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Abstract

In decision-making problems, g-rung orthopair fuzzy sets are considered as a more effective tool than intuitionistic fuzzy
sets and Pythagorean fuzzy sets. This article develops some aggregation operators based on Frank t-norm and t-conorm for
fusing g-rung orthopair fuzzy (g-ROF) information. Then a multiple attribute decision-making (MADM) approach is
introduced based on the proposed operators. The Frank operations of t-norm and t-conorm can have the advantage of good
flexibility with the operational parameter. From that point of view, in this paper, we extend the ideas of Frank t-norm and
t-conorm to the g-ROF environment and introduce some aggregation operators. Moreover, we illustrate the compatible
properties of the proposed operators. Generally, the attribute weights are unknown in the MADM problems. The analytical
hierarchy process and entropy methods are efficient tools to handle such MADM problems with unknown attribute weights.
So, we present an MADM approach with unknown attribute weights under ¢g-ROF environment using proposed operators.
Then to elaborate the flexibility and validity of the proposed model, we discuss and solve a numerical problem concerned
with a government project of choosing the best way of industrialization. Next, we show how the involvement of the
parameters in our proposed model affects the decision-making results. Finally, to exhibit the superiority of our proposed
methodology, the obtained results are compared with the existing ones.

Keywords Q-rung orthopair fuzzy sets - Frank operations - Q-rung orthopair fuzzy Frank aggregation operator -
g-ROF entropy method - MADM

1 Introduction

Nowadays, due to the availability of so many choices,
finding the most promising alternative is a challenging task.
MADM is the latest method of finding the best/most suit-
able choice from the set of available choices. Therefore,
the decision-makers generally prefer to use the MADM
technique to make their decisions. However, it is necessary
to assess attribute values more accurately and conveniently
in a decision-making problem. But, due to insufficiency of
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information and proper knowledge of real-world scenarios
the decision-makers face the challenges of vagueness and
uncertainty. To deal with such kind of vagueness and
uncertainty of the decision-making it becomes convenient
when the attribute values are expressed by fuzzy sets.
However, the fuzzy set is not always sufficient to express
vague information because it consist of membership degree
only. In many situations, the decision-makers provide the
degree of membership (DM) along with the degree of
nonmembership (DNM) of the attribute concerning the
alternative. Atanassov (1986) introduced intuitionistic
fuzzy set (IFS), consisting of DM and DNM such that their
sum is bounded by one. During the last four decades, the
IFS received a few achievements with the introduction of
several aggregation operators. Seikh and Mandal (2021)
proposed an intuitionistic fuzzy Dombi aggregation oper-
ator and applied it to solve MADM problems.
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IFS is a significant improvement of the fuzzy set.
However, in some real-problems, when the values of the
DM and the DNM lies between 0 and 1 but their sum is
greater than 1, the IFSs fail to handle such situations. For
dealing with such circumstances, Yager (2014) proposed
Pythagorean fuzzy set (PFS), associated with DM and
DNM such that the sum of their squares is bounded by one.
Several studies have been conducted based on this PFS
theory. Ejegwa (2019) explored the concept of PFS and
applied it in carrier placements based on academic per-
formance with the help of max-min-max composition.
Yang and Hussain (2018) proposed new entropies of PFS
and extended the concept to g-entropy to solve multi-cri-
teria decision-making (MCDM) problems. Yager and
Abbasov (2013) introduced weighted averaging/geometric
operators under the Pythagorean fuzzy environment.

Later, Yager (2017) combined IFS and PFS to gener-
alize them into g-rung orthopair fuzzy set (g-ROFS) which
consist of DM and DNM such that the sum of the g”
powers of the DM and DNM is less than or equal to 1. The
g-ROFSs can capture the uncertain information more pre-
cisely and flexibly than IFS and PFS due to the presence of
the parameter g. The development and analysis of the
properties of g-ROFS have acquired great interest from the
researchers (Gao et al. 2019; Peng and Liu 2019; Wang
et al. 2020; Shu et al. 2019; Akram and Shahzadi 2020;
Akram et al. 2021; Feng et al. 2021). To combine g-ROF
information several aggregation operators have also been
developed such as Maclaurin symmetric mean operator
(Wei et al. 2018), Muirhead mean operator (Wang et al.
2019a) and Hamy mean operator (Wang et al. 2019b).

A fascinating generalization of probabilistic and Luka-
siewicz t-norm and t-conorm (Wang and He 2009) are
Frank t-norm (FTN) and Frank t-conorm (FTCN) (Frank
1979), which form an ordinary and adequately flexible
family of the continuous triangular norms. The employ-
ment of a certain parameter not only makes the FTN and
FTCN more flexible but also equips to design the pattern of
practical decision-making problems. Exploring the additive
generating function of FTN, Yager (2004) launched a
framework in approximate reasoning with FTN. Compar-
ing the FTNs and the Hamacher t-norms up to an extent,
Sarkoci (2005) concluded that the same family contains
two different t-norms. Casasnovas and Torrens (2003)
proposed an axiomatic approach to the scalar cardinality of
FTNs. Several researchers proposed aggregation operators
using FTN and FTCN in different fuzzy environments to
consolidate uncertain information, for instance, intuition-
istic fuzzy environment (Zhang et al. 2015), Pythagorean
fuzzy environment (Xing et al. 2018; Yi et al. 2018),
hesitant fuzzy environment (Qin et al. 2016), interval-val-
ued neutrosophic fuzzy environment (Zhou et al. 2019) and

@ Springer

triangular interval type-2 fuzzy environment (Qin and Liu
2014).

Frank has developed the operations of t-norm and
t-conorm, which are more generally known as Frank
operations. These operations will have a better field of
applications when presented in a new form of flexibility.
Again, the ¢g-ROFS can handle the uncertain information
more deliberately. In the above literature survey, we have
noticed that the Frank operations are not applied yet, to
exhibit g-ROFS in an appropriate form and shape. Moti-
vated by the theory of Frank operations, in the present
article, we introduce new operational rules of g-ROFNs
based on Frank operations. Then, we propose a series of
aggregation operators to aggregate g-ROF information with
the assistance of the proposed operational rules. Frank
aggregation operators make the information aggregation
process more flexible due to the involvement of a param-
eter. Then we introduce an MADM approach based on the
proposed operators with unknown attribute weights.

As each attribute possesses some different aspects, all of
them cannot be leveled with the same weight. Therefore,
finding the appropriate weight for every attribute is the
major aspect in an MADM problem. Generally, in the
MADM problems, the attribute weights are considered to
be completely known. But, this is not the case in real-world
MADM problems. To determine attribute weights for these
types of MADM problems several methodologies have
been introduced. The most popular among those methods
are the analytical hierarchy process (AHP) (Saaty 2008)
and the entropy method (Shannon 1948). Here, we utilize
AHP and entropy methods to determine the attribute
weights. Then, the alternatives of the presented numerical
example are to be ranked based on the decision-maker’s
opinion, where Frank aggregation operators can be used to
aggregate the information given by the decision-maker.

The contributions of this paper are summarized as
follows:

e Some novel operational laws for g-ROFNs based on
FTN and FTCN are introduced.

e Using the proposed FTN and FTCN operational rules a
series of aggregation operators of g-ROFNs are defined.

e An MADM technique with ¢g-ROF data and unknown
attribute weights is deliberated based on the proposed
aggregation operators.

e The validity of the proposed model is verified using it to
solve a numerical problem concerned with a govern-
ment project of choosing the best way of
industrialization.

e Our proposed model is compared with several existing
methods to show its superiority.

The remaining paper is organized in the following
sequence. In Sect. 2, some basic definitions and
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prerequisite concepts are recalled. In Sect. 3, some new
operational rules for g-ROFNs grounded on FTN and
FTCN are proposed. Further, some novel aggregation
operators with the help of those operational rules are
defined. In Sect. 4, some novel approaches with the help of
the ¢-ROFFWA and ¢g-ROFFWG operators are built, for
handling g-ROF MADM problems. In Sect. 5, the validity
and accuracy of our proposed method is thoroughly
investigated by discussing a real-life situation concerned
with a government project of distributing the socio-eco-
nomic growth among people from place to place through
industrialization. The impacts of the parameters on the
decision-making results are carefully analysed in Sect. 6. In
Sect. 7, the comparisons between our proposed model and
other significant well-known approaches is presented.
Finally, Sect. 8 concludes the manuscript.

2 Preliminaries

This section is enriched with basic definitions and some
prerequisite concepts.

