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Abstract
The notion of generalized orthopair fuzzy sets, as a natural extension of both intuitionistic fuzzy sets and Pythagorean

fuzzy sets, provides a more flexible framework for expressing and processing uncertain information. In intelligent decision

making based on generalized orthopair fuzzy sets, it is a pivotal issue to compare or rank q-rung orthopair membership

grades. In this work, we investigate the ranking issue of q-rung orthopair membership grades from a geometric point of

view. We propose the regular Minkowski distance of q-rung orthopair membership grades which strengthens or extends

some useful distance measures in the literature. By virtue of the regular Minkowski distance, we define a generic class of

novel score functions called the Minkowski score function of q-rung orthopair membership grades. This new type of score

functions not only extends the existing notions such as the expectation score function, but also overcomes the difficulty that

Hamming (or Euclidean) distance-based score functions cannot distinguish those intuitionistic fuzzy values with identical

expectation score (or ideal positive degree). We examine several critical properties of the Minkowski score function of q-

rung orthopair membership grades. By taking advantage of the q-rung orthopair fuzzy weighted averaging (or geometric)

operator and the Minkowski score function, a flexible approach is developed to support multiple attribute decision making

with generalized orthopair fuzzy soft information. Finally, a benchmark problem is used for comparison with several

existing methods to verify the cogency and feasibility of the proposed method.

Keywords Generalized orthopair fuzzy set � Intuitionistic fuzzy set � Pythagorean fuzzy set � Minkowski distance �
Score function

1 Introduction

The process of decision making is considered as a creative

human activity based on cognition, which aims at ranking a

list of alternatives or choosing the best one(s) among them.

In multiple attribute decision making (MADM), all the

alternatives are evaluated via several complex and some-

times conflicting attributes. The assessment of alternatives

describes their performance from various standpoints. In

MADM process, many scholars have strained to reconcile

the contradictory goals and striven for compromise solu-

tions (Ishizaka and Nemery 2013). At the same time, the
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information related to decision making problems in the real

world is often incomplete or uncertain due to a lack of data,

time, or cognitive capability. In response to this, it is of

vital importance to explore MADM under an uncertain

environment (Xu 2004).

Fuzzy set theory initially established by Zadeh (1965)

provides a helpful tool to describe and deal with uncer-

tainty based on the viewpoint of gradualness. However,

fuzzy set theory only considers the membership grade of an

element with respect to a fuzzy set. The non-membership

grade of an element is regarded as the complement of the

membership grade and thus totally determined by it. Ata-

nassov (1986) put forward the notion named intuitionistic

fuzzy set (IFS), which takes both membership and non-

membership grades into consideration. This concept

extends fuzzy sets in a meaningful way and it can be used

to capture uncertainty caused by hesitancy in human cog-

nition (Yager 2016). In the case of IFSs, the sum of the

degrees of non-membership and membership of every

element with respect to an IFS lies between 0 and 1. For

simplicity, Xu and Yager (2006) referred to an ordered pair

comprised of the membership degree and non-membership

degree as an intuitionistic fuzzy value (IFV). In fact, IFVs

serve as basic information granules for uncertain infor-

mation processing under an intuitionistic fuzzy environ-

ment. decision making based on IFSs and their extensions

has received considerable attention in recent years (Chen

and Chu 2020; Chen and Huang 2017; Ouyang and Pedrycz

2016; Zou et al. 2021). In particular, Chen and Randyanto

(2013) brought forward a useful similarity measure

between IFVs and extended it to a similarity measure of

intuitionistic fuzzy sets. They also considered the appli-

cations of their similarity measures to both medical diag-

nosis and pattern recognition. Using the TOPSIS method

and similarity measures between IFVs, a multicriteria

decision making method was developed in Chen et al.

(2016). Chen and Chang (2016) presented intuitionistic

fuzzy geometric averaging operators, and developed a

fuzzy MADM method based on the transformation between

IFVs and right-angled triangular fuzzy numbers. Zeng

et al. (2019) put forth a helpful score function of IFVs and

a modified VIKOR method by virtue of the proposed score

function. Liu et al. (2020a) introduced the notion of

weighted partitioned Maclaurin symmetric mean operators

for intuitionistic fuzzy numbers and applied it to intu-

itionistic fuzzy multiattribute group decision making

problems. Yager (2014) proposed a novel notion called

Pythagorean fuzzy sets (PFSs) to expand the value space of

IFVs. In PFSs, the sum of the squares of the non-mem-

bership and membership grades of every object with

respect to a PFS is no more than one. Furthermore, Yager

(2017) put forward q-rung orthopair fuzzy sets (q-ROFSs),

which can adjust the constraint on the degrees of non-

membership and membership in terms of a parameter

q. Note that q-ROFSs are also known as generalized

orthopair fuzzy sets (GOFSs). In the case of GOFSs, the

sum of the qth powers of the membership and non-mem-

bership degrees is bounded by one. Following the term

coined by Yager (2017), we refer to an ordered pair com-

posed of the membership degree and non-membership

degree of an element with respect to a q-ROFS as a q-rung

orthopair membership grade (q-ROMG). Clearly, the value

space of valid q-ROMGs expands whenever the rung

q increases.

To deal with uncertainty in a general manner, Molodt-

sov (1999) put forward a fundamental concept called soft

sets. The definition of soft set not only involves the object

domain, but also a parameter space related to the domain of

objects (Feng et al. 2016). Yang and Yao (2020) put forth

two convincing semantics for soft set theory, namely the

semantics of multi-context and possible-world, respec-

tively. As pointed out by Yang and Yao (2020), the multi-

context semantics suggests that soft sets are suitable for

modelling uncertain concepts expressed by different crisp

sets under distinct contexts. In addition, the possible-world

semantics indicates that soft sets can also be used to

characterize the uncertainty entailed by insufficient infor-

mation. In this case, a soft set provides a collection of

alternative representations of a concept in various possible

worlds, and only one of them is the actual case if all

information is completely available (Yang and Yao 2020).

It is interesting to see that there are abundant connections

among soft sets, rough sets and fuzzy sets (Alcantud 2016;

Alcantud et al. 2020; Feng et al. 2011). Fuzzy soft sets

initiated in Maji et al. (2001a) are hybrid structures inte-

grating fuzzy sets and soft sets in a meaningful way. The

concept of intuitionistic fuzzy soft sets (IFSSs) was pre-

sented by Maji et al. (2001b). This hybrid structure was

successfully used to describe and handle MADM problems

in an intuitionistic fuzzy environment (Ali et al. 2019;

Feng et al. 2020). Xiao and Ding (2019) introduced

divergence measure of Pythagorean fuzzy sets and applied

this measure to medical diagnosis. Peng et al. (2015) put

forth the Pythagorean fuzzy soft set (PFSS) model which

combines Pythagorean fuzzy sets with soft sets. Zhan et al.

(2020) introduced the notion of covering-based Pythagor-

ean fuzzy rough sets (CPFRSs) and presented two different

TOPSIS methods based on the CPFRS model. Akram and

Ali (2020) developed two useful hybrid models to support

decision making by combining Pythagorean fuzzy sets,

bipolar soft sets and rough sets. By combining soft sets

with generalized orthopair fuzzy sets, Hussain et al. (2020)

introduced the generalized orthopair fuzzy soft set

(GOFSS) model to further expand the scope of
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intuitionistic fuzzy soft sets and Pythagorean fuzzy soft

sets. Akram and Shahzadi (2020) proposed six types of

generalized orthopair fuzzy aggregation operators by

applying Yager’s t-norm and t-conorm operations. Garg

and Chen (2020) introduced neutrality aggregation opera-

tors of q-ROFSs and discussed their application to multiple

attribute group decision making.

