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Abstract
In real-life transportation problems (TPs), the demands, availabilities, transportation capacities, transportation costs, and

fixed charges are uncertain. For this reason, the transported amounts from sources to destinations become uncertain. When

the parameters and the decision variables of a problem are fuzzy in nature, the environment is termed ‘fully fuzzy’.

Nowadays, with the development of infrastructure for transportation, TPs are developed with several conveyances and

routes between sources and destinations. Till now, this type of TPs, i.e., four-dimensional TPs (4DTPs), did not receive

much attention. Considering this type of practical problem, a fully fuzzy multi-item two-stage fixed charge 4DTP (FF-

MITSFC-4DTP) with breakability during the transportation is considered. The problem consists of the models without and

with flexible constraints. Two different methods, the modified graded mean integrated value method (MGMIVM) and an

algorithm based on the order relation of fuzzy numbers, are, respectively, used to convert the fully fuzzy models without

and with flexibility into respective equivalent deterministic problems. The defuzzified deterministic problems are solved

using the generalized reduced gradient (GRG) method through Lingo (18.0) software. The efficiency of the methods is

illustrated by solving a real-life problem numerically and comparing the results with an existing model. Results of

particular TPs of different dimensions and without breakability are obtained and compared. Some managerial insights are

discussed. A sensitivity analysis is presented. The novelty of this investigation is that, for the first time, real-life multi-item

two-stage fully fuzzy 4DTPs with flexible constraints for minimum cost and their appropriate solution methodologies are

presented.

Keywords Fully fuzzy multi-item two-stage fixed charge 4DTP � Flexible constraints � Order relation method �
Modified graded mean integrated value method

1 Introduction

In developing countries like India, Srilanka, etc., some

retail marts such as Big Bazar, Metro cash and carry,

Reliance Fresh, etc. (in India) do the bulk business of home

and consumer durables including cookeries, fruits, veg-

etables, etc. They apply the ‘farm to fork’ theory, i.e.,

procure from farmers/producers/artisans/local wholesalers

directly or centrally by merchandising departments and sell

directly to the consumers removing middlemen, providing

benefits to both customers and producers. They follow the

following supply chain management (SCM) system (cf.

Fig. 1).

Nowadays, big merchants/individual companies doing

the business of the items like ceramic products, marble

items, shoes, etc., also follow the above SCM procedure. In

& Sudeshna Devnath

sd.16ma1102@phd.nitdgp.ac.in

Pravash Kumar Giri

pragiri_su2010@yahoo.com

Seema Sarkar Mondal

seema.sarkar@maths.nitdgp.ac.in

Manoranjan Maiti

mmaiti2005@yahoo.co.in

1 Department of Mathematics, National Institute of

Technology Durgapur, Durgapur 713209, India

2 Department of Mathematics, Government General Degree

College, Dantan-II, Kashmuli 721445, India

3 Department of Applied Mathematics with Oceanology and

Computer Programming, Vidyasagar University,

Midnapore 721102, India

123

Granular Computing (2022) 7:779–797
https://doi.org/10.1007/s41066-021-00295-x(0123456789().,-volV)(0123456789().,-volV)

http://orcid.org/0000-0002-0203-9182
http://crossmark.crossref.org/dialog/?doi=10.1007/s41066-021-00295-x&amp;domain=pdf
https://doi.org/10.1007/s41066-021-00295-x


this process, the procured amounts (availabilities), cus-

tomers’ requirements at outlets (demands), conveyances’

capacities, and transported amounts from collecting centers

to warehouses and from warehouses to outlets are uncer-

tain, which may be considered imprecise in nature.

Moreover, with the development of infrastructures

throughout the world, there are several connecting routes

between different places in a country for travel and trans-

portation. So far, the availability of multi-routes was

ignored for research in the transportation system (TS). All

these above facts motivated us to consider the proposed

model, FF-MITSFC-4DTP, which mimics the earlier

mentioned SCM procedures (cf. Fig. 1) of some national/

international retail marts in developing countries in the

context of present available infrastructural facilities.

The basic TPs are normally designed to minimize

transportation costs/time where the products are trans-

ported from various sources to different destinations under

availability and demand constraints. Hitchcock (1941)

initially developed the 2DTP, which was later modified by

Koopmans (1949). In most real-life situations, products are

delivered from sources to destinations by different con-

veyances like trucks, goods trains, cargo flights, etc. When

various conveyances are available and introduced in TP, it

is called a solid TP (STP) or 3DTP. Haley (1962) discussed

STP, but Shell (1955) first introduced the concept.

Along with source, destination, and choice of con-

veyances, if the choice of different paths/routes between

sources and destinations is considered, the problem

becomes a four-dimensional TPs/4DTPs. There may be

different paths for transporting products from a source to a

destination in real-life scenarios. Some may be very good

and smooth among various routes, some terrible and rough,

some good in condition with many humps, etc. So, for

breakable/damageable products, different paths cause

damage to the products in different percentages. Also,

different routes may have different fixed charges (e.g., toll

tax, public collections). Except for these, weight-based

transportation costs may vary for different paths. These

scenarios affect the total minimum cost or maximum profit

of a TS.

In a TP, from suppliers to retailers, often there may be a

need for a warehouse to stock the items between these two.

So, warehouse plays a vital role in a TS. This type of

problem, where warehouses are present, is called two-stage

TP.

Apart from the regular variable transportation cost,

which generally depends on the products’ quantity, fixed

transportation costs like toll tax, permit fees, etc., are also

collected. This type of TP is called fixed charge TP

(FCTP).

The input data for a problem may not always be pre-

cisely known. If some parameters are vague, the issues are

dealt with by the fuzzy set theory. Zadeh (1965) first pre-

sented the concept of fuzzy set theory. Nowadays, this idea

is used in several problems (Chen et al. 2009; Chen and

Wang, 2010; Shen et al, 2013; Chen and Phuong, 2017).

Recently, Ammar and Emsimir (2021) worked on fuzzy

integer linear programming problems with fully rough

intervals.

Nowadays, in the volatile market, transportation

parameters such as demands at destinations, availabilities

at sources, vehicles’ transportation capacities, and fixed

charges are not precisely defined. These may be defined

imprecisely using fuzzy numbers. To meet the imprecise

demands of this type of TPs, the transported amounts from

sources to destinations can not be deterministic, which is

normally considered by the investigators. In this case, the

transported amounts are also imprecise in a fuzzy sense,

which has been considered by very few investigators.

If all the parameters, including decision variables of a

TP, are fuzzy, then the problem is called a ‘fully fuzzy’ TP.

Some authors (Jalil et al. 2017; Ebrahimnejad 2019) con-

sidered single-stage, two/three-dimensional fully fuzzy TPs

for a single item. Ziqan et al. (2021) investigated fully

fuzzy linear systems with trapezoidal and hexagonal fuzzy

numbers.

In an imprecise environment, availability, demand, and

conveyance capacity constraints may be considered as a

Collected from produc-
ers/local wholesalers
in bulk and kept at

small collecting centers

Distribution cen-
ters/warehouses for
temporary storage,
fixing grades, prices,

etc. using SAP system

Outlets (Reliance
fresh/Big Bazar/etc.)

for sale to the customers

(Sources)
(Warehouses)

(Retailers/Destinations)

transported to

(by lorry, trucks, vans etc.)

transported to

(by lorry, trucks, vans etc.)

Fig. 1 SCM followed by Retail

Marts in India
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matter of degree and can be partially relaxed if necessary to

ensure the feasibility of the problem. These types of con-

straints are called flexible constraints.

Till now, none considered two-stage 4DTPs with flexi-

ble constraints in a fully fuzzy environment considering

multi-item, fixed charge, and breakabilities. To fill up this

vacuum, an FF-MITSFC-4DTP is formulated and solved in

this paper. To deal with this type of model, difficulty arises

in the defuzzification processes of the decision variables.

Here, two types of defuzzification methods are presented,

i.e., MGMIVM and a method using the order relation for

comparing fuzzy numbers, where the flexibility of con-

straints is considered.

In our proposed investigation, FF-MITSFC-4DTPs

without and with flexible constraints are formulated and

defuzzified using two different methods. The first

method—MGMIVM, is applied to defuzzify the problem

without flexible constraints. The second method is to solve

the problem with flexible constraints, defuzzified by an

algorithm based on the order relation of triangular fuzzy

numbers. The deterministic models are solved by the GRG

method using Lingo (18.0) software and illustrated through

a real-life two-stage transportation problem. Results from

these two procedures are compared. An existed problem by

Ezzati et al. (2015) is solved, taking the constraints of this

problem as flexible, and it is shown that the proposed

method gives better results than the previous one. Also, the

proposed model has been solved by the Ezzati et al. (2015)

method, compared with the proposed method, and supre-

macy of our method is established. The importance of

different route considerations is mentioned, i.e., the

necessity of 4DTP formulation is established. Moreover,

some managerial insights in the case of FF-MITSFC-4DTP

are drawn.