Definition 2.1 (Yager 2017). The ¢-ROFS # in the uni-
versal set X is described as

h = {<Saﬂh<s)7vh<s) > |S € X}a

where 1, : X — [0,1] and v;, : X — [0, 1] are called the
DM and the DNM to the set h, respectively, with the
condition  (1,(s))? 4+ (va(s))?<1,g>1, Vse X. Also,
Y1 — (,(s))7 = (vi(s))? represents the indeterminacy
degree of s € X. For simplicity, h = (w,,vs) can be
disclosed as a g-rung orthopair fuzzy number (¢g-ROFN)
(Liu and Wang 2018).

Definition 2.2 (Liu and Wang 2018). Let h = (;,, v,) be a
g-ROFN. Then the score function S and the accuracy
function A of % are defined as

S(h) :%(1 bl =) (1)
A(h) = + vy, (2)

where both S(k) and A(h) belong to [0, 1].

Let hy = (uy,, vn,) and hy = (py,,, vp,) be two g-ROFNG.
Then from Eqs. (1) and (2), we have

1. h>hif S(h]) > S(l’lz),

N

hy <hy if S(hy) <S(hy),
If S(hy) = S(hy), and

o If A(hl) > A(/’lz), then hy > hy,
o If A(hl) = A(kz), then hy = hy.

(O8]

Definition 2.3 (Liu and Wang 2018) The ¢-ROFNs h =
(s vi), h1 = (y,,vn,) and hy = (,,vy,) satisfies the
following operational laws:

(1) hl Uh2 = (max{:uh]»:uhz}amin{vhnvhz})'
(@) hiNhy = (min{py, , ty, }, max{vy,, vs, }).
(3) h¢ = (vhmuh)'

4 heh = ((/#Zl + 14, —uZluZZ,vhlvhz)-

) @k = (w0

©6) ih = <q 1—(1—ug)‘,v;>,x>o.

7 W= (ug, V1—(1— vg)i>,,1 > 0.

The FTN and FTCN are stated in the following.

Definition 2.4 (Frank 1979). For two real numbers r and s
in [0, 1] FTN and FTCN are defined as

et
(" -

Fra(r,s) =log, (l +

D -
T—1

1))7

respectively, where (r,s) € [0,1] x [0,1] and 7 # 1.

Frd'(r,s) =1 —log, (1 +

Using limit theory, we can obtain the following results
(Wang and He 2009):

1. If t — 1, then Frd'(r,s) — r+s— rs and Fra(r,s) —
rs, the Frank sum and Frank product reduce to the
probabilistic sum and probabilistic product.

2. If then Frd'(r,s) — min{r+s,1} and
Fra(r,s) — max{0,r +s — 1}, the Frank sum and
Frank product transform into the Lukasiewicz sum
and Lukasiewicz product.

T — 00,

Example 1 Let r = 0.60, s = 0.40 and 7 = 2, then FTN
and FTCN are,
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Fra(0.60,0.40)

20.60 1 20‘40 -1
= log, (l + ( > I 1 )> = 0.2200 and
Frd'(0.60,0.40)
1-0.60 _ 1-0.40 _
=1—log, (1 + 2 21)(21 1)) =0.7799.

3 g-ROF Frank aggregation operators

We interpret some novel operations based on FTN and
FTCN concerning ¢g-ROFNs in the following. Further, we
suggest some aggregation operators, namely, g-rung
orthopair fuzzy Frank weighted averaging (¢-ROFFWA)
operator, g-rung orthopair fuzzy Frank order weighted
averaging (g-ROFFOWA) operator, g-rung orthopair fuzzy
Frank weighted geometric (-ROFFWG) operator, and g-
rung orthopair fuzzy Frank order weighted geometric (g-
ROFFOWG) operator.

Definition 3.1 Let 1 and t be two positive real numbers
with 7 # 1. Then, for three g-ROFNs h = (u,,vy,), hy =
(#n,» v, ) and hy = (py,, vp,) the FTN and FTCN operations
are defined as

1.
h @ hy

. I _

= \/l _logr (1+(T :
W
q h
\/logr (1 + (e

h @ hy
1 -1 1 -1
7—1

lf\fz
</1—10gf(1+(r :

(' "

T—1

_1>)’

— 1)z — 1>>

T—1

-~k - D)

T—1
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Ah

= <</1 —log, (1 —0—%),

</1—10gT (1—&—((‘[;_‘21_)/1)1A)>

Example 2 Let hy = (0.85,0.74) and hy, = (0.90,0.66) be
two g-ROFNs, using Definition 3.1 for t =2, g =4 and
A =73 we get

1.
h1 @ hy
. (21—(0.85)4 - 1)(21—(0.90)“ ~1)
- \/1_](’&(“r 2—1 )
4 (2(0.74)“ _ 1)(2(0.66)“ —1)
log (1 )
\/ng + 1
=(0.9995,0.083).
2.
hi®hy
4 2(085)* _ 1y(2(0:90)* _4
B \/1°g2(1+( 2)—(1 ))’
. (217(0.74)4 - 1)(217(0466)4 —1)
\/1—10g2<1—|— 1 )
=(0.388,0.962).
3.

. (21—(0.85)4 _ 1)3
3/’11— \/1—10g2<1+w),

2(074)* _ 1)3
V log, (1 + Q) — (0.978,0.364).

2-1)7*"
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4 2
i’ (2085 _ 1) . 2 (e
= (oo (BT o= (o 1+ B
: (!0 —1)? l_va o
1-1 l+— = (0.582,0.909). a T om=1)(t ™ -1
\/ OgZ( + (2_1)371 ) ( ) ) 1_10g1<1+( T)_(l ))
q (e — D" — 1)
Theorem 3.1 If h = (w,,vs), i = (wy,,v,) and hy = = log, (1 + P ),
(tp,»V,) be any three q-ROFNs, © > 1 then considering
A, A1, Ay as positive real numbers we get: (/1 | | (Tlfvzz B 1)(117\11 _)
1. hi ®hy=hy & hy; Ogr( + T—1 )
2. i ®hy=hy® hy; B
3. Ay ® hy) = Ay @ Ao =hy @ hy.
4. (/11 + )uz)/’l = Mh & Ik 3
5. (h @ hy) = h'* @ hys :
6. h)vl ® h/lz — h/ll+22- /l(l’ll (& hz)
. 1—uf . 17;4‘1 .
Proof Using Definition 3.1, we get - (\/1 ~log, (1 n (v " 1)(T1 i —1) >’
T—
1.
N q
. = 1) e - y (Th =™ — 1)
m@hf—<¢1—m&(y+“ ;%a - 1))7 ¢b&<l+ -1 )

vl v l_ﬂz 1 a ]_”27 1 2
. (¢ — 1) (¢ — 1) _ ql—mg(uﬂf - -—))
\/ oz, 1+ 5——25—) f e
. (Tl*HZZ o 1)(,[17/[;l N l) . ( (‘CVZI _ 1)/1(_["22 _ I)A)
= — 1 1 -
(\/1 log, (1 + T—1 )’ o \1 F (t— 1)2“]
q @k —nEh -1 Now
\/1ng (1 + T—1 ) '

=hy ®h.
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) (ij e (1 Jr%)’ = </logf (1 + (T’LZI Tl)_(fl“zz - 1))’

) 2 1—v! 1-v] ’
illogf (1+H)>@ </1—10g, (1+(T g ffl)_(r1 oy *1)>
Ty 1) 20 ) (2 —
(\J 1 —log, <1+((T_1)3)), _ (ijlogf (1+(( E i)i)ﬂl 1))1)7
7)) )
(e (e

Therefore, A(hy @ hy) = Ahy & Ahy. . My 1)
\ erefore, A(h) @ hy) i 2 2 \llogr (1+(T( > 1)2 >’
. T
/Aull/l@/lzh 1—v? 2
7 a (" —1) A A
. (cl=H — 1)*1 \l —log, (1 +—5" =h"®h".
q p
. Vi — 1M
log, <1+(T] )/1 ))EB 6
(t—1) W@
(/1 tog, (1+ (x 1)12) . (e — 1)"
o T*l)iz ’ = logf (1+ . ])M 1)7
q @ - 1" (@1
\/l g: (1+ @ 1)12 ) ‘[1—log, (1+ (‘E—l)’l‘*l )
_ | (G . (¢ — 1)"
<\/1—logr(l+W), Y logf(l—km)»
q P ]
q (th — 1) 1T . ,L.l—vz — 1™
\/logf (1+m) 1 —log, (l-ﬁ-ﬁ)
= (il + }z)h , (T“Z o l)llJr/lz
s = IOgT (1+4(T_ 1)/114’)-2*1)’
q N
\/1 —log, (1 —&—W) — phtia
O

Next, we propose arithmetic aggregation operators uti-
lizing FTN and FTCN.
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3.1 g-ROF Frank arithmetic aggregation
operators

Definition 3.2 Let &, = (), ,vs)(x=1,2,...,m) be a
number of ¢-ROFNs with their associated weight
Oc(x=1,2,...,m), satisfying O, € [0,1] and Y ", O, = I.
Then the operator g-ROFFWA : i — h is defined as

g-ROFFWA (hy,ha, ..., hy) = P 0chs.