In MADM based on GOFSs, q-ROMGs quantify the

performance of alternatives and can be viewed as the most

elementary components. Therefore, ranking q-ROMGs

plays a fundamental role in solving MADM problems

under a generalized orthopair fuzzy environment. In fact,

q-ROMGs can be considered as the generalized orthopair

fuzzy counterpart of real numbers in the unit interval [0, 1].

As we know, the unit interval forms a linearly ordered set.

Thus, any two real numbers in [0, 1] can be compared or

ranked conveniently. However, as pointed out by Ali

(2018), the set L�q of all q-ROMGs only forms a complete

lattice instead of a linearly ordered set under the usual

order of q-ROMGs. This makes the comparing and ranking

of q-ROMGs more complicated and challenging. As a

particular case, the IFV ranking problem has attracted more

and more attentions in recent years. Sophisticated methods

have been developed to quantify the difference between the

information carried by IFVs. From a geometric point of

view, Xing et al. (2018) proposed a method in which IFVs

are considered as points in Euclidean space, and the pref-

erence grade of an IFV is characterized in terms of the

Euclidean distance between the IFV and the positive ideal

IFV. The method is essentially based on the intuition that a

better IFV should be relatively closer to the positive ideal

IFV. Their IFV ranking method overcomes the drawbacks

such as the inadmissibility, non-robustness, and indiffer-

ence problem of several existing methods. Nonetheless, it

cannot distinguish different IFVs if they have the same

ideal positive degree. Later on, Du (2018) proposed the

Minkowski distance of q-ROMGs and discussed its appli-

cation to MADM. Although the Minkowski distance of q-

ROMGs is useful in applications, it does not reflect the

effect of the parameter q on the ranking of q-ROMGs.

Motivated by the issues mentioned above, a new dis-

tance measure called the regular Minkowski distance of q-

ROMGs is proposed in this study. We present a score

function called Minkowski score function for ranking q-

ROMGs based on the regular Minkowski distance between

q-ROMGs. More specifically, this Minkowski score func-

tion is defined as the regular Minkowski distance between

any given q-ROMG and the negative ideal orthopair

a� ¼ ð0; 1Þ. It is worth noting that our new score function

generalizes both the ideal positive degree in Xing et al.

(2018) and the expectation score function of IFVs in Feng

et al. (2019a, b) to the more general case of q-ROMGs

based on the regular Minkowski distance. Meanwhile, our

new score function simplifies the ideal positive degree of

IFVs. In addition, it also overcomes the difficulty that

Hamming (or Euclidean) distance-based score functions

cannot distinguish those IFVs with identical expectation

score (or ideal positive degree). For other useful notions

not discussed in the study, the readers are referred to

Akram et al. (2020a, b); Liu et al. (2020b); Akram et al.

(2020c); Liu et al. (2018).

The main contributions of this work can be summarized

as follows:

1. The regular Minkowski distance of q-ROMGs is

presented, which includes not only the parameter

p for specifying particular type of the distance, but

also the parameter q indicating the specific rung of the

q-ROMGs. For any two different q-ROMGs, both

parameters can affect the regular Minkowski distance

between them. This feature can help enhance the

distance measure presented by Du (2018).

2. Based on the proposed regular Minkowski distance, the

Minkowski score function of q-ROMGs is proposed

and its related properties are discussed in detail.

Particularly, it is proved that with the enlargement of

the parameter p, the value of Minkowski score function

depends more heavily on the non-membership degree.

3. A flexible approach to MADM under a generalized

orthopair fuzzy environment is proposed by taking

advantages of the Minkowski score function and the q-

ROFWA (or q-ROFWG) operator. A benchmark

problem is used for comparison with some existing

methods to show the validity and feasibility of the

presented approach.

The remainder of our study is arranged in the following

way. Some fundamental notions such as intuitionistic fuzzy

sets, Pythagorean fuzzy sets and generalized orthopair

fuzzy sets are recalled in Sect. 2. In Sect. 3, we define the

Minkowski score function of q-ROMGs and point out some

special cases of it. Moreover, a series of fundamental

properties of Minkowski score function are investigated in

detail. In Sect. 4, we propose a new approach to solve

MADM problems in a q-rung orthopair fuzzy soft setting.

In addition, a case study on a benchmark problem is con-

ducted to verify the feasibility of our approach and com-

pare it with the methods presented by Du (2018) and Liu

and Wang (2018). Finally, conclusions are given in Sect. 5.

2 Preliminaries

Throughout the whole paper, let V denote the universe of

discourse, which is a nonempty set.
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A fuzzy set l in V is a mapping l : V ! ½0; 1�, where
lðmÞ specifies the degree to which m belongs to the fuzzy set
l for all m 2 V. Alternatively, it can be represented as

l ¼ fðm; lðmÞÞ j m 2 Vg. In what follows, the collection of

all fuzzy sets in V will be denoted by FSðVÞ.

Definition 1 (Atanassov 1986) An intuitionistic fuzzy set I

in V is defined as

I ¼ fðm; ÎðmÞ; �IðmÞÞ j m 2 Vg;

where the mappings Î : V ! ½0; 1� and �I : V ! ½0; 1�
specify the membership grade ÎðmÞ and non-membership

grade �IðmÞ, such that

0� ÎðmÞ þ �IðmÞ� 1

The hesitancy degree of m to I is given by

~IðmÞ ¼ 1� ðÎðmÞ þ �IðmÞÞ. In what follows, IFSðVÞ denotes
the collection of all IFSs in V.

Definition 2 (Yager 2014) A Pythagorean fuzzy set P in V
is defined as

P ¼ fðm; P̂ðmÞ; �PðmÞÞ j m 2 Vg;

where �P : V ! ½0; 1� and P̂ : V ! ½0; 1� are called the non-

membership function and membership function of the

Pythagorean fuzzy set P, respectively. It is required that

0�ðP̂ðmÞÞ2 þ ð �PðmÞÞ2 � 1 for all m 2 V.

We refer to ~PðmÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ðP̂ðmÞÞ2 � ð �PðmÞÞ2
q

as the

hesitancy degree of m to P. In the following, PFSðVÞ
denotes the collection of all PFSs in V.

Definition 3 (Yager 2017) Let q� 1. A generalized

orthopair fuzzy set G (also called q-rung orthopair fuzzy

set) on V is defined as

G ¼ fðm; ĜðmÞ; �GðmÞÞ j m 2 Vg;

where �GðmÞ and ĜðmÞ are the non-membership grade and

membership grade of m in G, respectively. It is required that

0�ðĜðmÞÞq þ ð �GðmÞÞq � 1

for all m 2 V:

The hesitancy degree of m to G is defined as

~GðmÞ ¼ 1� ðĜðmÞÞq � ð �GðmÞÞq
� �1=q

:

Hereinafter, the class of all q-rung orthopair fuzzy sets in V
is denoted by GOFSqðVÞ.

Recently, Ali (2018) pointed out that q-rung orthopair

fuzzy sets can be viewed as L-fuzzy sets with respect to the

complete lattice ðL�q; � L�q
Þ, where

L�q ¼ fða; bÞ 2 ½0; 1�2 j aq þ bq � 1g;

and the corresponding lattice order � L�q
is defined as

ða1; b1Þ� L�q
ða2; b2Þ , ða1 � a2Þ ^ ðb1 � b2Þ ð1Þ

for all ða1; b1Þ; ða2; b2Þ 2 L�q.
Each ordered pair ða; bÞ 2 L�q was originally named as q-

rung orthopair membership grade (q-ROMG) by Yager

(2017), which is also known as q-rung orthopair fuzzy

number. To avoid confusion with the term fuzzy number,

we would like to use Yager’s original term in the follow-

ing. For convenience, L�1 is simply denoted by L� and its

elements are called intuitionistic fuzzy values. Similarly,

ordered pairs in L�2 are called Pythagorean fuzzy values

(PFVs).

