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Abstract

The picture fuzzy set, briefly as; PFS and its extensions, spherical fuzzy set (SFS), and T-spherical fuzzy set (T-SFS) are all
effective tools to express uncertain and incomplete cognitive information with membership, neutral membership, and non-
membership degrees. The cubical fuzzy set (CFS) introduced in this paper, carries out uncertain and imprecise information
smartly in exercising decision-making than PFS and SFS. Cubical fuzzy set (CFS)is an extension of the picture fuzzy set
and spherical fuzzy set. In CFS, the membership grades satisfy the condition 0 < u(x) + #*(x) +v3(x) <1 instead of
0 < u(x) + n*(x) + v*(x) < 1, which is the condition of a spherical fuzzy set (SFS). In the course of this article, we first
devise some operations on CFS, discuss the basic properties, and propose the cubical fuzzy arithmetic and geometric
aggregation operators. We introduce the concept of cubical fuzzy weighted average (CFWA) operator, cubical fuzzy
ordered weighted average (CFOWA) operator, and cubical fuzzy hybrid average (CFHA) operator. In the second section,
we develop cubical fuzzy weighted geometric (CFWG) operator, cubical fuzzy ordered weighted geometric (CFOWG)
operator, and cubical fuzzy hybrid geometric (CFHG) operator. We define the distance measure between two CFSs and
study some of its properties. In the last section, the developed operators are utilized to devise approaches for solving
multiple attribute decision-making problems (MADM) in a cubical fuzzy environment. A practical example of enterprise
resource planning (ERP) system selection is given to verify the developed approach and to demonstrate the practicality and
effectiveness of the proposed operators.

Keywords Cubical fuzzy set - Operational laws - Cubical fuzzy arithmetic operators - Cubical fuzzy geometric operators -
ERP system - Multiple attribute decision-making problems

1 Introduction

The theory of fuzzy sets (FSs) (Zadeh 1965) is a very
powerful tool Zadeh (1996), which has successfully been
applied in many fields Abdulai and Turunen (2021), Calvo
and Recasens (2021) and Garcia-Pardo et al. (2021). Dif-
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kind of IFS has been followed by Parvathi and Vassilev
Vassilev et al. (2008). In the case of IFSs, the sum of
membership and nonmembership is bounded by one and
for the second kind, known as Pythagorean fuzzy sets
(PFSs), the sum of the squares of the membership and
nonmembership is bounded by one Yager (2013a), Rahman
et al. (2017). Yageér generalized the idea in Yager (2016)
and introduced a general class of such types of sets called
the g-rung orthopair fuzzy sets (q-ROFSs). The biggest
advantage of this class of fuzzy sets is that, in q-ROFSs, the
sum of qth power of the membership and nonmembership
is bounded by one. Yager pointed out that the space of
acceptable orthopairs increases directly with an increase in
q which gives the users more freedom to express their
belief about membership grades. On the other hand, in a
cubical fuzzy set, the membership grades of an element x
are in the unit triplet (pu(x),n(x),v(x)), in which pu(x)
indicates support for membership, #(x) indicates neutral
membership, and v(x) indicates support in against mem-
bership. Two known subclasses of cubical fuzzy sets are
Coung’s picture fuzzy sets (PFS) Cuong and Kreinovich
(2013) and spherical fuzzy sets (SFS) Ashraf and Abdullah
(2019). In PFSs the sum of the grades for support, neutral
support, and against support is bounded by one, while in
SFESs the square sum of these grades is bounded by 1.
Cuong’s construction of PFSs has a remarkable reputation,
but once again, the condition on membership grades p(x),
n(x), and v(x) restricts a decision-maker in assigning
membership values. To resolve this problem and give more
freedom to a decision-maker, Ashraf et. al, applied the
same concept (as by Yager for the Pythagorean fuzzy set)
and introduced a new structure known as the spherical
fuzzy set (SF'S). In SFSs the space of membership degrees
u(x), n(x), and v(x) is larger as compared to that of PFSs
and the membership grades satisfy the condition
0 < 1% (x) + #?(x) 4+ v*(x) < 1. In addition to that, PFSs and
SFSs have their unique importance in situations where
opinion is not only constrained to yes or no but there is
some sort of abstinence or refusal. Decision-making could
be a suitable example, in the case when each expert has
three different classes of opinions about an alternative.
Another and the most suitable example could be the voting
process where three types of voters can occur who vote in
favor or vote against or refuse to vote. In SFS, the decision-
makers are still restricted to assigning values in the deci-
sion process because of the restrictions on the grades of
memberships that 0 < u?(x) + 5?(x) + v*(x) < 1 should be
satisfied, and the decision-makers are restricted to a par-
ticular domain. For example, if we consider u(x) = 0.8,
n(x) =0.5 and v(x) =0.6, which implies that pu(x)+
n(x) + v(x) = 1.941 and definitely it does not satisfy the
condition of PFS. Further, we have (0.8)*+(0.5)*4(0.6)*=
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1.25¢1. But if we consider (0.8)’+(0.5)°+(0.6)’=
0.853 < 1, which is an appropriate reason to define another
class of fuzzy sets that has more ability in capturing the
uncertainties and therefore, we defined cubical fuzzy set.
This is to mention here that the CFSs have more potential
to deal with uncertainties than PFSs and SFSs and are
capable to deal with higher levels of fuzziness. Decision-
making problems have been extensively studied by several
researchers all over the world and characterized several
aspects of daily life problems, e.g., (see Xu and Zhang
2013; Yager and Abbasov 2013 and Yager 2013b; Manoj
et al. 1998). For the applications of FSs in different aspects
of man-machine learning and other databases, we refer (see
Chen and Huang 2003; Chen 1996; Chen and Jong 1997,
Manoj et al. 1998).

The objectives of this article are as follows: (1) To
introduce the cubical fuzzy set (CFS), cubical fuzzy
numbers (CFNs), and their operational identities. (2) To
define the score, accuracy, and certainty functions to
compare cubical fuzzy numbers. (3) To propose cubical
fuzzy aggregation operators and investigate their opera-
tional rules. (4) To demonstrate a MADM method based on
the proposed operators in the environment of cubical fuzzy
information. The article is arranged as follows. Section 2
reviews basic ideas related to PFSs and SFSs and their
properties. Section 3, gives comprehensive details about
CFSs and their operational properties. Finally, in Sect. 4, a
decision-making method has been established based on
these operators, for ranking the alternatives by utilizing
cubical fuzzy information. The proposed method has also
been demonstrated with the help of a descriptive example
for investigating its stability, reliability, and effectiveness.
Lastly, some comparisons of the proposed and existing
methods are demonstrated.

2 Preliminaries

Some basic ideas associated with PFS and SFS are
reviewed here. Also, a few more concepts are discussed
which are utilized in the sequential discussions.

Definition 1 Cuong and Kreinovich (2013) A PFS A over

the universe U is an object of the form,
A= {Sa MA(B)vnA(8)7 VA(8)|8 € U}ﬂ

where pu,(¢), 174(€), va(e) € [0, 1] are respectively called
the “degree of positive membership, neutral membership,
and negative membership of A ”. Also 0 <, (&) + 17, (&) +
va(e)<1 for all ecU. For ecU, m(e)=1-
(ua(e) + n4(e) +va(e)), is known as the degree of refusal
membership of ¢ in A.