In the existing literature, there are some 2DTPs (con-

sidering sources and destinations only), 3DTPs (consider-

ing sources, destinations, and conveyances only), and LP

problems under a fully fuzzy environment. But consider-

ation of different routes between sources and destinations

is very important for the TS. Choice of appropriate routes

for transportation reduces the breakability of the materials,

transportation cost, etc. For this reason, 4DTPs are required

to be developed, taking sources, destinations, conveyances,

and routes into consideration to represent the real-life TPs.

Moreover, in some TPs, transportation constraints are

imprecisely satisfied. Till now, none considered fully fuzzy

4DTP/FF-MITSFC-4DTP along with/without flexible

constraints. Contributions of the present investigation are

as follows:

• For the first time, FF-MITSFC-4DTPs are formulated

with and without flexible constraints for minimum cost.

• Two appropriate methods are presented to transform the

fully fuzzy problems into deterministic ones.

• Real-life examples are solved to illustrate the proposed

models, and some particular models are derived.

• Some managerial insights are presented.

• The importance of the consideration of different routes

for transportation is laid down.

• The efficiencies of the proposed methods are presented

in two ways by solving (1) an existing model (Ezzati

et al. 2015) by our method and (2) the proposed model

by an existing method (Ezzati et al. 2015) and then

comparing the results.

The rest of this paper is organized as follows: Sect. 2

describes a brief literature review related to this work. In

Sect. 3, we describe the problem with all notations and

assumptions. Section 4 describes different solution tech-

niques for the proposed problem. In Sect. 5, the

flowchart of the optimization procedure is given. A

numerical example is explained to illustrate the problem in

Sect. 6. In Sect. 7, we have discussed the numerical results

and some managerial insights. In Sect. 8, the overall con-

clusion with limitations and some future research scopes

are presented. Some preliminaries and an algorithm are

presented in the Appendices, which are used to formulate

and solve the problems.

2 Literature review

2.1 Development of the basic TP to 4DTP

Hitchcock (1941) first presented a traditional TP, i.e.,

2DTP. But in real-life situations, there are many choices of

conveyances available for transportation. Now, a question

arises that which conveyance should be used for cost

minimization/profit maximization. Schell (1955) proposed

an STP, i.e., 3DTP, which included conveyance capacity

limitation. Subsequently, Haley (1962) generalized the idea

of STP. Nowadays, due to the improvement of infrastruc-

ture for transportation, most of the cities are connected

with more than one path/route. Again, the question arises:

which route should be used for economical transportation?

Taking this real-life scenario into consideration, Bera et al.

(2018) extended the STP to a 4DTP.

2.2 Payment of fixed charge

Nowadays, in developing countries, toll taxes are collected

for the maintenance and development of the roads (Na-

tional Highways (NHs) in India). These toll taxes and other

route collections (festival collections, local collections,

etc.) are termed as ‘fixed charge’ and play a vital role in
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minimizing the total transportation costs. In this regard,

Hirsch and Dantzig (1968) proposed a fixed charged TP. In

many cases, fixed charges are uncertain, so they may be

considered as uncertain parameters in an imprecise sense.

Many researchers have considered fixed charges in differ-

ent ways. Giri et al. (2015) assumed the fixed charge as a

fuzzy number, Kundu et al. (2014) considered a type-2

fuzzy number, and Bera et al. (2018) considered it as a

rough interval. Mollanoori et al. (2019) considered two

different types of fixed charge in a single TP. The first part

is up to a specific range of amounts, and then another one is

applied for the rest part.

2.3 Consideration of breakability

The breakability of items also plays a significant role in a

TP. When the products are transported through a very

rough surface, there may be a chance for the products to be

broken. The damage rates increase if the products are made

of mud, ceramic, glass, or other breakable materials. The

products’ breakability depends on the type/choice of route,

distance from the source to destination, product’s material,

etc. So, breakability should be considered in the formula-

tion of a TP. Ojha et al. (2010) formulated a multi-objec-

tive STP with random breakability. Baidya et al. (2015)

considered deterministic breakability in multi-stage TP.

Halder et al. (2017) presented a 4DTP for breakable sub-

stitutable items in a fuzzy environment. Bera et al. (2020)

solved a fixed charge 4DTP for the breakable items under

hybrid random type-2 uncertain environments.

2.4 Development of fuzzy TPs

In a problem, if some parameters are uncertain, then the

uncertainties can be handled using fuzzy numbers. Zadeh

(1965) first presented the concept of fuzzy set theory.

Mendel (2016) used interval type-2 fuzzy set in their

problem. Mondal et al. (2018) presented non-linear inter-

val-valued fuzzy numbers and their applications. Ashraf

et al. (2019) proposed a multi-objective type-2 fuzzy reli-

ability redundancy allocation problem. Melin and Sánchez

(2019) described the optimization of type-1, interval type-

2, and general type-2 fuzzy inference systems. Chakraborty

et al. (2021) used hexagonal fuzzy numbers in the inven-

tory management problem.

2.5 Development of fully fuzzy TPs

In the above-mentioned fuzzy TPs, the parameters such as

cost, availabilities, etc., are considered fuzzy, but not the

decision variable, i.e., the amounts of items to be trans-

ported. If in a TP, the decision variables are also considered

fuzzy along with the parameters, the environment is called

fully fuzzy. Numerous works exist in the literature where a

fully fuzzy environment is considered for 2DTPs (Ezzati

et al. 2015; Yang et al. 2015; Dhanasekar et al. 2017;

Maheswari and Ganeshan 2018; Mishra et al. 2018).

Investigators used different methods to solve these prob-

lems. Further, some researchers (Giri et al. 2015; Jalil et al.

2017) have considered 3DTPs with fixed charge in a fully

fuzzy environment. Yang et al. (2015) solved a fully fuzzy

linear programming problem with consideration of flexible

constraints. Recently, Ebrahimnejad et al. (2019) discussed

a fully fuzzy linear programming problem. Pérez-Cañedo

et al. (2020) solved a fully fuzzy multi-objective linear

programming problem using an epsilon-constraint method.

A gist of the literature reviews is given in Table 1.

3 FF-MITSFC-4DTP model

3.1 Notations

We use the following notations to formulate the models.

~: Denotes fuzzy ( ~A means that A is fuzzy)

†, % : Denote flexibility of � and � types constraints,

respectively

�, �: Denote addition and multiplication of two fuzzy

numbers

Indices

i Index for the suppliers; i ¼ 1; 2; . . .; I

j Index for warehouses; j ¼ 1; 2; . . .; J

k Index for the retailers; k ¼ 1; 2; . . .;K

u Index for conveyances, available for transporting

products

from supplier to warehouse; u ¼ 1; 2; . . .;U

v Index for conveyances, available for transporting

products

from warehouse to retailer; v ¼ 1; 2; . . .;V

p Index for different paths; p ¼ 1; 2; . . .;P

m Index for different products; m ¼ 1; 2; . . .;M

Parameters

~cijupm Unit transportation cost, to transport product m from

supplier

i to warehouse j through the conveyance u along path p

~f ijup Fixed charge for the conveyance u along path p from

supplier i to warehouse j

~c0 jkvpm Unit transportation cost, to transport product m from

warehouse j to retailer k through the conveyance

v along

path p

~f 0jkvp Fixed charge for the conveyance v along path p from

warehouse j to retailer k

~Qim
Availability of product m at supplier i

~Dkm Demand for product m at retailer k

~Eu, ~E0
v Capacities of the conveyances u and v, respectively
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~kijupm Rate of breakability of product m during

transportation from supplier i to warehouse

j through conveyance u via path p

~k0jkvpm Rate of breakability of product m during transportation

from warehouse j to retailer k through conveyance

v via path p

Decision variables

~xijupm Quantity of product m dispatched by supplier i for
warehouse j through conveyance u via path p

yijup Binary decision variable for fixed charge, if transported

from supplier i to warehouse j through conveyance u
via path p then yijup=1, otherwise 0

~x0 jkvpm Quantity of product m dispatched by warehouse j for
retailer k through conveyance v via path p

y0jkvp Binary decision variable for fixed charge, if transported

from warehouse j to retailer k through conveyance v
via path p then y0jkvp=1, otherwise 0

3.2 Assumptions

To construct the model, we assume the following:

1. This is a two-stage TP, i.e., first, the products are sent

from suppliers to the warehouse for screening/storage

and then transported to the retailers as per demands.

2. There is enough space to store the products in the

warehouses.

3. Items are breakable, and the breakability depends on

the material of the products, conveyances, and routes.

4. Several conveyances and routes are available for

transportation from suppliers to warehouses and ware-

houses to retailers.