Definition 4 (Feng et al. 2019a, b) Let A ¼ ðâ; �aÞ 2 L�.
The mapping d : L� ! ½0; 1� given by

dðAÞ ¼ dA ¼ â� �aþ 1

2

is called the expectation score function of IFVs.

Assume that A ¼ ðâ; �aÞ;C ¼ ðĉ; �cÞ 2 L�q and k[ 0.

Then some basic operations of q-ROMGs can be defined as

follows:

• A _ C ¼ ðmaxfâ; ĉg;minf�a; �cgÞ;
• A ^ C ¼ ðminfâ; ĉg;maxf�a; �cgÞ;
• Ac ¼ ð�a; âÞ;
• A� C ¼ âq þ ĉq � âqĉqð Þ1=q; �a�c

� �

;

• kA ¼ 1� ð1� âqÞk
� �1=q

; �ak
� �

;

• A	 C ¼ âĉ; �aq þ �cq � �aq �cqð Þ1=q
� �

;

• Ak ¼ âk; 1� ð1� �aqÞk
� �1=q

� �

.

It is easy to see that L� 
 L�q 
 L�qþ1 for any q� 2.

Moreover, Ali (2018) gave a more insightful observation as

follows:

Theorem 1 (Ali 2018) The lattice L� is a sublattice of L�q
for each q� 1.

Obviously, Atanassov’s IFSs are q-ROFSs with q ¼ 1

and Yager’s PFSs are q-ROFSs with q ¼ 2.

Theorem 2 (Yager 2017) If A is a q1-ROFS on V and if

q2 [ q1, then A is also a q2-ROFS on V.

In other words, we have

q1 � q2 ) GOFSq1ðVÞ 
 GOFSq2ðVÞ

for all q1; q2 � 1.
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Definition 5 (Liu and Wang 2018) Let C ¼ ðĉ; �cÞ 2 L�q
(q� 1). The mapping s : L�q ! ½�1; 1� given by

sðCÞ ¼ sC ¼ ĉq � �cq ð2Þ

is called the score function of q-ROMGs.

Definition 6 (Liu and Wang 2018) Let C ¼ ðĉ; �cÞ 2 L�q
(q� 1). The mapping h : L�q ! ½0; 1� given by

hðCÞ ¼ hC ¼ ĉq þ �cq ð3Þ

is called the accuracy function of q-ROMGs.

With the help of the score and accuracy functions of q-

ROMGs, Liu and Wang (2018) proposed an effective way

of comparing q-ROMGs. Their initial idea can be further

simplified to give the following notion.

Definition 7 Assume that A ¼ ðâ; �aÞ;C ¼ ðĉ; �cÞ 2 L�q

(q� 1). We can define a binary relation � ðs;hÞ
q on L�q in the

following way:

A� ðs;hÞ
q C , ðsA\sCÞ _ ðsA ¼ sC ^ hA � hCÞ:

It can be shown that � ðs;hÞ
q is a total order on L�q, which

is named as the Liu-Wang lexicographic order of q-

ROMGs hereinafter.

Suppose that A and C are q-ROFSs. Yager (2017) put

forth the following basic notions:

�: A t C ¼ fðm;maxfÂðmÞ; ĈðmÞg;
minf �AðmÞ; �CðmÞgÞ j m 2 Vg;

�: A u C ¼ fðm;minfÂðmÞ;
ĈðmÞg;maxf �AðmÞ; �CðmÞgÞ j m 2 Vg;

�: Ac ¼ fðm; �AðmÞ; ÂðmÞÞ j m 2 Vg;
�: AYC if and only if ÂðmÞ� ĈðmÞ and �AðmÞ� �CðmÞ for

all m 2 V.

Suppose that EV is the set of all parameters associated

with objects in the universe of discourse V. Convention-
ally, we refer to EV as the parameter space and simply

write it as E. We also refer to ðV;EÞ as a soft universe.

Depending on the needs in real life applications, parame-

ters usually include characteristics, properties or attributes

of objects in the universe V.

Definition 8 (Hussain et al. 2020) Let q� 1. A q-rung

orthopair fuzzy soft set (q-ROFSS) over V is an ordered

pair G ¼ ð eF ;AÞ, where A 
 E and the mapping eF : A !
GOFSqðVÞ is called the approximate function of G.

When q is known from the context, we simply call a q-

rung orthopair fuzzy soft set as a generalized orthopair

fuzzy soft set (GOFSS). The collection of all generalized

orthopair fuzzy soft sets over the soft universe ðV;EÞ with
a fixed rung q� 1 is denoted by GOFSSE

q ðVÞ hereinafter.
By a poset ðP;6Þ, we mean a set P together with a

partial order 6 on it. In particular, when 6 is a total order,

we refer to ðP;6Þ as a chain.

Definition 9 Assume that ðA;6AÞ and ðC;6CÞ are two

posets. An order homomorphism is a mapping H : A ! C

such that

a 6A c ) HðaÞ 6C HðcÞ

for all a; c 2 A.

An order homomorphism H : A ! C is said to be an

order isomorphism if it is bijective and H�1 : C ! A is an

order homomorphism as well.

For a positive integer n, the set f1; 2; . . .; ng is written as

[n] in the sequel. Liu and Wang (2018) introduced the

following useful operators for the aggregation of q-

ROMGs.

Definition 10 (Liu and Wang 2018) Let q� 1 and Ai ¼
ðâi; �aiÞ 2 L�q (i 2 ½n�). The q-rung orthopair fuzzy weighted

averaging (q-ROFWA) operator of dimension n is a

mapping f
w : ðL�qÞ

n ! L�q defined as

f
wðA1;A2; . . .;AnÞ ¼ w1A1 � w2A2 � � � � � wnAn;

where w ¼ ðw1;w2; . . .;wnÞT is the weight vector with

0�wi � 1 (i 2 ½n�) and
Pn

i¼1 wi ¼ 1.

According to Liu and Wang (2018), the aggregation

result of q-ROFWA operator can be obtained by

f
wðA1;A2; . . .;AnÞ ¼ 1�

Y

n

k¼1

ð1� âqkÞ
wk

 !1=q

;
Y

n

k¼1

�awk

k

0

@

1

A:

ð4Þ

Definition 11 (Liu and Wang 2018) Let q� 1 and Ai ¼
ðâi; �aiÞ 2 L�q (i 2 ½n�). The q-rung orthopair fuzzy weighted

geometric (q-ROFWG) operator of dimension n is a map-

ping Xw : ðL�qÞ
n ! L�q given by

XwðA1;A2; . . .;AnÞ ¼ Aw1

1 	 Aw2

2 	 � � � 	 Awn
n ;

where w ¼ ðw1;w2; . . .;wnÞT is the weight vector with

0�wi � 1 (i 2 ½n�) and
Pn

i¼1 wi ¼ 1.

Liu and Wang (2018) proved that the aggregation result

of q-ROFWG operator can be obtained as follows:

XwðA1;A2; . . .;AnÞ ¼
Y

n

k¼1

âwk

k ; 1�
Y

n

k¼1

ð1� �aqkÞ
wk

 !1=q
0

@

1

A:

ð5Þ
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3 Minkowski score functions

Definition 12 (Du 2018) Let A ¼ ðâ; �aÞ;C ¼ ðĉ; �cÞ 2 L�q
with q� 1. For p� 1, the Minkowski distance between A

and C is defined as

DpðA;CÞ ¼
â� ĉj jpþ �a� �cj jp

2

� �
1
p

: ð6Þ

In particular, D1ðA;CÞ and D2ðA;CÞ are called the

Hamming distance and Euclidean distance between A and

C, respectively. Based on the Euclidean distance, Xing

et al. (2018) presented a useful measure for evaluating the

preference degree of IFVs as follows:

Definition 13 (Xing et al. 2018) Assume that C ¼ ðĉ; �cÞ 2
L� and a� ¼ ð1; 0Þ. Then

PðCÞ ¼ 1� D2ðC; a�Þ ¼ 1� ð1� ĉÞ2 þ �c2

2

 !1
2

ð7Þ

is called the ideal positive degree (IPD) of C.