Hence, we get consequential theorem which obeys
Frank operations on g-ROFNs.

Theorem 3.2 The aggregated value of a number of q-
ROFNs  hy = (w, ,vn,)(x=1,2,...,m)  utilizing  g-
ROFFWA operator is still a g-ROFN, and

q-ROFFWA(hl 5 hz, ceey hm)

= @?:1 Ouhy

= ((/1 — log, (1 + ﬁ (rlfﬂzx — l)a">,

x=1

\"/logr (1 + ﬁ (' — 1)6")>.
Pty

Proof We establish this theorem with the help of mathe-
matical induction method.
For m = 2, using Definition 3.2, we get

q—ROFFWA (hl, hz)
= @izlaxhx = 01h @ 02hp

G

,, l—logr(l—i—

vl 0
no—1 1
\ log, <1+(T : a)_l)
(t—1)"

p l—uz _162
@( o (1 C 10

(r— 1%

2

= d 1 — log, (1 + H (rlf"zx — 1)a*>7

x=1

" log, (1 + f[(f% - 1)@) l-.-iax - 1].

x=1

Therefore, for m = 2, the result is true. Suppose the result
is valid for m = s; i.e., we assume

¢-ROFFWA (hy, hs, . . ., hy)

= @iﬂ Oxhy

= ({/1 — log, (1 + li[(rl_”zx — l)a*),

x=1

\q/logT (1 + f[ (' — l)a‘>>.

Now, for m = s + 1,
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q—ROFFVVA(/’ll7 hz, SN hs, h5+1)

= P10k = D), 00D 1y

[T -1
= 11 -10g, <1+—>,
0,1
(‘cfl)le

1—uf d
q (‘E hyt1 1) s+1
g, (14 E o
@( g (1— 1)@“71
g st 1 Ot
log, (1+(T 3 )71 )
(‘L' 1) s+1
s+1
= | |1-1log, (1 + H (v Fm — l)ax)7
x=1
. s+1 . 5 s+1
log, (1 n Hl(f%- —1) ) -_-Z;ax =1|.

Therefore, if the statement is true for m = s, then it will be
true for its successor, s + 1.

Hence, by the induction hypothesis the given result is
valid for all positive integers m. O

Theorem 3.3 (Idempotency Property). If the g-ROFNs
he = (W, vn,)(x = 1,2,...,m) are identical, i.e., h, =h
for all x, where h = (w,,v), then

¢-ROFFWA (hy, hy, ..., hy) = h.

Proof As h, = h, for all x, then we obtain

@ Springer

C]—ROFFV\]A(l’ll7 hz, ceey hm)
) (\/1 —tog, (1+ [T — 1)),
x=1

Il
/N
Q

—_

|

—

o

aQ
)
amn

—

+
—
—
H»—t
|
=
—_
—
2
~——

Il
=
I
—_—
o
1]
a
/
o
+
—
ﬁ.—.
=
—_
~—
s
2
—

o
\/logr 1+ (t 1)21: )

_ <\/1 ~log, (1+ (2" — 1)),
</logr (1 + (e — 1)))
(YR - -

Hence, the result follows. O
Theorem 3.4 (Boundedness property). Let h,=
(tpvn)(x =1,2,...,m) be a number of g-ROFNs. If
h™ = min{hy,hy,....h,} and h™ =max{hy, hy,... hy},
then

h™ < g-ROFFWA (hy, ha, ... hy) <h™.

Proof Let h~ = (u ,v") and At = (ut, vt
we have p~ = min{y, }, v- = max{v, }, u*
X E X

). Therefore,
= max{u, )
and vt = min{vy, }.

Now,

\(’/1 —log, (1 + H (e — 1)ax>
x=1
< </1 — log, (1 + H (¢! ¥ — 1)GX>

x=1

< {/1 ~log. (1 + [ — 1)‘*)

x=1

and
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x=1
<</10gf (1 +H(r w—1) )
x=1
< </10g1 (1 + H ()" — 1)6‘)
x=1
Therefore,
h~ < g-ROFEWA (hy, ho, . . ., hy) < I
O
Theorem 3.5 (Monotonicity property) Let {hx=

1,2,...,m} and {W|x=1,2,...,m} be two sets of q-
ROFNs, where h, = (p, ,v,) and b, = (W, ,v) ) for x =
L2,...om If w, <, and vy, >v), for all x, then, g-
ROFFWA(hy, hy, ..., hy) < q-ROFFWA(K, h,, ... I.).

Proof Since p, <y, and vy, >v, forallx=1,2,....,m
then

(-51*% _ 1)@
m

> (TI*M’ZX — 1) = logT (1 (Tlfuzx o 1)6X>

s (1)
x=1
\/ —log, (1 + H ~Hi )

m

< </1 —log, (1 + (‘cl""zx - l)a‘).
x=1

Similarly, it can be

</logr (1 + 11 (" — 1)6‘) >
x=1
\"/logf (1 + I1 (¥ — l)a").

x=1
Thus,

— q
(T )
x:l
— q
- <</logr (1 + H (' — l)a*)>
x=1

< <\/1 — log, (1 + ﬁ(r'-ﬂ’l — 1)‘"’-))q

({fos 0 1) )

shown that

Let h = g-ROFFWA(hy, hy, .. ., hy) and W=
g-ROFFWA (K}, I, ...,h.). Then by Definition 2.2, we
have S(h) <S(#).

(D If S(h)<S(K) then we have,
h<n
i.c..g-ROFFWA (hy, h, ..
Wy, ... h).
(M) If S(h) = S(#') then, we get

<\/ ~log. (1 +x:1 o 1) ))
— ((/logf (1 —I—ﬂ rhv —1) ))
= <</1 — log, (1 —|—£[1 (v — l)a‘)>
- ((/10& (1 n ﬁ(f"’zx _ 1)af)> :

then, by the condition p,, <, and vy, >v; for all
x=1,2,...,m, we have

m q
<\/ 10gf( FTT 4 —1)° ))
x:l
— a
(i)
x=1

({/bgr (1 + ﬂ (‘L'VZ» — l)a‘)>
x=1
- (e T )’
x=1

So, from Eq. (2), we have

A(h) = <</1 —log, (1 + ﬁ(rl i — 1)6‘)>q

x=1

+ ((/mgf (1 Jrf[1 (thh — 1) ))q

= (i’/l — log, (1 —l—H(rl Wi — l)a*)>q

+ ({’/Iogf(l ﬁ - 1)°
=1

Therefore, from (I) and (II), we get

. hm) <g-ROFFWA (K,

@ Springer
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q—ROFFWA(hl ; hz, .
(S )

.. ) < g-ROFFWA

O
Next, we develop ¢-ROF Frank geometric geometric

aggregation operators utilizing FTN and FTCN as follows:

3.2 g-ROF Frank geometric aggregation
operators

Definition 3.3 Let &, = (), ,vs)(x=1,2,...,m) be a
number of g-ROFNs with their associated weight vectors
O0y(x =1,2,...,m), satisfying 0, € [0,1] and ’zn: o, = 1.
Then the operator g-ROFFWG : i — h is deﬁ;zcll as
G-ROFFWG(h, b, . . . ) = Q" (h)™.

Hence, we get the consequential theorem that follows
the Frank operations on g-ROFNs.

Theorem 3.6 The aggregated value of a number of q-
ROFNs  hy = (,,,vn,)(x=1,2,...,m)  utilizing  g-
ROFFWG operator is still a g-ROFN, and

¢-ROFFWG(hy, hy, . . ., hy)

= ®Z1:1 (h ‘

= <\q/logr (1 + ﬁ(r"zx — l)a*>,

i logr(x_ﬁ : )).

