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Abstract
Deep artificial neural networks have been popular for time series forecasting literature in recent years. The recurrent neural

networks present more suitable architectures for forecasting problems than other deep neural network types. The simplest

deep recurrent neural network type is simple recurrent neural networks according to the number of employed parameters.

These neural networks can be preferred to solve forecasting problems because of their simple structure if they are trained

well. Unfortunately, the training of simple recurrent neural networks is problematic because of exploding or vanishing

gradient problems. The contribution of this study is proposing a new training algorithm based on particle swarm opti-

mization. The algorithm does not use gradients so it has not vanished or exploding gradient problem. The performance of

the new training algorithm is compared with long short-term memory trained by the Adam algorithm and Pi-Sigma

artificial neural network. In the applications, ten-time series are used to compare the performance of the methods. The ten-

time series is consisting of daily observations of the Dow-Jones and Nikkei stock exchange opening prices between the

years 2014 and 2018. At the end of the analysis processes, the proposed method produces more accurate forecast results

than established benchmarks.

Keywords Deep learning � Recurrent neural networks � Forecasting � Particle swarm optimization

1 Introduction

Early forecasting methods were based on the probability

theory and they were generally statistical methods. In

recent years, machine learning methods and their

hybridization with statistical methods have become popu-

lar, day by day. Machine learning methods do not need any

probabilistic or statistical assumptions. Machine learning

methods use nonlinear structures and soft models. Artificial

neural networks are an important class of machine learning

methods. Artificial neural networks can be classified into

two groups as shallow and deep artificial neural networks.

Deep artificial neural networks use more parameters than

shallow artificial neural networks. Deep artificial neural

networks use a parameter sharing approach so they process

more data with fewer parameters than shallow neural net-

works. Deep artificial neural networks produced successful

forecast results in the forecast competitions. Especially, the

methods based on long short-term recurrent neural net-

works have top ranks in the competitions. Long short-term

memory artificial neural network (LSTM-ANN) was pro-

posed by Hochreiter and Schmidhuber (1997) to solve the

vanishing and exploding gradient problem of simple

recurrent artificial neural networks. Although the problems

of simple recurrent artificial neural networks, the number

of parameters in LSTM-ANN dramatically increase

because of the various gates. Instead of using the various

gates in recurrent neural networks, gradient-free algorithms

can be preferred to train simple recurrent neural networks.

So, forecasting problems can be solved using fewer number

parameters than LSTM-ANN.

Many kinds of recurrent neural networks have been used

for time series forecasting in the literature. When the lit-

erature is examined, it can be concluded that artificial
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intelligence optimization techniques can improve the

forecasting performance of recurrent neural networks. The

most used stochastic optimization methods for training

recurrent neural networks are genetic algorithm (GA) and

particle swarm optimization (PSO). Elman and Jordan-type

recurrent neural networks are well-known ANN types in

the forecasting literature. LSTM, Convolutional Neural

Network (CNN), and Gated Recurrent Units (GRU) have

been the most employed recurrent neural networks in

recent years.

In an early study, Pham and Karaboga (1999) proposed a

training algorithm based on a GA to train Elman and Jor-

dan networks for dynamic system identification and

showed that GA-based training produced better results than

derivative-based algorithms. Zhang et al. (2013) presented

a hybrid learning algorithm that uses the complementary

advantages of two global optimization algorithms, includ-

ing PSO and evolutionary algorithm for the training of an

Elman-style neural network to predict past solar radiation

and solar radiation from solar energy. The GA, one of the

most commonly used artificial intelligence optimization

algorithms, has been frequently used in the training of deep

artificial neural networks in recent studies.

GA-LSTMs, an LSTM method based on GA, were

proposed by Chen et al. (2018) to predict network traffic.

Chung and Shin (2018) proposed the GA-LSTM approach

to forecast the Korean stock price index. In Qiu et al.

(2018), a prediction method using a GA combined with the

recurrent neural network was proposed regarding park

guidance and short-term empty parking forecasting of the

information system. Stajkowski et al. (2020) developed an

LSTM technique optimized with GA. Lu et al. (2020)

proposed a prediction method that combines the CNN and

LSTM artificial neural networks optimized by GA. Gao

et al. (2020) presented a model by integrating the GRU

model into a GA-based optimizer.