Remark 1 Based on a geometric perspective, one can see

that the closer an IFV C ¼ ðĉ; �cÞ is to the positive ideal IFV
a� ¼ ð1; 0Þ, the better it is among all the IFVs in L� and it

should have a greater IPD. In particular, it is easy to see

that Pða�Þ ¼ 1. Thus, intuitively, a� can be regarded as the

best IFV in L� since it has the maximum IPD.

Definition 14 Let p; q� 1 and A ¼ ðâ; �aÞ;C ¼ ðĉ; �cÞ 2 L�q.

Then

Mq
pðA;CÞ ¼

âq � ĉqj jpþ �aq � �cqj jp

2

� �
1
p

ð8Þ

is called the regular Minkowski distance between A and C.

We simply write M1
pðA;CÞ as MpðA;CÞ in the sequel. It

is easy to see that M1
pðA;CÞ ¼ MpðA;CÞ ¼ DpðA;CÞ. That

is, Mq
pðA;CÞ reduces to the Minkowski distance of two

IFVs in L� when q ¼ 1.

Remark 2 It is necessary to highlight the difference

between the regular Minkowski distance defined above and

the Minkowski distance presented by Du (2018). Note first

that Du’s Minkowski distance is well defined and has been

proven to be useful in applications.

At the same time, it is worth noting that the vital information

carried by the parameter q is simply ignored in Eq. (6). More

specifically, for any A ¼ ðâ; �aÞ;C ¼ ðĉ; �cÞ 2 L�q and p; q� 1,

theMinkowski distanceDpðA;CÞ betweenA andCwill remain

unchanged even if the parameter q is altered. Hence, the

Minkowski distance in Du (2018) cannot reflect the impact of

the parameter q on the ranking of q-ROMGs. In contrast, the

regularMinkowski distance of q-ROMGs includes not only the

parameter p for specifying the particular type of distances, but

also the parameter q indicating the specific rung of q-ROMGs.

For any two different q-ROMGs A and C, both parameters

p, q can affect their regular Minkowski distanceMq
pðA;CÞ. In

particular, the regular Minkowski distance between two q-

ROMGs might change when the distance parameter p is fixed

but the rung parameter q is changed. This feature can help

enhance the distance measure given by Du (2018). To

demonstrate this, we present an example as follows.

Example 1 Assume that

A ¼ ðâ; �aÞ ¼ ð0:7; 0:6Þ

and

C ¼ ðĉ; �cÞ ¼ ð0:8; 0:7Þ:

Obviously, A, C can be viewed as both 3-ROMGs and 4-

ROMGs. Note first that Du’s Minkowski distance

D3ðA;CÞ ¼
â� ĉj jpþ �a� �cj jp

2

� �
1
p

¼ 0:7� 0:8j j3þ 0:6� 0:7j j3

2

 !1
3

¼ 0:1

will not change whenever we compute this value in L�3 or

L�4. However, if we regard A, C as 3-ROMGs and set p ¼ 3.

Using Eq. (8), we can compute the regular Minkowski

distance of A and C in L�3 as follows:

M3
3ðA;CÞ ¼

â3 � ĉ3
	

	

	

	

3þ �a3 � �c3
	

	

	

	

3

2

 !

1
3

¼
0:73 � 0:83
	

	

	

	

3þ 0:63 � 0:73
	

	

	

	

3

2

 !

1
3

¼ 0:1509:

Meanwhile, for p ¼ 3 we can also take A, C as 4-ROMGs

and calculate the regular Minkowski distance of them in L�4
as follows:
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M4
3ðA;CÞ ¼

â4 � ĉ4
	

	

	

	

3þ �a4 � �c4
	

	

	

	

3

2

 !

1
3

¼
0:74 � 0:84
	

	

	

	

3þ 0:64 � 0:74
	

	

	

	

3

2

 !

1
3

¼ 0:1460:

It is clear that M3
3ðA;CÞ 6¼ M4

3ðA;CÞ.

The following result further reveals a close connection

between the regular Minkowski distance of q-ROMGs and

the Minkowski distance of IFVs proposed by Du (2018).

Proposition 1 Let p; q� 1 and A ¼ ðâ; �aÞ;C ¼ ðĉ; �cÞ 2 L�q.

Then

Mq
pðA;CÞ ¼ DpðA0;C0Þ

where A0 ¼ ðâq; �aqÞ and C0 ¼ ðĉq; �cqÞ.

Proof Straightforward. h

Remark 3 It is worth noting that v0 ¼ ðx̂q; �xqÞ 2 L� for any
q-ROMG v ¼ ðx̂; �xÞ 2 L�q with q� 1. Given A ¼ ðâ; �aÞ and
C ¼ ðĉ; �cÞ in L�q, we can first transform them into two IFVs

A0 ¼ ðâq; �aqÞ and C0 ¼ ðĉq; �cqÞ. After this process of reg-

ularization, it suffices to compute Du’s Minkowski distance

between the two IFVs A0 and C0 by Eq. (6), which coin-

cides with the regular Minkowski distance between A and

C in L�q. For this reason, the distance given by Eq. (8) is

named as ‘‘regular’’ Minkowski distance.

Using the regular Minkowski distance, Definition 13

can be extended to a more general case of q-ROMGs in the

following way:

Definition 15 Assume that p; q� 1, a� ¼ ð0; 1Þ and

A ¼ ðâ; �aÞ 2 L�q. The mapping Mq
p : L�q ! ½0; 1� given by

Mq
pðAÞ ¼ Mq

pðA; a�Þ ¼
âqp þ ð1� �aqÞp

2


 �
1
p

ð9Þ

is called the Minkowski score function (MSF) of q-

ROMGs.

When p ¼ 1, Eq. (9) can be simplified as

Mq
1ðAÞ ¼

âq � �aq þ 1

2
¼ sðAÞ þ 1

2
; ð10Þ

which is said to be the Hamming score function (HSF) of q-

ROMGs. For convenience, M1
pðAÞ is simply denoted by

MpðAÞ. It should be noted that

M1ðAÞ ¼
â� �aþ 1

2
¼ dðAÞ:

The above result reveals that the MSF Mq
pðAÞ of q-ROMGs

coincides with the expectation score function dðAÞ of IFVs
when p ¼ q ¼ 1.

When p ¼ 2, Eq. (9) can be simplified as:

Mq
2ðAÞ ¼

â2q þ ð1� �aqÞ2

2

" #1
2

; ð11Þ

which is said to be the Euclidean score function (ESF) of q-

ROMGs. In particular,

M2ðAÞ ¼
â2 þ ð1� �aÞ2

2

 !1
2

ð12Þ

is the ESF of IFVs.

Proposition 2 Let A ¼ ðâ; �aÞ 2 L�. Then

M2ðAÞ ¼ 1� PðAcÞ

where Ac ¼ ð�a; âÞ is the complement of A ¼ ðâ; �aÞ.

Proof Straightforward. h

Remark 4 The above result reveals an inner connection

between the ESF value M2ðAÞ of an IFV A 2 L� and the

IPD PðAcÞ of its complement. It shows that when q ¼ 1 the

ESF M2ðAÞ given by Eq. (12) and the IPD P(A) in Xing

et al. (2018) can be regarded as a pair of dual notions. In

other words, Definition 15 extends the IPD of IFVs to a

more general case based on the regular Minkowski distance

of q-ROMGs. By comparing Eq. (7) with Eq. (12), it is

clear that M2ðAÞ also simplifies the calculation of P(A).