Proof The proof of this theorem emulates from
Theorem 3.2. (]

The following properties can be easily proved for g-
ROFFWG operator.

Theorem 3.7 (Idempotency property). If the gq-ROFNs
he = (., Vi, )(x = 1,2, ...,m) be identical, i.e., hy = h for

all X, where h = (s vi)s then q
-ROFFWG(hy, hy, . . ., hy) = h.

Theorem 3.8 (Boundedness Property). Let h,=
(tpvn)(x =1,2,...,m) be a number of g-ROFNs. If
h™ = min{hy,hy, ..., h,} and h™ =max{hy, hy,... hy},
then

h™ < g-ROFFWG(hy, hy, ..., hy) <h™.

@ Springer

Theorem 3.9 (Monotonicity property). Let {h.|x =
1,2,...,m} and {W|x=1,2,...,m} be two sets of q-
ROFNs, where h, = (, ,vn,) and b, = (W, ,v) ) for x =
L2,...om. If w, <, and vy, >V, for all x, then q
-ROFFWG(hy, hy, ..., hy) < g-ROFFWG(h|, Ky, ... k).

3.3 g-ROF order weighted averaging/geometric
aggregation operators

Now, we would like to introduce g-ROFFOWA and g-
ROFFOWG operators.

Definition 3.4 Let h, = (,, v, )(x=1,2,...,m) be a
number of g-ROFNs and O,(x = 1,2,...,m) be the asso-

ciated weight vectors satisfying 0, € [0,1] and > 0, = 1.

x=1
Then g-ROFFOWA and ¢g-ROFFOWG operators are the
functions from 4™ to h defined by,

g-ROFFOWA (hy, hy, .. . hy) =@ Bchy
G-ROFFOWG (1, hy, .. .. h) =), ()™

respectively, where (o(1),0(2),...,a(m)) is the per-
mutation of (1,2,...,m), satisfying hy(_) > hy for all
x=1,2,....m

The following theorem is constructed on the ground of
Frank operations of ¢g-ROFNs.

Theorem 3.10 The aggregated value of a number of q-
ROFNs h, = (w, ,vp,)(x = 1,2,...,m) utilizing q-ROF-
FOWA and q-ROFFOWG operators are still a g-ROFNs,

and
g-ROFFOWA (hy, hy, . . ., hy) = P Ochy) =

((/1 —log, (1 + E[l (Twzm _ l)ax)’
\/mgf (1+1] i (h — 1)@))

G-ROFFOWG(hy, By, .., ) = Q1 (o)™ =

((/10& (1+ lil (a"e - 1)),
\"/1 —log, (1 + ]rjl (rlivzum — 1)6*)).

Proof The proof of this theorem emulates from
Theorem 3.2. ]

The following properties can be ascertained easily with
the aid of g-ROFFOWA and g-ROFFOWG operators.



Granular Computing (2022) 7:709-730

719

Theorem 3.11 (Idempotency property). If all the g-ROFNs
he = (W, v,)(x = 1,2,...,m) be identical, i.e., h, = h for
all x, where h=(u,v,), then g -ROFFOWA
(hy hay o hy) =h and q
-ROFFOWG(hy, hy, . . ., hy) = h.

Theorem 3.12 (Boundedness property). Let h, =
(tpvn)(x =1,2,...,m) be a number of q-ROFNs. If

h~ =min{h,h,....h,} and h" = max{hy, hy,... hy},
then
h~ < g-ROFFOWA (1, h, . . . hy) <h",and
I~ < g-ROFFOWG (1, ha, . . .. h) < ™.
Theorem 3.13 (Monotonicity property). Let {h.|x =

1,2,...,m} and {W|x=1,2,...,m} be two sets of q-
ROFNs, where h, = (w, ,vn,) and b, = (1, ,v) ) for x =
L2,..om If w, <, and vy, >v), for all x, then, q
"ROFFOWA (hy, hs, . . ., hy) < ¢-ROFFOWA (I, 1), . ..,
i), and ¢-ROFFOWG(hy, hy, . . ., ) < q
ROFFOWG (K, Iy, ..., I,).

Theorem 3.14 (Commutative property). Let {hx =
1,2,...,m} and {W|x=1,2,...,m} be two sets of q-

ROFNs, then q-ROFFOWA (hy, hy, ... hy) =
g-ROFFOWA (K|, H,,... k), and q-ROFFOWG
(hi,ha, ..., hy) = g-ROFFOWG(h}, k), ... h,) where K,
is any permutation of hy(x = 1,2,....,m).

4 Application to MADM with g-ROF
information

Here, we discuss an approach for solving MADM problems
using our proposed aggregation operators, where the attri-
bute values are expressed by ¢-ROFNs and attribute
weights are unknown. We utilize ¢g-ROF information and
manipulate g-ROFFWA and ¢-ROFFWG operators. Let
V={V,Va,...,V;} be a discrete set of [ alternatives
available to the decision-makers to be chosen and R =

Table 1 Scale of importance

Intensity of importance Definition

Same importance
Medium importance
High importance
Very high importance
Extreme importance

N O 9 K W=

,4,6,8 Intermediate values

Value for inverse comparison

Wl
i
Sim
Ol—

{Ri,Rz,...,R,} be the set of attributes to be considered.
The attribute weights are determined by the AHP and
entropy methods. The procedure of finding attribute
weights using the AHP and the entropy method is discussed
later. Let us consider that the weight vector corresponding
to the attribute R,(b = 1,2,...,n) be 05(b = 1,2,3,...,n),
where 0, >0 and ), 0, = 1. Suppose that P =
(M) 1xn = ((Haps Vab));s, 1S the decision matrix, where
Nap 1s the evaluation value of alternative V, with respect to
attribute R,. Here 1, is a ¢-ROFN where (1,,)? +
(Vab)q <1and u, € [O’ l]a Vab € [Oa 1]'

4.1 Analytical hierarchy process

The AHP method developed by Saaty (2008), is a useful
tool in a variety of decision-making situations. The AHP
helps decision-makers to trace the one, which fulfils their
goals and meets their understanding about the problem. In
AHP, a pairwise comparison among the attributes, selected
by the decision-makers, is made to prioritize among the
attributes. The AHP model consists of the following steps:

Step 1:  Construct pairwise comparison matrix B.

1 rn A1) rlp

1 1 3 ... Iy
B =

S T T O O |

The matrix B is a square matrix of order p,

when p is equal to the total number of attri-
butes selected by the decision-maker. In the
above matrix, the entry r, stands for the
significance of ¢ attribute relative to the b
attribute. rp, <1 if the @ attribute is less
important than 5" attribute, on the contrary
o > 1 if the @™ attribute is more important
than b™ attribute. Again r,, = 1, when two
attributes are equally important. The compar-
ative importance of any two attributes (taken
from the collection of p attributes) is mea-
sured with a scale from 1 to 9, which is
exhibited in Table 1.

Step:2  Determine the normalized pairwise comparison

matrix B = (Fu) where 7y is calculated

pxp?

using Eq. (3)

Yab

i Tab . (3)
a=1

Tab =

Step:3  Weights of the attributes 0,(b =1,2,..

calculated, utilizing Eq. (4)

., D) are
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4.2 g-ROF entropy method

Entropy is the measure of randomness and disorder in the
universe. The entropy method proposed by Shannon (1948)
is applied for defining the unknown weights of the attri-
butes when the information about the decision matrix is
known. Here, we extended Shannon’s entropy method
under ¢g-ROF information.

Step 1:  Constitute the g-ROF decision matrix P =

(1w = ((Haps Vab))s Where I and n are
the number of alternatives and attributes,
respectively and pu,, and v, denote the DM
and DNM, respectively.

The attribute weights can be calculated
through the formula presented in Eq. (5),
using the ¢g-ROF decision matrix B

Step 2:

1+4 Zl(:uablog(:uab) + Varlog(Vap))
3 = =

> (1 13 (o () + vablog(vab))) |
b=1 a=1
(5)

4.3 Algorithm of solving MADM problem

In the following, the procedure of solving MADM problem
using proposed g-ROFFWA and ¢g-ROFFWG operators is
described. The steps are:

Step 1:  Based on the decision-maker’s opinion, con-
stitute the decision matrix P with the ¢g-ROF
data, where P = ((Tab))lxn = ((ruabv vub))lxn'
Determine the attribute weights by the AHP
and the ¢g-ROF entropy methods, described in
Sects. 4.1 and 4.2, respectively.

