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Abstract
Recently, most of the researchers focused on dealing with uncertainty and unclear data beyond the three-way fuzzy space

and its graphical visualization. An issue arises when the bipolar attributes exist beyond the three-way or m-way fuzzy

space. One of suitable examples is colors consist of several opposite and non-opposite side of red–green–blue to produce a

new color. To deal with these types of bipolarity exists in multi-valued attribute, a method is proposed in this paper using

the connection of bipolar fuzzy set with multi-fuzzy set. Same time graphical structure visualization of bipolar multi-fuzzy

set is also introduced for precise analysis of knowledge discovery and representation tasks. In addition, an another method

is proposed to refine the bipolar multi-fuzzy context at user defined multi-granulation with an illustrative example. The

analysis derived from the proposed method is also compared with recently available approaches on bipolar multi-fuzzy set.

Keywords Bipolar fuzzy concept � Bipolar multi-fuzzy set � Concept lattice � Knowledge representation �
m-polar fuzzy concept lattice � Granular computing

List of symbols
L Scale of truth degree

L Residuated lattice

(X, Y, R) Formal fuzzy context-F

(X, Y, ~R) Bipolar multi-fuzzy context-F

� Multiplication

! Residuum

a, b, c Elements in L

("; #) Galois connection
Q

Projection operator

A Extent

B Intent

Asi Set of m-polar object set

Bsj Set of m-polar attribute set

LX L-set of objects

LY L-set of attributes
S

Union
T

Intersection

lPðzÞ Positive membership degree

lNðzÞ Negative membership degree

^ Infimum

_ Supremum

m m-polarity

k Total number of attributes

n Total number of objects

t tuple

I and J bipolar fuzzy set
~I and ~J bipolar multi-fuzzy set

V Vertex set

E Edges set

v1; v2; v3 Vertex of graph

v1v2; v2v3; v3v1 Edges of fuzzy graph

x, y, u, v Elements

x1; x2; . . .; xn nth objects

y1; y2; . . .; yk kth attributes

|| Cardinality

1 Introduction

Knowledge discovery and representation from a given data

set is considered as one of the major issues as discussed in

Singh et al. (2016). In this regard, a mathematical model

based on calculus of applied abstract algebra was devel-

oped by Wille (1982) at early eighties. This model is
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known as formal concept analysis (FCA) which is applied

in various fields for knowledge discovery and representa-

tion tasks (Ganter and Wille 1999). This mathematical

model receives data input in matrix format (X, Y, R) where

R (� X � Y)and provides set of patterns based on the

objects X and their common attributes Y set. It generates

pattern in form of concepts having a set of objects (A � X)

and their common attributes ðB � Y) closed with Galois

connection as discussed by Wille (1982). Same time the

calculus of FCA provides super and sub concept hierar-

chical order visualization among the formal concepts as

well as attribute implications which helps alot in knowl-

edge processing tasks. The graphical structure connection

of concept lattice provided a platform to incorporate the

FCA in other dimensions (Berry and Sigayret 2004). Same

time theory of fuzzy set (Zadeh 1965) given an alternative

way to compute with words like tall and young which

helped alot in various applications (Chen et al. 1990; Chen

1996; Chen and Jong 1997; Chen and Huang 2003). Due to

that, the mathematical algebra of FCA is emerged with

fuzzy setting by Burusco and Fuentes-Gonzalez (1994).

Same time dealing with partial ignorance the properties of

interval-valued fuzzy concept analysis is introduced (Bur-

usco and Fuentes-Gonzales 2001; Djouadi and Prade

2009). These extensions able to represent acceptation and

rejection values of any fuzzy attributes in the defined

unipolar space. The problem arises in case of handling

bipolar fuzzy attributes where positive and negative values

exist simultaneously. To compute with these type of

uncertainty Singh andKumar (2014a, b) introduced bipolar

fuzzy concept lattice using the calculus of bipolar lattice

(Bloch 2011; Zhang 1994) and its graph (Akram 2011;

Yang et al. 2013). The problem arises while dealing with

hesitant part or indeterminacy exists in fuzzy attributes

excluding its acceptation and negation part. It become

more complex when the bipolarity exists beyond the

unipolar space and contains several positive and negative

values. These types of condition used to found in dynamic

system while investigation of homoclinic1 or heteroclinic2

orbit. In this case, the event may contain m-number of

saddle points rather than equilibrium. In these types of

dynamic cases, the hesitant part plays major role in dis-

covering the pattern as discussed by Singh (2019c, 2020).

Some other researchers tried to represent them as three-

way decision space (Huang et al. 2017; Li et al. 2017;

Singh 2017; Yao 2021a, b) whereas some of them tried

beyond the three m-polar fuzzy space (Kroonberg 2007; Li

2017; Mesiarova-Zemankova and Ahmad 2014; Mesiar-

ova-Zemankova and Hycko 2015; Singh 2018c, d, 2019a).

The problem arises when bipolarity exists beyond the

three-way fuzzy space (Singh 2019b, c) or other spaces

(Singh 2021; Yao 2021a, b). This creates two possible

notions: (1) the existence of bipolarity in m-way fuzzy

space and (2) the existence of m-tuples in bipolar fuzzy

attributes. This paper focused on generalized representation

of bipolar fuzzy attributes in m-polar fuzzy space to deal

with existence of bipolar fuzzy attributes in m-polar fuzzy

space as shown in Table 1. To achieve this goal, current

paper focuses on bipolar multi-fuzzy context analysis and

its graphical structure visualization using hybridization of

bipolar fuzzy set and m-polar fuzzy graph as explained in

Fig. 1.

The m-polar fuzzy attributes (Y) can be found both in

dark or soft data sets as discussed by Singh

(2018c, 2018d, 2021). One of the suitable examples is

democratic country like India where opinion of people used

to depends on 29-distinct states. Each of the 29 states used

to accept a political party or reject the political party,

independently. The positive side can be represented pre-

cisely using m-polar fuzzy set and its mapping f : Y !
½0; 1�m where (0, 0, ..., 0) denotes the least and (1, 1, ..., 1)

as the greatest element as discussed by Chen et al. (2014).

In case, the bipolarity exists in m-polar fuzzy space then

the given theory require an extension or hybridization. It is

indeed requirement to deal with multi-valued attributes

data set like win and loss in tug of war (Ghorai and Pal

2015), positive and negative position of a person in a

democratic country (Singh 2018c, d), safety or non-safety

of a mankind (Kapoor and Singh 2020). In some cases the

dimension of multi-valued attributes may be bounded

within a given space as for example the color of a pixel

(Red, Green, Blue) or the price (high, medium, low) of a

commodity. In this case, the considered dimensions of

multi-fuzzy attributes can be represented as an ordered

sequence of membership function i.e. f : ym 2 Y ! ½0; 1�
where 0�

P
lðymÞ� 1 (Sebastian and Ramakrishnan

2011). It can be observed that, this set uses an ordinary

single-valued membership fuzzy set as a building block to

represent the acceptance or rejection of multi-valued fuzzy

attributes. In this case, a problem arises at the time of

analyzing bipolarity existing in each of the defined building

blocks of m-polar fuzzy space (Dubois and Prade 2012a, b;

Mechelen and Smilde 2011; Sadaaki 2001; Zadeh 2011;

Zhang et al. 2016). The bipolarity in m-fuzzy space rep-

resents positive or negative side of given multi-fuzzy

attributes, independently. It means each building block of

m-polar fuzzy space may contain a positive (0, 1] and

negative side [- 1, 0) to represent the bipolar information

precisely. The membership value 0 means the information

is neutral to the given property. Recently, some of the

researchers tried to represent this type of attributes using

the bipolar multi-fuzzy set with its applications in multi-1 https://en.wikipedia.org/wiki/Homoclinic_orbit.
2 https://en.wikipedia.org/wiki/Heteroclinic_orbit.
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decision making process (Yang et al. 2014). This paper

focuses on bipolar multi-fuzzy concept lattice visualization

and its analysis at user defined multi-granulation.

The bipolar multi-fuzzy set and its applications can be

understood from the tug of war game. In this game, people

used to pull the rope in different directions. The person

who pulls the rope in their direction used to win the game.

In this process, several time the rope used to move from

positive to negative side from the chosen direction the

center of rope. Let us suppose, m-number of people are

participating in the game then the strength used by mth-

people can be represented using the bipolar multi-fuzzy set.

The reason is it contains the positive and negative mem-

bership value as homoclinic or heteroclinic orbit. In this

way, the strength at mth-block and its fluctuation can be

defined via m-polar fuzzy space. The position of an object

in a space can be defined through its positive and negative

membership value computed for the defined mth-block.

Even the opinion of people in a democratic country like

India is based on 29 opposite and non-opposite side of

opinion which arises from the 29 states. In similar way, the

doctor used to give group of medicines to cure a disease

which may be effective or destructive can be represented

using precisely using the bipolar multi-fuzzy set. The

reviewer feedback and rating used to be bipolar based on

several metric as discussed by Kamaci and Petchimuthu

(2020). This type of bipolarity and its existence beyond

three-way fuzzy space is mathematically expensive in

representation. Due to which, polyadic context and its

analysis is introduced by Voutsadakis (2002) without

considering the bipolar fuzzy attributes. Some of the

researchers tried to analyze the bipolar fuzzy attributes

using the two-relations (Alcalde et al. 2015), bi-directional

(Kumar et al. 2015), independent positive and negative

relation (Singh and Kumar 2014a, b), dependent positive

and negative relations (Singh 2018b), multi-fuzzy attribute

(Chen et al. 2014; Coppi 1994; Singh 2018a, b, c), bipolar

multi-fuzzy attributes (Singh 2019c; Sebastian and

Ramakrishnan 2011; Yang et al. 2013) at defined multi-

granules (Pedrycz and Chen 2015; Singh and Kumar

2014a, b; Singh and Abdullah 2015; Singh 2018a; Skowron

et al. 2016; Yao 2004, 2016). The reason is bipolarity

cannot be excluded from the three-way or multi-fuzzy

space as shown in Table 1. Due to which, this paper

focuses on hybridization of bipolar fuzzy set and m-polar

fuzzy set. The motive is to deal with bipolarity and its

existence beyond the three-way or m-polar fuzzy space for

handling the soft data set. The objective is to investigate

some of the useful patterns in bipolar multi-fuzzy contexts

for knowledge processing tasks and other decision making

process. To achieve this goal, two methods are proposed in

this paper : (1) a bipolar multi-fuzzy matrix representation

of soft data set is introduced, (2) a method is proposed to

extract bipolar multi-fuzzy pattern using Next Neighbor

algorithm motivated from Lindig (2000), (3) another

method is proposed to extract some useful information

based on required multi-granulation ðam; bmÞ, (4) to vali-

date the results analysis obtained from the proposed

methods are compared with Yang et al. (2013).