Granular Computing (2022) 7:393-410

395

Definition 2 Ashraf and Abdullah (2019) The spherical
fuzzy set defined on a non-empty set U is a structure of the
form given below

A = {(& a () ma(e), vale)) s & € U},
such that p, : U — [0, 1], n,: U — [0, 1], and v, :
U — [0, 1], respectively are called the degree of mem-

bership, degree of neutral membership, and degree of
nonmembership of every &€ Uto the set A and
0< (1, () +(n4(e))*+(va(e))* <1,V e € U. For any ¢ €
U and a spherical fuzzy set A,

= 1= (1 (€)= (14 (2)*— (va (&)

is known as the degree of refusal of ¢ to A. Ashraf et al.
Ashraf and Abdullah (2019), also defined the following
operations on SFSs.

Definition 3 Ashraf and Abdullah (2019) For two SFSs S,
and S, over the same universe U, the inclusion, union,
intersection, and complement are defined as follows:

i) S CS8 if pg(e) <mps(e), ns(e) <ns(e) and

vs, (&) > vs,(8), Ve € U
(11) Sl = Sz if Sl C S2 and S2 C Sl

(i) $1 NSy = (e, min{pg (¢), s, (8) },
min{#, (¢),7s,(e) }, maX{Vsl( ), vs,(e)}e € U)
(iv) S US; = (e, max{ug (¢), us, (e) },

min{ns, (€),ns,(€) }, min{vs, (¢), vs, (e) }e € U)
W) 85 = (x, (vs,(2), 5, (8), s, (2)) & € U).

Definition 4 Assume that U is a universe of discourse. A
cubical fuzzy set (CFS) denoted by C, is a structure of the
form

C = {{(e.fc(e). 8c(e) he(e) s e € U)}

where fc: U — [0,1], g¢: U — [0, 1], and h¢: U —
[0, 1], respectively are known as the degrees of member-
ship, neutral membership, and non-membership of each
element of U to the set C such that

o<wu>wa»amkammaai
any ecU and a

w (fe (&) ~(sc ()’
of refusal of x to C. For simplicity we shall use the symbol
C = (fc, 8¢, hc) for the CFS {{(z.fc(¢), gc(e) he(e)) : & €
U)} and call it a cubical fuzzy element (CFE).

For a better understanding of the concept of a CFS, we
give an illustration to accept the proposed notion. Suppose
that a person is asked to give his preference degree to an
alternative x; corresponding to a criterion C;. Let the person

CES C, TEc(8) =

—(he(g))” is known as the degree

has allowed the degree to which the alternative x; satisfy
the criterion C; as 0.8, the degree when x; remains neutral
in the criterion C; as 0.5 and similarly when x; dissatisfies
C; as 0.6. Definitely, 0.8 + 0.5 4+ 0.6%1, which does not
follow the condition of PFSs. Also,
(0.8)>+(0.5)*+(0.6)*= 0.64 + 0.25 + 0.36 = 1.25£1,
which does not obey the condition of SFS. But, we can
have  (0.8)°+(0.5)°+(0.6)=0.512 4+ 0.125 + 0.216 =
0.853 <1 which is an appropriate reason to accept the
notion of CFS. This is to mention that the CFSs have more
potential to capture the uncertainties than picture fuzzy sets
and spherical fuzzy sets, and are capable to deal with
information involving high levels of fuzziness (Fig. 1).
We shall mention here that the membership grades
related to a CFS are cubical membership grades (CMGs).

Theorem 1 The space of CMGs is larger than the spaces
of spherical membership grades (S MGs) and picture
membership grades (PMGs).

Proof For any three real numbers a,b,c € [0, 1], we get
a<a® <a, b sz <b,and A < c?<c. Thus

a+b+c<1l = a*+b*+c? <]l = @+b3+c3 <l.
Therefore PMG C SMG C CMG. [

There are CMGs that are neither PMGs nor SMGs.
(\7_ V2 V3 ) we

20202
(@)l(?)ﬁ(?)i 1 and it is a CMG. But
(@)Z(\?)Z(?)Z 0.3605 + 0.3149 + 0.3605 =
1.0359 > 1 and

§+\/7_+§—07212+06299+07212—20723 > 1.

Consider a point have

Therefore (\? , ? , ?) is neither a PMG nor a SMG.

3 Set operations on cubical fuzzy sets

Definition 5 Let C = (fc,gc,hc), C] = (fcl,gcl,l’lcl)7
and C; = (fc,, &c,, hic,), be any three CFSs, then their set
operations are defined as follows:

(1) NG = (mll’l{le afc‘2}a min{gcl s gc‘2}a
max{h,,he,}),
(11) Cl U C2 = (max{fcl 7fc2}a min{gcl ) gcz}a

min{hcl s hc‘z })’
(i) € C G, if and only if f, <f.,, &, <&, and
he, > he, (iv) C° = (he, geofe).
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Fig. 1 Range of the cubical
fuzzy set

Definition 6 Let C= (fc,gc,hc), Cl = (fcl,gcl,hcl),
and C; = (f,, 8c,, hc,), be any three CFSs, and A >0,
then some operations are defined as follows:

i) CBC = ({2 +12, ~ S 8 -8es e he )
(i)

CIBICs = (fe feus 8o, 8us [, + I, — I hE, )
(i) AC= <"‘ 1-(1 —fg))',gé,hé>

(iv) C'= (fé,gé, Ji—(1- h3c)i>.

Theorem 2 For three CFSs C = (fc,gc,hc), Ci=
(fe,»8cirhey), and  Cy = (fc,,8¢,,he,), the  following
properties are valid.:

1 CHGC = GHCG.

() CXC, = GXC.

@ Springer

(iii)
(iv)

)
(vi)

Proof

10

/1(C1E|C2) = iClE/ICZ, A>0.

(il + ﬂz)c = L CHA,C, /1,4, > 0.
(CIRC,) = CIRCE, ) > 0.
CHRC* = ChH72 )y, 00 > 0.

i) CBC = ({2, +Fo, —fof 80 8che.

her) =\ 418, — Fid e 8e 8e, heshe, ) = GG,

(i1)

NG = (fcl fc,» 8¢,-8c \3/ h%] +h3cz _h:(;h hg‘z)

= (fesfer s[RI I ) = CECL G
A(CBC,) = ,1( f e e, —fe e, 8c,-8¢, e, .hQ)

3 ’ ¢ 2
= <\/1—(1 - :(5:1 _fz'z—i_f%l 2‘2) ) (gcl'gcz)ﬁ, (hcl .hcz) >

= <\/ -(1-2) (1-12) (se )’ (e .hcz)i>;
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ACIHAC, = (\3/ 1 - l_fgl Avgévhél)
( 1—(1 —fa) 8 h@) _

() (1) gt .hz2>
CiHG).  @v)  (Ai+4)C=(li+h)(fc,8c,he) =

H
( / 1_f3 |+Az A1+)2 h)l-‘r/q) —
tH

</1 fc M(l _fc> achz hiﬁ)z) =
agcah; >

A
(C1|ZC2);‘: (fC| 'szngl -8Cy» \3/}%‘] =+ h‘é2 - h%l h3c2)
= ((fcl 'sz)ia

(gc.-8c.)", \3/1 — (1= h, —n + hgl.hgz)l)
(fafa,gagwl—(1—/«%])1(1—/122)1) =
£, gk, 1—(1— ))>&

fegln1 = (1 —hgzy) — CJRCE. (vi) CHRCH =
£ gl 1= (1= h) )&

2,82, 1— (1-h}) )

— ( lHr/uz,gCer’ 3 1— ( _hyé)).ﬁr/lz) — C(il+/lz). O

) = AICEEMZC (V)

/\/-\ A/\

Theorem 3 For four CFSs

(fci,8cishe), G = (fe,.8c0,hc,),  and  C3 =
(fcss 8cys hcy), the following properties are valid: (i)
CiNC=CoNCy. (i) CLUC,=C,UC,. (iii) C10(C20C3):
(CﬂTCz)ﬂC} (iv) ClU(C2UC3):(C1UC2)UC3. W)
A(CLUCy)= AC1UAC,. (vi) (C1UC,)*=CIUC.