3.3 Description of the model

Mimicking the two-stage SCM system of national and

international retail marts (cf. Fig. 1), i.e., following ‘pro-

curement at collection centers (sources) ! storage at dis-

tribution centers (warehouses) ! outlets for sale (retailers/

destinations)’ we formulate a two-stage fully fuzzy prob-

lem. In this problem, after buying the breakable products

from manufacturers/suppliers (sources), the products are

sent to the warehouses for storage and screening and then

the good products are transported to the retailers (destina-

tions) for sale (cf. Fig. 2).

The proposed cost minimization models with the above

assumptions and notations are formulated in a fully fuzzy

environment. Let there are I suppliers, J warehouses, K

retailers to transport M types of products through P paths.

U and V different types of conveyances are available from

suppliers to warehouses and warehouses to retailers,

respectively. Here, the availabilities, demands, capacities

and transported amounts, transportation costs, and fixed

charges are imprecise and represented by fuzzy numbers.

The problem is to find the transported amounts from

sources to warehouses and warehouses to destinations so

that total transportation cost is minimum, satisfying the

availability, demand, and conveyances’ capacities

constraints.

Table 1 Comparison with related works

Methods Dimension Item Objective Stage fixed

charge

Environment Flexibility Reduction method

Ezzati et al. (2015) – Single Single 1 X FF X Lexicographic order relation

Yang et al. (2015) 2 Single Single 1 X FF U Different order relation

Giri et al. (2015) 3 Multi Single 1 U FF X CCP, GMIV, MGMIV and EV method

Dhanasekar et al.

(2017)

2 Single Single 1 X FF X Hungarian and MODI method

Jalil et al. (2017) 3 Single Multi 1 X FF X Ranking function and the property of

equality between fuzzy numbers

Maheswari and

Ganesan (2018)

2 Single Single 1 X FF X Pentagonal fuzzy numbers

Mishra et al.

(2018)

2 Single Single 1 X FF X Standard multiplication of trapezoidal

fuzzy numbers

Ebrahimnejad

(2019)

2 Single Single 1 X FF X Lexicographic ordering

Perez-Canedo

et al. (2020)

2 Single Multi 1 X FF X An epsilon–constraint method with

respect to a lexicographic criterion

This study (2021) 4 Multi Single 2 U FF U MGMIVM and order relation of fuzzy

numbers

CCP chance constrained programming, GMIV graded mean integrated value, EV expected value, FF fully fuzzy
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3.4 Mathematical formulation

3.4.1 Model-A: FF-MITSFC-4DTP without flexible constraint

The problem is formulated considering Fig. 2, where all the

parameters and decision variables are triangular fuzzy

numbers. Formulation of the objective function is as

follows:

Total cost = transportation and fixed charge cost from

suppliers to warehouses ? transportation and fixed charge

cost from warehouses to retailers.

This total cost is minimized subject to some constraints.

Min ~Z ¼
X

ijupm

~cijupm � ~xijupm �
X

ijup

~f ijupyijup

�
X

jkvpm

~c0jkvpm � ~x0jkvpm �
X

jkvp

~f 0jkvpy
0
jkvp;

ð1Þ

s.t.
X

jup

~xijupm � ~Qim 8 i;m; ð2Þ
X

jvp

ð1� ~k0jkvpmÞ � ~x0jkvpm � ~Dkm 8 k;m; ð3Þ
X

ijpm

ð1� ~kijupmÞ � ~xijupm � ~Eu 8 u; ð4Þ
X

jkpm

ð1� ~k0jkvpmÞ � ~x0jkvpm � ~E0
v 8 v; ð5Þ

X

iupm

ð1� ~kijupmÞ � ~xijupm ¼
X

kvpm

~x0jkvpm 8 j; ð6Þ

yijup ¼
1; if

P
m ~xijupm [ 0

0; otherwise

�
8 i; j; u; p; ð7Þ

y0jkvp ¼
1; if

P
m
~x0jkvpm [ 0

0; otherwise

(
8 j; k; v; p; ð8Þ

~xijupm; ~x0jkvpm � 0 8 i; j; k; u; v; p;m: ð9Þ

In the model, constraints (2) and (3) are the availability and

demand constraints, respectively. Constraints (4) and (5)

define the maximum capacities of conveyances at different

stages. Constraint (6) equalizes the total downloaded and

uploaded products at warehouses. Constraints (7) and (8),

the binary decision variables are defined. Constraint (9)

furnishes the non-negativity of decision variables.

3.4.2 Model-B: FF-MITSFC-4DTP with flexible constraint

The descriptions of Model-B’s objective function and

constraints are the same as Model-A. In this model, the

constraints are considered flexible, represented by the

symbols ‘†’ and ‘% ’ instead of ‘� ’ and ‘� ’, respec-

tively. The corresponding objective function is ~Z
f
(say).

The model is as follows:

Fig. 2 Two-stage 4DTP
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Min ~Zf ¼ Min ~Z

s.t.
X

jup

~xijupm† ~Qim 8 i;m

X

jvp

ð1� ~k0jkvpmÞ � ~x0jkvpm % ~Dkm 8 k;m

X

ijpm

ð1� ~kijupmÞ � ~xijupm† ~Eu 8 u

X

jkpm

ð1� ~k0jkvpmÞ � ~x0jkvpm† ~E0
v 8 v

X

iupm

ð1� ~kijupmÞ � ~xijupm ’
X

kvpm

~x0jkvpm 8 j

yijup ¼
1; if

P
m ~xijupm�0

0; otherwise

(
8 i; j; u; p

y0jkvp ¼
1; if

P
m
~x0jkvpm�0

0; otherwise

(
8 j; k; v; p

~xijupm; ~x0jkvpm % 0 8 i; j; k; u; v; p;m

9
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>;

: ð10Þ

4 Solution methodology

The fuzzy numbers ~cijupm, ~xijupm, ~f ijup, ~c0jkvpm, ~x0jkvpm, ~f 0jkvp,

~Qim, ~Dkm, ~Eu, ~E
0
v,

~kijupm, and ~k0jkvpm are considered as tri-

angular fuzzy numbers in the form ~A ¼ ðA1;A2;A3Þ.

4.1 Defuzzification of Model-A: MGMIVM

Taking expected value (modified graded mean integrated

value) on both sides, the crisp form of the Model-A is:

MinEV ½ ~Z	 ¼ EV ½
X

ijupm

~cijupm � ~xijupm �
X

ijup

~f ijupyijup

�
X

jkvpm

~c0jkvpm � ~x0jkvpm �
X

jkvp

~f 0jkvpy
0
jkvp	

s.t.EV ½
X

jup

~xijupm	 �EV ½ ~Qim	 8 i;m

EV ½
X

jvp

ð1� ~k0jkvpmÞ � ~x0jkvpm	 �EV ½ ~Dkm	 8 k;m

EV ½
X

ijpm

ð1� ~kijupmÞ � ~xijupm	 �EV ½ ~Eu	 8 u

EV ½
X

jkpm

ð1� ~k0jkvpmÞ � ~x0jkvpm	 �EV ½ ~E0
v	 8 v

EV ½
X

iupm

ð1� ~kijupmÞ � ~xijupm	 ¼ EV ½
X

kvpm

~x0jkvpm	 8 j

yijup ¼
1; if EV ½

P
m ~xijupm	[ 0

0; otherwise

(
8 i; j; u; p

y0jkvp ¼
1; if EV ½

P
m
~x0jkvpm	[ 0

0; otherwise

(
8 j; k; v; p

EV ½~xijupm	; EV½ ~x0jkvpm	 � 0 8 i; j; k; u; v; p;m

9
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>;

:

ð11Þ

Let ~Z ¼ ðZ1; Z2; Z3Þ. Then, using Definition 4, we can

write EV ½ ~Z	 ¼ Z1þ4Z2þZ3

6
, where

ðZ1;Z2;Z3Þ 
 (1st, 2nd, 3rd) component of
X

ijupm

~cijupm � ~xijupm
� �

�
X

ijup

~f ijup
� �

yijup

�
X

jkvpm

~c0jkvpm � ~x0jkvpm
� �

�
X

jkvp

~f 0jkvp
� �

y0jkvp:

Using Definition 3, we get the components of

~cijupm � ~xijupm ¼

ðc1ijupmx1ijupm; c2ijupmx2ijupm; c3ijupmx3ijupmÞ; if c1ijupm � 0

ðc1ijupmx3ijupm; c2ijupmx2ijupm; c3ijupmx3ijupmÞ; if c1ijupm\0

and c3ijupm � 0

ðc1ijupmx3ijupm; c2ijupmx2ijupm; c3ijupmx1ijupmÞ; if c3ijupm\0

8
>>><

>>>:
8i; j; u; p;m:

Similarly, we can write the components of ~c0jkvpm � ~x0jkvpm.
Now, using Definition 4, we can write EV ½~xijupm	,

EV ½ ~x0jkvpm	, EV ½ ~Qim	, EV½ ~Dkm	, EV½ ~Eu	, EV½ ~E0
v	 as

EV ½ ~A	 ¼ A1þ4A2þA3

6
, where ~A ¼ ðA1;A2;A3Þ.
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EV ½ð1� ~k0jkvpmÞ � ~x0jkvpm	 ¼
1

6
½fx01jkvpm � 3rd component

of ð ~k0jkvpm � ~x0jkvpmÞg þ 4fx02jkvpm � 2nd component of

ð ~k0jkvpm � ~x0jkvpmÞg þ fx03jkvpm � 1st component of

ð ~k0jkvpm � ~x0jkvpmÞg	:

Similarly, EV½ð1� ~kijupmÞ � ~xijupm	 can also be written.