Rest part of the paper is organized as follows: Sect. 2

provides a brief background about FCA in the fuzzy setting

and some properties of bipolar multi-fuzzy set. Section 3

provides the proposed method for generating the bipolar

multi-fuzzy concepts and its reduction at user defined

multi-granulation. Section 4 contains the illustration of the

proposed methods using an illustrative example. Section 5

contains discussion followed by conclusions, acknowl-

edgements and references.

2 Preliminaries

In this section, some basic definition about FCA in the

fuzzy setting and bipolar multi-fuzzy graph is given to

analyze the data with bipolar multi-fuzzy attributes.

Table 1 Some of the possible

conditions existing in data with

bipolar fuzzy attributes

Conditions Objects Attributes Bipolar fuzzy relation

a Binary m-polar or three-way Bipolar multi fuzzy set

b m-polar or three-way Binary Bipolar multi fuzzy set

c Bipolar m-polar three-way Bipolar multi fuzzy set

d m-polar three-way Bipolar Bipolar multi fuzzy set

e m-polar or three-way m-polar or three-way Bipolar multi fuzzy set

Fig. 1 The existence of bipolarity beyond three-way fuzzy space
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2.1 FCA in the fuzzy setting

FCA with fuzzy setting starts the analysis from a given

fuzzy matrix i.e. called as formal fuzzy context. Let L be a

scale of truth degrees of a complete residuated lattice L

(defined below). A formal fuzzy context is a triplet-F = (X,

Y, R), where X is a finite set of objects, Y is a finite set of

attributes and R is an L-relation among X and Y as follows:

X � Y ! L (Burusco and Fuentes-Gonzales 2001). Each

relation Rðx; yÞ 2 L represents the membership value at

which the object x 2 X has the attribute y 2 Y in [0, 1] (L is

a support set of some complete residuated lattice L).

A residuated lattice L = ðL;^;_;�;!; 0; 1Þ is the basic

structure of truth degrees, where 0 and 1 represent least and

greatest elements, respectively. L is a complete residuated

lattice iff (Pollandt 1997):

1. ðL;^;_; 0; 1Þ is a complete lattice.

2. ðL;�; 1Þ is commutative monoid.

3. � and ! are adjoint operators (called multiplication

and residuum, respectively), that is a� b� c iff

a� b ! c; 8a; b; c 2 L.

The operators � and ! are defined distinctly by Luka-

siewicz, G::odel, and Goguen t-norms and their residua as

given below (Belohlavek 2004):

Lukasiewicz:

• a� b = max (a? b� 1, 0),

• a ! b=min (1 � a?b, 1).

G::odel:

• a� b = min (a, b),

• 	 a ! b = 1 if a� b, otherwise b.

Goguen:

• a� b = a � b,

• a ! b = 1 if a� b, otherwise b/a.

Classical logic of FCA is an example of a complete

residuated lattice which is represented as

ð 0; 1f g;^;_;�;!; 0; 1Þ.
For any L-set A 2 LX of objects, and B 2 LY of attributes

an L-set A " 2 LY of attributes and L-set B # 2 LX of

objects can be defined as follows (Belohlavek 2004):

(1) A "ðyÞ ¼ ^x2XðAðxÞ ! Rðx; yÞÞ,
(2) B #ðxÞ ¼ ^y2YðBðyÞ ! Rðx; yÞÞ.
A "ðyÞ is interpreted as the L-set of attribute y 2 Y shared

by all objects from A. Similarly, B #ðxÞ is interpreted as the

L-set of all objects x 2 X having the same attributes from B

in common. The formal fuzzy concept is a pair of (A,

B)2 LX � LY satisfying A" ¼ B and B# ¼ A, where fuzzy

set of objects A is called an extent and fuzzy set of attri-

butes B is called an intent. The operators ("; #) are known

as Galois connection which was extended in several ways

(Bloch 2011; Djouadi 2011; Djouadi and Prade 2009;

Dubois and Prade 2012a, b) for knowledge processing tasks

in fuzzy settings (Glodeanu 2014).

The down-operator (#) of Galois connection is applied

on the fuzzy set defined on the given subset of the attri-

butes. This provides a fuzzy set of objects having maximal

membership value while integrating the information from

the given subset of attributes. Consequently, the up-oper-

ator (") of Galois connection is applied on these obtained

fuzzy set of constituted covered objects set. It seize the

fuzzy set of attributes with their maxim membership value

while integrating the information from the constituted

objects set. Furthermore extra fuzzy set of objects (at-

tributes) cannot be discovered which make the constituted

fuzzy set of attributes (objects) bigger then it forms a

formal fuzzy concept. It means a formal fuzzy concept is a

maximal rectangle of a given formal fuzzy context (F)

filled with membership value between [0, 1], which is an

ordered pair of two sets (A, B), where A is called (fuzzy)

extent, and B is called (fuzzy) intent. The set of formal

fuzzy concepts C, generated from a given fuzzy context

defines the partial ordering principle i.e.

ðA1;B1Þ� ðA2;B2Þ () A1 � A2ð() B2 � B1Þ for every

formal fuzzy concept. Together with this ordering, in the

complete lattice there exist an infimum and a supremum for

some formal concepts as follows (Ganter and Wille 1999):

• ^j2JðAj;BjÞ ¼ ð
T

j2J Aj; ð
S

j2J BjÞ#"Þ,
• _j2JðAj;BjÞ ¼ ðð

S
j2J AjÞ"#;

T
j2J BjÞ.

Extracting all the formal fuzzy concepts and their spe-

cialization and generalization visualization in the concept

lattice is the main concern for the practical applications of

FCA in various research fields discussed by Singh et al.

(2016). In this process, a problem is addressed while

handling fuzzy attributes beyond the bipolar fuzzy space

(Singh 2019c). The reason is some time the attributes may

contain the bipolarity for each of the building blocks of m-

polar fuzzy space (Yang et al. 2013). To deal with this

types of attributes, the current paper introduces bipolar

multi-fuzzy set and its properties for knowledge processing

tasks. In the next section, some of its required properties

are given for the depth analysis of data with bipolar multi-

fuzzy attributes.

2.2 Bipolar-multi fuzzy graph

This section provides some basic definitions related to

bipolar multi-fuzzy set and its graphical structure

visualization.

Definition 1 (Bipolar fuzzy set) (Zhang 1994, 2021) Let Z

be a non-empty set (i.e. there exists z 2 Z). A bipolar fuzzy

444 Granular Computing (2022) 7:441–459
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set J in Z is an object having the form

J= ðz; lPðzÞ; lNðzÞÞjz 2 Zf g where lPðzÞ:Z ! ½0; 1� and

lNðzÞ:Z ! ½�1; 0� are mappings. We use the positive

membership degree lPðzÞ to denote the satisfaction degree

of an element z to the property corresponding to a bipolar

fuzzy set J, and the negative membership degree lNðzÞ to

denote the satisfaction degree of an element z to some

implicit counter-property corresponding to a bipolar fuzzy

set J.

For every two bipolar fuzzy sets I = ðlP
I ; l

N
I Þ and J=

ðlP
J ; l

N
J Þ following can be computed (Lee 2000):

(i) (I
T

J)(z)= (minðlP
I ðzÞ; lP

J ðzÞÞ, maxðlN
I ðzÞ; lN

J ðzÞÞ),
(ii) (I

S
J)(z) = (maxðlP

I ðzÞ; lP
J ðzÞÞ, minðlN

I ðzÞ; lN
J ðzÞÞ).

Definition 2 (Bipolar multi-fuzzy set) (Yang et al. 2013) A

bipolar multi-fuzzy set is an extensive representation of

bipolar fuzzy set to m-space. It is a set on X can be rep-

resented as a mapping f : X ! ð½�1; 0� � ½0; 1�Þm. The set

of all bipolar multi-fuzzy sets can be represented as ~MðXÞ
as given below:

~MðXÞ = ððlP
1 ; l

N
1 Þ; ðlP

2 ; l
N
2 Þ; . . .; ðlP

m; l
N
mÞÞ=x

� �
.

Here the set ðð0; 1Þ; ð0; 1Þ; . . .ð0; 1ÞmÞ=x
� �

represents

corresponding property and

ðð�1; 0Þ; ð�1; 0Þ; . . .; ð�1; 0ÞmÞ=x
� �

represents implicit

counter property of the given information. The set

ðð0; 0Þ; ð0; 0Þ; . . .ð0; 0ÞmÞ=x
� �

represents irrelevant prop-

erty to the given information i.e. null bipolar fuzzy set of

dimension m. The set ðð1;�1Þ; ð1;�1Þ; . . .; ð1;�1ÞmÞ=x
� �

represents absolute bipolar multi-fuzzy set of dimension

m. The bipolar multi-fuzzy set is an extension of bipolar

fuzzy set which can be visualized in the concept lattice as

bipolar fuzzy set is visualized (Singh and Kumar 2014a, b;

Singh 2018b).

Definition 3 (Bipolar multi-fuzzy relation) (Yang et al.

