2

� �
. Because each arc is strong in com-

plete PFG and the crisp graph. So, in both graphs, the SM

number is the same. Thus in the SM �G is ~n
2

� �
the greatest

number of arcs. Thus.

A11
�Gð Þ ¼ max �M1ðQÞjQ is an SM in �G with jQj � ~n

2


 �� 	
;

A21
�Gð Þ ¼ max �M2ðQÞjQ is an SM in �G with jQj � ~n

2


 �� 	

and

A31
�Gð Þ ¼ min �M3ðQÞjQ is an SM in �G with jQj � ~n

2


 �� 	
:

Theorem 11 �j is complete bipartite PFG with a partite set
�U 1 and �U 2 then

A11 �jð Þ ¼ max �M1ðQÞjQ is an SM in �j with jQj � min f �U1j; j �U2jg
� �

;

A21 �jð Þ ¼ max �M2ðQÞjQ is an SM in �j with jQj � min f �U1j; j �U2jg
� �

;

and

A31 �jð Þ ¼ min �M3ðQÞjQ is an SM in �j with jQj � min f �U1j; j �U2jg
� �

:

Proof Since �j is a complete bipartite PFG. Consequently,

every one of the arcs is strong. Furthermore, every node in
�U 1 is associated to every node in �U 2, and all of the nodes

in �U2 are associated with all of the nodes in �U 1. The

Matching number of �j is �U1

�� ��; �U2

�� ��� �
, because all arcs are

strong in complete bipartite PFG and the complete bipartite

crisp graphs; consequently both graphs have the same

number of SM. Hence, in the SM of �j is �U1

�� ��; �U2

�� ��� �
the

greatest number of arcs. Thus.

A11 �jð Þ ¼ max �M1ðQÞjQ is an SM in �j with jQj � min f �U1j; j �U2jg
� �

;

A21 �jð Þ ¼ max �M2ðQÞjQ is an SM in �j with jQj � min �U1j; j �U2jg
� �

;

and

A31 �jð Þ ¼ min �M3ðQÞjQ is an SM in �j with jQj � min f �U1j; j �U2jg
� �

:

Theorem 12 Let �G ¼ ðU; ÊÞ be a PFG and g is a crisp

cycle (CC), then

A11
�Gð Þ ¼ max �M1ðQÞjQ is an SM in �G with jQj � ~n

2


 �� 	
;

A21
�Gð Þ ¼ max �M2ðQÞjQ is an SM in �G with jQj � ~n

2


 �� 	
;

and

A31
�Gð Þ ¼ min �M3ðQÞjQ is an SM in �G with jQj � ~n

2


 �� 	
:

Proof Since each arc in a PFG is strong. Furthermore, ~n
2

� �

is the SM number of �G, because every arc is strong in both

graphs �G and g, since the number of SM in PFG and the

crisp cycle g are the same. Thus, in the SM of �G is ~n
2

� �
is the

greatest number of arcs. Hence

A11
�Gð Þ ¼ max �M1ðQÞjQ is an SM in �G with jQj � ~n

2


 �� 	
;

A21
�Gð Þ ¼ max �M2ðQÞjQ is an SM in �G with jQj � ~n

2


 �� 	
;

and

A31
�Gð Þ ¼ min �M3ðQÞjQ is an SM in �G with jQj � ~n

2


 �� 	
:

Example 5 Figure 5 shows PFG �G ¼ ðU; ÊÞ. In PFG �G

arcs show the solid lines ðu; ~nÞ; ð~n; �uÞ and ðŵ; uÞ are strong

arcs while ðŵ; uÞ is not SE. So SNCs are
�H1 ¼ u; ~nð Þ; �H2 ¼ u; �uð Þ; �H3 ¼ ðŵ; ~nÞ, �H4 ¼ ðu; ŵ; ~nÞ,-
, �H6 ¼ ðu; ŵ; �UÞ, �H7 ¼ ðŵ; ~n; �u) and �H8 ¼ ðu; ŵ; ~n; �uÞ:

The following outcomes we get for each SNC,

�M �H1

� �
¼ 0:1 þ0:1; 0:2þ 0:1; 0:6þ 0:5 ¼ 0:2; 0:3; 1:1ð Þ,

�M �H2

� �
¼ 0:2; 0:3; 1:1ð Þ; �M �H3

� �
¼ 0:4; 0:3; 1ð Þ;

�M �H4

� �
¼ 0:5; 0:5; 1:7ð Þ, �Mð �H5Þ ¼ ð0:3; 0:4; 1:7Þ,

�M �H6

� �
¼ 0:5; 0:5; 1:6ð Þ; MMM �H7

� �

¼ 0:5; 0:4; 1:6ð Þ; MMM �H8

� �
¼ 0:6; 0:6; 2:2ð Þ:

Now SNC number of �G is

X0ð �GÞ ¼ X0 ¼ ðX10;X20;X30Þ ¼ ð0:2; 0:3; 2:2Þ:
In this case, there are no minimum strong independent

covers and no minimum SNCs.

The nodes ŵ and �u are strongly independent because

they are not connected by strong arcs. However, they are

not independent because they are neighbors.

The SISs are �H1 ¼ ðu; �uÞ; �H2 ¼ ðŵ; ~nÞ; �H3 ¼ ðŵ; �uÞ;
Now we find the strong independent number. �Mð �H1Þ ¼
ð0:3þ 0:3; 0:2þ 0:4; 0:5þ 0:3Þ ¼ ð0:6; 0:6; 0:8Þ;
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�M �H2

� �
¼ 0:6; 0:4; 1ð Þ, Mð �H3Þ ¼ ð0:6; 0:6; 0:8Þ: Strong

independent number of �G is A0ð �GÞ ¼ A0 ¼
ðA10;A20;A30Þ ¼ ð0:6; 0:6; 0:8Þ; the greatest values of

strong independent set is ð0:6; 0:6; 0:8Þ:
The SACs are

~N1 ¼ fðu; ŵÞ; ð~n; �uÞg, ~N2 ¼ fðu; ŵÞ; ð~n; Þ; ðu; ~nÞg. Now we

find the number of SACs. �M ~N1

� �
¼

0:3þ 0:3; 0:2þ 0:4; 0:5þ 0:3ð Þ ¼ 0:6; 0:6; 0:8ð Þ: Simi-

larly �Mð ~N2Þ ¼ ð0:9; 0:8; 1:13).
By definition of SAC numbers is A1ð �GÞ ¼ A1 ¼

ðA11;A21;A31Þ ¼ ð0:6; 0:6; 1:13Þ; there is no least SAC in

any of the strong node covers.

The only strong matching (SM) of �G is

Q ¼ ðu; ŵÞ; ð~n; �uÞ:
By definition of SM, we find SM number, that is

�M Qð Þ ¼ 0:3þ 0:3; 0:2þ 0:4; 0:5þ 0:3ð Þ ¼ 0:6; 0:6; 0:8ð Þ:

Theorem 13 Let �G ¼ ðU; ÊÞ be a PFG of order ðm; ~nÞ
such that there are no isolated vertices in �G. Then for each

graph of this type,

X0 þ A0 ¼ �M Uð Þ�m:

(ii)X1 þ A1 � ~n:

Proof Let X0 ¼ �MðR̂0Þ, where R̂0 the least SNC of �G.

Then U � R̂0 is an SIS of the nodes. That mean node in

U � R̂0 are incident on strong arcs in �G:

Therefore,

X0 � �M U � N0ð Þ ¼ �M Uð Þ � A0;

i:e:X0 þ A0 � �M Uð Þ:
ð12Þ

Let X0 ¼ �Mðc0Þ, where c0 the greatest SIS of the node in

is �G. That is no nodes in c0 are connected by a strong arc,

so the node in U � c0 strongly covers all the nodes in

c0:Hence,
U � c0 is an SNC of \bar{G} and X0 is the least value of

such SNCs. Thus,

A0 � �M U � c0ð Þ ¼ �M Uð Þ � A0;

i:e:;X0 þ A0 � �M Uð Þ:
ð13Þ

From (12) and (13), we have X0 þ A0 ¼ �MðUÞ:
Since �M Uð Þ�m according to the definition of �MðUÞ:
Hence,

X0 þ A0 ¼ �M Uð Þ�m: ð14Þ

Since the value of the SA is taken into consideration

when determining X0;A0. The second inequality follows

immediately since m is the sum of the node values.