Proof We shall only prove (i), (iii) and (v). Let C =

(fCagCahC (fcl,gcl hc,) G = (fcgagcg,hcz)’ and
= (fc3,gc3,hc3), be four CFSs and A > 0. By Defini-

CZ(fCagC7hC)7 Cl =

tions 5 and 6, we obtain (i) C;NC, = (min
{fC1 7f62}’ min{gcl ) gC2}7 maX{hCl ) hCz }) = (mln{sz 7fc‘1 }7
min{gcza 8 }7 max{hczv hcl }) =GNy (ii)

C]ﬁ(CZﬂCj,) = (fC] ,8C)H hC] )m min({szfo3}7 min{ng
gC3}7 maX{hCz’ hcz}) =

min{fc,, min{fc,,fc, } }, min{gc,, min{gc,, gc, } } max
{hcl ) max{hcﬂ hC3}} = (min{min{fQ >sz}afC3 }’ min
{min{gclang}ng_x}v maX{maX{hCHhCz}ths}) =
(min{fcl 7fC2}’ min{gcl ) ng}’ max{hcl ) hcz}) N (ngang
hC3) = (C10C2)0C3 (V) /L(Cl U Cz) = Z(max{fcl 7fC2}7

min {ngng}vmin{hcmhcz}) =

({/1 ~(1-max{ig2})

min{gél , géz }, min{hé] , héz })

AC1 U AC, =
-(1 —fél)i,gé],hé)u ( - (1-22)
gkt = <max{§/1_(1_fgl)ﬂ§/1 -(1 —féz)i}

min{g?,. g, b min{ht, . i, }) = A(CrUC). The

remaining assertions can be proved analogously. [

C= (.fC7gC7hC)7

3

Theorem 4 For three CFSs, C =

(fe,» 8¢, he,), and Cy = (fc,,8c,, he,), the following
properties are valid: (i) (CiNCy) = CSUCS. (i)
(CUG) = CSNCS. (i) (CiBC) = CSRCS.  (iv)

(CRG)=CiEcs. () (o)
AC) = (C)".
Proof We prové (i), (iii) and (v). For any three CFSs C,

Cy, and C; and A > 0, according to Definition 5 and Def-
inition 6, we can obtain (i)

(CINGy) =

= (1C)". (vi)

(min{fC| asz}a min{ga ) ng}a max{hC1 ) hcz})c

= (max{hc,,hc,}, min{gc,, gc, }, min{fc,,fc, }) =
(hey,gevfe) U (hey 8c,ofe,) = C{UCS. (i) (C1HG) =

(\3/f63‘1 +fC3‘2 _fa 'fg‘z’gcl 'gC27hC1 'hcz) = (hcl'hC27
8¢, -8Cy \S/fg, +fg‘2 _fg‘] fgz) = (hC17gC1 7fC1)g (hCZang

fC2> = CCIZlcC (V) ( C))v_ (l’lc,gc,fc))v_ (h/é7gé‘7

\3/1 - (1 —fc <\/1 gc,hi) (20)°.

The remaining assertions can be proved analogously. [

Theorem 5 For three CFSs C = (fc,gc,hc), C1 =
(fcl,gcl,hcl), and C2:(fC2;gC27hC2)a the following
properties are valid. (i) (CiNCy)HC; = (CHC3)N
(CzBHC3). (ii) (ClUCZ)EElC32(C]EEC3)U(C2|EC3). (iii)
(ClﬁCZ)&C:; = (C1|EC3)O(C2|XC3). (iv)
(C]UC2)®C3 = (C1|EC3)U(C2|XC3).

Proof We will present the proofs of (i) and (iii). For the
three CFSs C;, C;, and C3, according to Definitions 5 and
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6, we  obtain(i) (C, N C)HEC; = (min{fe,,fc, },

min{gc,,gcz}, max{hcl’hCz})BH(prgCﬂhcz) =

(\/ min{ /2 /3 b+ — o min{f2 g2, fomin {ge,
ng}'gczvmax{hclahcz}'hcs) =

({/(1 —f&) min{fgl 7ng} +1,

gcz.gCS},maX{hc].hc3,l’lcz.]’lc3}); (C]BE\C3) ﬂ(CZBHC3)

(v + 18 — 12,42, 880w heyhe )
(\3/](‘63‘2 +fg’w _fngg3’gcz'gc37hcz‘hc3> =

(min{ /12, + 78, — 2,20 JJ1 + 12~ 1AL}
min{gcl -8C5,8C, 'gC3}a max{hcl 'hC37 hCz 'hC3 }) =
(min{g/ (1-12)R, +£2. ¢ (1-72)8 +f83},

min{gc,.gc;,8c,-8c; }, max{hc, .hc,, he, hey }) =

min{gCl -8Cy5

({/<1 _fgz> min{fg‘l ’fg‘z} +f33,min{gcl -8Css ng'gC3}7
max{hcl 'thahCz'hC,z})' So (CIQCQ)EE‘C3 = (C15C3)m
(CzHHC3). (i1) (Cl N C2)®C3 = (min{fcl ,fcz},min
{gc, 8¢, ), max{hc,, he, })X(fcy, 8¢y, hey) =
(min{fa asz}:fC37 min{gCl ) gC2}'gC3>

\S/max{h%l , h%z} + hg, — ke, max{hzI NS }) =

(mil’l{fcl 'fC3 asz'sz}7 min{gcl 'gC37gC2-gC3}7

i/(l — b, ) max{ g, i, } + )
(CBC3) = (fe fevs e 8o |, + 1, — o1, )0

(sz fc;r 8c2-8¢y, \S/hSCZ +hg, — ha,ha) =
( min{fc, fc,.fc, fc,}, min{gc, -gc;, gc2-8c: }

max{ /3, + b, — gy i 3+ I, — i | )
= (min{fc, fc;,fc, fc, }, min{gc, -8c;» 8¢,-8¢5 )

i/(l — h3c;> max{hél,ha} —|—h3é3).

(Cl N C2)®C3 = (C]&CE) n (C2®C3). Similarly, we can
prove the other assertions. [

(CIRC3) N

Thus

In order to rank CFEs, we define score function of the
CFEs.

Definition 7 Let C = (f¢, gc, hc) be a CFE, then the score
function of C can be defined as sc(C) =f3 — b} € [-1,1].
In particular score

@ Springer

_ 1alfC:(1’0’0)
sc(C) = {_Lifc =(0,0,1)

In the Definitions 8 and 9, we define a new relation
between cubical fuzzy elements.

Definition 8 Let C = (fcl ;8C s //lcl ), and C, =
(fc,» 8¢, he,) be any two CFEs and let score(C;) and
score(C,) be the respective scores of C; and C,, then (i) If
sc(Cy) <sc(Cy), then Cy < Cy. (ii) If s¢(Cy) > sc(Cy), then
C,>C, Let (C;=(093030,050) and C,=
(0.85,0.45,0.65) be any two CFSs, then by Definition 7,
s¢(C)) = (0.93)’—(0.50)*= 0.6793 and
score(C,) = (0.85)°—(0.65)= 0.3395. Since sc(C) > sc
(C), by Definition 8, we get C; > C,. To provide a
comparison of the family of CFEs, the efficiency of
the score function is accepted in this field. Sometimes it
cannot be applied to have an appropriate decision in which
a better CFE can be selected.