2014; Zhang et al. 2016) Bipolar multi-fuzzy relation is an

extensive representation of bipolar fuzzy relation. In this

case all bipolar multi-fuzzy set membership degrees will be

represented in interval ½�1; 0�� [0,1] i.e. the bipolar multi-

fuzzy relation can be mapped in the interval ½�1; 1�m as

follows: l ~R
mðxi; yiÞ ! ½�1; 1�m. It can be represented as

follows for the set X and Y as given below:
~Rðxi; yiÞ = ððlP

1 ; l
N
1 Þ; ðlP

2 ; l
N
2 Þ; . . .; ðlP

m;l
N
mÞÞ=ðxi; yiÞ

� �

where positive membership degree lPðxi; yiÞ to denote

the satisfaction degree of relation ðxi; yiÞ to the property

corresponding, and the negative membership degree

lNðxi; yiÞ to denote implicit counter-property correspond-

ing to the given context. Let ~IðXÞ and ~JðXÞ two bipolar-

multi fuzzy set then following operations can be computed:

(i) ð~I
T

~JÞmðxÞ ¼ ðminðlP
1;...;m

~I; lP
1;...;m

~JÞ;
max ðlN

1;...;m
~I; lN

1;...;m
~JÞÞðxÞ

(ii) (~I
S

~JÞmðxÞ ¼ ðmaxðlP
1;...;m

~I; lP
1;...;m

~JÞ,
minðlN

1;...;m
~I; lN

1;...;m
~JÞÞðxÞ).

In this way an infimum and a supremum of a bipolar multi-

fuzzy formal concepts can be computed.

Definition 4 (Bipolar fuzzy graph) (Akram 2011; Yang

et al. 2014) A bipolar fuzzy graph with an underlying sets

V and E � V �V is defined to be a pair G = (I, J) where I =

ðlP
I ; l

N
I Þ is a bipolar fuzzy set in V and J=ðlP

J ; l
N
J Þ is a

bipolar fuzzy set of edges-E such that:

lP
J ð v1; v2f gÞ�minðlP

I ðv1Þ; lP
I ðv2ÞÞð8ðv1; v2Þ 2 V � VÞ

lN
J ð v1; v2f gÞ
maxðlN

I ðv1Þ; lN
I ðv2ÞÞ(8ðv1; v2Þ 2 V � VÞ

and

lP
J ð v1; v2f gÞ ¼ lN

J ð v1; v2f gÞ = 0 8ðv1; v2Þ 2 ðV � Vn E).

Example 1 Let us suppose, an expert provide an opinion

about three drawing papers ( v1; v2; v3) to accept or reject

them for the production. The expert opinion can be rep-

resented through positive and negative membership value

of a defined bipolar fuzzy set as shown in Table 2. Table 3

represents the corresponding relationship among the given

drawing papers. This numerical representation of expert

feedback can be visualization in compact format consid-

ering Tables 2 and 3 as vertices (V) and edges (E) of a

defined bipolar fuzzy graph as shown in Fig. 2.

Definition 5 (m-polar fuzzy graph) (Akram 2019; Chen

et al. 2014; Singh 2018a) An m-polar fuzzy graph with an

underlying pair (V, E) where E � V � V is symmetric i.e.

ðv1; v2Þ 2 E , ðv2; v1Þ 2 E. Then it is defined to be a pair

G = (I, J) where I: V ! ½0; 1�m i.e. it is an m-polar fuzzy set

on V. Similarly, J: E ! ½0; 1�m i.e. m-polar fuzzy set on E.

It follows Jðv1v2Þ� inf Iðv1Þ; Iðv2Þf g for each m-polar

space. The given m-polar fuzzy graph is is strong iff

Jðv1v2Þ ¼ inf Iðv1Þ; Iðv2Þf g. The union and intersection of

the m-polar fuzzy graph can be computed as per bipolar

fuzzy graph. The m-polar fuzzy graph and its properties can

be studied extensively by Akram (2019).

Table 2 A bipolar fuzzy subset

of V for Example 1
v1 v2 v3

lP
I

0.5 0.6 0.4

lN
I

� 0.7 � 0.5 � 0.7
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Example 2 Let us extend the Example 1 as the given

expert wants to analyze the three given engineering

drawing paper based on their color for its precise appli-

cations. It is known that, the attribute color is multi-valued

which contain combination of red, green, and blue (RGB)

simultaneously. In this case, the color for each of the

drawing papers (v1; v2; v3) can be measured based on the

percentage of red, green, blue as shown in Table 4 whereas

the Table 5 represents the corresponding relationship

among them. The Tables 4 and 5 can be considered as

vertices (V) and edges (E) of a defined multi-fuzzy graph as

shown in Fig. 3.

Definition 6 (Bipolar multi-fuzzy graph) (Yang et al.

(2013); Singh (2019c)): A bipolar multi-fuzzy graph with

an underlying sets V and E � V �V is defined to be a pair G

= (~I; ~J) where ~I = ðlP
1;...;mð~IÞ; lN

1;...;m
~IÞ is a bipolar multi-

fuzzy set on vertices-V, and ~J=ðlP
1;...;mð ~JÞ; lN

1;...;mð ~JÞÞ is a

bipolar multi-fuzzy set of edges-E such that:

lP
J ð v1; v2f gÞm � min1;...;mðlP

I ðv1Þ; lP
I ðv2ÞÞ (8ðv1; v2Þ 2

V � V)

lN
J ð v1; v2f gÞm 
 max1;...;mðlN

I ðv1Þ; lN
I ðv2ÞÞ(8ðv1; v2Þ 2

V � V)

and

lP
J ð v1; v2f gÞm ¼ lN

J ð v1; v2f gÞ = 0 8ðv1; v2Þ 2 ðV � Vn
E).

In the case when equality holds then it is called as

bipolar multi-fuzzy complete graph.

Example 3 Let us connect, the Examples 1 and 2 given in

this paper. Suppose that, the expert gives opinion (positive

and negative) to about drawing papers (v1; v2; v3) based on

their Color (Red, Green, Blue). In this case, the expert will

give an evidence to accept or reject color of drawing paper

based on positive and negative membership value for red,

green and blue simultaneously. The expert says that, the

drawing paper v1 build using 50% red colore, 70% green,

80% blue colour whereas the 70% opposite of red color,

30% opposite of greed color and 50% opposite of blue

color. This type of complex mixture is require to build the

drawing paper for civil engineering students. It can be

represented through a defined bipolar multi-fuzzy set as

shown in Table 6 whereas Table 7 represents correspond-

ing relationship among them. The Tables 6 and 7 can be

considered as vertices (V) and Edges (E) of a defined

bipolar multi-fuzzy graph as shown in Fig. 4. Now, to

analyze these type of context for knowledge processing

tasks a method is proposed in the next section.

Table 3 A bipolar fuzzy subset

of E for Example 1
v1v2 v2v3 v3v1

lP
J

0.4 0.3 0.3

lN
J

� 0.3 � 0.2 � 0.1

Fig. 2 A bipolar fuzzy graph representation of Example 1

Table 4 A m-polar set of V for

Example 2
v1 v2 v3

l1 0.49 0.45 0.50

l2 0.46 0.42 0.40

l3 0.51 0.59 0.54

Table 5 A m-polar set of E for

Example 2
v1v2 v2v3 v3v1

l1 0.45 0.45 0.49

l2 0.42 0.40 0.40

l3 0.51 0.54 0.51

Fig. 3 A m-polar fuzzy graph representation of Example 2
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The above backgrounds validates that bipolar multi-

fuzzy graph can be used to visualized the data with bipolar

multi-fuzzy attributes as other graph theory has been

incorporated (Ghosh et al. 2010; Singh and Kumar

2014a, b; Singh 2018b, c). In this case, the bipolar multi-

fuzzy concepts can be interpreted as given below.

Definition 7 (Bipolar multi-fuzzy concepts) Let us sup-

pose, a pair of bipolar multi-fuzzy set (A, B) where A is set

of bipolar-multi fuzzy set of objects as follows:

(A) = xi; ðlP
1ðxiÞ;lN

1 ðxiÞÞ; ðlP
2ðxiÞ; lN

2 ðxiÞÞ; . . .; ðlP
mðxiÞ;

�

lN
mðxiÞÞg

and B is bipolar multi-fuzzy set of their common

attributes i.e.:

B ¼ yj; ððlP
1ðyjÞ; lN

1 ðyjÞÞ; ðlP
2ðyjÞ; lN

2 ðyjÞÞ; . . .; ðlP
mðyjÞ;

�

lN
mðyjÞÞÞg.

The pair (A, B) is called as a bipolar multi-fuzzy concept

iff:

ðA; ððlP
1ðxiÞ; lN

1 ðxiÞÞ; ðlP
2ðxiÞ; lN

2 ðxiÞÞ; . . .; ðlP
mðxiÞ;

lN
mðxiÞÞÞÞ

"
= B and,

ðB; ððlP
1ðyjÞ; lN

1 ðyjÞÞ; ðlP
2ðyjÞ; lN

2 ðyjÞÞ; . . .; ðlP
mðyjÞ;

lN
mðyjÞÞÞÞ

#
= A

It can be interpreted as bipolar multi-fuzzy set of objects

(A) having maximal positive and minimal negative mem-

bership value with respect to integrating the information

from their common attributes set (B) closed with Galois

connection. After that, none of the objects or attributes can

be find which can make the positive or negative member-

ship value of the obtained multi-fuzzy set of attributes

(objects) bigger, if the pair (A, B) forms a formal concept.

The generated bipolar-multi fuzzy formal concepts and

their corresponding relationship can be visualized through

vertices and edges of a defined bipolar multi-fuzzy graph as

shown in Fig. 4. However, generating the bipolar multi-

fuzzy concepts is one of the major issues for knowledge

processing tasks. To overcome from this issue a method is

proposed in the next section to discover all the bipolar

multi-fuzzy concepts and its selection at user defined multi-

granulation.

3 Proposed method

In this section, two methods are proposed for analysis of

data with bipolar multi-fuzzy attributes using the properties

of bipolar multi-fuzzy set and concept lattice.