Transform  the matrix P = (T4p);y, =

((ttaps Vab))jx, into a normalized ¢-ROF

Step 2:

Step 3:

matrix P = (1) 1n = (B> Vep))ixn DY

Eq. (6)

oo (Uaps Vab), if Ry is benefit attribute;
ab (Vab, Hap),  1f Ry is cost attribute.

(6)

Note that, this step can be omitted if all the
attributes are of benefit type.

@ Springer

Step 4:  Utilizing our proposed g-ROFFWA operator
and g-ROFFWG operator, the collective value
p, of the alternative V, is calculated by

Egs. (7) and (8), respectively.
Ba

g-ROFFWA (7, T, ) = @Z:l (0vTp)

((/1 ~log, (1 + ] - 1)5‘”),
b=1

{/logT <1 + H(‘L’vlzub - l)a”>>
b=1

and

Ba
=g-ROFFWG (7)), T 51 s Thy) =

an

= ({/Iogr (1+H(r“lzab - l)a">,
b=1
n 19
(/1 —log, (1+H(1Hm - 1)“) ) :
b=1

R
Z:I(T;b) !

(

Calculate the score value S(o,)(a
1,2,...,1) for each aggregated value f,(a =
1,2,...,1) using Eq. (1).

If the score value for one alternative is
maximum, then this would be the most
preferable, i.e., the best alternative is V), if
S(p,) = <aa)<(l{S(ﬁa)}. Otherwise, we have

(o¢]
~

Step 5:

Step 6:

1
to find out accuracy function using Eq. (2) for
all the alternatives whose score values are
simultaneously maximum. Now,

e [f the accuracy value be maximum for only
one of those alternatives, then this would
be the best alternative.

e If the accuracy value also be maximum for
two or more of those alternatives, then any
of them could be selected to be the best
alternative.

5 Practical implication

To better express the proposed method and its benefits, we
are eager to explain a numerical example concerned with
the balanced development of the socio-economic condition
of a state.
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5.1 An example to balancing the socio-economic
condition of a state

West Bengal is an eastern state of India. It possesses 6th
rank in GDP in India and at the same time, 23rd rank in
GDP per-capita. So, the easy conclusion about the econ-
omy West Bengal, is that here less number of people
handles the maximum share of the economy and econom-
ical growth, while a large portion of the society suffers
from poverty. In West Bengal, also we can see that max-
imum industrial growth is centralized in some districts,
namely, Kolkata, Howrah, Hooghly, etc., and the agricul-
tural development has been centralized to the various river
basins only (mainly basin of the Ganges). The rest of this
state is economically underdeveloped. Now, the priority of
the finance ministry of the state government is to step for
the proper distribution of wealth among people.

Keeping such problems of unequal distributions in mind,
the finance ministry of the state is eager to initiate a ‘de-
centralization of industrialization program’. For this pur-
pose, a committee has been selected by the finance ministry
and they have to suggest such a way of industrialization
which will develop the economy of even the interior areas
(the districts of Bankura, Purulia, 24 Parganas, North and
South Dinajpur, etc.) of the state and involve a large
number of people into it giving them an equal share of
profit. The committee has raised some alternative choices
and some attributes to judge the alternatives. The alterna-
tives are

e V), : Taking initiatives to expand livestocks (e.g.,
poultry, fishery, animal farms, etc.).

e ), : Encouraging agricultural industries (e.g., rice mills,
dry food industry, cold storage industry, food packag-
ing, etc.).

e Vs : Establishing new hardware or machinery industries
(e.g., still plant, large scale industries, etc.).

e V), : Initiating software industries (e.g., animation,
information technology, etc.).

e )5 : Initiating business hubs containing small indepen-
dent businesses.

The attributes are

Table 2 Assessments of the alternatives with ¢g-ROF data

Ri R> R Ry Rs
Vi (03,08  (0.703)  (0.602)  (0206)  (0.2,0.7)
Vv, (0207 (07,02) (0402 (02,05 (03,04
Vi (04,05  (0506) (0207 (03,08  (0.4,0.5)
Vi (0304 (0502  (0703) (0508  (0.9,0.6)
Vs (0705 (0705  (07,06)  (02,03)  (0.7,0.8)

e R, : Investment.

e R, : Involvement of common people.
e Rj: Usage of local wealth.

e R, : Necessity of infrastructure.

e Rs: Necessity of skilled labor.

The attribute R; is a cost attribute because less investment
makes an alternative superior. R, is a benefit attribute as it
provides employment to common people. The alternative
which uses more amount of raw material available at the
locality is more preferable so the attribute Rj is of benefit
type. R4 is a cost attribute because the alternative which
requires fewer infrastructure facilities is treated as a better
alternative. Rs is a cost attribute as less necessity of skilled
labor is more preferable as it includes the maximum
amount of unskilled labor of local people.

Now, we see that each alternative optimizes different
attributes to a different extent. So, our proposed method
will assist the committee to access such a MADM problem.
Under the preferences and suggestions of the committee,
the weight vectors corresponding to the above attributes are
calculated by AHP and entropy methods as described in
Sect. 4.

Let the evaluation of the alternative )V, relative to the
attribute Rj, is expressed by ¢g-ROFN (i, vap). Further-
more, a g-ROF decision matrix ((ty,, Vas))sys is Obtained.
The appraisement for the alternatives is exhibited in
Table 2.

5.2 Solution
Now, we utilize our proposed MADM model to determine

the best way of industrialization, which will distribute its
share among people in a balanced way.

Step 1:  Express the evaluations of alternatives
through a ¢-ROF decision matrix exhibited
in Table 2.

Step 2:  Determine the weights of the five attributes by

the AHP and ¢-ROF entropy methods.

e Attribute weights obtained by AHP:
Here, we utilized the AHP method
discussed in Sect. 4.1 to determine the
attribute weights.
Initially, the pairwise comparison
matrix B is constructed using scale of
importance given in Table 1.
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R, R,R3R4R5 (0.8,0.3) (0.7,0.3) (0.6,0.2) (0.6,0.2) (0.7,0.2)
L1 11 (0.7,0.2) (0.7,0.2) (0.4,0.2) (0.5,0.2) (0.4,0.3)
1 = - = = N=1|(0.5,04) (0.5,0.6) (0.2,0.7) (0.8,0.3) (0.5,0.4)
R, 7 17 ; g ; (0.4,0.3) (0.5,0.2) (0.7,0.3) (0.8,0.5) (0.6,0.9)
R, 1 (0.5,0.7) (0.7,0.5) (0.7,0.6) (0.3,0.2) (0.8,0.7)
B— R 5 3 al 3 5 ' .
R 11 1 Step 4:  We consider T = 2,q =4 and exploit the g-
413 5 3 1 3 ROFFWA and ¢-ROFFWG operators to deter-
Rs 1 1 mine complete aggregate values f,(a =
5 3 5 3.1 1,2,3,4,5) of alternatives V, using Eqgs. (7)
and (8) respectively. The aggregated results
Normalized pairwise comparison matrix B using AHP and ¢-ROF entropy are shown in
is computed through Eq. (3). Table 3.
R\R>R3R4Rs Step 5:  The score values S(f,)(a = 1,2,3,4,5) using
Ry [0.0476 0.0700 0.0422 0.0267 0.0209 Eq. (1) and rankings of the alternatives are
R | 0.3333 0.5000 0.6342 0.4055 0.3147 exhibited in Table 4.
B=R;| 0.2380 0.1650 0.2114 0.2433 0.5246 Step 6:  So, based on the committee’s advice, the
Ry | 0.1428 0.1000 0.0697 0.0811 0.0346 government will take initiatives for the ‘de-
Rs \0.2380 0.1650 0.0422 0.2433 0.1049 centralization of industrialization project’
with the most suitable alternative i.e., V.
C(Ejntllll;uz::dg aqu' (4) attribute weights are From the above, we can see that the ranking orders of
the alternatives utilizing the ¢-ROFFWA and ¢-ROFFWG
0p = (0.04148,0.43754,0.27646, 9) operators are different but the best alternative remains the
0.08564,0.15868). same. The best alternative is V; i.e., the government will
take initiatives to expand livestock (like poultry, fishery,
* Attribute weights obtained by ¢-ROF i farms, etc.) for decentralizing the economical
entropy method: growth of the state and for making balanced distribution of
The attribute weights can be calculated  he economy among people, from place to place. To pro-
through the formula presented in Eq. (5)  yide a better view of the ranking order among the alter-
using the ¢-ROF information exhibited in  aives deduced by our suggested model, we show the
Table 2. Attribute weights are calculated  Loqyit in Figs. 1 and 2.
as It can be easily seen from Fig. 1 that the ranking of the
dp = (0.1888,0.1937, five alternatives, obtained by proposed g-ROFFWA oper-
0.1982,0.1993,0.2200). (10) ator based method using AHP and entropy weights is quite
similar. The best alternative obtained using AHP and
Step 3:  Normalizing the decision matrix using Eq. (6), entropy weights is the same, namely V;. The main differ-

we obtain:

ence is just the ranking order between V4 and Vs. We
obtain Vs>V, using AHP weights, whereas V4>)s using
entropy weights.