Let Cj = (@;é) and C, = (0.8,0.4,0.8), then

score(C;) = score(C,) =0 and hence final conclusion
can not be drawn from the comparison of CFEs. To rectify
this drawback, we define the accuracy function for CFEs.

Definition 9 Let C = (f¢c,gc,hc), be a CFE, then the
accuracy function of C is defined as, acc(C)
=f2 +hi €[0,1]. We now give a complete criterion for
the ranking of CFEs.

Definition 10 Let C; = (fC1>gC1;hC1)a and C, =
(fc,, 8¢, 5 hic,) be any two CFEs and let sc(C;) and acc(C;)
(i = 1,2) be the respective scores and accuracies of C; and
Cy, then (I) If sc(Cy)<sc(Cy), then Cy<C,. (D) If
sc(Cy) > sc(Cy), then Cy; > Cp. (M) If s¢(Cy) = s¢(Cr),
then (i) If acc(Cy)<acc(C,), then Cy<Cp. (i) If
acc(Cy) > acc(Cy), then Cy > Cp. (i) If acc(Cy) =
acc(Cy), then Cy ~ C;.

Definition 11 Let C = (f¢,gc,hc), be a CFE, then the
certainty function of C is defined as, cr(C) =f2 € [0, 1].

Definition 12 Let C; = (f¢,,8c,,hc,), and C, =
(fc,, 8¢5 hic,) be any two CFEs and let sc(C;) and cr(C;)
(i = 1,2) be the respective scores and certainties of C; and
Cy, then (I) If sc(Ci)<sc(Cz), then Cy<C,. (D) If
sc(Cy) > sc(Cy), then Cy > Cp. (M) If s5¢(Cy) = s¢(Cy),
then () If CV(CI) <C‘I'(C2)7 then C;<C,. (i) If
cr(Cl) > CI"(CQ), then C, > C,. (iii) If CF(CI) = CI‘(CQ)7
then Cy ~ C,.
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4 Comparison of proposed and existing
operations

In this section, we compare the proposed operations of
CFEs with the existing operations defined in Mahmood
et al. (2019), for spherical fuzzy numbers (SFNs). In
Mahmood et al. (2019), Mahmood et al., proposed the

following operations for SENs. Let §; = {us,,ns,,vs, } and
Sy = {us,,ms,,vs,} be two SFNs with & > 0. Then,

(M) $1® 8= {(us, +ns,) (15, +15,)

\/1 - (1 —v§])<1 —1)%2)};
2 §®8,= {\/1 — (1 —u§l)(l —uﬁz),nslnsz,

(USI + "Sl ) (USZ + nSz) - "S] ;752};

~ ' = .
(3) éSl = { 1 - (] —Mgl) aﬂé,; (US1 +7IS|)C_77§1};

~ c e . ¢
@ 8= {(#sl 15,) =5 g1 (113 }

The above operation rules (1) and (2) for SFS, have
some deficiencies, for example if we consider two

SFSs, Fi = {1,0,0} and F, = {0.5,0.5,0.7}, then
using (1), we have
S1® 8, ={1,0,0} ® {0.7,0.5 0.5}
:{(1+0)(07+05 )(0.5), /1 —
= {1.2,0.0,0.5}.

— N5, Ns,5 Ns, s, >

1091 —0.52)}

By constraint condition of SFS, we have y3 + % + v} =
(1.2)% + (0)* + (0.5)> = 1.69£1, and the basic condition
of SFS is not satisfied. Similarly, if we consider

S,HS, = {0,0,1}K{0.7,0.5,0.5}

{\/1 (1 —02)(1 — 0.52), (0)(0.5),
(1+0)(0.7 +0.5) — (0)(0.5)} = {0.5,0.0,1.2}.

By basic condition of SFS, we get y3 + n} + vi = (0.5)% +
(0)* 4 (1.2)> = 1.69£1, and the constraint condition of
SES is not satisfied. On the other hand, if we apply our
proposed operations of multiplication and addition devel-
oped in section 4, for above two SFNs, we get

Si1XS, =

(Msl-llsza’?s,-’?sza i/l - (1 - vﬁl) (1 - Ui))

_ ((1)(0.7) (0)(0.5), /1 - (1 = (0.5)3)
— (0.7,0,0.5)

By the condition of cubical fuzzy set, u§+n§+n§ =

(0.7)°4+(0)° + (0.5)°= 0.343 + 0+ 0.125 = 0.468 < 1,
and the condition of CFS is satisfied. Similarly,

NEAES (\/1 (1- :uSI )(1 - Mi)?”& sy USI'USZ)

(w (1—0°)( 0.53),(0)(0.5),(1)(0.7))
= (0.5,0,0.7)

By the condition of cubical fuzzy set, p3+ 73+ vs =
(0.5)°4+(0)° + (0.7)°= 0.125 + 0 + 0.343 = 0.468 <1,
and the condition of CFS is satisfied. It is concluded that
the proposed operations of addition and multiplication of
CFEs are better than the existing operation of spherical
fuzzy sets.

5 Cubical fuzzy arithmetic aggregation
operators

5.1 Cubical fuzzy weighted averaging operators

We are now in the position to define some arithmetic
aggregation operators based on cubical fuzzy information,
like cubical fuzzy weighted averaging (CFWA) operator,
cubical fuzzy ordered weighted averaging (CFOWA)
operator, and cubical fuzzy hybrid averaging (CFHA)
operator.

Definition 13 Let C; = (fcj, gci,hcj) (j=1,2,..,n) be

a family of cubical fuzzy elements (CFEs) and o =

(w1, @y, ... co,,)T be the weight vector of C; (j = 1,2, ...,n)

with w; > 0, ij: 1. Then the cubical fuzzy weighted
jil

average (CFWA) operator is a mapping CFWA,, : C" —

C such that

CFWAU)(C17C2) ooy Cn) = @” (CO C) (l)

Theorem 6 The aggregated value by CFWA operator is
again a CFE and is given by,
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Proof By mathematical induction on n, (I) When n = 2,
CFWA(U(C1 ,Cz) = W C]@COQCQ.

By Theorem 2, we know that both w;C; and w,C, are
CFEs and the value w;C1®w,C,, is also a CFE. From the
operational laws of CFEs, we have

o€ = <3 - (1 N gl) ’(gcl)w]7(hCl)(m>7
wrCy = <3 - (1 _fC32) ’(gcz)wzv (hcz)w2>'

Then

CFWA,(C1,G2) = 0,C1®m Cs

_<‘1—(1

(IT) Assume that for n = k, Eq. (2) holds, i.e.,

@jl‘;l (chj)
D TT(0-) " T ) T )"

J=1 J=1 J=1

CFWA,(Cy,Cs, ...,Ci)

And for n = k + 1, by the operational laws of cubical fuzzy
elements,

)" (e ',(hc,)“!> ® (3 -1 —fé)wzv(gcz)‘”z,(hCZ)”z>

2 o 2
~H(-2)"(1-2)" e
Jj=1 Jj=1 Jj=1

e

2
u), Hh w
C

<\‘/1 (1) " +1=(1-22)" - (1= (1-2)").(1- (1 —féz)mz)7(gcl)‘”"(gcz)“ﬂ(hc.)‘“'-(hcz)“z)
(\‘/1 (1 fcl (1 C) (ge)” - (ge,)™ (he,)™

(he,)™? )

,]: 1 (@,C)

= w1 C18w,Cr P, ...