PSO is a very useful artificial intelligence optimization

algorithm in solving numerical optimization problems.

PSO has been used for the training of recurrent neural

networks in recent studies. Xu et al. (2007) proposed a

RNN and PSO approach to remove genetic regulatory

networks from time-series gene expression data. Ma et al.

(2012) presented a model based on an advanced mixed

recurrent neural network model and a simpler PSO. Wang

et al. (2013) proposed a new hybrid optimization algorithm

that uses PSO for simultaneous structure and the parameter

learning of Elman-type recurrent neural networks. Egrioglu

et al. (2014) used PSO for the training of recurrent multi-

plicative neuron model artificial neural networks for non-

linear time series forecasting. Moalla et al. (2017) pre-

sented a mixed approach that combined LSTM and PSO.

Akdeniz et al. (2018) used PSO for the training of the

recurrent Pi-Sigma artificial neural network. Peng et al.

(2018) proposed an LSTM-ANN model with a differential

evolution algorithm for electricity price prediction. Ibrahim

and El-Amary (2018) proposed a recurrent neural network

trained with PSO. Yao et al. (2018) proposed a PSO-based

LSTM. Kim and Cho (2019) proposed a PSO-based CNN-

LSTM method. Yuan et al. (2019) introduced a hybrid

model of LSTM neural network and Beta distribution

function based on PSO for the forecast range of wind

power. Shao et al. (2019) proposed a nickel-metal price

prediction model based on PSO developed with LSTM-

ANN. Qiu et al (2020) proposed a railway load volume

forecast model based on PSO-LSTM. Some other artificial

intelligence optimization techniques are also employed for

the training of recurrent neural networks. Gundu and

Simon (2021) proposed an LSTM-ANN based on the

optimization of an advanced PSO forecasting of the closing

price of the Indian energy exchange.

Forecasting methods which use granular computing are

popular in recent literature. Many kinds of fuzzy tech-

niques were proposed in the frame of granular computing.

Chen and Hsu (2008), Chen and Wang (2010), Chen et al.

(2013), Chen and Phuong (2016), Chen and Jian (2017),

Zeng et al. (2019), Chen et al. (2019), Egrioglu et al.

(2019), Gupta and Kumar (2019a), Bisht and Kumar

(2019), Bas et al. (2019), Bas et al. (2020), Egrioglu et al.

(2021), Gupta and Kumar (2019b), Chang and Yu (2019)

studies use granular computing for forecasting purpose.

Deep learning is an effective tool for forecasting. Fan et al.

(2019), Chen et. al. (2020), Wu et al. (2021) proposed new

forecasting methods based on granular computing and deep

learning. Deep learning can be used as an effective tool in

granular computing.

It is well known that a simple recurrent neural network

will be suffered from vanishing and exploding gradient

problems if a training algorithm based on gradients is

employed. GRU and LSTM use gates for avoiding van-

ishing and exploding gradient problems but using the gates

dramatically increase the number of weights in the net-

work. The motivation of this study is to propose a new

gradient-free training algorithm for the simple recurrent

neural network so the network will not need for using gates

like in GRU and LSTM.

In this study, a new gradient-free algorithm based on a

modified particle swarm optimization method is proposed

for the training of the simple deep recurrent neural network

to forecast single-variable time series. The contribution of

this study is proposing a new training algorithm for the

simple recurrent neural network. The proposed method

presents an effective modeling tool for granular computing

methods. In the second section of the paper, the proposed

training algorithm is introduced. In the third section,

application results are given. The last section is about

conclusions and discussions.
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2 A new training algorithm for simple
recurrent neural network

The simple recurrent neural networks are suffered from

exploding and vanishing gradient problems in the training

process. These problems are solved using gates in LSTM

and GRU but these networks need more parameters than

simple recurrent neural networks. If the simple recurrent

neural network can be trained by derivate-free algorithms,

the vanishing and exploding gradient problems will be

handled automatically. Moreover, the performance of the

simple recurrent neural networks can be better than LSTM

and GRU because of needing a fewer number of

parameters.