Again from Fig. 2, we have seen that the ranking of the
five alternatives, obtained by proposed g-ROFFWG oper-
ator based method using AHP and entropy weights is quite

Table 3 Aggregated values with the help of ¢-ROFFWA and ¢-ROFFWG operators

Aggregation operator  Attribute weight  f; fa B3 N Ps

¢-ROFFWA AHP (0.6746,0.2429)  (0.6047,0.2133)  (0.5333,0.5460)  (0.6287,0.3154)  (0.7034,0.5218)
q-ROFFWA Entropy (0.6951,0.2335)  (0.5875,0.2186)  (0.6008,0.4581)  (0.6550,0.3958)  (0.6752,0.4988)
¢-ROFFWG AHP (0.6663,0.2620)  (0.5355,0.2265)  (0.4058,0.6024)  (0.5844,0.6225)  (0.6588,0.5806)
¢-ROFFWG Entropy (0.6763,0.2528)  (0.5199,0.2346)  (0.4609,0.5446)  (0.5886,0.6745)  (0.5758,0.6117)
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Table 4 Score values and ranking of the alternatives

Aggregation operator Attribute weight S(8)) S(,) S(f5) S(B4) S(Bs) Ranking
q-ROFFWA AHP 0.6029 0.5670 0.4960 0.5731 0.5835 Vi>Vs>Vy>V, >V
q-ROFFWA Entropy 0.6152 0.5584 0.5431 0.5797 0.5729 Vi>Vs>Vs >V, >V
q-ROFFWG AHP 0.5962 0.5398 0.4476 0.4832 0.5363 Vi>Vy>Vs >V > Vs
q-ROFFWG Entropy 0.6025 0.5350 0.4785 0.4565 0.4849 Vi>Vy>Vs >V >V,
0.7 6 Analysis of the effect of the parameters
0.6 - and g on decision-making
@ 0.5 1 . . .. .
3 In this section, we show how the decision-making results
g 04 be influenced by parameters t and g.
) 4
5 03
A 0.2 - 6.1 Effects of the parameter 7
0.1 7 We take different values of the parameter 7 in ¢-ROFFWA
0 - operator and ¢-ROFFWG operator to explore the flexibility

Vi V2 V3 V4 V5
Alternatives

M Score values using AHP weights
M Score values using entropy weights

Fig. 1 Comparison of score values based on ¢-ROFFWA operator

0.7
0.6
(7]
g 0.5
04
)
§ 0.3
»n 0.2
0.1
0

Vi V2 V3 V4 V5
Alternatives

m Score values using AHP weights
B Score values using entropy weights

Fig. 2 Comparison of score values based on ¢-ROFFWG operator

similar. We shall always get the same alternative, namely
Vi, as the best choice using both of AHP and entropy
weights. The main difference is just the ranking order
between V3 and V4. We obtain V4 >V); using AHP weights,
whereas V4>~V3 using entropy weights.

An inspection of the effectiveness of the parameter 7 €
[2,10] to rank the given alternatives for instances of g-
ROFFWA as well as ¢-ROFFWG operators, is demon-
strated in Sect. 6.

and benefits of the parameter t. Also, we determine the
collective information for each alternative and rank them.
For 2 <1 <10 and ¢ = 4 we execute the ranking results of
each alternative.

At first, we use AHP weights and ¢-ROF entropy
weights for making decision concerned with g-ROFFWA
operator. The results are delimited in Table 5.

If we utilize AHP weights, then Table 5 shows that the
optimal ranking among available alternatives is
Vi>Vs>V4s>)V>>V; and the best alternative is
always V| while the worst alternative is always Vs, irre-
spective of different choices of 7. Again, if we utilize
entropy weights, then from Table 5, we can find out that
the optimal ranking order of these five alternatives is
Vi>Vs>Vs5>Vr>V; and the best alternative is
always V), while the worst alternative is always V3, irre-
spective of different choices of t. The ranking results
obtained by g-ROFFW A operator for ¢ =4 and 7 € [2, 10]
using AHP and entropy weights are also demonstrated in
Figs. 3 and 4 respectively.

Now, we use AHP weights and ¢-ROF entropy weights
to obtain the outcomes of the MADM with g-ROFFWG
operator. Table 6 exhibits the results.

If we utilize the AHP weights, then from Table 6, it can
be seen that for 2 <7 <8, the ranking order of these five
alternatives is V| > Vs >V, >V, > V3 and the best
alternative is always )V, while the worst alternative is
always V3. But, for 1 =9,10 the ranking among the
alternative choices differs slightly and the ranking order is
Vi>Vs >V, >V,>V; and the best and the worst
alternatives are V| and V5 respectively. Again, if we utilize
the entropy weights, then from Table 6, we can find out
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Table 5 Effect of the parameter 7 over the outcomes of the MADM concerning g-ROFFWA operator

T Type of attribute weight ~ S(f3,) S(,) S(B3) S(B4) S(Bs) Ranking order Optimal alternative
2 AHP 0.60292  0.56703  0.49601  0.57318 058536 Vi >Vs>VWs>V, >V3 V
Entropy 0.6152 0.5584 0.5431 0.5797 0.5729 Vi>Ve>Vs >V, >V V)
3 AHP 0.60277  0.56666  0.49518  0.57260 0.58471 Vi >Vs>Vu>V,>V3 V
Entropy 0.6148 0.5580 0.5420 0.5786 0.5716 Vi>Ve>Vs >V, >V V)
4 AHP 0.60267  0.56641  0.49463  0.57222 058427 Vi >Vs>Vy >V >V3 Vy
Entropy 0.6146 0.5578 0.5413 0.5778 0.5707 Vi>Ve>Vs >V >V V)
5 AHP 0.60260  0.56624  0.49423 057194 058394 Vi >Vs>Vu>V, >V3 VY
Entropy 0.6144 0.5576 0.5408 0.5772 0.5701 Vi>Ve>Vs >V >V V)
6 AHP 0.60254  0.56611 0.49391 0.57173 058368 Vi >Vs>Vu>V, >V3 V
Entropy 0.6142 0.5575 0.5404 0.5768 0.5696 Vi>Ve>Vs >V, >V V)
7 AHP 0.60250  0.56601  0.49366  0.57155 0.58347 Vi >Vs>Va>V,>V3  V
Entropy 0.6141 0.5574 0.5401 0.5764 0.5692 Vi>Ve>Vs >V, >V V)
8 AHP 0.60246  0.56593  0.49344  0.57140 058329 Vi >Vs>Wy >V, >V3 V)
Entropy 0.6140 0.5573 0.5398 0.5761 0.5689 Vi>Ve>Vs >V >V V)
9 AHP 0.60243  0.56586  0.49325 057128 058313 Vi >Vs>VWy >V, >Vs V)
Entropy 0.6139 0.5573 0.5396 0.5758 0.5686 Vi>Ve>Vs >V >V V)
10 AHP 0.60240  0.56580  0.49309 0.57117 058300 Vi >Vs>VWVi>V,>V3 V
Entropy 0.6139 0.5572 0.5394 0.5756 0.5683 Vi>Ve>Vs >V, >V V)
Fig. 3 Score of alternatives s = H = = = . a
based on g-ROFFWA operator 0.601 |
using AHP weights
— " " " . N i
0.58 .
— — - > e — o — *
3 . —o— @ . L e o
g 0.56 .
’; = 1
g o
g 0.54 _ 1
-y
H Vs
0.52 1
0.50+ 1
AI - —h—— — AI — —k L —k = A 4
2 4 6 8 10

that for 2 <t <10, the ranking order of these five alter-
natives is V; >V, > V5 > V3 >V, and the best alterna-
tive is always V), while the worst alternative is always Vs.
The ranking results obtained by ¢-ROFFWG operator for
g =4 and 7 € [2,10], using AHP and entropy weights are
also demonstrated in Figs. 5 and 6 respectively.