CFWA,(C1,Cs, ....Cri1)

, 0 CrDwit1 Crpt

[te)

J=1

k+1

j=1

_ﬁ(l —f(g)w’ﬂ—(l —fgj)"’”‘_ (1 _

LTH0 )" e

I —fs,.>“’f)<1—<l—fa>“’k“>’

J=1

k
+1 wj wk+l
gck+l ) H hc k+l

j=1

~.

k+1

(hC )o)/ ’
1

+

~.
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Therefore Eq. (2) holds for n = k + 1, thus from (I) and
(II), we conclude that Eq. (2) holds for all n. Following are
some properties of the CFWA operator. [

Theorem 7 (Idempotency) If for all Ci(j=1,2,...,n),
Cj = C, then

CFWA,(C,Ca, ..., Cp) = C.

Theorem 8 (Boundedness)  Let Cj:<fcj, gc/,hcj)
(j=1,2,...,n) be a family of cubical fuzzy elements
(CFEs) and C~ =min<j<,{C;},C* =max; <;<.{C;}.
Then,

C~ < CFWA,(C,,Cs,....C,) < C.

Theorem 9 (Monotonicity) Let C; (j=1,2,...,n) and C],
(7=1,2,...,n) be two set of CFEs. If C; SC} Y j, then

CFWA,(C1,Ca, ....C,) < CFWA, (c’l,c’z, c)

5.2 Cubical fuzzy ordered weighted averaging
operator

Next, we define Cubical fuzzy ordered weighted averaging
(CFOWA) operator.

Definition 14 Let C; = (fci,gcj,hcj) (j=1,2,...n)bea

family of cubical fuzzy elements (CFEs). Then the
CFOWA operator of dimension n is a mapping CFOWA,, :
C"—C defined by,

CFOWA,,(C1,C,....C) = D, (0,Co(j)) (3)
such that, ((¢(1),0(2),a(3),...,a(n)) is a permutation of
(1,27 ,n) with C(r(j—l) > C(,(j) Vj= (2, 7l’l)

Theorem 10 The aggregated value by the CFOWA oper-
ator is again a CFE, where

CFWA,(C1,Ca, -,C) = DL (0,Cay)

n

. n 3 \@ n o o
- =11 (1 —J Cvm) 11 (gc“<”) ’ (hc”“))
J=1 J=1 J=1
(4)
It can be easily verified that the CFOWA operator sat-

isfies all the properties discussed for the CFWA operator.
ie.,

Theorem 11 (Idempotency) If all C; (j=1,2,...,n) are
equal i.e., if C;=C for all j, then

CFOWA,,(Cy,Cs, ...,Cy)=C.

Theorem 12 (Boundedness) Let Cj= (ij?gC/VhC_,)
(G=1,2,....,n) be a family of cubical CFEs and C~ =
minlgjg,,{Cj},C+= maxy Sjgn{cj‘}. Then,

C~ < CFOWA,(C,,C,,....C,) < C.

Theorem 13 (Monotonicity) Let C; and CJ/- where
j=1,2,...n, be two sets of CFEs. If C; < C} Y j, then

CFOWA,(Cy,Cs, ...,Cy) < CFWA, (c’l,c’z, c)

5.3 Cubical fuzzy hybrid averaging operator

From Definitions 13 and 14, it is clear that the CFWA
operator only weights the cubical fuzzy elements, whereas
the CFOWA operator weights the ordered positions of the
CFEs instead of weighting the arguments themselves.
Hence, in both CFWA and CFOWA operators, the weights
represent two different aspects. But each of them considers
only one aspect. In the following definition, we shall pro-
pose the cubical fuzzy hybrid averaging operator.

Definition 15 A cubical fuzzy hybrid averaging (CFHA)
operator is a mapping CFHA,, ,, : C"—C defined as,

CFHAw,w(CbCZv ~~'7C’l) = C—D;:l (ng‘f(j)) (5)

such that w = (wy, w,,...,w,)" is an associated weighting
n

vector, with w; € [0, 1], ij =1, and Egm is the j-th
=

element of the cubical fuzzy elements Ej

(Ej:(nwj)Cj7 j=1,2, ...,n), o = (w1,w,, ..., wn)T is the

weighting vector of the cubical fuzzy arguments C;

largest

(j=1,2,..,n) and w;€l0, 1], ij: 1, where n is a
=1

blanching coefficient. If w=(1/n,1/n,..., l/n)T then

CFHA is reduced to cubical fuzzy weighted average CFWA

operator. Also, if @ =(1/n,1/n,...,1/n)" then CFHA is

reduced to cubical fuzzy ordered weighted average

(CFOWA) operator.

Theorem 14 The aggregated value by using the CFHA
operator is also a CFE, where
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S cen
. n X wi n wi n wj
= 1=-TT(1-£ . ~ ) LT R~ .
]11< Cﬂ(])) i H (gc”</>> Jj=1 ( C”(f)>

(6)

6 Cubical fuzzy geometric aggregation
operators

Here, we present some geometric aggregation operators in
the environment of CFS, like cubical fuzzy weighted
geometric (CFWG) operator, cubical fuzzy ordered
weighted geometric (CFOWG) operator, and cubical fuzzy
hybrid geometric (CFHG) operator.

6.1 Cubical fuzzy weighted geometric operator

Definition 16 Let C,-z(fcj,gcj,hcl_) (i=1,2,..,n) be a

family CFEs. Then the cubical fuzzy weighted geometric (
CFWA) operator is a mapping CFWG,, : C"—C defined
as,

CFWGU)(ChCz, ...7C”) — ®;:1 (Cj)tuj (7)

be the weight vector of C;

n), and w; > 0, ij =1.
=1

where o = (w7, m,, ...,a),,)T

Gi=1,2,..,

Theorem 15 The aggregated value by using the CFWG
operator is also a CFE and

CFWGW(Cl,Cz, ey Cn) — ®j’;1 (Cj)w’/

H(f‘/ W]’H g‘/

|
Amz

(1 - hg)w’

Jj=1

(8)

Proof We use mathematical induction to prove the result.
(I) When n=2, we have CFWG,,(C;,C,) = (C)"'®(C2)™
By theorem 2, we know that both (C;)"" and (C,)"* are
CFEs and so (Cy)"'®(Cy)"™ is also a CFE. From the
operational laws of CFEs we have,

e = () e - (1-1)"):
€ = (" e {1 - (1-1)"),

then

@ Springer

CFWG,,(C1, C2) = ()" ®(C,)™

(o) (fer)™,
- \“‘/1 — (1 —hgl)w'+1 -

(20)"" (80,)",
(1- hgz)wz—(l -(1- hgy)“") (- hgz)wz)

(II) Suppose that for n = k Eq. 8 holds, i.e.,
CFWG,(C),Cs, ..., Ci) = R, (C))"

=
k k H//’
H(fcr W77H gc, H(l B hi)

J=1 J=1

Then for n = k 4 1 by the operational laws of CFEs,

CFWG,(C1,Cy, ..., Cyy1) = ®,I:11 (C)"= (@f:l (Ci)Wf)
@ (Ceyr)™!
k k . k '
T1¢)" TGe)™ 1 =TI(1 =) |
Jj=1 Jj=1 Jj=1

Thus Eq. 8 holds for n = k 4 1. Therefore, from (/) and
(IT) we conclude that Eq. 8 holds for all n. O

The following properties of the CFWG operator can
easily be proved.