By considering both the score function and non-mem-

bership grade of q-ROMGs, we introduce the following

notion, which is called the nonmembership score order

(NSO) of q-ROMGs hereinafter.

Definition 16 Assume that A ¼ ðâ; �aÞ;C ¼ ðĉ; �cÞ 2 L�q

(q� 1). We can define a binary relation � ðs;f Þ
q on L�q in the

following way:

A� ðs;f Þ
q C , ðsA � sCÞ ^ ð�a� �cÞ: ð13Þ

The NSO � ðs;f Þ
q is an extension of the lattice order L�q as

shown below.

Proposition 3 Let A ¼ ðâ; �aÞ;C ¼ ðĉ; �cÞ 2 L�q. Then

A� L�q
C ) A� ðs;f Þ

q C;

where q� 1.

Proof By Eq. (1), we have â� ĉ and �a� �c. Thus, âq � ĉq,

�aq � �aq since q� 1 and â; �a; ĉ; �c� 0. This implies that
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sA ¼ âq � �aq � ĉq � �cq ¼ sC:

Note also that �a� �c. By Eq. (13), it follows that A� ðs;f Þ
q C,

as required. h

The following example demonstrates that the converse

of the above implication, namely

A� ðs;f Þ
q C ) A� L�q

C;

is not true in general.

Example 2 Suppose that

A ¼ ðâ; �aÞ ¼ ð0:8; 0:7Þ

and

C ¼ ðĉ; �cÞ ¼ ð0:6; 0:3Þ

are q-ROMGs in L�3. By Eq. (2), we have

sA ¼ âq � �aq ¼ 0:83 � 0:73 ¼ 0:169

and

sC ¼ ĉq � �cq ¼ 0:63 � 0:33 ¼ 0:189:

It is clear that sA\sC and �a[ �c. Thus, by Eq. (13), we can

see that A� ðs;f Þ
3 C holds. However, note also that â[ ĉ.

This implies that A� L�q
C does not hold. Therefore, the

implication

A� ðs;f Þ
q C ) A� L�q

C;

does not hold in general. In other words, the NSO � ðs;f Þ
q is

a strict extension of the lattice order L�q.

Next, we examine several vital properties of the MSF of

q-ROMGs.

Proposition 4 Let p; q� 1 and A ¼ ðâ; �aÞ 2 L�q. Then

Mq
pðAÞ ¼ 0 , A ¼ ð0; 1Þ:

Proof By Definition 15 and Eq. (9), we have

Mq
pðAÞ ¼

âqp þ ð1� �aqÞp

2


 �
1
p

:

If Mq
pðAÞ ¼ 0, then âqp þ ð1� �aqÞp ¼ 0. Note also that

â� 0 and �a� 1. Thus âqp � 0 and ð1� �aqÞp � 0 since

p; q� 1. We can get âqp ¼ 0 and ð1� �aqÞp ¼ 0. It follows

that A ¼ ðâ; �aÞ ¼ ð0; 1Þ. Conversely, if A ¼ ð0; 1Þ, then

â ¼ 0 and �a ¼ 1. Hence, it is easy to see that Mq
pðAÞ ¼ 0.h

Proposition 5 Let p; q� 1 and A ¼ ðâ; �aÞ 2 L�q. Then

Mq
pðAÞ ¼ 1 , A ¼ ð1; 0Þ:

Proof The proof is omitted since it is similar to what has

been done for Proposition 4. h

It should be noted that even for the same q� 1, MSFs

with different parameter p might not be logically equiva-

lent when we use them to compare q-ROMGs. This can be

seen from the following example.

Example 3 Suppose that

A ¼ ðâ; �aÞ ¼ ð0:8; 0:6Þ

and

C ¼ ðĉ; �cÞ ¼ ð0:7; 0:5Þ

are q-ROMGs in L�2. At first, by setting p ¼ 2 and using

Eq. (11), we have

M2
2ðAÞ ¼

â4 þ ð1� �a2Þ2

2

" #1
2

¼ 0:84 þ ð1� 0:62Þ2

2

" #1
2

¼0:6400

and

M2
2ðCÞ ¼

ĉ4 þ ð1� �c2Þ2

2

" #1
2

¼ 0:74 þ ð1� 0:52Þ2

2

" #1
2

¼0:6335:

It is clear that M2
2ðAÞ ¼ 0:6400[ 0:6335 ¼ M2

2ðCÞ. Thus,
if we compare A, C by means of the ESF of 2-ROMGs,

then A is superior to C .

Moreover, the MSF values of the 2-ROMGs A and C can

be calculated by setting p ¼ 3 in Eq. (9). That is,

M2
3ðAÞ ¼

â6 þ ð1� �a2Þ3

2

" #1
3

¼ 0:86 þ ð1� 0:62Þ3

2

" #1
3

¼0:6400

and

M2
3ðCÞ ¼

ĉ6 þ ð1� �c2Þ3

2

" #1
3

¼ 0:76 þ ð1� 0:52Þ3

2

" #1
3

¼0:6461:

Obviously, M2
3ðAÞ ¼ 0:6400\0:6461 ¼ M2

3ðCÞ. Hence,

we deduce that A is inferior to C if we compare them using

the MSF of 2-ROMGs with p ¼ 3.

From the above discussion, it can be seen that the

comparison results might be completely opposite when q is

fixed but p is changed.

102 Granular Computing (2022) 7:95–111

123



In addition, for any chosen but fixed p� 1, the com-

parison results derived from the same MSF could be dif-

ferent when we change the parameter q of the q-ROMGs

under our consideration.

Example 4 Suppose that

A ¼ ðâ; �aÞ ¼ ð0:80; 0:61Þ

and

C ¼ ðĉ; �cÞ ¼ ð0:85; 0:65Þ:

It is clear that A, C can be viewed as both 3-ROMGs and

4-ROMGs. Firstly, let us take A, C as 3-ROMGs and set

p ¼ 3. Using Eq. (9), we can compute the MSF values of A

and C as follows:

M3
3ðAÞ ¼

â9 þ ð1� �a3Þ3

2

" #1
3

¼ 0:809 þ ð1� 0:613Þ3

2

" #1
3

¼0:6680

and

M3
3ðCÞ ¼

ĉ9 þ ð1� �c3Þ3

2

" #1
3

¼ 0:859 þ ð1� 0:653Þ3

2

" #1
3

¼0:6743:

It is clear thatM3
3ðAÞ ¼ 0:6680\0:6743 ¼ M3

3ðCÞ. Thus, if
A, C is compared in L�3 by using the MSF with p ¼ 3, then

A is inferior to C.

Second, we can also take A, C as 4-ROMGs and

calculate their MSF values with p ¼ 3 as follows:

M4
3ðAÞ ¼

â12 þ ð1� �a4Þ3

2

" #1
3

¼ 0:8012 þ ð1� 0:614Þ3

2

" #1
3

¼0:7075

and

M4
3ðCÞ ¼

ĉ12 þ ð1� �c4Þ3

2

" #1
3

¼ 0:8512 þ ð1� 0:654Þ3

2

" #1
3

¼0:7036:

Obviously, M4
3ðAÞ ¼ 0:7075[ 0:7036 ¼ M4

3ðCÞ. Hence, if
A, C is compared in L�4 by virtue of the MSF with p ¼ 3,

then A is superior to C.

As shown above, the comparison results might be

completely opposite when p is fixed but q is changed.

It is important to see that the MSF is an order homo-

morphism from the complete lattice ðL�q; � L�q
Þ to the

complete lattice ð½0; 1�; �Þ, as shown below.

Proposition 6 Let p; q� 1 and A;C 2 L�q. Then

A� L�q
C ) Mq

pðAÞ�Mq
pðCÞ;

where � L�q
is the lattice order of the complete lattice

ðL�q; � L�q
Þ.