3.1 A proposed method for generating bipolar-
multi formal fuzzy concepts

This section introduces an algorithm to discover all the

bipolar-multi fuzzy concepts from a given bipolar-multi

fuzzy context F = (X, Y, ~R) where, jXj ¼ n, jY j ¼ k and,

R represents bipolar multifuzzy relationship among X and

Y. The bipolar multi-fuzzy concepts can be generated as

follows via setting the attribute values in (0, 1):

Step 1: The first concept can be generated using all the

bipolar multi-fuzzy set of objects ðX; ðlP
mðXÞ; lN

mðXÞÞ and

finding its covering attributes using the "
X; ðlP

mðXÞ; lN
mðXÞÞ

� �"
= yj; ðlP

mðyjÞ; lN
mðyjÞÞ

� �
.

Table 6 A bipolar multi-fuzzy

set of V for Example 3
v1 v2 v3

lP
1ðIÞ 0.5 0.6 0.4

lN
1 ðIÞ � 0.7 � 0.5 � 0.7

lP
2ðIÞ 0.7 0.5 0.6

lN
2 ðIÞ � 0.3 � 0.3 � 0.3

lP
3ðIÞ 0.8 0.7 0.4

lN
3 ðIÞ � 0.5 � 0.2 � 0.3

Table 7 A bipolar multi-fuzzy

set of E for Example 3
v1v2 v2v3 v3v1

lP
1ðJÞ 0.5 0.4 0.4

lN
1 ðJÞ � 0.7 � 0.7 -0.7

lP
2ðJÞ 0.5 0.5 0.6

lN
2 ðJÞ � 0.3 � 0.3 � 0.3

lP
3ðJÞ 0.7 0.4 0.4

lN
3 ðjÞ � 0.5 � 0.3 � 0.5

Fig. 4 A bipolar multi-fuzzy graph representation of Example 3
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The bipolar multi-fuzzy membership value for the

obtained attributes can be computed using the properties of

bipolar fuzzy set as follows:

min yj; lP
mðyjÞ

� �
and,

max yj; lN
mðyjÞ

� �
.

Similarly, # can be applied to find its covering objects to

find the maximal pair of object and attributes closed with

Galois connection.

Step 2: The Lower Neighbor of this concept can be

discovered using the uncovered attributes from the given

set of attributes :Sk = ym � yj where j�m and k� jm� jj.
Step 3: The set (sk) can be considered as Lower

Neighbor iff it contains exactly one extra uncovered attri-

butes from the given attributes set i.e. sk for k ¼ 1 to k ¼
jm� jj i.e. yj [ sk. The covering objects set can be found

using the Galois connection (#) i.e.

yk; ðlP
mðykÞ; lN

mðykÞÞ
� �#¼ xi; ðlP

mðxiÞ; lN
mðxiÞ

� �
. The mem-

bership-value for the obtained objects set can be computed

as follows:

min xi; lP
mðxiÞ

� �
and max xi; lN

mðxiÞ
� �

Step 4: Now, apply the operator (") on the obtained

objects set as follows:

xi; ðlP
mðxiÞ; lN

mðxiÞÞ
� �"

.

It will provide maximal covering bipolar multi-fuzzy

attributes set. If the membership-value of the obtained

attributes set have equal bipolar multi-fuzzy set to the

initially considered subset of attributes i.e.

yk; ðlP
mðykÞ; lN

mðykÞÞ
� �

. In this case obtain pair of objects

and attributes set represents a Lower Neighbor of given

node. Similarly, other Lower Neighbors can be computed.

Step 5: The Next Neighbor is the distinct concepts from

all the generated Lower Neighbor with maximal bipolar

fuzzy membership value.

Step 6: Draw the edges among the current concepts and

its Next Neighbor.

Step 7: Similarly, compute the Next Neighbor for each

of the concepts.

Step 8: Stop the algorithm when all the unmarked

attributes are covered.

Step 9: Draw the edges among each of the generated

Next Neighbor which gives the hierarchically ordered

visualization of bipolar fuzzy concepts in a concept lattice

structure.

The pseudo code for the proposed algorithm is shown in

Table 8. The proposed algorithm generates the bipolar

multi-fuzzy concept based on its Lower Neighbor as shown

in Step 1. The Lower Neighbor can be discovered via

joining one of the uncovered attributes in the previous

concepts as shown in Steps 2–4. The Lower Neighbors

having distinct and maximal bipolar multi-fuzzy member-

ship value can be considered as Next Neighbor concepts as

shown in Step 5. The generated Next Neighbor can be

connected with its parent concepts via edges of defined

bipolar fuzzy graph as shown in Table 6. Similarly, all the

Next Neighbor can be generated and added to the graph

based concept lattice as shown in Steps 6–9. This is one of

the major advantages of the proposed method while

building the bipolar concept lattice and extracting its

Lower Neighbor concepts for the practical applications.

Complexity Let, the number of objects(|X|) = n and the

number of attributes (|Y|) = k in the given m-polar fuzzy

context. To generate the bipolar concepts the proposed

algorithm finds Lower Neighbor which takes O(n k) time

for each component of m-polar fuzzy attributes. The Lower

Neighbors can be generated using each m-polar fuzzy

attributes i.e. O(n k2 m) complexity. In this way, the total

complexity for the proposed method is O(|C| n k2 m) where

C represents number of Lower Neighbors. It can be

observed that, the proposed method generated the bipolar

multi-fuzzy concepts beyond crisply. The reason is some

time expert require the possession of other attributes for

precise measurement of opinion. In near future, author will

focus on fixing the membership values as (1, 0) to generate

the concepts and its comparative study. However, in any

case the interpretation of bipolar multi-fuzzy concepts is

difficult to analyze. Some time the expert need the concepts

based on his/her required granulation for precise analysis

of given pattern. To fulfil this need, the current paper

introduces a method in the next section to decompose the

bipolar multi-fuzzy context using extensive properties of

granulation computing.

3.2 A method for decomposition of bipolar
multi-fuzzy context at user defined multi-
granulation

The bipolar multi-fuzzy context contains complex repre-

sentation of data which takes much time for finding some

of the interested concepts. To deal with this problem

properties of granular computing can be useful to handle

them based on small information of multi-granules. The

calculus of granular computing (Yao 2004; Pedrycz and

Chen 2015) is utilized to process the data with fuzzy

attributes (Kang et al. 2012; Singh and Kumar 2012),

interval-valued attributes (Li 2017; Singh 2018a), bipolar

fuzzy attributes (Singh and Kumar 2014b; Singh 2019b),

vague context (Singh 2018b) for finding corresponding

crisp order relation (Singh 2015). The motive is to inves-

tigate some useful or interactive pattern in the given con-

text based on user requirement. In this way, granular

computing is an important tool to process the data in small

chunk of variable for cognitive concept learning (Li et al.

2015). The information granule includes one or another

448 Granular Computing (2022) 7:441–459

123



way to quantify the uncertainty in numeric precision

computed by different methods. In this way, the calculus of

granular computing conquer the complexity of any given

problem in small module for its precise analysis. To

achieve this goal, current paper proposed a method to

refine some of the important bipolar multi-fuzzy concepts

based on user defined information granules as given below:

Step 1: Let us suppose, a bipolar multi-fuzzy context F =

(X, Y, ~Rm) where, jXj ¼ n, jYj ¼ m and, ð ~Rm ¼
ðP ~Rmðxi;yjÞ;N ~Rmðxi;yjÞÞ represents a bipolar multi-fuzzy rela-

tionship among them.

Step 2: In general, user required some of the concepts

based on his/her required information granules to process

the context. In this case he/she can set maximal positive

membership value and minimal negative membership

value for each of the bipolar multi-fuzzy attributes i.e.

(am; bm).

Step 3: Now, the given bipolar multi-fuzzy context can

be converted into binary context in the m-polar fuzzy space

iff: lP
m
~Rðxi; yjÞ
 am and lN

m
~Rðxi; yjÞ� bm. The obtained

context for the chosen information granules can be con-

sidered as F am;bn .

Step 4: The obtained context for the chosen granules F

am;bm follow the following equality: F=
S

am;bm
F am;bm , 8

am; bm defined in m-polar fuzzy space for its positive and

negative information.

Step 5: The obtained context also satisfies the subset

properties i. e. F a1;b1
� F a2;b2

when a1 
 a2, b1 � b2 in

given m-polar fuzzy space.

Step 6: In this way, an user or expert can control the

number of bipolar multi-fuzzy concepts and their hierar-

chical order visualization in the concept lattice for precise

analysis of given data set with bipolar multi-fuzzy set.

Step 7: Table 9 shows the above-mentioned steps of the

proposed method in form of an algorithm.

Complexity The proposed method provides an alterna-

tive way to analyze the given bipolar multi-fuzzy context at

user-defined multi-granulation for the context F = (X, Y,
~Rm), where |X|=n, |Y|=k and ð ~Rm ¼ ðP ~Rmðxi;yjÞ;N ~Rmðxi;yjÞÞ. To

achieve this goal the proposed method compute (am; bm)

for their positive and negative membership value in m-

Table 8 The proposed

algorithm for generating the

bipolar multi-fuzzy concepts

using Next Neighbor

Input: A bipolar fuzzy context F = (X, Y, ~R)

where (|X|)=n, (|Y|)=m.

Output: The bipolar multi-fuzzy concepts (C) and its lattice structure

1. Apply operator (") on given object set(X) :

(i) X; ðlP
mðXÞ;lN

mðXÞÞ
� �"

= yj; ðlP
mðyjÞ;lN

mðyjÞÞ
� �

.

(iii) Compute the bipolar membership for the obtained attributes:

min yj;lP
mðyjÞ

� �
and max yj;lN

mðyjÞ
� �

(iii) Apply the operator (#) on obtained attribute set:

( yj; ðlP
mðyjÞ;lN

mðyjÞÞ
� �#¼ xi; ðlP

mðxiÞ;lN
mðxiÞ

� �
)

(iv) If its provides the initially considered objects set (X) then it is concept.