Definition 12 Let �G ¼ ðU; ÊÞ be a PFG and Q be an SM in
�G:If Q strongly matches every node of �G to some node of

\bar{G}. Then Q is called perfect strong matching (PSM).

Example 6 In the PFG �G of Fig. 6, all arcs are strong. The

set Q1 ¼ ða; bÞ; ðc; dÞg; Q2 ¼ a; cð Þ; b; dð Þf g; and Q3 ¼
a; dð Þ b; cð Þf g are PSM with values �M Q1ð Þ ¼

0:3þ 0.2,0.3þ 0.1,0.4þ 0:4ð Þ ¼ 0.5,0.4,0.8ð Þ; �M Q2ð Þ ¼
0:3þ 0.2,0.1þ 0.1,0.4þ 0:5ð Þ ¼ 0.5,0.2,0.9ð Þ and

�MðQ3Þ ¼ ð0:2þ 0.4,0.1þ 0.3,0.2þ 0:5Þ ¼ 0.6,0.4,0.7:

4 Paired domination in picture fuzzy graph

In this part, we will discuss paired domination (PD), strong

paired domination (SPD), and perfect paired domination

using strong arcs based on perfect strong matching (PSM)

and proof well-known results.

Definition 13 In a PFG �G ¼ U; Ê
� �

; a node u is said to

strongly dominate itself and each of its strong neighbors of

u. i.e., u has strongly dominated the node in R̂ u½ �:If any

node of �uð �GÞ � �Z is a strong neighbor of several nodes in

the �Z nodes of �G, then that set of nodes is a strong domi-

nating set of �G.

Definition 14 �M1ð �ZÞ ¼
P

�u2 �Z �a2ð�u; uÞ is the membership

value, �M2ð �ZÞ ¼
P

�u2 �Zc2ð�u; uÞ is the neutral value and

�M3ð �ZÞ ¼
P

�u2 �Zb2ð�u; uÞ is non-membership value of the

strong dominating set (SDS) �Z, where a2ð�u; uÞ and c2ð�u; uÞ
denote the least value of membership and neutral value of

Fig. 5 Strong covering in PFG
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the SAs occurrence on �u while b2ð�u; uÞ denotes the greatest
values of non-membership of such arcs. The SD number of

a PFG �G denotes and defines as Bð �GÞ ¼ B ¼ ðB1;B2;B3Þ
where B1;B2 denote the least membership value and neu-

tral value of the SD set of �G: and B3 denotes the greatest

non-membership value of such sets.

Definition 15 Let �G ¼ ðU; ÊÞ be a PFG. If �Z is a strong

dominating set and the induced picture fuzzy subgraph

(PFSG) �Z contains a perfect strong matching (PSM), the set

�Z � U of nodes is called a strong paired domination (SPD)

set. The SPD set �Z membership value is defined as

�M1
�Z

� �
¼

P
�u2 �Z �a2ð�u; uÞ; where �a2ð�u; uÞ is the least values

of membership of the SAs occurrence on�u, and neutral

value of the SD set �Z is defined as �M2ð �ZÞ ¼
P

�u2 �Zc2ð�u; uÞ
where c2ð�u; uÞ is the least neutral value of the SAs occur-

rence on ù and non-membership value of the SD set �Z is

defined as.

�M3ð �ZÞ ¼
P

�u2 �Zb2ð�u; uÞ; where b2ð�u; uÞ is the greatest

value of the non-membership of the SAs occurrence on �u:

The SPD number of a PFG �G is denoted by Pð �GÞ ¼ P ¼
ðP1; P2; P3Þ where P1 and P2 show the least value of

membership and the least neutral value of SPD sets of �G
while P3 denotes the greatest value of non-membership of

such set.