Proof Assume that A ¼ ðâ; �aÞ and C ¼ ðĉ; �cÞ are two q-

ROMGs such that A� L�q
C. According to Eq. (1), it can be

seen that â� ĉ and �a� �c. Thus, âqp � ĉqp and ð1�
�aqÞp �ð1� �cqÞp since p; q� 1. This implies that

Mq
pðAÞ ¼

âqp þ ð1� �aqÞp

2


 �
1
p

� ĉqp þ ð1� �cqÞp

2


 �
1
p

¼ Mq
pðCÞ;

which completes the proof. h

The following example demonstrates that the converse

of the implication in Proposition 6 does not hold in general.

Example 5 Suppose that A ¼ ðâ; �aÞ ¼ ð0:3; 0:6Þ;C ¼
ðĉ; �cÞ ¼ ð0:1; 0:2Þ are two IFVs. Then assume that p ¼ 2,

by Eq. (12), we have

M2ðAÞ ¼
â2 þ ð1� �aÞ2

2

 !1
2

¼ 0:32 þ ð1� 0:6Þ2

2

 !1
2

¼ 0:3536

and

M2ðCÞ ¼
ĉ2 þ ð1� �cÞ2

2

 !1
2

¼ 0:12 þ ð1� 0:2Þ2

2

 !1
2

¼ 0:5701:

Thus it is easy to see that M2ðAÞ\M2ðCÞ. However, one
can find that A� L�q

C does not hold since â[ ĉ. Conse-

quently, the implication

Mq
pðAÞ�Mq

pðCÞ ) A� L�q
C;

does not hold in general.

It should be noted that A� ðs;hÞ
q C ) Mq

pðAÞ�Mq
pðCÞ

does not hold, as illustrated below.

Example 6 Suppose that A ¼ ðâ; �aÞ ¼ ð0:8; 0:6Þ;C ¼
ðĉ; �cÞ ¼ ð0:7; 0:5Þ are two 2-ROMGs. On the one hand,

using Eq. (2) and Eq. (3), we have

sðAÞ ¼ âq � �aq ¼ 0:82 � 0:62 ¼ 0:28; hðAÞ
¼ âq þ �aq ¼ 0:82 þ 0:62 ¼ 1

and
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sðCÞ ¼ĉq � �cq ¼ 0:72 � 0:52 ¼ 0:24; hðCÞ
¼ĉq þ �cq ¼ 0:72 þ 0:52 ¼ 0:74:

According to Definition 7, we can get C� ðs;hÞ
2 A due to

sðAÞ[ sðCÞ.
On the other hand, it has been shown that

M2
3ðCÞ[M2

3ðAÞ in Example 3. Hence, A� ðs;hÞ
q C cannot

imply Mq
pðAÞ�Mq

pðCÞ in general.

The MSF is an order homomorphism from L�q; � ðs;f Þ
q

� �

to ð½0; 1�; �Þ, as revealed by the following result.

Proposition 7 Let p; q� 1 and A;C 2 L�q. Then

A� ðs;f Þ
q C ) Mq

pðAÞ�Mq
pðCÞ;

where � ðs;f Þ
q is the NSO of q-ROMGs.

Proof By Definition 15 and Eq. (9), we have p; q� 1 and

Mq
pðAÞ ¼

âqp þ ð1� �aqÞp

2


 �
1
p

;

Mq
pðCÞ

¼ ĉqp þ ð1� �cqÞp

2


 �
1
p

:

If we compare Mq
pðAÞ and Mq

pðCÞ we just need to compare

âqp þ ð1� �aqÞp and ĉqp þ ð1� �cqÞp, because both of them

are greater than 0. From Eq. (13), we can get �a� �c and

sA � sC, so 1� �aq � 1� �cq because �a� �c� 0 and q� 1.

According to Eq. (2), we can get âq � �aq � ĉq � �cq, then

âq � ĉq � �aq � �cq (or âq � ĉq �ð1� �cqÞ � ð1� �aqÞ). There
are two cases which need to be discussed.

Case 1: If âq � ĉq � 0�ð1� �cqÞ � ð1� �aqÞ, then

according to Eq. (1) and Proposition 6, it is easy to get

that Mq
pðAÞ�Mq

pðCÞ for each p� 1.

Case 2: If 0� âq � ĉq �ð1� �cqÞ � ð1� �aqÞ, then we

can get

ĉq � âq � 1� �aq � 1� �cq

since âq � 1� �aq and ĉq � 1� �cq. Note also that

âq þ ð1� �aqÞ� ĉq þ ð1� �cqÞ. Then we have

âqp þ ð1� �aqÞp

� ĉqp þ ð1� �cqÞp

since xp (p� 1) is a convex function on [0, 1]. Thus, we

have

Mq
pðAÞ�Mq

pðCÞ:

To sum up, we conclude that the MSF is an order homo-

morphism from L�q; � ðs;f Þ
q

� �

to ð½0; 1�; �Þ. h

Proposition 8 Let p; q� 1 and A ¼ ðâ; �aÞ 2 L�q. Then

0�Mq
pðAÞ� 1:

Proof According to Eq. (1), it can be seen that

ð0; 1Þ� L�q
A� L�q

ð1; 0Þ;

where A ¼ ðâ; �aÞ 2 L�q. From Proposition 6, it follows that

Mq
pð0; 1Þ�Mq

pðAÞ�Mq
pð1; 0Þ:

Note also that Mq
pð0; 1Þ ¼ 0 and Mq

pð1; 0Þ ¼ 1. Thus, we

have 0�Mq
pðAÞ� 1, which completes the proof. h

Proposition 9 Let p; q� 1 and A ¼ ðâ; �aÞ 2 L�q with ~a ¼ 0.

Then

Mq
pðAÞ ¼ âq;

where ~a is the hesitancy degree of the q-ROMG A.

Proof According to the definition of hesitancy degree,

~a ¼ 1� âq � �aqð Þ1=q. Thus, for every A ¼ ðâ; �aÞ 2 L�q with

~a ¼ 0, we can get âq ¼ 1� �aq. From Definition 15 and

Eq. (9), it follows that

Mq
pðAÞ ¼

âqp þ ð1� �aqÞp

2


 �
1
p

¼ âqp þ âqp

2


 �1
p

¼ âq;

completing the proof. h

Theorem 3 Let p; q� 1 and A ¼ ðâ; �aÞ 2 L�q. Then

lim
p!1

Mq
pðAÞ ¼ lim

p!1

âqp þ ð1� �aqÞp

2


 �
1
p

¼ 1� �aq:

Proof Let p; q� 1 and A ¼ ðâ; �aÞ 2 L�q. Consider two

vectors a ¼ ðâq; �aqÞT and d ¼ ð0; 1ÞT . The p-norm of the

vector a� d is defined as

k a� d kp¼ j âq � 0 jp þ j �aq � 1 jpð Þ
1
p

¼ âqp þ 1� �aqð Þp½ �
1
p:

By calculation, we have
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lim
p!1

Mq
pðAÞ ¼ lim

p!1

âqp þ ð1� �aqÞp

2


 �
1
p

¼ lim
p!1

âqp þ ð1� �aqÞp½ �
1
p� lim

p!1

1

2

� �1
p

¼ lim
p!1

âqp þ ð1� �aqÞp½ �
1
p

¼ lim
p!1

k a� d kp

¼k a� d k1
¼ maxfâq; 1� �aqg:

Note also that âq þ �aq � 1. It follows that

lim
p!1

Mq
pðAÞ ¼ maxfâq; 1� �aqg ¼ 1� �aq:

This completes the proof. h

The following result regrading the MSF of IFVs can be

easily obtained from Theorem 3 by taking q ¼ 1.