Theorem 16 (Idempotency) If all C; (j=1,2,...,
equal i.e., C; =CV j, then

n) are
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CFWG,,(Cy,Cs, ....Cy) = C.

Theorem 17 (Boundedness) Let C;= (fcj,gc/_,hcj>
(j=1,2,....n) be a family of CFEs and let

C = minlgjgn{Cj},C+ = maXlgjgn{Cj}

Then

C~ < CFWG,(C),Cy,....,C,) < C*.

Theorem 18 (Monotonicity) Let C; (j = 1,2, ...,n) and C}
(j=1,2,...,n) be two set of CFEs. If C; < Cj/- Y j, then

CFWG,(C,Cs, ....Cy) < CFWG,, (c’l,c’z, c)

6.2 Cubical fuzzy ordered weighted geometric
operator

Definition 17 Let C; = (fC,’ng7hC,) G=12,..,n)bea

family of CFEs. The cubical fuzzy ordered weighted geo-
metric (CFOWG) operator of dimension n is a mapping
CFOWG,, : C" — C given by,

CFOWG,,(C1,Ca, .-,Ca) = X (Co()” (9)
such that (g(1),0(2),0(3),...,0(n)) is a permutation of
(1,2, ,n) where Cg(j_]) ch(j) VJ = 2, cey .

Theorem 19 The aggregated value by using the CFOWG
operator is also a CFE and

CFOWG,(Cy,Cs, ..., C) = @, (Co))”

=1

n

= H(fcm))w’H(gca(j))wj, 11— H(l — hin(_/.))Wj
j= j=

J=1

(10)

Theorem 20 (Idempotency) If all C; (j=1,2,...,n) are
equal i.e., if C;=C VY j, then

CFWOG,,(Cy,Cs, ...,C,) =C.

Theorem 21 (Boundedness) Let C;= (fc/-a gc,vhcf)
(j=1,2,...,n) be a family of CFEs and let

C™ = minlgjgn{(fj}, C+ = max gjg,,{cj'}.
Then

C~ < CFOWG,(C},Cs, ...,C,) < C™.

Theorem 22 (Monotonicity) Let C; (j = 1,2, ...,n) and C],.

(j=1,2,...,n) be two set of C FEs, if C; < C}, Y j, then

CFOWG,,(C,Cs, ....Cy) < CFOWG,, (c’, Gyl )

n

6.3 Cubical fuzzy hybrid geometric operator

From Definitions 16 and 17, we note that the CFWG
operator only weighs the CFEs themselves whereas the
CFOWG operator weighs the ordered positions of the CFEs
instead of weighting their arguments. This means that in
each case the weight represents two different aspects in
CFWG and CFOWG operators. But both operators take
only one of them. To resolve this problem, we now intro-
duce the cubical fuzzy hybrid geometric (CFHG) operator.

Definition 18 A cubical fuzzy hybrid geometric (CFHG)
operator is a mapping CFHG,, ,, : C"—C, such that

CFHG,,,(C1,Cs, ...,C,) = @J’.’:l(ca<j)) : (11)

where w = (wl,wz,..,w,l)T is the associated weighting

vector, with w; € [0, 1], ij =1, and EU@ is the j-th
=1

largest element of the cubical fuzzy arguments C;
(éj: (Cj)"w’,j:l,Z,...,n), w:(wl,w2,...,wn)T is

the weighting vector of cubical fuzzy arguments C;j,
n

(j=1,2,..,n), and w; € [0, 1], ij =1, and n is the
J=1

blanching coefficient. If w = (1/n,1/n,...,1/n)" then

CFHG is reduced to CFWG operator; if o=

(1/n,1/n,...,1/n)" then CFHG is reduced to CFOWG
operator.

Theorem 23 The aggregated value by using the CFHG
operator is also a CFE and
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CFHGW(C] 5 C2, ceey Cn) = ®;1:1 (CO'(])) '

7 Distance between cubical fuzzy sets
and models for multiple attribute decision
making with cubical fuzzy information

7.1 Distance between cubical fuzzy sets

Definiton 19 Let Cy = (f¢.8¢,.he,), and Cp=

(fe, 8c,+he,) be any two CFSs. Then the distance between
C; and C,, denoted by d(Cy,C,) is defined by

d(Cy,C,) =

) (e ) e ) ()]

(13)

If C; =(0.8,0.5,0.6), and C, = (0.9,0.4,0.5) be any
two CFSs. Then the distance between C; and C, is

Based on Definition 19, in the following, we can derive
some properties of the distance between two CFEs.

Theorem 24 Let Cy = (fz,,8¢c,,hc,), and Cp;=
(fe,, 8¢, he,) be any two CFSs. Then

(i) d(C1,C2)=d(C3,Cy);

(i) d(Cy,Co) = 0 if and only if C; = Cy;

(i) 0<d(Cy,Ca) < V2.
Proof From Definition 19, we know that

feis8e hen Jer 8eryhe, €10, 1), fo +8d +h, <1 and

fo,+88,+hg, <1 then, (i)

d(Cy,Cy) = \/; { ((0.8)3—(0.9)3>2+((0.5)3—(0.4)3)2+((0.6)3—(0.5)3)2+((0.5277)3—(0.4344)3)2}

= 0.3172154638.

2 2 2 2
_-fgz) = 07 (g?jl - géz) = 0’ (hél - hgz) = O’ (ng] - néZ) = 0

3 _ 3 3 3 3 _ 13 3 .3 _
= fo, =1¢,r 82, = 8e, e, = e, e, = M, < Ci =0Cs.
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(i)
Theorem 25 Let C; = (fz,, gc;, hci), (i =1,2,3) be three

CFSs, lf C] QC2§C3, then d(cl,CQ)Sd(C],Cj,) and
d(Ca,C3) <d(C1,Cs).

Proof 1f C; C C, C Cs, then fg <f3, <fZ, 8¢, <8¢, < &2,
and h(321 > héz > hé}. By Definition 19, we get:

d(cl ) CZ) =

2 ) - ) ) (- )

Q

2 2 2
¢ () () o) s )

Cl7 C?
Similarly, we can prove that d(Cy,C,;) <d(C;,C3). O

7.2 Models for multiple attribute decision
making with cubical fuzzy information

This section is devoted to introduce a model for MADM
problems based on CFWA and CFWG operators in the
environment of CFSs. Let A = {A;,A,,...,A,} be a set of
alternatives that are to be evaluated by the experts, G =
{G1,G,,...,G,} be the set of parameters under the con-
siderations, and ® = (w1, w,,...,w,) be the weighting
vector associated with the parameters G; (j = 1,2, ...,n),
n
e [0, 1], ij = 1. Assume that M = (m), =
=

(fi» &ir» h,j)"m is the cubical fuzzy decision matrix, where

with O)j

fij» g and h;; respectively represent the degree of positive,
neutral and nonmembership that the alternative A; satisfies
the attribute G; of an expert. Also f; € [0, 1], g; € [0, 1]
3 3 3 .
and h; € [0, 1], (fj) +(gs) +(hy) <1, i=1,2,...m
j=1,2,...,n. Following are the steps to be followed during
the process. Step 1. Collect the data about each alternative
in terms of CFNs and summarize it in the form of cubical
(M) pn= (fij> 8ij» 1ij),.,- Step 2. Nor-
malize the data by converting cost type parameters into

fuzzy matrix M=

Table 2 Aggregated results of ERP systems by CFWA and CFWG
operator

(CFWA) operator (CFWG) operator

(0.7759,0.2673,0.5985) A,  (0.7314,0.6650,0.7413)
(0.5902,0.2673,0.5985) A,  (0.5058,0.3524,0.6812)
Ay (0.6294,0.3634,0.4305)  A;  (0.2320,0.4824,0.5072)
(0.6377,0.5622,0.4305)  As  (0.3856,0.8300,0.5724)
(0.6539,0.5945,0.3400)  As  (0.3066,0.8084,0.3715)