In this study, a new training algorithm is proposed based

on modified particle swarm optimization. The proposed

training algorithm does not need derivatives of any

objective function. So, the proposed method does not have

a vanishing or exploding gradient problem. The proposed

training algorithm has a re-starting strategy, an efficient

early stopping rule. Moreover, social and cognitive coef-

ficients are linearly changed on iterations for the increasing

convergence rate of the algorithm. Similarly, the inertia

weight is linearly increased using an iterative formula in

the iterations. The velocities are bounded using a vmaps

parameter.

The new training algorithm is given step by step as

follows:

Step 1. The parameters of the PSO algorithm are

determined. These parameters are listed below:

cinitial1 : The starting value of the cognitive coefficient.

cfinal1 : The ending value of the cognitive coefficient.

cinitial2 : The starting value of the social coefficient.

cfinal2 : The ending value of the social coefficient.

winitial : The starting value for inertia weight.

wfinal : The ending value for inertia weight.

vmaps: The bound value for the velocities.

limit1 : The limit value for the re-starting strategy.

limit2 : The limit value for the early stopping rule.

maxitr : The maximum number of iterations.

pn: The number of particles.

The counters are initialized. The re-starting strategy

counter and early stopping counter are taken as zero

(rsc ¼ 0, esc ¼ 0Þ:
Step 2. The initial positions and velocities are randomly

generated.

The positions of the PSO are weights and biases of

simple deep recurrent neural networks. The outputs of a

simple deep recurrent neural network with one hidden layer

are calculated with the Eqs. (1–2):

ht ¼ f xtSþ ht�1W þ b1ð Þ; ð1Þ

x̂t ¼ f htV þ by
� �

: ð2Þ

The total number of weights and biases are

pþ hþ 2ð Þhþ 1 because the dimensions of weights and

biases are S : p� h, W : h� h, b1 : 1xh, V : h� 1 and

by : 1� 1).

The weights and biases are generated from a uniform

distribution with 0 and 1 parameters. All velocities are

generated from a uniform distribution with �vmaps and

vmaps parameters. P
tð Þ
i;j is the jth position of the ith particle

at the tth iteration. V
tð Þ

i;j is the jth velocity of ith particle at

the tth iteration:

P
0ð Þ
i;j �Uniform 0; 1ð Þ; ð3Þ

V
0ð Þ

i;j �Uniform �vmaps; vmapsð Þ: ð4Þ

Step 3. For each particle, the fitness function values are

calculated. The fitness function values are calculated based

on the difference between the forecast and its corre-

sponding observations using the following formula which

is mean square error (MSE) given in Eq. (5):

MSEj ¼
1

n

Xn

t¼1

xt � x̂tð Þ2; j ¼ 1; 2; . . .; pn: ð5Þ

Step 4. Pbest (the memory for each particle) and gbest

(the memory for the swarm) are constituted.

The Pbest is a matrix and its rows are present the best

position of the particles at the current iteration. The gbest is

a vector and it presents the best positions of the swarm.

Moreover, the gbest is also a row of the Pbest.

Step 5. The values of the cognitive, social coefficients,

and inertia weight parameters are calculated by the

Eqs. (6–8):

w tð Þ ¼ ðwinitial � wfinalÞmaxitr � t

maxitr
þ wfinal; ð6Þ

c
tð Þ
1 ¼ ðcfinal1 � cinitial1 Þ t

maxitr
þ cinitial1 ; ð7Þ

c
tð Þ
2 ¼ ðcinitial2 � cfinal2 Þmaxitr � t

maxitr
þ cfinal2 : ð8Þ

Step 6. The new velocities and positions are calculated

using the Eqs. (9–11). The r1 and r2 are real random

numbers between 0 and 1:

V
tð Þ

i;j ¼ w tð ÞV
t�1ð Þ

i;j þ c
tð Þ
1 r1 Pbest

tð Þ
i;j � P

tð Þ
i;j

� �

þ c
tð Þ
2 r2 gbest

tð Þ
j � P

tð Þ
i;j

� �
; ð9Þ

V
tð Þ

i;j ¼ min vmaps;max �vmaps;V
tð Þ

i;j

� �� �
; ð10Þ

P
tð Þ
i;j ¼ P

t�1ð Þ
i;j þ V

tð Þ
i;j : ð11Þ
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Step 7. Pbest and gbest are updated.