2. Find its Lower Neighbor:

3. for (k=0 to m)

Sk=Y � yj where 0� j�m

(i). New attribute set: yk= yj [ sk

(ii). Set (0,1) positive membership for each attributes.

(iii). Apply the operator (#) on attributes

yk; ðlP
mðykÞ; lN

mðykÞÞ
� �#¼ xi; ðlP

mðxiÞ;lN
mðxiÞ

� �

(iv). Compute the bipolar fuzzy membership value for the extent:

min xi;lP
mðxiÞ

� �
and max xi;lN

mðxiÞ
� �

(v). Apply the operator (") on extent:

xi; ðlP
mðxiÞ;lN

mðxiÞÞ
� �"

= yk; ðlP
mðykÞ; lN

mðykÞÞ
� �

.

End for.

4. List out all the generated Lower Neighbor concepts C.

5. Mark the distinct and maximal intent in C as Next Neighbor.

6. Draw the edges with its parent concept.

7. Similarly compute the Next Neighbor of other concepts.

8. Stop when all the unmarked attributes are covered.
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polar fuzzy space which can take maximum O(n � k2 � m)

computational time. In this way the proposed method

reduced the time complexity for processing the bipolar

multi-fuzzy context.

4 Illustrations

In this section, both of the proposed methods are demon-

strated with an illustrative example. In addition, the anal-

ysis derived from them are compared with Yang et al.

(2013).

4.1 Illustrations of the proposed method

Extracting the interesting pattern from any given set of data

is one of major concern for the research communities for its

practical applications in various research fields as dis-

cussed by Singh et al. (2016). The complexity increases

when the given data set contains bipolar (Singh and Kumar

2014a, b), three-polar (Huang et al. 2017; Singh 2017; Yao

2021a) or multi-polar information (Chen et al. 2014;

Mechelen and Smilde 2011; Singh 2018c). It becomes

more complex when the bipolarity existing in each building

blocks of m-polar fuzzy space. To deal with these type of

data set properties of bipolar multi-fuzzy set (Yang et al.

2013) is utilized in this paper for multi-decision making

process. To achieve this goal, a method is for handling data

with bipolar multi-fuzzy attributes is proposed in Sect. 3.1

which is illustrate as given below:

Example 4 Let us extent the previous examples as, a

company manufactures five kind of color drawing papers-

x1; x2; x3; x4; x5f g for engineering based on following

parameters (attributes)- y1; y2; y3f g. The multi-attributes y1

represents ‘Thickness’ which includes thick, average and

thin. The multi-attribute y2 represents ‘Color’ which

involves combination of red, green and blue, indepen-

dently. Subsequently, the multi-attribute y3 represents

‘Ingredients’ which involves cellulose, hemicellulose, lig-

nin. The experts write their opinion based on its accepta-

tion and rejection membership value for the given drawing

papers- x1; x2; x3; x4; x5f g as shown in Tables 10, 11, 12, 13,

14, respectively. Table 15 represents the constituted bipo-

lar multi-fuzzy context where, attributes represents the

experts opinion, and objects represents the drawing papers.

Now the issue for the company is to find one of the most

preferable drawing papers based on constituted bipolar

multi-fuzzy context shown in Table 15. To achieve this

goal of company a method is proposed in this paper as

shown in Table 7. To generate some of the interested

pattern based on object attribute of the given context as

illustrated below:

The generated bipolar multi-fuzzy concepts from the

context shown in Table 15 are as follows using the pro-

posed algorithm in Sect. 3.1:

1. Extent : ((0, 1), (0, 1), (0, 1))/x1? ((0, 1), (0, 1), (0,

1))/x2?((0, 1), (0,1), (0, 1))/x3?((0, 1), (0, 1), (0, 1))/

x4?((0, 1), (0, 1), (0, 1))/x5.

Intent : ((0.13, � 0.31), (0.13, � 0.26), (0.03, � 0.16))/

y1?((0.15, � 0.31), (0.20, � 0.07), (0.24, � 0.11))/

y2?((0.14, � 0.16), (0.20, � 0.29), (0.18, � 0.06))/y3.

2. Extent : ((0.22, � 0.27), (0.42, � 0.37), (0.36,

� 0.24))/x1? ((0.52, � 0.13), (0.31, � 0.35), (0.16,

� 0.48))/x2?((0.13, � 0.46), (0.31, � 0.27), (0.53,

� 0.18))/x3?((0.57, � 0.34), (0.22, � 0.26), (0.13,

Table 9 Proposed algorithm to

analyze the bipolar multi-fuzzy

context at user defined multi-

granulation

Input: A bipolar multi-granulation (am;bm)

where |X|=n, |Y|=m and ð ~Rm ¼ ðP ~Rmðxi;yjÞ;N ~Rmðxi ;yjÞÞ.
Output: The set of context at user defined multi-granules F ðam;bmÞ.

1. Let us suppose bipolar multi-fuzzy context F = (X, Y, ~Rm).

2. Define the multi-granulation for positive and negative membership-value

i.e. (am; bm).

3. This provides following binary multi-context F am;bm :

4. if (lP
m
~Rðxi; yjÞ
 am and lN

m
~Rðxi; yjÞ� bm)

then represent 1.0 at the place of chosen bipolar multi-fuzzy relation.

else 0.0 at the place of chosen bipolar multi-fuzzy relation.

5. The obtained bipolar multi-context follows the equality:

F=
S

am ;bm
F am;bm , 8 am;bm.

F a1 ;b1
� F a2 ;b2

when a1 
 a2, b1 � b2.

6. Generate the concepts from the obtained bipolar multi-context.

7. Build the bipolar multi-concept lattice.

8. Discover the knowledge from the obtain concept lattice.
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� 0.32))/x4?((0.27, � 0.34), (0.62, � 0.46), (0.03,

� 0.16))/x5.

Intent : ((0, 1), (0, 1), (0, 1))/y1?((0.15, � 0.31), (0.20,

� 0.07), (0.24, � 0.11))/y2?((0.14, � 0.16), (0.20,

� 0.27), (0.18, � 0.06))/y3.

3. Extent : ((0.31, � 0.47), (0.24, � 0.14), (0.45,

� 0.37))/x1? ((0.30, � 0.38), (0.42, � 0.25), (0.24,

� 0.33))/x2?((0.51, � 0.44), (0.38, � 0.16), (0.41,

� 0.39))/x3?((0.36, � 0.50), (0.28, � 0.07), (0.30,

� 0.39))/x4?((0.47, � 0.31), (0.20, � 0.56), (0.33,

� 0.11))/x5.

Intent : ((0.13, � 0.13), (0.20, � 0.026), (0.003,

� 0.16))/y1?((0, 1), (0, 1), (0, 1))/y2?((0.14, � 0.16),

(0.20, � 0.27), (0.18, � 0.06))/y3.

4. Extent : ((0.30, � 0.27), (0.45, � 0.35), (0.25,

� 0.38))/x1? ((0.14, � 0.57), (0.61, � 0.16), (0.24,

� 0.24))/x2?((0.35, � 0.46), (0.20, � 0.24), (0.37,

Table 10 The opinion of expert about drawing paper x1 based on

given multi-valued attributes

Pencils Thickness (y1) Color (y2) Ingredients (y3)

lP
1ðx1Þ 0.22 0.31 0.30

lN
1 ðx1Þ � 0.33 � 0.47 � 0.27

lP
2ðx1Þ 0.42 0.24 0.45

lN
2 ðx1Þ � 0.37 � 0.14 � 0.35

lP
3ðx1Þ 0.36 0.45 � 0.25

lN
3 ðx1Þ � 0.24 � 0.37 � 0.38

Table 11 The opinion of expert about drawing paper x2 based on

given multi-valued attributes

Pencils Thickness (y1) Color (y2) Ingredients (y3)

lP
1ðx2Þ 0.52 0.30 0.14

lN
1 ðx2Þ � 0.13 � 0.38 � 0.57

lP
2ðx2Þ 0.31 0.42 0.61

lN
2 ðx2Þ � 0.35 � 0.25 � 0.16

lP
3ðx2Þ 0.16 0.24 0.24

lN
3 ðx2Þ � 0.48 � 0.33 � 0.24

Table 12 The opinion of expert about drawing paper x3 based on

given multi-valued attributes

Pencils Thickness (y1) Color (y2) Ingredients (y3)

lP
1ðx3Þ 0.13 0.15 0.35

lN
1 ðx3Þ � 0.46 � 0.44 � 0.46

lP
2ðx3Þ 0.31 0.38 0.20

lN
2 ðx3Þ � 0.27 � 0.16 0.29

lP
3ðx3Þ 0.57 0.41 0.37

lN
3 ðx3Þ � 0.18 � 0.39 � 0.17

Table 13 The opinion of expert about drawing paper x4 based on

given multi-valued attributes

Pencils Thickness (y1) Color (y2) Ingredients (y3)

lP
1ðx4Þ 0.57 0.36 0.47

lN
1 ðx4Þ � 0.39 � 0.50 � 0.16

lP
2ðx4Þ 0.22 0.28 0.34

lN
2 ðx4Þ � 0.26 � 0.07 � 0.50

lP
3ðx4Þ 0.13 0.30 0.18

lN
3 ðx4Þ � 0.32 � 0.39 � 0.27

Table 14 The opinion of expert about drawing paper x5 based on

given multi-valued attributes

Pencils Thickness (y1) Color (y2) Ingredients (y3)

lP
1ðx5Þ 0.27 0.47 0.17

lN
1 ðx5Þ � 0.34 � 0.31 � 0.32

lP
2ðx5Þ 0.62 0.20 0.29

lN
2 ðx5Þ � 0.46 � 0.56 � 0.56

lP
3ðx5Þ 0.03 0.31 0.53

lN
3 ðx5Þ � 0.16 � 0.11 � 0.06

Table 15 A compact representation of bipolar multi-fuzzy context

shown in Tables 10, 11, 12, 13 and 14

Pencils Thickness (y1) Color(y2) Ingredients (y3)

x1 ((0.22, � 0.33), ((0.31, � 0.47), ((0.30, � 0.27),

(0.42, � 0.37), (0.24, � 0.14), (0.45, � 0.35),

(0.36, � 0.24)) (0.45, � 0.37)) (0.25, � 0.38))

x2 ((0.52, � 0.13), ((0.30, � 0.38), ((0.14, � 0.57),

(0.31, � 0.35), (0.42, � 0.25), (0.61, � 0.16),

(0.16, � 0.48)) (0.24, � 0.33)) (0.24, � 0.24))

x3 ((0.13, � 0.46), ((0.15, � 0.44), ((0.35, � 0.46),

(0.31, � 0.27), (0.38, � 0.16), (0.20, � 0.29),

(0.53, � 0.18)) (0.41, � 0.39)) (0.37, � 0.17))

x4 ((0.57, � 0.39), ((0.36, � 0.50), ((0.47, � 0.16),

(0.22, � 0.26), (0.28, � 0.07), (0.34, � 0.50),

(0.13, � 0.32)) (0.30, � 0.39)) (0.18, � 0.27))

x5 ((0.27, � 0.34), ((0.47, � 0.31), ((0.17, � 0.32),

(0.62, � 0.46), (0.20, � 0.56), (0.29, � 0.56),

(0.03, � 0.16)) (0.31, � 0.11)) (0.53, � 0.06))
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� 0.16))/x3?((0.47, � 0.16), (0.34, � 0.57), (0.18,