All the parameters and decision variables in the pro-

posed model are non-negative. So, Eq. (11) can be

rewritten in the deterministic form

MinZ ¼ 1

6
½Z1 þ 4Z2 þ Z3	

¼
X

ijupm

c1ijupmx
1
ijupm þ 4c2ijupmx

2
ijupm þ c3ijupmx

3
ijupm

6

þ
X

ijup

f 1ijup þ 4f 2ijup þ f 3ijup
6

yijup

þ
X

jkvpm

c01ijupmx
01
ijupm þ 4c02ijupmx

02
ijupm þ c03ijupmx

03
ijupm

6

þ
X

jkvp

f 01jkvp þ 4f 02jkvp þ f 03jkvp
6

y0jkvp

s.t.
X

jup

1

6
½x1ijupm þ 4x2ijupm þ x3ijupm	 �

1

6
½Q1

im þ 4Q2
im þ Q3

im	 8 i;m

X

jvp

1

6
½fx01jkvpm � k03jkvpmx

03
jkvpmg þ 4fx02jkvpm � k02jkvpmx

02
jkvpmg

þ fx03jkvpm � k01jkvpmx
01
jkvpmg	 �

1

6
½D1

km þ 4D2
km þ D3

km	 8 k;m
X

ijpm

1

6
½fx1ijupm � k3ijupmx

3
ijupmg þ 4fx2ijupm � k2ijupmx

2
ijupmg

þ fx3ijupm � k1ijupmx
1
ijupmg	 �

1

6
½E1

u þ 4E2
u þ E3

u	 8 u
X

jkpm

1

6
½fx01jkvpm � k02jkvpmx

02
jkvpmg þ 4fx02jkvpm � k03jkvpmx

03
jkvpmg

þ fx03jkvpm � k01jkvpmx
01
jkvpmg	 �

1

6
½E01

v þ 4E02
v þ E03

v 	 8 v
X

iupm

1

6
½fx1ijupm � k3ijupmx

3
ijupmg þ 4fx2ijupm � k2ijupmx

2
ijupmg

þ fx3ijupm � k1ijupmx
1
ijupmg	

¼ 1

6

X

kvpm

½x01jkvpm þ 4x02jkvpm þ x03jkvpm	 8 j

yijup ¼
1; if

1

6

X

m

½x1ijupm þ 4x2ijupm þ x3ijupm	[ 0

0; otherwise

8
<

: 8 i; j; u; p

y0jkvp ¼
1; if

1

6

X

m

½x01jkvpm þ 4x02jkvpm þ x03jkvpm	[ 0

0; otherwise

8
<

: 8 j; k; v; p

1

6
½x1ijupm þ 4x2ijupm þ x3ijupm	 � 0 8 i; j; u; p;m

1

6
½x01jkvpm þ 4x02jkvpm þ x03jkvpm	 � 0 8 j; k; v; p;m:

4.2 Defuzzification of Model-B: Algorithm based
on fuzzy order relation

Here, Model-B is made deterministic using an Algorithm,

which is given in Appendix-B. We apply the method-

MGMIVM on the objective function and equality con-

straint. But for the flexible constraints, Theorem 1 is used

to reduce it to deterministic form. Then, Model-B can be

written for ak, k ¼ 0; 1; . . .; n as,

MinZð~xÞ

¼
X

ijupm

c1ijupmx
1
ijupm þ 4c2ijupmx

2
ijupm þ c3ijupmx

3
ijupm

6

þ
X

ijup

f 1ijup þ 4f 2ijup þ f 3ijup
6

yijup

þ
X

jkvpm

c01ijupmx
01
ijupm þ 4c02ijupmx

02
ijupm þ c03ijupmx

03
ijupm

6

þ
X

jkvp

f 01jkvp þ 4f 02jkvp þ f 03jkvp
6

y0jkvp

2Q2
im þ Q3

im �
P
jup

x1ijupm � 2
P
jup

x2ijupm

Q3
im � Q1

im �
P
jup

x1ijupm � 2
P
jup

x2ijupm
� ak 8 i;m

2
P
jvp

ðx02jkvpm � k02jkvpmx
02
jkvpmÞ þ

P
jvp

ðx03jkvpm � k01jkvpmx
01
jkvpmÞ � D1

km � 2D2
km

2
P
jvp

ðx03jkvpm � k01jkvpmx
01
jkvpmÞ �

P
jvp

ðx01jkvpm � k03jkvpmx
03
jkvpmÞ þ D3

km � D1
km

� ak 8 k;m

2E2
u þ E3

u �
P
ijpm

ðx1ijupm � k3ijupmx
3
ijupmÞ � 2

P
ijpm

ðx2ijupm � k2ijupmx
2
ijupmÞ

E3
u � E1

u þ
P
ijpm

ðx3ijupm � k1ijupmx
1
ijupmÞ �

P
ijpm

ðx1ijupm � k3ijupmx
3
ijupmÞ

� ak 8 u

2E02
v þ E03

v �
P
jkpm

ðx01jkvpm � k03jkvpmx
03
jkvpmÞ � 2

P
jkpm

ðx02jkvpm � k02jkvpmx
02
jkvpmÞ

E03
u � E01

u �
P
jkpm

ðx03jkvpm � k01jkvpmx
01
jkvpmÞ �

P
jkpm

ðx01jkvpm � k03jkvpmx
03
jkvpmÞ

� ak 8 v

X

iupm

1

6
½fx1ijupm � k3ijupmx

3
ijupmg þ 4fx2ijupm � k2ijupmx

2
ijupmg

þ fx3ijupm � k1ijupmx
1
ijupmg	

¼ 1

6

X

kvpm

½x01jkvpm þ 4x02jkvpm þ x03jkvpm	 8 j

yijup ¼
1; if

1

6

X

m

½x1ijupm þ 4x2ijupm þ x3ijupm	[ 0

0; otherwise

8
><

>:
8 i; j; u; p

y0jkvp ¼
1; if

1

6

X

m

½x01jkvpm þ 4x02jkvpm þ x03jkvpm	[ 0

0; otherwise

8
><

>:
8 j; k; v; p

1

6
½x1ijupm þ 4x2ijupm þ x3ijupm	 � 0 8 i; j; u; p;m

1

6
½x01jkvpm þ 4x02jkvpm þ x03jkvpm	 � 0 8 j; k; v; p;m:

9
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>;

:

The n ? 1 crisp problems are solved for a0; a1; . . .; an, and
say ~x�ak is the solution for ak; k ¼ 0; 1; . . .; n. Then, we find

the optimal solutions Zð ~x�a0Þ, Zð ~x�a1Þ, ..., Zð ~x�anÞ.
The membership function of Zð~xÞ is
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lðZð~xÞÞ ¼

1 if EVðZð~xÞÞ\EVðZð~x�a0ÞÞ
EVðZð~x�anÞÞ � EVðZð~xÞÞ
EVðZð~x�anÞÞ � EVðZð~x�a0ÞÞ

!

if EVðZð~x�a0ÞÞ�EVðZð~xÞÞ�EVðZð~x�anÞÞ
0 if EVðZð~xÞÞ[EVðZð~x�anÞÞ:

8
>>>>>><

>>>>>>:

ð12Þ

Calculating bk ¼ 2ak � 1 and lðZð ~x�akÞÞ for

k ¼ 0; 1; . . .; n, we find minkfjbk � lðZð ~x�akÞÞjg.
Suppose minkfjbk � lðZð ~x�akÞÞjg=jbk0 � lðZð ~x�ak0 ÞÞj.

Then we find the optimal solution as ~x�= ~x�ak0
.

4.3 Some particular cases of Model-A
and Model-B

FF-MITSFC-3DTP This is a particular case of FF-MITSFC-

4DTP, where only one possible path (the first one, say) is

considered between all sources and destinations (FF-

MITSFC-3DTP) and solved using above mentioned two

methods.

FF-MITSFC-4DTP without breakability As a particular

case of FF-MITSFC-4DTP, a situation is considered where

there is no breakage of items. Since there is no loss of items,

the total transportation cost should be less than the case with

breakability.

FF-MITSFC-3DTP without breakability In this particu-

lar case of FF-MITSFC-4DTP, only one possible path (the

first one) is considered between all sources and destina-

tions, and there is no breakage of items.