Step 8. The re-starting strategy counter (rsc ¼ rscþ 1)

is increased and its value is checked. If the rsc[ limit1

then all positions and velocities are re-generated using (3)

and (4) and the rsc is taken as zero. Pbest and gbest are

never changed in this step.

Step 9. The early stopping rule is checked. The esc

counter is increased depending on the following condition:

esc ¼ escþ 1; if
MSEbest tð Þ �MSEbest t�1ð Þ

MSEbest tð Þ \10�3

0; otherwise

8
<

:
:

ð12Þ

The early stopping rule is esc[ limit2: If the rule is

satisfied, the algorithm is stopped otherwise go to Step 5.

3 Applications

In the application section, Dow Jones and Nikkei stock

exchange index data sets are used. The data sets were

downloaded from Yahoo Finance Website (https://finance.

yahoo.com). Data sets are constituted from five daily

opening prices for the years 2014–2018. Time series are

solved using LSTM-ANN, Pi-Sigma artificial neural net-

work (PSGM), and simple recurrent neural network

(SRNN) artificial neural network method. The number of

inputs is changed from 1 to 5 with an increment of one in

all artificial neural network applications.

In the application of LSTM and SRNN, the number of

hidden layer units is changed from 1 to 5 with an increment

of one. Each method is applied 30 times using random

initial weights. In the application, the time series is divided

into three parts as training, validation and test data.

Training data was used to train the artificial neural network

and validation data were used to select the best configu-

ration or parameter tuning in the architecture of the artifi-

cial neural network. The test set is used to compare the

performance of the different artificial neural network

methods. The length of the test and validation data sets is

20. The training, validation and test sets are chosen as

block structures as in Fig. 1.

First, Dow-Jones time series data sets are solved using

LSTM, PSGM and SRNN. The number of inputs and

number of hidden layer neurons is determined according to

validation data performance for all methods. Each method

is applied 30 times for the best parameter configuration

using different initial weights and the test set forecast

performance is calculated using the Root mean square error

(RMSE) criterion. RMSE criterion is calculated using the

square root of (5) Equation. The descriptive statistics

(mean, standard deviation, minimum and maximum) of

RMSE values for 30 repeats are calculated and given in

Table 1. Mean statistics present the most probable values

of the RMSE criterion for the methods. The standard

deviations show the variation of repeated solutions. The

minimum statistics present the best scenario while the

maximum statistics present the worst scenario. If a method

is better than the others, it is expected that the method has

smaller mentioned descriptive statistics. The standard

deviation cannot be commented on without taking into

consideration of other statistics.

When Table 1 is examined, the SRNN with the proposed

learning algorithm is better than others for the years 2014,

2015 and 2018 for Dow-Jones data sets according to mean

statistics. Moreover, the SRNN is the second-best method

for the years 2016 and 2017. The SRNN with the proposed

learning algorithm is better than other methods for all years

except the year 2014 for Dow-Jones data sets according to

standard deviation statistics. The SRNN is the best method

for only the year 2015 according to minimum statistics.

The SRNN is the best method for all years except the year

2017 according to maximum statistics for Dow-Jones data

sets.

The best parameter configurations of the applied ANN

methods are given in Table 2. It is observed that the best

number of inputs is 5 in many cases. Moreover, the best

number of hidden layer units is generally selected as 5. The

number of the hidden layers is selected as 2 for the SRNN

in four years of the Dow Jones data set.

The success percentages of LSTM, PSGM, and SRNN

methods are given in Fig. 2. Success means that the

method has the best maximum, minimum, mean and

standard deviation statistics. For example, if SRNN has an

%80 success percentage for maximum statistics, this means

that SRNN has smaller maximum statistics than others for

%80 of all years. According to Fig. 2, SRNN has %60,

%80, %20, and %80 success percentages for mean, stan-

dard deviation, minimum and maximum statistics,

respectively.