Corollary 1 Let p� 1 and A ¼ ðâ; �aÞ 2 L�. Then

lim
p!1

MpðAÞ ¼ lim
p!1

âp þ ð1� �aÞp

2


 �
1
p

¼ 1� �a:

Remark 5 The graphic illustration of the HSF and ESF of

3-ROMGs is shown in Figs. 1 and 2. In a similar fashion,

Figs. 3, 4 and 5, respectively, give the graphic illustration

of the MSF of 3-ROMGs with p ¼ 5, p ¼ 10 and p ¼ 100.

From Figs. 1 and 2, it is easy to observe that the HSF and

ESF values of 3-ROMGs depend on non-membership

degree and membership degree. As shown in Figs. 3, 4

and 5, the MSF values of 3-ROMGs depend more heavily

on the non-membership degree rather than the membership

degree, when the parameter p increase from p ¼ 5 to

p ¼ 100. Therefore, the parameter p in the definition of

MSFs can reflect the emphasis that decision-makers would

like to put on the non-membership degree. That is to say,

with the aid of the newly proposed MSF of q-ROMGs in

this study, the decision-makers are able to make more

flexible decisions by setting different values of parameter

p. Evidently, Theorem 3 reveals that the greater the value

of parameter p is, the more emphasis the decision-makers

would like to put on the degree of non-membership. Note

also that a consequence with regard to IFVs (i.e., Corol-

lary 1) follows immediately from Theorem 3. This means

that our result can be easily applied to decision making

with intuitionistic fuzzy information as well.

Proposition 10 Let p; q� 1. The MSF Mq
p : L�q ! ½0; 1� is a

surjection.

Proof For each s 2 ½0; 1�, we consider the q-ROMG

A ¼ ðâ; �aÞ ¼ ð
ffiffi

sq
p

;
ffiffiffiffiffiffiffiffiffiffiffi

1� s
q
p

Þ:

Obviously, the hesitancy degree of A is

~a ¼ 1� âq � �aqð Þ1=q¼ 0:

By Proposition 9, it follows that Mq
pðAÞ ¼ âq ¼ s. Hence,

the MSF Mq
p is surjective. h

Proposition 11 Assume that p; q� 1 and A ¼ ðâ; �aÞ 2 L�q.

Then the MSF Mq
pðAÞ is a non-decreasing function with

respect to â.

Proof For any p; q� 1 and A ¼ ðâ; �aÞ 2 L�q, we can get

âqp � 0, ð1� �aqÞp � 0 and âqp�1 � 0 since â� 0 and �a� 1.

Then according to Definition 15 and Eq. (9), we have

Mq
pðAÞ ¼

âqp þ ð1� �aqÞp

2


 �
1
p

¼ âqp þ âqp

2


 �1
p

¼ âq:

The partial derivative function of Mq
p with respect to â is

oMq
pðAÞ
oâ

¼ q � âqp�1

2

âqp þ ð1� �aqÞp

2

� �

1�p
p

� 0:

Hence, Mq
pðAÞ is non-decreasing with respect to â. h

Proposition 12 Assume that p; q� 1 and A ¼ ðâ; �aÞ 2 L�q.

Then the MSF Mq
pðAÞ is a non-increasing function with

respect to �a.

Proof The proof is omitted since it is similar to what has

been done for Proposition 11. h

4 A generalized orthopair fuzzy soft MADM
method

In this section, we propose an approach to MADM based

on the MSF under a generalized orthopair fuzzy environ-

ment. To facilitate our discussion below, let us first denote

the universe of discourse by V ¼ fm1; m2; . . .; mmg. All the
attributes associated with the alternatives in V constitute

the parameter set E ¼ fe1; e2; . . .; eng. A group of spe-

cialists are requested to assess all the alternatives in V
based on the attributes in E. After the assessment, a q-

ROFSS Q ¼ ð eU ;AÞ is constructed with the evaluations of

specialists.
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4.1 An algorithm for MADM

By taking advantages of the MSF and the q-ROFWA (or q-

ROFWG) operator, a MADM approach is presented as

follows:

Algorithm 1

Step 1. Specify q� 1 and construct a q-ROFSS Q ¼
ð eU ;AÞ over V ¼ fm1; m2; . . .; mmg with the collected data of

the decision making problem to be solved. For simplicity,

we denote the approximate function of Q by

eUðejÞðmiÞ ¼ ðûij; �uijÞ;

where j 2 ½n� and i 2 ½m�.

Step 2. Determine the weight vector

w ¼ ðw1;w2; . . .;wnÞT .
Step 3. Using the weight vector w to calculate the

overall generalized orthopair fuzzy preference grade

(OGOFPG) QðmiÞ of the alternative mi in two cases based on
two different operators:

� Case 1: (q-ROFWA based aggregation)

According to Definition 10 and Eq. (4), the OGOFPG

QðmiÞ of mi can be obtained as follows:

QðmiÞ ¼ f
wð eUðe1ÞðmiÞ; eUðe2ÞðmiÞ; . . .; eUðenÞðmiÞÞ

¼ 1�
Y

n

j¼1

1� ûij
� �q� �wj

 !1=q

;
Y

n

j¼1

�uij
� �wj

0

@

1

A

¼ Q̂ðmiÞ; �QðmiÞ
� �

;

Fig. 1 The HSF of 3-ROMGs

Fig. 2 The ESF of 3-ROMGs
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Fig. 3 The MSF of 3-ROMGs with p ¼ 5

Fig. 4 The MSF of 3-ROMGs with p ¼ 10

Fig. 5 The MSF of 3-ROMGs with p ¼ 100
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for i 2 ½m�.
� Case 2: (q-ROFWG based aggregation)

According to Definition 11 and Eq. (5), the OGOFPG

QðmiÞ of mi can be obtained as follows:

QðmiÞ ¼ Xwð eUðe1ÞðmiÞ; eUðe2ÞðmiÞ; . . .; eUðenÞðmiÞÞ

¼
Y

n

j¼1

ûij
� �wj ; 1�

Y

n

j¼1

1� �uij
� �q� �wj

 ! !

¼ Q̂ðmiÞ; �QðmiÞ
� �

;

for i 2 ½m�.
Step 4. Specify the parameter p� 1.

Step 5. Calculate the MSF value Mq
p QðmiÞð Þ of the

OGOFPG QðmiÞ by Eq. (9). That is,

Mq
p QðmiÞð Þ ¼ ðQ̂ðmiÞÞqp þ ð1� ð �QðmiÞÞqÞp

2

" #1
p

for i 2 ½m�.
Step 6. Rank mi (i 2 ½m�) according to the descending

order of the MSF values Mq
p QðmiÞð Þ.

4.2 A case study

To verify the ranking method proposed above, a practical

MADM example originally raised by Liu and Wang (2018)

is revisited. Assume that an investor intends to choose a

company for investment. Five companies in V ¼
fm1; m2; m3; m4; m5g can be taken into consideration as

potential options. The experts evaluate these five

companies according to six criteria in

E ¼ fe1; e2; e3; e4; e5; e6g. The meaning of the criterion

ej ð1� j� 6Þ (Liu and Wang 2018) has been completed as

follows:

• e1 means the technical ability;

• e2 means the expected benefit;

• e3 means the competitive power on the market;

• e4 means the ability of undertaking risks;

• e5 means the management capability;

• e6 means the positive social-political impact.

For the sake of comparison, the evaluations used to

construct the q-ROFSS are adopted verbatim from Liu and

Wang (2018). As shown in Table 1, these results can be

expressed by a 3-rung orthopair fuzzy soft set Q ¼ ð eU ;EÞ
over V. From Table 1, the assessment result of the com-

pany m1 with respect to the criterion e1 is given by the 3-

ROMG eUðe1Þðm1Þ ¼ ð0:5; 0:2Þ. The attribute weight vector
is

w ¼ðw1;w2;w3;w4;w5;w6ÞT

¼ð0:20; 0:10; 0:30; 0:15; 0:15; 0:10ÞT :

We now demonstrate how Algorithm 1 can be used to

solve the above problem in two different cases.