5 Flowchart of optimization procedure

The GRG technique is used to solve the deterministic

forms of Models A and B of the FF-MITSFC-4DTP using

Lingo (18.0).

Flowchart The flowchart of the optimization process is

depicted in Fig. 3.

6 Numerical illustration

In this section, we solve our proposed FF-MITSFC-4DTP

problem by two above explained methods for without and

with flexibility constraints taking real-life data in Experi-

ment-1. In Experiment-2, we solve an existing problem of

Ezzati et al. (2015), taking the constraints as flexible and

solve it using the above-mentioned method for flexible

constraints. In Experiment-3, we compare our method with

an existing method (Ezzati et al. 2015) to show the

advantages of our methods.

6.1 Experiment-1: Application of proposed
methods in a real-life problem

A businessman, Mr. Kailash Biswas, has two stationary

shops at Bankura and Raipur in West Bengal, a state in

India. He bought ceramic plates and cups from two

wholesale houses at Dhanbad and Midnapur, two cities in

India. He first stores the items at warehouses located at

Jamshedpur and Bardhaman, and then later, he transports

the items from warehouses to his retail stores as required as

per demands (cf. Fig. 4).1 The products are breakable, and

the breakabilities of the items on different paths are dif-

ferent. The products—plates and cups—may be damaged

for the rough nature of paths or any other reason. Two

different paths are available from each source to destina-

tion, and two types of conveyances, truck, and LCV, are

available for transporting the products from sources to

destinations. Different toll taxes are collected for different

types of vehicles and roads. In some routes, the public also

collects some money for local reasons, which are included

in fixed charges and toll taxes. Also, the products have

dissimilar breakabilities for different routes and con-

veyances. Here, the aim is to decide the right quantity of

the product, the best path, and conveyance to get the

minimum total transportation cost. The data for the toll

taxes and conveyances’ capacities2 are taken from the

internet. All other informations are collected from his

business.

6.1.1 Input data of Models A and B

For the FF-MITSFC-4DTPs, the input data (Models A and

B) for the parameters of objective function and constraints

are specified in Tables 2 and 3.

6.1.2 Experimental results

Solution of Model-A Model-A, i.e., the FF-MITSFC-4DTP

(without flexible constraint) given by Eqs. (1)–(9) is

defuzzified by the MGMIV method and then solved using

the GRG method (through Lingo 18.0).

Solution of Model-B To solve Model-B, i.e., FF-

MITSFC-4DTP (with flexible constraints), given by equa-

tion (10), we take n ¼ 10 and then ak ¼ 1
2
þ k

20
for

k ¼ 0; 1; . . .; n. Then using the above-mentioned method

for flexible constraints, we find the values of EVðZð~x�akÞÞ,
which are given in Table 4.

The membership function of Zð~xÞ is

1 https://google.co.in/maps.
2 http://www.balajifreightlogistics.com/vehicle-list-dimension.html.
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lðZð~xÞÞ ¼
1 if EVðZð~xÞÞ\235:8474

305:0721� EVðZð~xÞÞ
305:0721� 235:8474

if 235:8474�EVðZð~xÞÞ � 305:0721

0 if EVðZð~xÞÞ[ 305:0721:

8
>><

>>:

ð13Þ

Then from Table 4, jbk � lðZkð~xÞÞj is calculated, and it

is clear that a8 = 0.9 gives the minimum value of that. Let

the optimal value of Zðx�a8Þ=(Z
l; Z2; Z3). Now using the

MGMIV of triangular fuzzy number and then GRG tech-

nique (through Lingo 18.0), we get the optimal value

$241.59 (c.f. Table 5).

The experimental results for optimum solutions for both

models (i.e., min cost and the values of decision variables)

are given in Table 5.

Solution of particular cases Some particular cases of

Models-A and B (FF-MITSFC-3DTP, FF-MITSFC-4DTP

without breakability and FF-MITSFC-3DTP without

breakability) are derived to the deterministic form using

above mentioned methods for both types of constraints

(with and without flexibility) and solve by the GRG

method and compared the results. For the 3DTP case, we

consider only one path (the first one), which means there is

no choice of multiple paths. For without breakability case,

~kijupm and ~k0jkvpm are considered as zero. All the results, i.e.,

minimum transportation cost and transported amounts, are

given in Table 5. The comparison of the optimal values is

given in Table 6.

The pictorial comparison of different cases of FF-

MITSFC-4DTP is shown in Fig. 5.

6.2 Experiment-2: Application of proposed
methods in an existing model and, hence,
the comparison

Ezzati et al. (2015) solved a maximization LP as an

example. To illustrate the efficiency of our methods, we

solve this problem considering the constraints with and

without flexibility and compare the results.

Problem of Ezzati et al. (2015) A corporation has

($25,$30,$40) million available for the coming year to

allocate to its four subsidiaries. Because of commitments to

the stability of personnel employment and for other rea-

sons, the corporation has established a minimal level of

funding for each subsidiary. These funding levels are

($2,$3,$5) million, ($4,$5,$6) million, ($5,$8,$9) million

and ($7,$8,$14) million respectively. Each subsidiary has

the opportunity to conduct various projects with the funds

it receives. A rate of return (as a percent of investment) has

F ully fuzzy multi-item two-stage fixed
charge 4DTP (FF-MITSFC-4DTP)

FF-MITSFC-4DTP
without flexi-
ble constraints

FF-MITSFC-4DTP
with flexible constraints

Deterministic form
of MITSFC-4DTP

Optimal solution

Using MGMIVM
Using Algorithm
based on fuzzy
order relation

By GRG method

Fig. 3 Flowchart of the optimum solution procedure

Table 2 Values of breakabilities (~kijupm, ~k
0
jkvpm), unit transportation

costs (~cijupm, ~c
0
jkvpm) and fixed charges ( ~f ijup, ~f

0
jkvp) of Models A and B

j m i 1,2

p/u 1 2

~kijupm 1, 2 1 1 (0.008, 0.010, 0.012) (0.108, 0.110, 0.112)

2 (0.098, 0.100, 0.102) (0.108, 0.110, 0.112)

2 1 (0.010, 0.012, 0.014) (0.007, 0.009, 0.011)

2 (0.118, 0.120, 0.122) (0.098, 0.100, 0.102)

~cijupm 1, 2 1 1 (0.45, 0.50, 0.55) (0.25, 0.30, 0.35)

2 (0.50, 0.55, 0.60) (0.45, 0.50, 0.55)

2 1 (0.35, 0.40, 0.45) (0.40, 0.45, 0.50)

2 (0.40, 0.45, 0.50) (0.35, 0.40, 0.45)

~f ijup 1 1 (40, 50, 60) (42, 52, 62)

2 (44, 54, 64) (38, 48, 58)

2 1 (39, 49, 59) (41, 51, 61)

2 (43, 53, 63) (42, 52, 62)

j 1, 2

k m p/v 1 2

~k
0
jkvpm

1, 2 1 1 (0.010, 0.015, 0.020) (0.125, 0.130, 0.135)

2 (0.165, 0.170, 0.175) (0.135, 0.140, 0.145)

2 1 (0.135, 0.140, 0.145) (0.155, 0.160, 0.165)

2 (0.145, 0.150, 0.155) (0.145, 0.150, 0.155)

~c0jkvpm 1, 2 1 1 (0.35, 0.40, 0.45) (0.50, 0.55, 0.60)

2 (0.30, 0.35, 0.40) (0.35, 0.40, 0.45)

2 1 (0.40, 0.45, 0.50) (0.40, 0.45, 0.50)

2 (0.25, 0.30, 0.35) (0.45, 0.50, 0.55)

~f
0
jkvp

1 1 1 (50, 60, 70) (51, 61, 71)

2 (52, 62, 72) (54, 64, 74)

2 2 1 (48, 58, 68) (49, 59, 69)

2 (52, 62, 72) (51, 61, 71)
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been established for each project. In addition, certain pro-

jects permit only limited investment. The data of each

project are given in Table 7. What is the best allocation to

the four subsidiaries such that the maximum return is

achieved for the corporation?