When Table 3 is examined, the SRNN with the proposed

learning algorithm is better than other methods for the

years 2014, 2016 and 2017 for the Nikkei data set

according to mean statistics. Moreover, the SRNN is the

second-best method for the years 2015 and 2018 for the

Nikkei data set. The SRNN with the proposed learning

algorithm is better than other methods for all years except

the year 2017 for the Nikkei data set according to standard

deviation statistics. The SRNN is the best method for only

the year 2017 for Nikkei data set according to minimum

statistics. The SRNN is the best method in all years for the

Nikkei data set according to maximum statistics.

The best parameter configurations of the applied ANN

methods are given in Table 4. It is observed that the best

number of inputs is 5 in many cases. Moreover, the best

414 Granular Computing (2022) 7:411–420
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number of hidden layer units is generally selected as 4. The

number of the hidden layers is selected as 2 for the SRNN

in all years of the Nikkei data set.

The success percentages of LSTM, PSGM and SRNN

are given in Fig. 3 for Nikkei data sets. The meaning of

success percentage in Fig. 3 is the same in Fig. 2.

According to Fig. 3, SRNN has %60, %80, %20 and %100

success percentages for mean, standard deviation, mini-

mum and maximum statistics, respectively.

Fig. 1 Partition of time series as

training, validation, and test sets

Table 1 Results for Dow-Jones

data set
Year Methods Mean SD Min Max

2014 LSTM

Hochreiter and Schmidhuber (1997)

159.94 4.70 148.16 168.91

PSGM

Shin and Gosh (1991)

161.56 0.01 161.54 161.61

SRNN 158.57 0.77 156.83 160.14

2015 LSTM

Hochreiter and Schmidhuber (1997)

319.94 40.69 244.03 413.62

PSGM

Shin and Gosh (1991)

198.13 2.63 191.80 201.40

SRNN 192.57 0.49 191.46 194.79

2016 LSTM

Hochreiter and Schmidhuber (1997)

111.56 6.51 92.97 120.53

PSGM

Shin and Gosh (1991)

92.27 2.11 87.35 96.17

SRNN 93.39 0.01 93.34 93.42

2017 LSTM

Hochreiter and Schmidhuber (1997)

107.37 2.51 102.90 113.45

PSGM

Shin and Gosh (1991)

100.03 1.72 96.02 103.52

SRNN 104.17 0.77 102.91 107.91

2018 LSTM

Hochreiter and Schmidhuber (1997)

454.50 9.48 425.71 467.42

PSGM

Shin and Gosh (1991)

453.05 19.75 427.29 506.89

SRNN 438.38 0.91 437.15 441.94

SD standard deviation, Min minimum, Max maximum
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Table 2 The best architectures for Dow-Jones Set

Years Methods Number of Inputs Number of Hidden Layer Nodes Number of Hidden Layers

2014 LSTM

Hochreiter and Schmidhuber (1997)

4 3 1

PSGM

Shin and Gosh (1991)

3 1 -

SRNN 2 5 1

2015 LSTM

Hochreiter and Schmidhuber (1997)

5 4 1

PSGM

Shin and Gosh (1991)

2 5 -

SRNN 4 3 2

2016 LSTM

Hochreiter and Schmidhuber (1997)

5 5 1

PSGM

Shin and Gosh (1991)

5 5 -

SRNN 5 5 2

2017 LSTM

Hochreiter and Schmidhuber (1997)

5 4 1

PSGM

Shin and Gosh (1991)

5 3 -

SRNN 4 2 2

2018 LSTM

Hochreiter and Schmidhuber (1997)

5 1 1

PSGM

Shin and Gosh (1991)

5 5 -

SRNN 5 2 2

Fig. 2 Comparison of the ANNs

for Dow-Jones data sets

according to descriptive

statistics
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4 Conclusion and discussions

Deep artificial neural networks have been used to solve

forecasting problems in recent years. Recurrent deep neural

networks are the most preferred type of deep neural net-

work. Simple deep recurrent neural networks are suffered

from vanishing and exploding gradient problems. LSTM

and GRU deep recurrent neural networks managed to solve

mentioned problems using gates. Using gates means that

the number of parameters should be dramatically increased.