� 0.27))/x4?((0.17, � 0.32), (0.29, � 0.56), (0.33,

� 0.06))/x5.

Intent : ((0.13, � 0.13), (0.20, � 0.026), (0.003,

� 0.16))/y1?((0.15, � 0.31), (0.20, � 0.07), (0.24,

� 0.11))/y2?((0, 1), (0, 1), (0, 1))/y3.

5. Extent : ((0.22, � 0.33), (0.24, � 0.14), (0.36,

� 0.24))/x1? ((0.30, � 0.13), (0.31, � 0.25), (0.16,

� 0.33))/x2?((0.13, � 0.44), (0.31, � 0.16), (0.41,

� 0.18))/x3?((0.36, � 0.34), (0.22, � 0.07), (0.13,

� 0.32))/x4?((0.27, � 0.34), (0.20, � 0.46), (0.03,

� 0.11))/x5.

Intent : ((0, 1), (0, 1), (0, 1))/y1?((0, 1), (0, 1), (0, 1))/

y2?((0.14, � 0.16), (0.26, � 0.27), (0.18, � 0.06))/y3.

6. Extent : ((0.22, � 0.27), (0.42, � 0.35), (0.25,

� 0.24))/x1? ((0.14, � 0.13), (0.31, � 0.16), (0.16,

� 0.24))/x2?((0.13, � 0.46), (0.20, � 0.27), (0.37,

� 0.17))/x3?((0.47, � 0.16), (0.22, � 0.026), (0.13,

� 0.27))/x4?((0.17, � 0.32), (0.20, � 0.46), (0.03,

� 0.06))/x5.

Intent : ((0, 1), (0, 1), (0, 1))/y1?((0.15, � 0.31), (0.20,

� 0.07), (0.24, � 0.11))/y2?((0, 1), (0, 1), (0, 1))/y3.

7. Extent : ((0.30, � 0.27), (0.24, � 0.14), (0.25,

� 0.37))/x1? ((0.14, � 0.38), (0.42, � 0.16), (0.24,

� 0.24))/x2?((0.15, � 0.44), (0.20, � 0.16), (0.37,

� 0.17))/x3?((0.36, � 0.16), (0.28, � 0.07), (0.18,

� 0.27))/x4?((0.17, � 0.31), (0.20, � 0.56), (0.31,

� 0.06))/x5.

Intent : ((0, 1), (0, 1), (0, 1))/y1?((0, 1), (0, 1), (0, 1))/

y2?((0.13, � 0.13), (0.22, � 0.26), (0.03, � 0.16))/y3.

8. Extent : ((0.22, � 0.27), (0.24, � 0.14), (0.25,

� 0.24))/x1? ((0.14, � 0.13), (0.31, � 0.16), (0.16,

� 0.24))/x2?((0.13, � 0.44), (0.20, � 0.16), (0.37,

� 0.17))/x3?((0.36, � 0.16), (0.22, � 0.07), (0.13,

� 0.27))/x4?((0.17, � 0.31), (0.20, � 0.46), (0.03,

� 0.06))/x5.

Intent : ((0, 1), (0, 1), (0, 1))/y1?((0, 1), (0, 1), (0, 1))/

y2?((0, 1), (0, 1), (0, 1))/y3.

The above generated concepts and their hierarchical

order visualization through bipolar multi-fuzzy graph rep-

resentation of concept lattice is shown in Fig. 5. The

generalized concept number 1 shows that each drawing

paper is made from each of the given parameters. The

specialized concept number 8 can be interpreted as follows:

8. Extent : ((0.22, � 0.27), (0.24, � 0.14), (0.25,

� 0.24))/x1? ((0.14, � 0.13), (0.31, � 0.16), (0.16,

� 0.24))/x2?((0.13, � 0.44), (0.20, � 0.16), (0.37,

� 0.17))/x3?((0.36, � 0.16), (0.22, � 0.07), (0.13,

� 0.27))/x4?((0.17, � 0.31), (0.20, � 0.46), (0.03,

� 0.06))/x5.

Intent : ((0, 1), (0, 1), (0, 1))/y1?((0, 1), (0, 1), (0, 1))/

y2?((0, 1), (0, 1), (0, 1))/y3.

The acceptance of each drawing paper based on con-

cepts number 8 can be computed as given below:

8 (i). ((0.22, � 0.27), (0.24, � 0.14), (0.25, � 0.24))/x1

= ((022 � 0.27)?(0.24 � 0.14)?(0.25 � 0.24))=

(� 0.05?0.10?0.01)=0.06.

8 (ii). ((0.14, � 0.13), (0.31, � 0.16), (0.16, � 0.24))/x2

= ((0.14 � 0.13)?(0.31 � 0.16)?(0.16 � 0.24)) =

(0.01?0.15 � 0.08)=0.08.

8 (iii). ((0.13, � 0.44), (0.20, � 0.16), (0.37, � 0.17))/

x3 = ((0.13 � 0.44)?(0.20 � 0.16)?(0.37 � 0.17)) =

( � 0.31?0.04?0.20)= � 0.07

8 (iv). ((0.36, � 0.16), (0.22, � 0.07), (0.13, � 0.27))/x4

= ((0.36 � 0.16)?(0.22 � 0.07)?(0.13 � 0.27)) =

(0.20?0.13 � 0.20)=0.13.

8 (v). ((0.17, � 0.31), (0.20, � 0.46), (0.03, � 0.06))/x5

= ((0.17 � 0.31)?(0.20 � 0.46)?(0.03 � 0.06))= ( � 0.14

� 0.26 � 0.03)= � 0.43 It can be observed that, the x2 and

x4 have positive acceptance due to that both will be pre-

ferred by user. In case company want to analyze most

suitable among x2 and x4. The company can utilize the

expert opinion shown in Table 11 and 13 for x2 and x4,

respectively, which shows x2 is more suitable. This con-

clusions from the proposed method corresponds to Yang

et al. (2013) with compact display of bipolar multi-fuzzy

concept. This is one of the major advantages of the pro-

posed method. In the next section illustration of bipolar

multi-fuzzy context is shown based on user defined infor-

mation granules.

4.2 Bipolar multi-fuzzy concepts at user defined
multi-granulation

Recently, attention has been paid to extract some inter-

esting knowledge from a given context using the properties

of granulation (Kumar and Srinivas 2010; Kumar 2012;

Fig. 5 A bipolar multi-fuzzy concept lattice for the context shown in

Table 15
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Dias et al. 2020). The calculus of granulation provides an

alternative way to analyze the given context based on small

or chunk of information granules. Due to this properties, it

is applied in various fields for knowledge processing tasks

(Pedrycz and Chen 2015). Recently, the calculus of gran-

ular computing is utilized in formal fuzzy context (Kang

et al. 2012; Singh and Kumar 2012), interval-valued fuzzy

context (Singh and Kumar 2018a), bipolar fuzzy context

(Singh and Kumar 2014b; Singh 2019b) to control the size

of concept lattice visualization (Singh et al. 2015a). These

recent studies motivated to utilize the calculus of multi-

granular model for analyzing the data with bipolar multi-

fuzzy context based on its chunk of variables. To extract

the multi-level conceptual knowledge from a given bipolar

multi-valued data set. To achieve this goal, a method is

proposed in Sect. 3.2 of this paper which can be illustrated

on the bipolar multi-fuzzy context shown in Table 15. The

context shown in this table represents the opinion of an

expert based on three attributes (y1-Thickness, y2-Color,

y3-Ingredients) to prefer the suitable engineering drawing

papers among them (x1; x2; x3; x4; x5). Now the goal is to

find some of the suitable drawing paper based on each of

the parameters for the manufacturing. This problem can be

resolved based on multi-level granulation shown in

Table 16 as illustrated in Examples 5 and 6 given below:

Example 5 Let us suppose, the company want to analyze

the most interested drawing paper for manufacturing based

on given preference by an expert. In this case, the Level-4

shown in Table 16 can be considered to analyze the bipolar

multi-fuzzy context shown in Table 15 as given below:

The preference of drawing paper x1 based on multi-

valued attribute y1 using Level-4 can be computed as given

below:

1. l1ðx1; y1Þ = (0.22, � 0.33) means lP
1ðx1; y1Þ = 0.22

and lN
1 ðx1; y1Þ = � 0.33. The positive membership-value

lP
1ðx1; y1Þ = 0.22 � 0.4. Hence, (0.4, � 0.2)-cut of

l1ðx1; y1Þ=0.