Solution Taking the constrains of the problem as flexi-

ble, we can write the problem as

max ð5; 7; 8Þ~x11 � ð3; 5; 6Þ~x12
� ð4; 8; 9Þ~x13 � ð3; 5; 7Þ~x21 � ð4; 7; 8Þ~x22

� ð8; 9; 10Þ~x23 � ð7; 10; 11Þ~x31
� ð6; 8; 10Þ~x32 � ð4; 7; 8Þ~x33�

ð4; 6; 8Þ~x41 � ð3; 5; 7Þ~x42 � ð7; 9; 11Þ~x43
X4

i¼1

X3

j¼1

~xij ’ ð25; 30; 40Þ;

X3

j¼1

~x1j % ð2; 3; 5Þ;
X3

j¼1

~x2j % ð4; 5; 6Þ;

X3

j¼1

~x3j % ð5; 8; 9Þ;
X3

j¼1

~x4j % ð7; 8; 14Þ;

~x11†ð4; 6; 7Þ; ~x12†ð3; 5; 6Þ; ~x13†ð8; 9; 10Þ;
~x21†ð5; 7; 8Þ; ~x22†ð8; 10; 11Þ; ~x23†ð3; 4; 5Þ;
~x31†ð4; 5; 7Þ; ~x32†ð2; 3; 6Þ; ~x33†ð4; 7; 9Þ;
~x41†ð4; 6; 7Þ; ~x42†ð4; 5; 9Þ; ~x43†ð2; 4; 5Þ:

We take n ¼ 10 and then ak ¼ 1
2
þ k

20
for k ¼ 0; 1; . . .; n.

Then solve the problem and find the values of EVðZð~x�akÞÞ.
The membership function of Zð~xÞ is

Fig. 4 Locations of suppliers, warehouses and retailers of MITSFC-4DTP

Table 3 Values of availabilities ( ~Qim), demands ( ~Dkm) and conveyance capacities ( ~Eu, ~E
0
v) for Models A and B

Availabilities Demands Conveyance capacities

~Q11
~Q12

~D11
~D12

~E1
~E2

(90,100,110) (90,100,110) (20,30,40) (22,32,42) (70,80,90) (75,85,95)

~Q21
~Q22

~D21
~D22 ~E

0
1

~E
0
2

(100,110,120) (110,120,130) (21,31,41) (20,30,40) (60,70,80) (65,75,85)

Table 4 Values of jbk � lðZkð~xÞÞj

k ak ¼ 1
2
þ k

2n bk ¼ k
n

EV(Z(x)) lðZð~xÞÞ jbk � lðZkð~xÞÞj

0 0.5 0 235.8474 1 1

1 0.55 0.1 236.5647 0.9906 0.8906

2 0.6 0.2 237.2822 0.9803 0.7803

3 0.65 0.3 238.0000 0.9699 0.6699

4 0.7 0.4 238.7181 0.9595 0.8595

5 0.75 0.5 239.4365 0.9491 0.4491

6 0.8 0.6 240.1551 0.9387 0.3387

7 0.85 0.7 240.8740 0.9283 0.2283

8 0.9 0.8 241.5932 0.9179 0.1179

9 0.95 0.9 303.3271 0.0252 0.8741

10 1.0 1.0 305.0721 0.0 1
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Table 5 Optimal results of

different models
xijupm x0jkvpm Min cost

FF-MITSFC-4DTP

Model-A x11222 ¼ 73:72 x012111 ¼ 31:47 $325.59

x12121 ¼ 82:91 x012112 ¼ 34:88

x021211 ¼ 36:14

x021212 ¼ 37:65

Model-B x12121 ¼ 39:23 x021211 ¼ 39:42 $241.59

x021212 ¼ 40:85

x022111 ¼ 34:22

x022112 ¼ 38:04

FF-MITSFC-3DTP

Model-A x12212 ¼ 68:35 x021211 ¼ 36:14 $337.37

x22112 ¼ 80:97 x021212 ¼ 37:65

x022111 ¼ 31:47

x022112 ¼ 34:88

Model-B x22112 ¼ 38:27 x021211 ¼ 39:42 $243.08

x021212 ¼ 40:85

x022111 ¼ 34:22

x0022112 ¼ 38:04

FF-MITSFC-4DTP without breakability

Model-A x11121 ¼ 80:00 x011211 ¼ 30:00 $307.20

x21222 ¼ 43:00 x011212 ¼ 32:00

x012111 ¼ 31:00

x012112 ¼ 30:00

Model-B x22121 ¼ 33:42 x021212 ¼ 34:67 $232.69

x021211 ¼ 32:67

x022111 ¼ 33:67

x022112 ¼ 32:67

FF-MITSFC-3DTP without breakability

Model-A x12112 ¼ 80:00 x021211 ¼ 30:00 $319.35

x22212 ¼ 43:00 x021212 ¼ 32:00

x022111 ¼ 31:00

x022112 ¼ 30:00

Model-B x12112 ¼ 33:42 x021211 ¼ 32:66 $234.03

x021212 ¼ 34:66

x022111 ¼ 33:66

x022112 ¼ 32:66

Table 6 Comparison of optimal result

With breakability 3DTP with breakability 4DTP without breakability 3DTP without breakability

Model-A 325.59 337.37 307.2 319.35

Model-B 241.5932 243.08 232.69 234.03
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lðZð~xÞÞ ¼
0 if EVðZð~xÞÞ\246:6111

EVðZð~xÞÞ � 246:6111

296:8333� 246:6111
if 246:6111�EVðZð~xÞÞ� 296:8333

1 if EVðZð~xÞÞ[ 296:8333:

8
>><

>>:

ð14Þ

Then calculating jbk � lðZkð~xÞÞj, from Table 8, it is clear

that the maximum value is found for a ¼ 0:7 (as jbk �
lðZ4ð~xÞÞj is minimum). Let the optimal Zðx�a4Þ=(Z

l, Z2, Z3).

Now using MGMIV of triangular fuzzy number, we get the

optimal value $261.77[ZEzzati0smethod
max = EV[(133,245,362)]

= $245.83.

6.3 Experiment-3: Solution of proposed model
using the existing method—Ezzati’s method
(Ezzati et al. 2015) and, hence,
the comparison

Following Ezzati et al. (2015), the FF-MITSFC-4DTP

without flexibility can be reduced to the following problem

adding slack and surplus variables.

without flexibility with flexibility
200

250

300

350
4DTP with breakability
3DTP with breakability
4DTP without breakability
3DTP without breakability

Fig. 5 Comparison of results

Table 7 Data of problem of Ezzati et al. (2015) Example 4.3 (in U.S.

dollar)

Subsidiary Project Rate of return Upper limit of investment

1 1 (5%,7%,8%) ($4,$6,$7) million

2 (3%,5%,6%) ($3,$5,$6) million

3 (4%,8%,9%) ($8,$9,$10) million

2 4 (3%,5%,7%) ($5,$7,$8) million

5 (4%,7%,8%) ($8,$10,$11) million

6 (8%,9%,10%) ($3,$4,$5) million

3 7 (7%,10%,11%) ($4,$5,$7) million

8 (6%,8%,10%) ($2,$3,$6) million

9 (4%,7%,8%) ($4,$7,$9) million

4 10 (4%,6%,8%) ($4,$6,$7) million

11 (3%,5%,7%) ($4,$5,$9) million

12 (7%,9%,11%) ($2,$4,$5) million

Table 8 Values of jbk � lðZkð~xÞÞj for the problem of Ezzati et al.

(2015)

k ak ¼ 1
2
þ k

2n bk ¼ k
n

EV(Z(x)) lðZð~xÞÞ jbk � lðZkð~xÞÞj

0 0.50 0.0 296.8333 1.0000 1.0000

1 0.55 0.1 289.5472 0.8549 0.7549

2 0.60 0.2 279.8611 0.6620 0.4620

3 0.65 0.3 269.1603 0.4490 0.1490

4 0.70 0.4 261.7736 0.3019 0.0981

5 0.75 0.5 257.7841 0.2225 0.2775

6 0.80 0.6 254.4460 0.1560 0.4440

7 0.85 0.7 251.9196 0.1057 0.5943

8 0.90 0.8 249.8239 0.0640 0.7360

9 0.95 0.9 248.0916 0.0295 0.8705

10 1.0 1.0 246.6111 0.0000 1.0000
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Min ~Z ¼
X

ijupm

~cijupm � ~xijupm �
X

ijup

~f ijupyijup

�
X

jkvpm

~c0jkvpm � ~x0jkvpm �
X

jkvp

~f 0jkvpy
0
jkvp

s.t.
X

jup

~xijupm þ ~s1 ¼ ~Qim 8 i;m

X

jvp

ð1� ~k0jkvpmÞ � ~x0jkvpm � ~s2 ¼ ~Dkm 8 k;m

X

ijpm

ð1� ~kijupmÞ � ~xijupm þ ~s3 ¼ ~Eu 8 u

X

jkpm

ð1� ~k0jkvpmÞ � ~x0jkvpm þ ~s4 ¼ ~E0
v 8 v

X

iupm

ð1� ~kijupmÞ � ~xijupm ¼
X

kvpm

~x0jkvpm 8 j

yijup ¼
1; if

P
m ~xijupm�0

0; otherwise

(
8 i; j; u; p

y0jkv ¼
1; if

P
m
~x0jkvpm�0

0; otherwise

(
8 j; k; v; p

~xijupm; ~x0jkvpm � 0 8 i; j; k; u; v; p;m

9
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>;