Example 7 Let PFG �G ¼ ðU; ÊÞ strong arcs are

ðu; ~nÞ; ð~n; �uÞ; ðŵ; �uÞ while ðŵ; uÞ is not the strong arc in

PFG �G.
�Z1 ¼ u; ~nð Þ; �Z2 ¼ ŵ; �uð Þ; �Z3 ¼ u; ~n; ŵ; �uð Þ are paired

dominating sets. Now we found the values of strong

dominating.

�M �Z1

� �
¼ 0:3þ 0:1; 0:2þ 0:2; 0:4þ 0:4ð Þ
¼ 0:4; 0:4; 0:8ð Þ;

�M �Z2

� �
¼ 0:2; 0:4; 0:9ð Þ;

and

�Mð �Z3Þ ¼ ð0:6; 0:8; 1:8Þ:

By definition of SPD number is defined Pð �GÞ ¼ P ¼
ðP1; P2; P3Þ ¼ ð0.2,0.4,1.8Þ is SPD number in Fig. 7

Theorem 14 If �G ¼ U; Ê
� �

be a complete PFG then

P1 �Gð Þ ¼ 2a2 �u; uð Þ; P2 �Gð Þ ¼ 2c2 �u; uð Þ and P3 �Gð Þ ¼
2b2 �u; uð Þ where a2 �u; uð Þ is membership values, c2 �u; uð Þ are
neutral values b2 �u; uð Þ is nonmembership values of the

weakest arc in �G:

Proof Because �G ¼ U; Ê
� �

be a complete PFG, all of its

nodes are associated with the others, and all of its arcs are

solid. If �u; uf g is two nodes in any set of �G, then such set

forms a strong paired dominant collection. In this manner

P1 �Gð Þ ¼ a2 �u; uð Þ þ a2 �u; uð Þ ¼ 2a2 �u; uð Þ;

P2 �Gð Þ ¼ c2 �u; uð Þ þ c2 �u; uð Þ ¼ 2c2 �u; uð Þ;

and

P3 �Gð Þ ¼ b2 �u; uð Þ þ b2 �u; uð Þ ¼ 2b2 �u; uð Þ:

Theorem 15 SPD numbers for complete bipartite PFG �j
are P1 �jð Þ ¼ 2a2 �u; uð Þ; P2 �jð Þ ¼ 2c2 �u; uð Þ and

P3ð�jÞ ¼ 2b2ð�u; u) where a2ð�u; uÞ; c2ð�u; uÞ and b2 �u; uð Þ are
membership, neutral, and nonmembership value of weakest

arc in K:

Proof By definition of complete bipartite PFG�j, all of its
arcs are strong. Furthermore, every one of the nodes in U1

is linked to all the nodes in U2. Therefore, any collection in

�j that includes two nodes, one in U1 and different in U2 is

an SPD set. Let �u; uf g end nodes of any weakest arc in

ð�u; uÞ in �j such that �u�U1 and u�U2 after that f�u; ug create

an SPD set. In this manner

P1 �jð Þ ¼ a2 �u; uð Þ þ a2 �u; uð Þ ¼ 2a2 �u; uð Þ;
P2 �jð Þ ¼ c2 �u; uð Þ þ c2 �u; uð Þ ¼ 2c2 �u; uð Þ;

and

P3 �jð Þ ¼ b2 �u; uð Þ þ b2 �u; uð Þ ¼ 2b2 �u; uð Þ:

Fig. 6 Perfect strong matching
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5 Conclusion

This study used the concept of strong arcs in a picture

fuzzy graph (PFG) to define some innovative notions of

covering and paired domination in PFG. Since the PFG is a

generalization of FGs and IFGs, so we considered this

extended structure for our study. The FGs and IFGs have

certain limitations that are covered by PFGs. Three fuzzy

valued mappings defining the PFG are membership value,

neutral value, and nonmembership value. The relation

between the concepts of strong node cover, strong inde-

pendent number, strong arc cover, and strong matching in

PFGs using strong arcs are determined. Moreover, we

implemented the paired domination, strong paired domi-

nating set, and strong paired domination number in PFGs

using strong arcs. Additionally, the complete PFG and

complete bipartite PFG have been worked out to find the

strong paired domination number. Every definition is sup-

ported by graphical and theoretical examples. Also, several

interesting properties of the proposed concepts are

investigated.
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