2. l2ðx1; y1Þ = (0.42, � 0.37) means lP
2ðx1; y1Þ = 0.42

and lN
2 ðx1; y1Þ = � 0.37. The positive membership-value

lP
2ðx1; y1Þ = 0.42 
 0.4 whereas negative membership-

value lN
2 ðx1; y1Þ = 0.37 
 0.2. Hence, (0.4, � 0.2)-cut of

l1ðx1; y1Þ=0.

3. l3ðx1; y1Þ = (0.36, � 0.24) means lP
3ðx1; y1Þ = 0.36

and lN
3 ðx1; y1Þ = � 0.24. The positive membership-value

lP
3ðx1; y1Þ = 0.36 � 0.4. Hence, (0.4, -0.2)-cut of

l3ðx1; y1Þ=0.

It gives (0, 0, 0) preference value using Level-4 as

depicted in Table 17.

Similarly, the preference of drawing paper x1 can be

computed based on multi-valued attribute y2 using Level-4

as given below:

4. l1ðx1; y1Þ = (0.31, � 0.47) means lP
1ðx1; y2Þ = 0.31

and lN
1 ðx1; y2Þ = � 0.47. The positive membership-value

lP
1ðx1; y2Þ = 0.31 � 0.4. Hence, (0.4, � 0.2)-cut of

l1ðx1; y2Þ=0.

5. l2ðx1; y2Þ = (0.24, � 0.14) means lP
2ðx1; y2Þ = 0.24

and lN
2 ðx1; y2Þ = � 0.14. The positive membership-value

lP
2ðx1; y2Þ = 0.24 � 0.4. Hence, (0.4, � 0.2)-cut of

l2ðx1; y2Þ=0.

6. l3ðx1; y2Þ = (0.45, � 0.37) means lP
3ðx1; y2Þ = 0.45

and lN
3 ðx1; y2Þ = � 0.37. The positive membership-value

lP
3ðx1; y2Þ = 0.45 
 0.4 whereas negative membership-

value lN
3 ðx1; y2Þ = 0.37 
 0.2. Hence, (0.4, � 0.2)-cut of

l3ðx1; y2Þ=0.

It gives (0, 0, 0) preference value using Level-4 as

depicted in Table 17.

Similarly, the preference of drawing paper x1 can be

computed based on multi-valued attribute y3 using Level-4

can be computed as given below:

7. l1ðx1; y3Þ = (0.30, � 0.27) means lP
1ðx1; y3Þ = 0.30

and lN
1 ðx1; y3Þ = � 0.27. The positive membership-value

lP
1ðx1; y3Þ = 0.30 � 0.4. Hence, (0.4, � 0.2)-cut of

l1ðx1; y3Þ=0.

8. l2ðx1; y3Þ = (0.45, � 0.37) means lP
2ðx1; y3Þ = 0.45

and lN
2 ðx1; y3Þ = � 0.37. The positive membership-value

lP
2ðx1; y3Þ = 0.45 
 0.4 whereas negative membership-

value lN
2 ðx1; y3Þ = 0.37 
 0.2. Hence, (0.4, � 0.2)-cut of

l1ðx1; y1Þ=0.

9. l3ðx1; y3Þ = (0.25, � 0.38) means lP
3ðx1; y3Þ = 0.25

and lN
3 ðx1; y3Þ = � 0.38. The positive membership-value

Table 16 Some of the interested

granules based on user required

preference

Granulation Interested Measurement Bipolar membership

Level-1 Highly interested Highly positive (0.8, � 0.2)

Level-2 Very very interested Very positive (0.7, � 0.2)

Level-3 Very interested Absolute positive (0.5, � 0.2)

Level-4 Interested Positive (0.4, � 0.2)

Level-5 Not interested Not positive (0.4, � 0.6)
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lP
3ðx1; y3Þ = 0.25 � 0.4. Hence, (0.4, � 0.2)-cut of

l3ðx1; y3Þ=0.

It gives (0, 0, 0) preference value using Level-4 as

depicted in Table 17.

Similarly, the preference of other drawing papers

(x2; x3; x4; x5) can be computed using the user defined

Level-4. This provides a multi-way binary context shown

in Table 17 for further processing using the properties of

FCA.

The formal concept generated from Table 17 are as

follows:

1. fð1; 1; 1Þ=x1 þ ð1; 1; 1Þ=x2 þ ð1; 1; 1Þ=x3

þð1; 1; 1Þ=x4 þ ð1; 1; 1Þ=x5; øg,

2. fð1; 1; 1Þ=x1 þ ð1; 1; 1Þ=x3þ
ð1; 1; 1Þ=x4 þ ð1; 1; 1Þ=x5; ð0; 0; 0Þ=y2g,

3. fð1; 1; 1Þ=x2; ð1; 0; 0Þ=y1 þ ð0; 1; 0Þ=y2 þ ð0;
1; 0Þ=y3g,

4. fð1; 1; 1Þ=x1 þ ð1; 1; 1Þ=x3; ð0; 0; 0Þ=y2 þ ð0; 0;

0Þ=y3g,

5. fð1; 1; 1Þ=x1 þ ð1; 1; 1Þ=x4 þ ð1; 1; 1Þ=x5; ð0; 0; 0Þ=y1

þð0; 0; 0Þ=y2g,

6. fð1; 1; 1Þ=x5; ð0; 0; 0Þ=y1 þ ð0; 0; 0Þ=y2 þ ð0; 0;

1Þ=y3g,

7. fð1; 1; 1Þ=x1; ð0; 0; 0Þ=y1 þ ð0; 0; 0Þ=y2 þ ð0; 0;

0Þ=y3g,

8. fð1; 1; 1Þ=x3; ð0; 0; 1Þ=y1 þ ð0; 0; 0Þ=y2 þ ð0; 0;

0Þ=y3g,

9. fð1; 1; 1Þ=x4; ð0; 0; 0Þ=y1 þ ð0; 0; 0Þ=y2; ð1; 0; 0Þ=y3g,

10. fø; ð1; 0; 0Þ=y1 þ ð0; 0; 1Þ=y1 þ ð0; 1; 0Þ=y2

þð1; 0; 0Þ=y3 þ ð0; 1; 0Þ=y3 þ ð0; 0; 1Þ=y3g
where ø represents null set.

The concept lattice for the above generated concept is

shown in Fig. 6. From this figure following information can

be extracted:

• Concept number-1. fð1; 1; 1Þ=x1 þ ð1; 1; 1Þ=x2 þ
ð1; 1; 1Þ=x3 þð1; 1; 1Þ=x4 þ ð1; 1; 1Þ=x5; øg represents

that none of the attribute is general on user required

which covers all the drawing papers.

• Concept number-3. fð1; 1; 1Þ=x2; ð1; 0; 0Þ=y1 þ
ð0; 1; 0Þ=y2 þ ð0; 1; 0Þ=y3g represents that drawing

paper x2 cover each of the given attributes at user

defined granules. Hence, this drawing paper will be

most suitable when compare to others. This derived

analysis is resembled with Yang et al. (2013) as well

the bipolar multi-fuzzy concept lattice shown in

Sect. 4.1 of this paper.

• Concept number-8. fð1; 1; 1Þ=x3; ð0; 0; 1Þ=y1 þ
ð0; 0; 0Þ=y2 þ ð0; 0; 0Þ=y3g represents that drawing

paper x3 covers attribute y1 as per user required

information granules. Hence this drawing paper will

be preferred when user is interested on Thickness (y1) .

• Concept number-9. fð1; 1; 1Þ=x4; ð0; 0; 0Þ=y1 þ
ð0; 0; 0Þ=y2; ð1; 0; 0Þ=y3g represents that drawing paper

x4 covers the attributes y3 as per user required

information granules. Hence this drawing paper will

be preferred when user is interested on Ingredients (y3).

• Concept number-10. fø; ð1; 0; 0Þ=y1 þ ð0; 0; 1Þ=y1 þ
ð0; 1; 0Þ=y2 þ ð1; 0; 0Þ=y3 þ ð0; 1; 0Þ=y3 þ ð0; 0; 1Þ=y3g
represents that none of the drawing paper is specific

which covers each attributes maximally at user

requirement.

It can be observed that the analysis derived from multi-

granulation (0.4, � 0.2) is resembled with Yang et al.

(2013) and its bipolar multi-fuzzy concepts shown in

Sect. 4.1. In addition, the multi-granulation provides a

depth way to refine the knowledge from given bipolar

multi-fuzzy context at multi-level knowledge extraction

with less computational cost. To understand its working

process another multi-level information granules i.e. Level

3 is chosen in the next example as given below:

Table 17 Three-way decomposition of Table 15 using (0.4, � 0.2)-

bipolar multi-granulation

y1 y2 y3

x1 (0, 0, 0) (0, 0, 0) (0, 0, 0)

x2 (1, 0, 0) (0, 1, 0) (0, 1, 0)

x3 (0, 0, 1) (0, 0, 0) (0, 0, 0)

x4 (0, 0, 0) (0, 0, 0) (1, 0, 0)

x5 (0, 0, 0) (0, 0, 0) (0, 0, 1)

Fig. 6 A concept lattice generated from context shown in Table 17
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Example 6 Let us suppose, the company want to analyze

the very interested drawing papers based on user required

information. This problem can be resolved using the Level-

3 i.e. (0.5, � 0.2) shown in Table 16. The obtained multi-

level context based on this multi-granulation is shown in

Table 18.