;

where the fuzzy numbers ~sl=ðs1l ; s2l ; s3l Þ, l=1, 2, 3, 4.
First, we express the fuzzy parameters and decision

variables of the problem as a triangular fuzzy number and

then applying the algorithm given by Ezzati et al. (2015),

we get the form of the problem as

MinZ1 ¼
X

ijupm

c2ijupmx
2
ijupm þ

X

ijup

f 2ijupyijup

þ
X

jkvpm

c02jkvpmx
02
jkvpm þ

X

jkvp

f 02jkvpy
0
jkvp;

ð15Þ

MaxZ2 ¼
X

ijupm

c3ijupmx
3
ijupm þ

X

ijup

f 3ijupyijup

þ
X

jkvpm

c03jkvpmx
03
jkvpm þ

X

jkvp

f 03jkvpy
0
jkvp � ð

X

ijupm

c1ijupmx
1
ijupm

þ
X

ijup

f 1ijupyijup þ
X

jkvpm

c01jkvpmx
01
jkvpm þ

X

jkvp

f 01jkvpy
0
jkvpÞ;

ð16Þ

MinZ3 ¼
X

ijupm

c3ijupmx
3
ijupm þ

X

ijup

f 3ijupyijup

þ
X

jkvpm

c03jkvpmx
03
jkvpm þ

X

jkvp

f 003jkvpy
0
jkvp þ ð

X

ijupm

c1ijupmx
1
ijupm

þ
X

ijup

f 1ijupyijup þ
X

jkvpm

c001jkvpmx
01
jkvpm þ

X

jkvp

f 01jkvpy
0
jkvpÞ;

ð17Þ

s.t.
X

jup

x1ijupm þ s11 ¼ Q1
im;

X

jup

x2ijupm þ s21 ¼ Q2
im;

X

jup

x3ijupm þ s31 ¼ Q3
im 8 i;m

X

jvp

ðx01jkvpm � k03jkvpmx
03
jkvpmÞ � s12 ¼ D1

km;

X

jvp

ðx02jkvpm � k02jkvpmx
02
jkvpmÞ � s22 ¼ D2

km;

X

jvp

ðx03jkvpm � k01jkvpmx
01
jkvpmÞ � s32 ¼ D3

km 8 k;m

X

ijpm

ðx1ijupm � k3ijupmx
3
ijupmÞ þ s13 ¼ E1

u;

X

ijpm

ðx2ijupm � k2ijupmx
2
ijupmÞ þ s23 ¼ E2

u;

X

ijpm

ðx3ijupm � k1ijupmx
1
ijupmÞ þ s33 ¼ E3

u 8 u

X

jkpm

ðx01jkvpm � k03jkvpmx
03
jkvpmÞ þ s14 ¼ E01

v ;

X

jkpm

ðx02jkvpm � k02jkvpmx
02
jkvpmÞ þ s24 ¼ E02

v ;

X

jkpm

ðx03jkvpm � k01jkvpmx
01
jkvpmÞ þ s34 ¼ E03

v 8 v

X

iupm

ðx1ijupm � x3ijupmk
3
ijupmÞ ¼

X

kvpm

x01jkvpm;

X

iupm

ðx2ijupm � x2ijupmk
2
ijupmÞ ¼

X

kvpm

x02jkvpm;

X

iupm

ðx3ijupm � x1ijupmk
1
ijupmÞ ¼

X

kvpm

x03jkvpm 8 j

yijup ¼
1; if

P
m x3ijupm [ 0

0; otherwise

(
8 i; j; u; p

y0jkvp ¼
1; if

P
m x03jkvpm [ 0

0; otherwise

(
8 j; k; v; p

x2ijupm � x1ijupm � 0x3ijupm � x2ijupm � 0;

x1ijupm � 0 8 i; j; u; p;m

x02jkvpm � x01jkvpm � 0x03jkvpm � x02jkvpm � 0

x01jkvpm � 0 8 j; k; v; p;m

9
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>;

:

ð18Þ

Now, we solve the above problem with objective (15) and

constraints (18). If there is a unique optimal solution, then

stop. Otherwise, take an optimal solution, say Z1�. In the

next step, solve the second objective (16) with all previous

constraints and add another constraint
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X

ijupm

c2ijupmx
2
ijupm þ

X

ijup

f 2ijupyijup þ
X

jkvpm

c02jkvpmx
02
jkvpm þ

X

jkvp

f 02jkvp

y0jkvp ¼ Z1�: If an optimal solution is found, say stop,

otherwise solve the third objective with all the previous

step constraints with one extra constraintP
ijupm c3ijupmx

3
ijupm þ

P
ijup f

3
ijupyijup þ

P
jkvpm c03jkvpmx

03
jkvpmþP

jkvp f
03
jkvpy

0
jkvp� ð

P
ijupm c1ijupmx

1
ijupmþ

P
ijup f

1
ijupyijup þP

jkvpm c01jkvpm x01jkvpm þ
P

jkvp f
01
jkvpy

0
jkvpÞ ¼ Z2�, which gives

the optimal solution.

The deterministic forms are solved by the GRG tech-

nique using LINGO 18.0, and we get the minimum deter-

ministic cost $337.38, which is larger than $319.35

(minimum cost using MGMIVM and GRG).

7 Discussion of computational results
and managerial insights

7.1 Optimum results of FF-MITSFC-4DTP

In Table 5, the decision variable x11222 = 73.72 means

73.72 kg of the second product is transported from the first

supplier to the first warehouse through the second con-

veyance and second path. All the other decision variables,

whose values are not mentioned in the table, are considered

to be zero.

From Table 5, it is observed that in the case of cost

minimization, the model with flexibility constraints gives a

better optimal result than the model without flexibility

constraints. This agrees with the definition of flexibility. In

the method for flexibility constraint, if the value of n is

taken as a large number, the solution will be more accurate.

This is as per expectation.

7.2 Importance of routes

In Table 5, x11222 = 73.72 but x11212 = 0, i.e., source, des-

tination, product, and conveyance, all are the same; only

the route is different. No transportation takes place through

the first route, but through the second route, the product is

transported. Now we investigate the reason behind it. 73.72

kg of the second product is transported from the first source

to the first destination through the second conveyance. If

the products are transported through the first route, the total

transportation cost will be 73.72 x (0.40, 0.45, 0.50) ? (44,

54, 64) = 73.72 x 0.45 ? 54 = $ 87.17. But on the second

route, the total transportation cost is 73.72 x (0.35, 0.40,

0.45) ? (38, 48, 58) = 73.72 x 0.4 ? 48 = $ 77.49. As the

second route demands minimum transportation cost, so

transportation is made through the second route.

Also, from the result’s comparison (cf. Table 6 and

Fig. 5), it is clear that always the 4DTP model gives lower

total transportation cost than the 3DTP model as expected.

Since in 4DTP, the decision-maker has many route options

to transport the products, he can choose the route with

lower transportation cost. So this is obvious.

7.3 Effect of breakability

From Table 6, it is seen that, for each model, 4DTP, and

3DTP with breakability, the total transportation cost is

higher than without breakability. For Model-A, the mini-

mum cost (without breakability) is $307.2\$325.59 (with

breakability), and for Model-B, the minimum cost is

$232.69 (without breakability) \ $241.59 (with breaka-

bility). That comparison can be seen more clearly in Fig. 5

in the bar diagram. This result is obvious and as per

expectation.

7.4 Sensitivity analysis

For sensitivity analysis, we investigate the change of total

transportation cost for the change of demand. For this, we

take an equal modified graded mean integrated value of

demands. The resultant total transportation costs for dif-

ferent demands are given in Table 9 for both types of

constraints—with flexibility and without flexibility. In

Fig. 6, the total transportation cost linearly increases for

increasing demands in both cases—without flexibility

constraints and with flexibility constraints.

7.5 Managerial insights

In most real-life cases, the products need to be stored at

warehouses before sending those to retailers or customers,

e.g., nowadays Flipkart, Amazon, etc., online shopping

companies follow this procedure. India has a vast market

for this type of company. So, they have suppliers for dif-

ferent products all over India, and the products are stored

or transported to nearby located warehouses or storehouses

before delivering to the retailers. With the development of

infrastructures in India, there are many paths and con-

veyances for transportation of the products between dif-

ferent locations along with different toll taxes at different

routes for different conveyances. Hence, the FF-MITSFC-

4DTP is a perfect model for finding minimum total trans-

portation cost and optimal distribution system. Since the

problem is considered in a fully fuzzy environment with

flexible constraints, the problem is applicable when the

data are vague or imprecise. So, E-commerce companies

can utilize our models and techniques to adjust the supply

and distribution system.
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8 Conclusions

This study investigates FF-MITSFC-4DTPs and some

particular models without and with flexible constraints. The

supplies, demands, capacities of conveyances, unit trans-

portation costs, transported amounts, and fixed charges for

transportation are assumed fuzzy. For the first time, FF-

MITSFC-4DTPs with and without flexible constraints are

solved by two different methods developed for this pur-

pose. The MGMIVM and an algorithm based on fuzzy

order relation are used to convert the fully fuzzy problems

into deterministic ones. Some particular models also have

been solved. The efficiency of the proposed methods is

illustrated through a comparison of the results of an

existing model. The importance of the consideration of

different routes for transportation, i.e., formulation as

4DTP, is laid down.