Table 3 The scores values of the ERP systems

(CFWA) (CFWG)

operator operator
Ay 0.2528 —0.0161
Ay —0.0088 —0.1867
Az 0.1696 —0.1180
Ay 0.1796 —0.1302
As 0.2402 —0.0225

Table 4 Ordering of the ERP systems

Operator Ranking order
(CFWA) Al >As >AL >A3 > Ay
(CFWG) Al >As5 > A3 > A > A

benefit type parameters if any. Step 3. Calculate the overall
preferences C; (i =1,2,...,m) of the alternative A; by
applying the (CFWA) operator,

Table 1 Cubical fuzzy decision

matrix G G G G
Ay (0.83,0.53,0.63) (0.89,0.39,0.49) (0.82,0.22,0.42) (0.60,0.20,0.80)
Ay (0.80,0.50,0.30) (0.63,0.23,0.43) (0.43,0.63,0.33) (0.43,0.23,0.63)
Az (0.91,0.21,0.11) (0.27,0.17,0.87) (0.24,0.85,0.65) (0.11,0.91,0.21)
Ay (0.85,0.25,0.45) (0.84,0.24,0.44) (0.20,0.89,0.39) (0.35,0.85,0.25)
As (0.90,0.15,0.32) (0.68,0.58,0.28) (0.45,0.87,0.35) (0.11,0.21,0.91)
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Table 5 Cubical fuzzy ordered

weighted decision matrix A Az 4 A4 As
G;  (0.89,0.39,0.49) (0.80,0.50,0.30) (0.91,0.21,0.11)  (0.85,0.25,0.45) (0.90,0.15,0.32)
G, (0.82,0.22,0.42) (0.63,0.23,0.43) (0.11,0.91,0.21) (0.84,0.24,0.44)  (0.68,0.58,0.28)
G;  (0.83,0.53,0.63)  (0.43,0.63,0.33)  (0.24,0.85,0.65)  (0.35,0.85,0.25)  (0.45,0.87,0.35)
Gs  (0.60,0.20,0.80)  (0.43,0.23,0.63)  (0.27,0.17,0.87)  (0.20,0.89,0.39)  (0.11,0.21,0.91)

Table 6 The ordering Of the (CFHA) operator Table 8 Aggregated values by (SFWA/SFWG)

score values corresponding to SFWA SFWG

these aggregated values are A 0.2378
A, —0.1991 A (0.584,0.456,0.354) (0.394,0.223,0.992)
As 0.1258 A, (0.664,0.433,0.350) (0.447,0.154,0.994)
A 0.1745 A3 (0.490,0.386,0.474) (0.216,0.100,0.987)
As 02117 Ay (0.614,0.376,0.492) (0.168,0.143,0.969)

Table 9 Score values of SFWA/SFWG operators

SFWA SFWG CFWA CFWG
~ ~ ~ ~ n ~
m; = CEWA (i1, i, .., in) = B, (i) A, 0.590 0.393 0.252 ~0.016
Ay 0.626 0.442 —0.008 —0.186
N " y Az 0.543 0.373 0.169 —0.118
3 @j w; w; . _
— 1_H(1 _ 17) T e 1) )i Aq 0.581 0.351 0.179 0.130
Jj=1 Jj=1 J=1
Or (CFWG) operator i
( ) op Table 10 Ranking orders Operators Ranking orders
im; = CFWG,, (M1, M, .., i) = X, ()"

i w( ily M2y vey m) ®j:1( z]) SFWA Ay > A > Ay > A
B n ", n v s | n | h3 wj 1o CFWA Al >A4 > A3 > A
= H(ﬁ,) 7_1_[(81:1') ) - H 1 b= g M SFWG Ay >A; >A; > Ay

= = = CFWG Ay > A3 > Ay > A,
(14)
Step 4. Calculate the scores S(C;) (i =1,2,...,n) of the
overall cubical fuzzy numbers m; (i = 1,2,...,m) and uti-
lize the accuracy function if required. Rank the alternatives Table 11 Accuracy values CFWA CFWG
A; and A; in accordance with the accuracy degrees acc(;)
~ . A 0.6814 0.7985
and acc(m;). Step 5. Rank all the alternatives A;
Ay 0.4198 0.4454
As 0.3290 0.1428
Ay 0.2986 0.2448
Tab.Ie. 7 Sphepcal fuzzy G G, Gs
decision matrix
Table 7 (continued) G G G

Ay
Ay
Az
Ay

(0.658,0.427,0.294)
(0.733,0.489, 0.290)
(0.388,0.663,0.441)
(0.765,0.332,0.443)

0.574,0.361,0.339)
0.452,0.677,0.249)
0.684,0.276,0.273)
0.571,0.564,0.367)

o~ o~ o~ —

0.492,0.548, 0.436
0.658,0.307, 0.499
0.433,0.266, 0.670
0.314,0.349,0.632

,_\A/_\,_\
—_= = =
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(i=1,2,...,m) and select the best one(s) in accordance
with score(m;) (i = 1,2,...,n).

8 Numerical example and comparative
analysis

8.1 Numerical example

We assume a practical example of MADM problems to
illustrate the application of the developed approaches.
Suppose a particular organization wants to implement an
enterprise resource planning (ERP) system (adapted from
Xu and Yager (2006)). First, a team of experts is appointed
that consists of the CEO and two senior representatives
from the user department. By collecting all possible
information about ERP vendors and systems, the project
team chooses five potential ERP systems A; (1 = 1,2, ...,5)
as candidates. The company employs some external pro-
fessional organizations to aid this decision-making. The
team of experts chooses four different parameters under
which the alternatives are to be evaluated as function and
technology (G), strategic fitness (G;), vendor’s ability
(Gs), and vendor’s reputation (G4). These possible ERP
systems A; (i =1,2,...,5) are to be evaluated using the
CFNs by the experts under the set of four parameters
whose associated weighting vector is
o = (0.2,0.1,0.3,0.4). To select the most desirable ERP
systems, we utilize the above step-wise procedure using
CFWA, CFWG operators. Step 1 The CFNs are summa-
rized in the cubical fuzzy matrix M= (fﬁ,j)
Table 1

Step 2 Since, the data is already in normalized form thus
step 2 is skipped Step 3 From Table 1, aggregate all
cubical fuzzy numbers m, (j=1,2,...,n) by using the
CFWA or CFWG operator to derive the overall cubical

Sxd shown in

fuzzy elements m; (i =1,2,...,m) of the alternative A;.
The aggregated results by using CFWA and CFWG oper-
ators are shown in Table 2.

Step 4 From Table 2, the calculated score values of ERP
systems are given in Table 3.

Finally, Table 4 shows that the best alternative (ERP
system) is A;. Moreover, As can be selected as the best one
if Ay is not available. Based on CFWA (CFWG) operator,
in the following, we use the cubical fuzzy hybrid average
(CFHA) operator to compute the best ERP system.