From the above discussion, we can say that, if we take
g=4 then for 2<t<10 the ranking among the
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alternatives differs slightly but the optimal choice remains
the same.

6.2 Effects of the parameter g
The proposed ¢g-ROFFWA operator and ¢-ROFFWG

operator-based method is a general method that gives the
decision-makers the freedom to extend their decision
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Table 6 Effect of the parameter t over the outcomes of the MADM concerning g-ROFFWG operator

T Type of attribute weight ~ S(f3;) S(,) S(B3) S(B4) S(Bs) Ranking order Optimal alternative
2 AHP 0.59621  0.53980  0.44767 0.48323 053734 Vi >Voa>Vs>Vy>V; V)
Entropy 0.6025 0.5350 0.4785 0.4565 0.4849 Vi>Vo>Vs >V >V, V)
3 AHP 0.59636  0.54017  0.44803  0.48699 0.53848 Vi >Wa>Vs>Vy>V; V)
Entropy 0.6030 0.5353 0.4792 0.4608 0.4862 Vi>W>Vs>V3>Vy V)
4 AHP 0.59642  0.54045 0.44827 0.48886 053926 V>V >Vs>V4>V; V)
Entropy 0.6032 0.5355 0.4796 0.4636 0.4872 Vi>W>Vs>V3>Vy V)
5 AHP 0.59657  0.54067  0.44845 0.49041 053986 Vi >Vo>Vs>Vy>V; V;
Entropy 0.6035 0.5357 0.4800 0.4656 0.4879 Vi>V,>Vs >V >V, V)
6 AHP 0.59665  0.54086  0.44860 0.49158 0.54033 Vi >WVo>Vs>Vy>V3; V)
Entropy 0.6036 0.5358 0.4802 0.4671 0.4884 Vi>Vo>Vs >V >V, V)
7 AHP 0.59672  0.54101  0.44871 0.49252 054073 V>V, >Vs>V4>V3 V)
Entropy 0.6038 0.5360 0.4804 0.4683 0.4889 Vi>W>Vs>V3>Vy V)
8 AHP 0.59678  0.54115  0.44881 0.49329 054106 Vi >WVa>Vs>V4>V3; V)
Entropy 0.6039 0.5361 0.4806 0.4693 0.4893 Vi>Vo>Vs >V >V, V)
9 AHP 0.59683  0.54127  0.44890 0.49394 0.54136 V,>Vs>V, >Vy>V; V;
Entropy 0.6040 0.5362 0.4808 0.4702 0.4897 Vi>Vo>Vs >V >V, V)
10 AHP 0.59687  0.54138  0.44897 0.49449 054161 VYV, >Vs>V, >Vy>V; V)
Entropy 0.6041 0.5363 0.4809 0.4709 0.4900 Vi>Vo>Vs>V3 >V, V)

evaluation space grounded on the parameter g. The
parameter g plays a vital role in this method and it sig-
nificantly affects the decision results. Suppose g assumes
different values in the practical example to explore the
sensitivity and flexibility of the parameter g. For 1 = 4, the
outcomes of the ranking with the help of g-ROFFWA and
q-ROFFWG operators using AHP and ¢-ROF entropy
weights are exhibited in Table 7 and Table 8 respectively.

From Table 7, we find that for different values of the
parameter ¢, the score values and ranking order of the
alternatives are different while using ¢-ROFFWA operator
with respect to AHP and entropy weights. If we use AHP
weights, then for g = 3,4, 5 the optimal alternative is V
and for g = 8§,10,12,16,20 the optimal choice is Vs.
Again, If we use entropy weights, then for g = 3,4,5,8, 10
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the optimal alternative is V; and for ¢ = 12,16,20 the
optimal choice is Vs.

From Table 8, we can find that for 1t = 4 and for dif-
ferent values of the parameter ¢ in the ¢-ROFFWG oper-
ator with respect to AHP and entropy weights, the ranking
results and ranking order of the alternatives are different
but, the best choice is always V.

@ Springer

7 Comparison analysis

In the following, we will prove the competency and
superiority of our proposed method by comparing it with
some existing well-known methods. Our proposed aggre-
gation operators are the generalization of several existing
aggregation operators through Frank t-conorm and t-norm.
Also, our proposed operators have a wide range of appli-
cability due to the presence of the parameter g. Therefore,
our proposed method of solving the MADM problem uti-
lizing g-ROFFWA and ¢g-ROFFWG operators, develops
advanced authenticity in the real-life decision-making
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Table 7 Impact of the parameter g over the outcomes of the MADM concerning g-ROFFWA operator

q Type of attribute weight ~ S(f3,) S(,) S(B3) S(B4) S(Bs) Ranking order Optimal alternative
3 AHP 0.64608  0.59983  0.48337 0.60206 0.59763 V,>V4y>V,>Vs>V; V,
Entropy 0.6586 0.5890 0.5466 0.5992 0.5798 Vi>W>V,>Vs>Vs V)
4 AHP 0.60267  0.56641  0.49463  0.57222 058427 Vi >Vs>Vs>Vy, >V3; V)
Entropy 0.6146 0.5578 0.5413 0.5778 0.5707 Vi>W>Vs>V,>Vs V)
5 AHP 0.57114  0.54447  0.50086  0.55022 0.56855 Vi >Vs>Vu>V,>V3
Entropy 0.5821 0.5378 0.5343 0.5589 0.5588 Vi>Ve>Vs >V >V VY
8 AHP 0.52389  0.51427 0.50489  0.51765 0.53163 Vs>V, >V4>V,>V3 Vs
Entropy 0.5314 0.5116 0.5175 0.5249 0.5288 Vi>Vs>Vy>V3 >V, V)
10 AHP 0.51185  0.50691  0.50393  0.50936 051808 Vs>V, >Vis>Vo>V3; Vs
Entropy 0.5173 0.5055 0.5110 0.5144 0.5171 Vi>Vs>Ve>V3 >V, V)
12 AHP 0.50602  0.50339  0.50278  0.50518 0.51031 Vs>V >Va>WVo>V3 Vs
Entropy 0.5098 0.5026 0.5069 0.5085 0.5102 Vs>V >Vy>V3 >V, Vs
16 AHP 0.50168  0.50085 0.50124  0.50175 0.50347 Vs>Vs>V, >V3>V, Vs
Entropy 0.5034 0.5006 0.5028 0.5031 0.5037 Vs>V >Vy>V3>V, Vs
20 AHP 0.50054  0.50025  0.50055 0.50066 0.50126 Vs >V4s>WV3s >V, >V, Vs
Entropy 0.50126  0.5001 0.5011 0.50123  0.5014 Vs>V >Vy>V3>Vy Vs
Table 8 Impact of the parameter g over the outcomes of the MADM concerning g-ROFFWG operator
q Type of attribute weight ~ S(f3;) S(,) S(B3) S(B4) S(Bs) Ranking order Optimal alternative
3 AHP 0.63974  0.57287  0.43005 0.51275 055210 Vi >V, >Vs>Vy>V3 V),
Entropy 0.6479 0.5655 0.4778 0.4816 0.4917 Vi>WVe>Vs >V >V V)
4 AHP 0.59648  0.54045 0.44827 048886 0.53926 Vi >WVo>Vs>Vy>V; V)
Entropy 0.6032 0.5355 0.4796 0.4636 0.4872 Vi>WV>Vs>V3>Vy V)
5 AHP 0.56514  0.52182  0.46360 0.47557 052790 Vi >Vs>V,>V4>V; V)
Entropy 0.5706 0.5187 0.4834 0.4543 0.4864 Vi>W>Vs>V3>Vy V)
8 AHP 0.51933  0.50324  0.48852  0.46800 050844 V,>Vs>V,>V3>V, V)
Entropy 0.5218 0.5026 0.4934 0.4537 0.4919 Vi>W,>Vi>Vs>Vy V)
10 AHP 0.50852  0.50087 0.49474 0.47191 050352 Vi >Vs>V, >V3>Vy VY
Entropy 0.5099 0.5007 0.4967 0.4606 0.4954 Vi>Ve>V3>Vs >V V)
12 AHP 0.50374  0.50020 0.49755 047670 050139 VYV, >Vs>V, >V3 >V, V
Entropy 0.5045 0.5001 0.4984 0.4676 0.4975 Vi>Vo>V3>Vs >V, V)
16 AHP 0.50168  0.49996  0.49941 0.48470 050115 Vi >Vs>Vo >V >V, V)
Entropy 0.5009 0.5000 0.4996 0.4789 0.4993 Vi>W>Vi>Vs>Vy V)
20 AHP 0.50008  0.49994  0.49982  0.49905 0.49996 Vi >Vs>V, >Vs>V, V;
Entropy 0.5001 0.5000 0.4999 0.4863 0.4998 Vi>WV>V3>Vs >V, VY
process. Under the ¢g-ROF environment, we elaborate a  2018), Pythagorean fuzzy Frank weighted geomet-

strict comparison between our proposed Frank aggregation
operators with the existing ones. We calculate the decision-
making results of our proposed method using intuitionistic
fuzzy Frank power average (IFFPA) operator (Zhang et al.
2015), intuitionistic fuzzy Frank power weighted average
(IFFPW A) operator (Zhang et al. 2015), Pythagorean fuzzy
Frank weighted averaging (PFFWA) operator (Yi et al.