The contribution of this paper is proposing a learning

algorithm based on particle swarm optimization with some

effective modifications. The proposed learning algorithm

does not have vanishing or exploding gradient problems

because it does not need gradients of the objective func-

tion. The performance of a deep simple recurrent neural

network with the proposed learning algorithm is compared

with the performance of LSTM and PSGM artificial neural

networks for the stock exchange data sets. LSTM is trained

by the gradient-based algorithm and this provides to

compare gradient-based algorithm with PSO-based algo-

rithm. It is shown that the forecasting performance of the

proposed method is better than the others. According to

mean descriptive statistics, the success rate of the proposed

method is %60 for both stock exchange data sets. More-

over, the variation of the results for the proposed method is

the minimum among the applied methods. The proposed

method is not better than others according to minimum

statistics. The best results of the proposed method are not

better than the others but the results are very close to other

results. It can be said that the proposed method can be used

to forecast stock exchange data sets.

The limitation of the proposed method can be seen for

the large networks. The PSO algorithms can have problems

with a big number of hidden layers because of large-scale

optimization problems. This problem can be seen for image

processing problems but it will not be a problem for

forecasting problems. Because forecasting problems do not

need too many hidden layers.

In future studies, the architecture of the simple deep

recurrent neural networks can be strengthened using dif-

ferent artificial neuron models and hybridization of the

classical forecasting method. The obtained new deep

recurrent neural networks can be trained with a simple

modification of the proposed method.

Table 3 Results for Nikkei Data

Set
Year Methods Mean SD Min Max

2014 LSTM

Hochreiter and Schmidhuber (1997)

225.13 7.14 211.81 293.54

PSGM

Shin and Gosh (1991)

226.29 6.31 218.09 244.67

SRNN 225.06 0.44 224.00 226.19

2015 LSTM

Hochreiter and Schmidhuber (1997)

271.45 29.87 225.04 320.12

PSGM

Shin and Gosh (1991)

219.62 1.88 215.42 224.79

SRNN 220.03 0.67 218.08 221.67

2016 LSTM

Hochreiter and Schmidhuber (1997)

187.08 5.87 176.46 199.06

PSGM

Shin and Gosh (1991)

149.59 2.14 144.51 153.67

SRNN 147.60 0.12 147.56 148.25

2017 LSTM

Hochreiter and Schmidhuber (1997))

190.63 15.76 165.53 236.59

PSGM 157.50 3.17 148.89 165.91

SRNN 149.59 4.90 142.09 161.80

2018 LSTM

Hochreiter and Schmidhuber (1997)

342.50 15.42 312.71 366.38

PSGM 328.65 2.96 319.92 333.42

SRNN 331.15 0.41 330.31 331.93

SD standard deviation, Min minimum, Max maximum
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Table 4 The best architectures for Nikkei Data Set

Years Methods Number of Inputs Number of Hidden Layer Nodes Number of Hidden Layers

2014 LSTM

Hochreiter and Schmidhuber (1997)

2 5 1

PSGM

Shin and Gosh (1991)

4 4 -

SRNN 3 2 2

2015 LSTM

Hochreiter and Schmidhuber (1997)

3 3 1

PSGM

Shin and Gosh (1991)

3 5 -

SRNN 5 2 2

2016 LSTM

Hochreiter and Schmidhuber (1997)

1 2 1

PSGM

Shin and Gosh (1991)

5 5 -

SRNN 4 5 2

2017 LSTM

Hochreiter and Schmidhuber (1997)

5 5 1

PSGM

Shin and Gosh (1991)

5 2 -

SRNN 4 1 2

2018 LSTM

Hochreiter and Schmidhuber (1997)

2 5 1

PSGM

Shin and Gosh (1991)

2 5 -

SRNN 1 1 2

Fig. 3 Comparison of the ANNs

for Nikkei data sets according to

descriptive statistics
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