The following formal concepts can be generated from

the context shown in Table 18:

1. fð1; 1; 1Þ=x1 þ ð1; 1; 1Þ=x2 þ ð1; 1; 1Þ=x3

þð1; 1; 1Þ=x4 þ ð1; 1; 1Þ=x5; ð0; 0; 0Þ=y2g,

2. fð1; 1; 1Þ=x1 þ ð1; 1; 1Þ=x3 þ ð1; 1; 1Þ=x5; ð0; 0; 0Þ
=y2 þ ð0; 0; 0Þ=y5g,

3. fð1; 1; 1Þ=x1 þ ð1; 1; 1Þ=x4 þ ð1; 1; 1Þ=x5; ð0; 0; 0Þ=
y1 þ ð0; 0; 0Þ=y2g,

4. fð1; 1; 1Þ=x2; ð1; 0; 0Þ=y1 þ ð0; 0; 0Þ=y2 þ ð0; 1; 0Þ=y3g,

5. fð1; 1; 1Þ=x1 þ ð1; 1; 1Þ=x4; ð0; 0; 0Þ=y1 þ ð0; 0; 0Þ=y2

þð0; 0; 0Þ=y3g,

6. fð1; 1; 1Þ=x3; ð0; 0; 1Þ=y1 þ ð0; 0; 0Þ=y2; ð0; 0; 0Þ=y3g,

7. fð1; 1; 1Þ=x5; ð0; 0; 0Þ=y1 þ ð0; 0; 0Þ=y2 þ ð0; 0; 1Þ=y3g,

8. fð1; 1; 1Þ=x1; ð0; 0; 0Þ=y1 þ ð0; 0; 0Þ=y2 þ ð0; 0; 0Þ=y3g,

9. fø; ð1; 0; 0Þ=y1 þ ð0; 0; 1Þ=y1 þ ð0; 0; 0Þ=y2

þð0; 0; 0Þ=y3 þ ð0; 1; 0Þ=y3 þ ð0; 0; 1Þ=y3g.

where ø represents null set.

Concept lattice for the above generated bipolar multi

fuzzy concept is shown in Fig. 7. From this following

information can be extracted:

• Concept number-1. fð1; 1; 1Þ=x1 þ ð1; 1; 1Þ=x2 þ
ð1; 1; 1Þ=x3 þð1; 1; 1Þ=x4 þ ð1; 1; 1Þ=x5; ð0; 0; 0Þ=y2g
none of the attribute is general which should available

in each drawing paper as per user requirement for the

given information granules.

• Concept number-4. fð1; 1; 1Þ=x2; ð1; 0; 0Þ=y1 þ
ð0; 0; 0Þ=y2 þ ð0; 1; 0Þ=y3g represents that drawing

paper x2 covers maximal parameters as per user defined

granulation when compare to others. In this case it will

be most suitable drawing. This derived analysis is

resembled with Yang et al. (2013), bipolar multi-fuzzy

concepts shown in Sect. 4.1 as well as (0.4, � 0.2)

multi-granulation shown in Fig. 7 of this paper.

• Concept number-6. fð1; 1; 1Þ=x3; ð0; 0; 1Þ=y1 þ
ð0; 0; 0Þ=y2; ð0; 0; 0Þ=y3g represents that drawing paper

x3 covers attributes y1 maximally as per user required

information granules. In this case it will be preferred

when user interest on Thickness.

• Concept number-9. fø; ð1; 0; 0Þ=y1 þ ð0; 0; 1Þ=y1 þ
ð0; 0; 0Þ=y2 þð0; 0; 0Þ=y3 þ ð0; 1; 0Þ=y3 þ ð0; 0; 1Þ=y3g
represents that none of the drawing paper is specific

as per user required information granulation.

It can be observed that the analysis derived from multi-

granulation (0.5, � 0.2) is resembled with Yang et al.

(2013) as well as its bipolar multi-fuzzy concepts.

5 Discussions

The precise measurement of bipolarity and its graphical

visualization beyond three-way fuzzy space is considered

as one of the major tasks for the researchers. One of the

suitable examples is electron (�), proton (?), neutron (0)

and now positron (?, �) which contains both positive and

negative side simultaneously (Zhang 2021). This given a

new challenge for data science researchers to deal with

acceptation and rejection part exists beyond the unipolar

space. It becomes more complex when the group of people

support some thing and reject something simultaneously. It

is measured recently that many students shown opposite

and non-opposite sides of online teaching, traditional

teaching and hybrid. This type is issue used to measured

Table 18 Multi-granulation (0.5, � 0.2) decomposition of bipolar

multi-fuzzy set shown in Table 15

y1 y2 y3

x1 (0, 0, 0) (0, 0, 0) (0, 0, 0)

x2 (1, 0, 0) (0, 0, 0) (0, 1, 0)

x3 (0, 0, 1) (0, 0, 0) (0, 0, 0)

x4 (0, 0, 0) (0, 0, 0) (0, 0, 0)

x5 (0, 0, 0) (0, 0, 0) (0, 0, 1)

Fig. 7 A concept lattice generated from context shown in Table 18
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frequently in democratic like India where people of 29

states keep several opposite and non-opposite sides. To

deal these types of information, 29 states can be considered

as m-block of a defined m-polar fuzzy concepts lattice

(Singh 2018c, d). In case, the author wants to deal them

crisply based on object and attribute can be also done via

projection operator as discussed by Singh (2019a). The

problem arises when 29 states people provides several

opposite and non-opposite of opinion with precise bipolar

membership-values to accept or reject a particular party. It

is indeed requirement in case of civil engineering, building

drawing paper or representing z-matrix of an atom in

chemistry3 (Zadeh 2011). In this case, an alternative way is

to utilize the algebra of bipolar multi-fuzzy context to

extract some meaningful information.

To fulfil the above need, the mathematics of Formal

Concept Analysis (FCA) has been considered as one of the

most suitable mathematical model by the research com-

munities (Singh et al. 2016). This theory is exclusively

extended in bipolar fuzzy space (Singh and Kumar

2014a, b; Singh 2019b), three-way fuzzy space (Huang

et al. 2017; Singh 2017; Yao 2021a) as well as m-polar

fuzzy space (Singh 2018c, d). The problem arises while

dealing with hybrid of them which creates two possible

notions: (1) the existence of bipolarity in m-way fuzzy

space and (2) the existence of m-tuples in bipolar fuzzy

attributes. The first case discussed the generalized repre-

sentation of bipolar fuzzy attributes in m-polar fuzzy space

whereas the second case is specialized case of bipolar

fuzzy space which contains m-truth and false values. This

paper focused on solving the first case to generalize the

bipolar fuzzy attributes and its representation beyond the

m-polar fuzzy space. The motivation is deal with multi-

fuzzy attributes precisely in m-polar fuzzy space based on

its acceptation and negation part independently. The

objective is to provide an compact graphical visualization

for knowledge processing tasks. To achieve this goal, a

problem arises due to insufficient mathematical back-

ground and graphical representation for data with bipolar

multi-fuzzy attributes. To fill this backdrop, the current

paper aimed at extracting some of the meaningful infor-

mation from the data with bipolar multi-fuzzy attributes.

To understand the necessity of the proposed methodol-

ogy, some important literature related to the current study

are shown in Table 19 based on their potential outputs.

This table shows that, less attention has been paid towards

data with bipolar multi-fuzzy attributes except its numeri-

cal representation. None of the mathematical approaches

are available to analyze the data with bipolar multi-fuzzy

attributes based on some (interesting) formal concepts,

their compact lattice visualization or implications as �

shown in Table 19. This research is at infancy stage which

needs more attention for descriptive analysis of uncertainty

and vagueness. To fill this backdrop following proposals

are made in this paper:

1. A method is proposed to discover all the hidden pattern

in data with bipolar multi-fuzzy attributes in Sect. 3.1,

2. A method is proposed to analyze the bipolar multi-

fuzzy context at user defined multi-granulation in

Sect. 3.2,

3. One application of the proposed methods are shown

with step by step demonstration,

4. In addition the analysis derived from the both of the

proposed methods are compared with Yang et al.

(2013). It is shown that the obtained results echo with

each other whereas the proposed methods accomplish

this tasks in less computational time.

The bipolar multi-fuzzy attributes can be found while

handling biconcepts in m-polar fuzzy space (Chen et al.

2014), hexagonal organization of concepts (Dubois and

Prade 2012a, b) as well as three-way fuzzy space (Singh

2017). These type of data set can be represented using the

properties of bipolar multi-fuzzy set as discussed by Yang

et al. (2013). This opaque numerical representation of

bipolar multi-fuzzy attributes gives an way to visualize

them in compact way for knowledge processing tasks. To

achieve this goal, current paper provides a hierarchical

order visualization of bipolar multi-fuzzy attributes in the

concept lattice for accurate analysis of knowledge pro-

cessing tasks. In addition, another method is proposed to

analyze the bipolar multi-fuzzy attribute data set based on

small chunk of context at user defined multi-granulation.

This properties of the proposed method helps in finding

some meaningful information at multi-level information

extraction within O(n k m2) time complexity. In near

future, the author will focus on (1, 0)-bipolar multi-fuzzy

concepts generation and its comparative study with the

proposed method. Same time the application of the pro-

posed method will be focused on handling bipolar opinion

beyond the three-way dimensions for handling human

cognition and other data sets4 with their saddle or pertur-

bation points.

6 Conclusions

This paper contribute the attention towards handling the

bipolar information exists in each building block of the m-

polar fuzzy space. The motivation is to span the limited

information represented by bipolar information using the

m-polar fuzzy space and its generalization. To achieve this

3 https://en.wikipedia.org/wiki/Z-matrix_(chemistry). 4 https://www.confjuly.org/conference/MLPRIS/1367s8602.html.

456 Granular Computing (2022) 7:441–459

123

https://en.wikipedia.org/wiki/Z-matrix_%28chemistry)
https://www.confjuly.org/conference/MLPRIS/1367s8602.html


goal, the properties of bipolar multi-fuzzy set and its

graphical structure is introduced for bipolar multi-fuzzy

concepts generation and its lattice visualization. In this

process, the properties of Next Neighbor algorithm is used

which takes O(|C| n k2 m) time complexity for generating

the bipolar multi-fuzzy concepts. In addition, another

method is proposed to refine the knowledge based on user

defined multi-granulation with an illustrative example. It is

shown that, the analysis derived from both of the proposed

methods are corresponds to Yang et al. (2013) within O(n k

m2) where n and k represents number of objects and

attributes, respectively. The future work will be focused on

(1, 0)-bipolar multi-fuzzy concepts generation and its

comparison with the proposed method.
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