ric(PFFWG) operator (Yi et al. 2018), ¢-ROF weighted
averaging (¢-ROFWA) operator (Liu and Wang 2018), g-
ROF weighted geometric (¢-ROFWG) operator (Liu and
Wang 2018). The outcomes of the comparison are illus-
trated in Table 9.
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Table 9 Comparison table

Aggregation operators The score values

Ranking order Optimal alternative

IFFPA (Zhang et al. 2015)
IFFPWA (Zhang et al. 2015)
PFFWA (Yi et al. 2018)
PFFWG (Yi et al. 2018)
g-ROFWA (Liu and Wang 2018)

Cannot be determined
Cannot be determined
Cannot be determined

Cannot be determined

S(B))=0.6289, S(B,)=0.5674, S(B;)=0.5644,

No No
No No
No No
No No

V|>V4>V2>V3>V5 V]

S(B,)= 0.5871, S(B5)=0.5624
¢-ROFWG (Liu and Wang 2018)  S(f,)=0.6112, S(8,)=0.5423,S(B5)= 0.5039, Vi >V, >V;>Vs>V, V)
S(B,)=0.4466, S(B,)=0.4637
Proposed [g-ROFFWA] S(B,)=0.6279,S(,)=0.5666,S(;)=0.5621, Vi>Vi>Vy> Vs> Vs Vi
[t=2,q=4 S(B4)=0.5771, S(P5)=0.5596
Proposed[¢g-ROFFWG] S(B,)=0.6573,S(B,)=0.5758,S(f;)=0.5143, Vi>Vy> Vs> V> Vs Vi
[t=2,q=4 S(B,)=0.4683,S(f5)=0.4633
6 decision information. So, IFFPA and IFFPWA operators
fail to deal with our introduced MADM problem as it
s contains evaluation values other than IFN.
1 Now PFFWA and PFFWG operators are capable to deal
with only those MADM problems where a Pythagorean
3 fuzzy number (PFN) expresses the evaluation information.

Rank of the alternatives

) -]I
0 -
Vi V2 V3 va4 V5

Alternatives
M g-ROFWA M g-ROFWG 1 g-ROFFWA(Proposed) M q-ROFFWG(Proposed)

Fig. 7 Pictorial representation of the ranking of the alternatives

To provide a better view of the comparison results, we
show the ranking results of the alternatives in Fig. 7. It can
be easily seen from Fig. 7 that the ranking of the five
alternatives using g-ROFWA (Liu and Wang 2018) oper-
ator and proposed g-ROFFW A operator are same. The best
alternative using these two operators is V. But, the ranking
of the five alternatives using g¢-ROFWG (Liu and Wang
2018) operator and proposed g-ROFFWG operator are
slightly different. The best alternative obtained using these
two operators is the same, namely, V1, and the difference is
just the ranking order between V4 and Vs. Using g-
ROFWG operator we get Vs >V,, while using g¢-
ROFFWG operator we get V4 > Vs.

The procedure of calculation for the IFFPA (Zhang
et al. 2015) operator and IFFPWA (Zhang et al. 2015)
operator is not complicated, but it is applicable to a con-
fined range. It can deal with only those MADM problems
in which an intuitionistic fuzzy number (IFN) expresses the

@ Springer

But only when the sum of the squares of DM and DNM be
bounded by 1, the evaluation information can be elicited
by the PFNs. Since, in our proposed MADM problem,
there exists some decision information for which the sum
of the squares of the DM and DNM is greater than 1, so
PFFW A and PFFWG operators cannot handle our proposed
MADM problem. Our proposed ¢g-ROFFWA and g¢-
ROFFWG operators show the maximum capability of
handling decision fuzzy information using g-ROFNs since
they enhance the flexibility of the information aggregation
procedure with the parameter g and 7.

According to the increment of the parameter g, the
range of the expressible decision information will be
expanded. Hence, our proposed method can be established
to be superior to existing methods associated with IFFPA,
IFFPWA, PFFWA, and PFFWG operators.

From Definition 2.4 we can see that when 1 — 1, FTCN
and FTN are transformed into probabilistic sum and
probabilistic product. Therefore, we can show that the g-
ROFWA or ¢-ROFWG operators introduced by Liu and
Wang (2018) are nothing but a special case of our proposed
g-ROFFWA and ¢g-ROFFWG operators respectively, when
the parameter t — 1. Therefore, certainly, our introduced
procedures are more generalized and nourished. Also, our
proposed operators present the Lukasiewicz product and
Lukasiewicz sum (Wang and He 2009) when the parameter
T — 00. Therefore, we have decided that all of the arith-
metic and geometric aggregation operators for g-ROFNs
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are contained in ¢g-ROF Frank aggregation operators, con-
cerning the different values of 7.

If we modify the value of the parameter 7 in the prob-
lem, we get various ranking results for the alternatives. For
example, if we modify the value of the parameter t from 2
to 15, then using g-ROFFWG operator we obtain the score
values of the alternatives as S(f;) =0.6148, S(f,) =
0.5499, S(fB;) =0.5083, S(f,) =0.4713 and S(fs) =
0.4707. It is worth noticing that the ranking position of the
alternative V4 changed from a bad position to a good
position. But the ¢-ROFWA and the ¢g-ROFWG operators
are independent of the parameter 7. So, the ranking order
with the help of those operators remains the same.

Based on the above comparison analysis, the approach
in the present study is proved to be more flexible, capable,
and reliable than other existing procedures in monitoring g-
ROF environment based on MADM problems.

8 Conclusions

The g-ROF models are more potential and suitable than
intuitionistic and Pythagorean fuzzy models since it deals
with larger space, characterized with vagueness and
uncertainty. g-ROFSs show more flexibility to express the
information for the presence of the parameter g. Moreover,
Frank operators make the process of information fusion
more flexible and potential because they contain a
parameter. So, here, we introduce Frank operations on g-
ROFSs and consecrated a series of new aggregation oper-
ators concerning g-ROFNSs, viz. g¢-ROFFWA operator, g-
ROFFOWA operator, g¢-ROFFWG operator, and g-ROF-
FOWG operator. Also, we have discussed some valuable
properties of these operators. Furthermore, with the assis-
tance of the g-ROFFWA operator and g-ROFFWG opera-
tor, we present two approaches to solve an MADM
problem within the g-ROF environment. Then, we have
discussed a real-world socio-economic MADM problem of
‘balancing the share of economical growth in the society’
to demonstrate the applicability, feasibility, and superiority
of our proposed methodology. Also, to determine the
attribute weights, we have used the AHP method and the g-
ROF entropy method. We have used these weights to solve
the presented numerical example. The illustrated example
shows that our proposed decision-making procedure is
more flexible and fruitful than other existing methods for
the presence of some operational parameters, T and ¢,
appointed by the decision-maker’s preference.

In future research, we can define such aggregation
operators over some advancement of g-ROFS such as
complex ¢-ROFS (Liu et al. 2020). Our introduced oper-
ators can be further extended up to the larger field of
various types of MADM processes, e.g., the COPRAS

method (Krishankumar et al. 2019), TOPSIS method (Riaz
et al. 2020), EDAS method (Li et al. 2020), VIKOR
method (Mi et al. 2019), etc. Also, we can prolong our
proposed operators to deal with interval-valued fuzzy
(Chen 1997; Chen et al. 1997; Chen and Hsiao 2000; Chen
et al. 2012; Turksen 1986) MADM problems. Also, we
may exert them to deal with some real-life decision-making
problems, such as domestic airlines evaluation (Ma and Xu
2016), company investment decision (Garg 2016), etc.
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