8.2 By CFHA operator

The following steps of CFHA operator have been per-
formed for the selection of the best ERP system(s). Step 1
". Utilize the CFHA operator given in Theorem 14 on
Table 1, to collect the relative importance ERP system by

supposing the vector w=

(0.2575,0.3316,0.1292,0.1397,0.1420)".  From ity =

4w;m;j, we have

' 3 4x0.2575
iy = <\/1 ~(1-(083)") i ,(0.53)““575,(0.63)“02575)

= (0.8351,0.5200,0.6213),
. 4x0.2575
iy = <\/ 1 (1 - (0.89)3) ’ ,(0.39)4”‘-2575,(0.49)4”)-2575)

= (0.8944,0.3791,0.4796),
. 4x0.2575
iy = (\‘/1 _ (1 -~ (0.82)3) ’(0.22)4><0.2575’ (0.42)4x0.2575>

= (0.8252,0.2102, 0.4092),
' 3 4x0.2575
gy = <\/ 1= (1-(060)°) ,(0.20)%0%7, (0.80)“0’2575)

= (0.6052,0.1905, 0.7946)

weight

Similarly, we can get the other weighted arguments. By
using the score function we can get the ordered weighted
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Table 12 Certainty values

decision matrix given in Table 5.
Therefore, by CFHA operator, we get the aggregated
value (m;) of each alternative A; (i = 1,2,...,5), we have

Step 3 '. According to the score functions shown in
Table 6 and the comparison formula of score functions, the
ordering of the ERP systems is shown below.

Al >As > Ay > Az > A,

As we can see, depending on the aggregation operators
used, the ordering of the ERP systems is slightly different,
but the best ERP system is A;.

8.3 Comparative analysis

In this section, we compare our proposed operators with
those that already exist in the literature. We select the most
relevant aggregation operators. In Mahmood et al. (2019),
spherical fuzzy sets and their application have been com-
pletely studied. Here we consider the spherical fuzzy
aggregation operators developed in Mahmood et al. (2019)
and compare our proposed operators. In Mahmood et al.
(2019), the decision matrix in Table 7 was taken and
applied the weighted spherical fuzzy averaging and geo-
metric operator to get the aggregated values of the pro-
posed alternatives as given in Table 8. The rating values of
SFWA/SFWG and proposed operators are given in Table 9.
The ranking of alternatives obtained by SFWA/SFWG and
proposed operators are given in Table 10. The accuracy

CFWA CFWG  Table 14 Aggregated values of alternatives using FFWA and FFWG
operators

A 0.7759 0.7314
FFWA operator FFWG operator

Ay 0.5902 0.5058
As 0.6294 02320 A (0.7759,0.5985) (0.7314,0.6812)
Ay 0.6377 0.3856 A (0.5902,0.4305) (0.5058,0.6650)
As (0.6294,0.2985) (0.2320,0.5724)
Ay (0.6377,0.3400) (0.3856,0.3715)
As (0.6539,0.4927) (0.3066,0.7613)

Table 15 Score values of alter-

natives using FFWA and FFWG FEWA FEWG
operators A 0.6263 0.5375
Ay 0.5629 0.4176
Az 0.6113 0.4124
Ay 0.6100 0.5030
As 0.5799 0.2937

Table 16 The ranking order of alternatives

Operator Ranking order
FFWA Al > A3 > Ay > A5 > A
FFWG Al >AL > A >A3 >A5

values of CFWA/CFWG operators are given in Table 11.
The certainty values of CFWA/CFWG operators are given
in Table 12. On the other hand, if we drop the abstinence
degree from each triplet of cubical fuzzy information given
in Table 1, then Table 1, is reduced to Fermatean fuzzy
(FF) information and which is discussed in Example 1.

Table 13 Fermatean fuzzy

decision matrix A A2 As A4 As
G, (0.89,0.49) (0.80,0.30) (0.91,0.11) (0.85,0.45) (0.90,0.32)
G, (0.82,0.42) (0.63,0.43) (0.11,0.21) (0.84,0.44) (0.68,0.28)
G (0.83,0.63) (0.43,0.33) (0.24,0.65) (0.35,0.25) (0.45,0.35)
Gy (0.60,0.80) (0.43,0.63) (0.27,0.87) (0.20,0.39) (0.11,0.91)
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4 . 3\ % 4 4 /- @
= ({6 ™))
_ \3/1 _ (1 - (0.89)3)0'2>< (1 - (0.82)3>0'1x (1 - (0.83)3)0'3x (1 - (0-60)3)0'4,

(0.39)°%(0.22)1(0.53)*%(0.20)°*, (0.49)*(0.42)*' (0.63)"* (0.80)**
= (0.7891,0.3091, 0.6329).

oo (1T () ) L) 1))
_ \‘/1 - (1 - (0.80)3)‘2>< (1 - (0.63)3)0‘1 X (1 - (0.43)3)0‘3>< (1 - (0.43)3)0'4,

(0.50)%2(0.23)1(0.63)%%(0.23)%*, (0.30)°*(0.43)" (0.33)**(0.63)**
= (0.3789,0.3091,0.6329).

7 N 4/ j
ity = (ill—}f!(l—(fa(sj))) »jH(gaz,) ,H<ha(3j>> )
- \3/1 - (1- (0.91)3)0'2>< (1- (0.11)3>0'1x (1- (0.24)3)0'3x (1- (0.27)3)0-47

(0.21)°%(0.91)*1(0.85)%2(0.17)*, (0.11)°2(0.21)*' (0.65)° (0.87)**
= (0.5902,0.3634, 0.4305).

i — (i ! _,ﬂ<1 _ <f0<4j) ) /,jlj(gazy )wI,Jﬁ(ﬁaw))‘w)
) </1 B (1 B (0.85)3)0-2>< (1 _ (0.84)3)0l X (1 - (0.35)3)OA3>< (1 - (0-20)3)047

(0.25)°2(0.24)1(0.85)°2(0.89)"*, (0.45)2(0.44)*" (0.25)%3(0.39)**
= (0.6464,0.3399,0.4572).

. 3\ ¥ o; . Oj
s = (ill—jﬁ(l— (ﬁ,(j,-)) ) ,jﬁ(gas,) yjﬁ(hﬂsj)) )
B \3/1 ~(1- (0_90)3)0'2>< (1- (0.68)3>0'1x (1- (0.45)3)0'3x (1- (0.11)3)0'4,

(0.15)%(0.58)"'(0.87)*3(0.21)%*, (0.32)*%(0.28)"' (0.35)**(0.91)**
= (0.6355,0.5972,0.3554).

%)

Example T Reconsider the cubical fuzzy information To obtain aggregated FFNs, we apply FFWA and
matrix given in Table 1 and drop the abstinence degree =~ FFWG operators in Table 13, and the aggregated FFNs are
from each triplet of CFN. The reduced decision matrix  given in Table 14. Using the score function, the score
consists of FF information, given in Table 12. values of the alternatives are given in Table 15.

The ranking order of alternatives are shown in Table 16.
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9 Conclusion

In this paper, we proposed the concept of cubical fuzzy
information and studied the basic properties of this notion.
we investigated the MADM problem based on the aggre-
gation operators with cubical fuzzy information. Then, we
developed some aggregation operators for aggregating
cubical fuzzy information, including CFWA operator,
CFWG operator, CFOWA operator, CFOWG operator,
CFHWA operator, and CFHWG operator. The special
cases of these proposed operators are studied. Further, we
have utilized these operators to develop some approaches
to solve the cubical fuzzy MADM problems. Finally, a
practical example for the selection of an ERP system is
given to verify the developed approach and to demonstrate
its practicality and effectiveness. In the future, we shall
continue working on the extension and application of the
developed operators to other domains.
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