In the present model and method, there are a lot of

scopes for future extension. The existing 4DTP can be

formulated as fully interval-valued fuzzy multi-item two-

stage fixed charge 4DTP with flexible constraints and

solved using the interval-valued fuzzy set theory following

Turksen (1986), Chen et al. (1997), Chen (1997), Chen and

Hsiao (2000), Chen et al. (2012), etc. The other TPs,

having new constraints, e.g., budget constraints, discount

constraints, restrictions on space at warehouses, can be

solved by these methods. Though the model has been

developed with a triangular fuzzy number, it can be

developed for other types of fuzzy numbers, such as

trapezoidal fuzzy numbers, parabolic fuzzy numbers, etc.

The limitations of the present investigation are the fol-

lowing. The proposed model is formulated for a single

objective (i.e., cost minimization). It can be formulated as a

multi-objective one with time minimization, fuel cost

minimization, etc. Moreover, the proposed model has been

illustrated with two sources, two warehouses, and two

retailers. It can also be solved for a large set of data.

Appendices

(A) Preliminary

In this section, to gain a better understanding of the pro-

posed method, some of the necessary definitions and

examples related to fully fuzzy variables concepts are

presented. In detail, the defuzzification processes of fully

fuzzy variables are properly illustrated for the proposed

method.
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Definition 1 A fuzzy number ~u is a convex normalized

fuzzy set ~u of the real line IR, with membership function

l ~u : IR ! ½0; 1	, satisfying the following conditions:

(i) There exists exactly one interval I 2 IR such that

l ~uðxÞ ¼ 1, 8x 2 I.

(ii) The membership function l ~uðxÞ is piecewise

continuous.

Definition 2 A triangular fuzzy number (TFN) ~u is

specified by three parameters ðx1; x2; x3Þ and is defined by

its continuous membership function l ~uðxÞ : X ! ½0; 1	 as
follows:

l ~uðxÞ ¼

x� x1

x2 � x1
; for x1 � x� x2

x3 � x

x3 � x2
; for x2 � x� x3

0; otherwise:

8
>>><

>>>:

Definition 3 (Kauffman and Gupta 1991) The arithmetic

operations between two triangular fuzzy numbers are:

(i) k� 0; k ~u ¼ ðkx1; kx2; kx3Þ,
(ii) k� 0; k ~u ¼ ðkx3; kx2; kx1Þ,
(iii) ~u� ~v ¼ ðx1 þ y1; x2 þ y2; x3 þ y3Þ,
(iv) ~u
 ~v ¼ ðx1 � y3; x2 � y2; x3 � y1Þ,
(v) If ~v ¼ ðy1; y2; y3Þ is non-negative,

~u� ~v ¼
ðx1y1; x2y2; x3y3Þ; if x1 � 0

ðx1y3; x2y2; x3y3Þ; if x1\0; x3 � 0

ðx1y3; x2y2; x3y1Þ; if x3\0:

8
><

>:

Definition 4 (Yang et al. 2015) Let ~u ¼ ðx1; x2; x3Þ 2
TFðIRÞ be a triangular fuzzy number. Then, MGMIV of ~u,

i.e., EVð~uÞ ¼ 1
6
ðx1 þ 4x2 þ x3Þ.

Definition 5 (Yang et al. 2015) Flexible constraint is one

in which satisfaction is a matter of degree and can be

partially relaxed if necessary, so as to ensure the flexibility

of the problem. Mathematically, it is defined as follows:

Let ~u and ~v be two arbitrary fuzzy numbers. Then, the

order relation between fuzzy numbers is defined as:

(i) ~u � ~v if and only if Pð~u; ~vÞ� 1
2
.

(ii) ~u � ~v if and only if Pð~v; ~uÞ� 1
2
.

(iii) ~u ’ ~v if and only if Pð~u; ~vÞ ¼ 1
2
.

The notation ‘†’ will be used to express the fully fuzzy

linear programming with flexible constraints. First, we

describe the significance of the flexible inequality ~u†~v.
~u �a ~v, which means ~u is less than ~v in a degree of a, if and
only if Pð~v; ~uÞ� a. Here, ~u �a ~v and ~v �a ~u indicate the

identical thing. The flexible inequality ~u†~v represents

~u �a ~v, where a is a flexible parameter and 1
2
� a� 1.

Theorem 1 Fuzzy order relation (Yang et al. 2015) Let

~u ¼ ðx1; x2; x3Þ and ~v ¼ ðy1; y2; y3Þ are two triangular fuzzy

numbers and a 2 ½0; 1	. Then ~u � ~v if and only if
2y2þy3�x1�2x2

y3�y1þx3�x1
� a.

(B) Algorithm

Fully fuzzy LPP (FFLP) without flexible constraints is

described as:

maxZð~xÞ ¼ ~c1 � ~x1 � ~c2 � ~x2 � . . .� ~cn � ~xn

s:t:

~ai1 � ~x1 � ~ai2 � ~x2 � . . .� ~ain � ~xn � ~bi

~xj 2 TFðRÞþ;
i ¼ 1; 2; . . .;m; j ¼ 1; 2; . . .; n:

8
><

>:

This algorithm is followed from the research work by Yang

et al. (2015) for flexible constraints.

Step 1: Fixed a positive integer n and calculate

the value of ak by a ¼ 1
2
þ k

2n ; k ¼ 0; 1; . . .; n:

Step 2: If ~cj ¼ ðc1j ; c2j ; c3j Þ, ~xj ¼ ðx1j ; x2j ; x3j Þ, ~aij ¼
ða1ij; a2ij; a3ijÞ, ~bj ¼ ðb1i ; b2i ; b3i Þ, i ¼ 1; 2; . . .;

m; j ¼ 1; 2; . . .; n Then FFLP can be written as:

maxðf 1ðXÞ; f 2ðXÞ; f 3ðXÞÞ

s:t:

ðg1i ðXÞ; g2i ðXÞ; g3i ðXÞÞ � ðb1i ; b2i ; b3i Þ
~xj 2 TFðRÞþ;

i ¼ 1; 2; . . .;m; j ¼ 1; 2; . . .; n;

8
><

>:

where f 1ðXÞ, f 2ðXÞ, f 3ðXÞ, g1ðXÞ, g2ðXÞ,
g3ðXÞ are all linear functions of X=(x11, x

2
1, x

3
1,

x12, x
2
2, x

3
2, ..., x

1
n, x

2
n, x

3
nÞ.

Step 3: Then using Definition 4 and Theorem 1, the

linear crisp form will be

max
1

6
ðf 1ðXÞ þ 4f 2ðXÞ þ f 3ðXÞÞ

s:t:

2b2i þ b3i � g1i ðXÞ � 2g2i ðXÞ
b3i � b1i þ g3i ðXÞ � g1i ðXÞ

� a

~xj 2 TFðRÞþ;
i ¼ 1; 2; . . .;m; j ¼ 1; 2; . . .; n; for a 2 ½0; 1	:

8
>>><

>>>:

Step 4: Solve the linear programming problem obtained

in Step-2.
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Step 5: If no solution is found, then there is no

solution. Otherwise, let X�=(x1�1 , x2�1 , x3�1 , x1�2 ,

x2�2 , x3�2 , ..., x1�n , x2�n , x3�n Þ be a solution then

the optimal solution ~x�a will be

~x�a ¼ ð~x�a; ~x�a; . . .; ~x�aÞ
¼ ððx1�1 ; x2�1 ; x3�1 Þ; ðx1�2 ; x2�2 ; x3�2 Þ; . . .; ðx1�n ; x2�n ; x3�n ÞÞ:

Taking the values of a as a0, a1, ..., an (chosen

in step-1), solve FFLPa0 , FFLPa1 , ..., FFLPan .

Step 6: Suppose ~x�ak is one of the optimal solutions

of FFLPak , k = 0, 1, ..., n. Calculate the

optimal objective values Zð ~x�a0Þ, Zð ~x�a1Þ, ...,
Zð ~x�anÞ, then lðZð~xÞÞ provide the membership

functions.

Step 7: Evaluate bk ¼ 2ak � 1 and lðZð ~x�akÞÞ,
k ¼ 0; 1; . . .; n.

Step 8: Compute minkfjbk � lðZð ~x�akÞÞjg.
Step 9: Assume

minkfjbk � lðZð ~x�akÞÞjg=jbk0 � lðZð ~x�ak0 ÞÞj.
Then the fuzzy optimal solution of

FFLP is ~x�= ~x�ak0
.
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