Case 1 (Decision process using q-ROFWA and MSF):

In this case, we calculate the OGOFPGs QðmiÞ ¼
Q̂ðmiÞ; �QðmiÞ
� �

of alternative mi ði ¼ 1; 2; . . .; 5Þ using the q-

ROFWA operator (q ¼ 3). The OGOFPG Qðm1Þ can be

obtained by Eq. (4) and all the results are listed in Table 2.

Table 1 3-Rung orthopair fuzzy

soft set Q ¼ ð eU ;EÞ
V e1 e2 e3 e4 e5 e6

m1 (0.5, 0.2) (0.8, 0.3) (0.8, 0.3) (0.7, 0.3) (0.4, 0.2) (0.4, 0.8)

m2 (0.6, 0.3) (0.5, 0.8) (0.6, 0.5) (0.6, 0.5) (0.7, 0.4) (0.5, 0.6)

m3 (0.3, 0.4) (0.8, 0.5) (0.7, 0.6) (0.6, 0.4) (0.6, 0.2) (0.4, 0.7)

m4 (0.7, 0.4) (0.5, 0.6) (0.7, 0.4) (0.5, 0.5) (0.7, 0.6) (0.6, 0.5)

m5 (0.7, 0.6) (0.6, 0.4) (0.4, 0.7) (0.4, 0.3) (0.7, 0.7) (0.5, 0.4)

Table 2 3-ROFWA-based

OGOFPGs QðmiÞ and MSF

values with p ¼ 1; 2; 3

V QðmiÞ M3
1ðQðmiÞÞ M3

2ðQðmiÞÞ M3
3ðQðmiÞÞ sðQðmiÞÞ hðQðmiÞÞ

m1 (0.6876, 0.2871) 0.6507 0.7276 0.7843 0.3014 0.3488

m2 (0.6033, 0.4660) 0.5592 0.6542 0.7168 0.1184 0.3208

m3 (0.6269, 0.4403) 0.5805 0.6698 0.7307 0.1610 0.3317

m4 (0.6555, 0.4681) 0.5895 0.6651 0.7196 0.1791 0.3842

m5 (0.5780, 0.5344) 0.5202 0.6146 0.6752 0.0405 0.3457
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By setting p ¼ 1, p ¼ 2, p ¼ 3, we can calculate the

HSF value M3
1ðQðmiÞÞ, the ESF values M3

2ðQðmiÞÞ and

M3
3ðQðmiÞÞ of the OGOFPGs QðmiÞ, respectively. For

instance, the scores of Qðm1Þ can be calculated as

M3
1ðQðm1ÞÞ ¼

ðQ̂ðm1ÞÞ3 � ð �Qðm1ÞÞ3 þ 1

2
¼ 0:6507;

M3
2ðQðm1ÞÞ ¼

ðQ̂ðm1ÞÞ6 þ 1� ð �Qðm1ÞÞ3
� �2

2

2

6

4

3

7

5

1
2

¼ 0:7276;

M3
3ðQðm1ÞÞ ¼

ðQ̂ðm1ÞÞ9 þ 1� ð �Qðm1ÞÞ3
� �3

2

2

6

4

3

7

5

1
3

¼ 0:7843:

The other results are shown in Table 2. According to the

descending order of MSF values, the rankings of mi ði ¼
1; 2; . . .; 5Þ are shown in Table 4.

Case 2 (Decision process using q-ROFWG and MSF):

In this case, we obtain the OGOFPGs GðmiÞ ¼
ðĜðmiÞ; �GðmiÞÞ of alternative mi ði ¼ 1; 2; . . .; 5Þ using the q-

ROFWG ðq ¼ 3Þ operator (Liu and Wang 2018). All the

results can be computed by Eq. (5) and are listed in

Table 3. Similar to Case 1, we can calculate the MSF value

M3
pðQðmiÞÞ of the the OGOFPGs GðmiÞ ði ¼ 1; 2; . . .; 5Þ by

setting parameter p ¼ 1, p ¼ 2 and p ¼ 3, respectively. We

also calculate the score sðGðmiÞÞ and accuracy hðGðmiÞÞ of
the OGOFPGs GðmiÞ ði ¼ 1; 2; . . .; 5Þ (In particular, some

of score values sðGðmiÞÞ have been corrected based on the

results obtained by Liu and Wang (2018)). All results are

shown in Table 3. As in Case 1, several rankings of mi ði ¼
1; 2; . . .; 5Þ based on MSF values are shown in Table 4.

4.3 A comparative analysis among different
methods

To further validate the cogency of the newly proposed

approach, we compare the ranking results with those

obtained in other literature. All the ranking results obtained

by different methods are summarized in Table 4. In view of

these results, the following issues deserve to be

emphasized:

First, we can find that there are three distinct ranking

results derived from various decision making approaches,

and the difference among these results is not significant. In

Table 3 3-ROFWG-based

OGOFPGs GðmiÞ and MSF

values with p ¼ 1; 2; 3

V GðmiÞ M3
1ðGðmiÞÞ M3

2ðGðmiÞÞ M3
3ðGðmiÞÞ sðGðmiÞÞ hðGðmiÞÞ

m1 (0.6002, 0.4409) 0.5653 0.6642 0.7289 0.1305 0.3019

m2 (0.5920, 0.5402) 0.5249 0.6134 0.6718 0.0498 0.3651

m3 (0.5406, 0.5212) 0.5082 0.6172 0.6827 0.0164 0.2996

m4 (0.6337, 0.4926) 0.5675 0.6481 0.7044 0.1349 0.3740

m5 (0.5181, 0.6083) 0.4570 0.5567 0.6162 – 0.0860 0.3642

Table 4 Ranking results given

by different methods
Methods Ranking results

Minkowski-type distance-based method 1 with p ¼ 1 (Du 2018) m1 � m4 � m3 � m2 � m5
Minkowski-type distance-based method 1 with p ¼ 2 (Du 2018) m1 � m4 � m3 � m2 � m5
Minkowski-type distance-based method 1 with p ¼ 5 (Du 2018) m1 � m4 � m3 � m2 � m5
Minkowski-type distance-based method 2 with p ¼ 1 (Du 2018) m1 � m4 � m3 � m2 � m5
Minkowski-type distance-based method 2 with p ¼ 2 (Du 2018) m1 � m4 � m3 � m2 � m5
Minkowski-type distance-based method 2 with p ¼ 5 (Du 2018) m1 � m3 � m4 � m2 � m5
q-ROFWA and � ðs;hÞ (Liu and Wang 2018) m1 � m4 � m3 � m2 � m5

q-ROFWG and � ðs;hÞ (Liu and Wang 2018) m4 � m1 � m2 � m3 � m5

q-ROFWA and MSF with p ¼ 1 (Algorithm 1) m1 � m4 � m3 � m2 � m5
q-ROFWA and MSF with p ¼ 2 (Algorithm 1) m1 � m3 � m4 � m2 � m5
q-ROFWA and MSF with p ¼ 3 (Algorithm 1) m1 � m3 � m4 � m2 � m5
q-ROFWG and MSF with p ¼ 1 (Algorithm 1) m4 � m1 � m2 � m3 � m5
q-ROFWG and MSF with p ¼ 2 (Algorithm 1) m1 � m4 � m3 � m2 � m5
q-ROFWG and MSF with p ¼ 3 (Algorithm 1) m1 � m4 � m3 � m2 � m5
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fact, almost all rankings indicate that m1 is the best com-

pany and m5 is the worst one. As shown in Table 4, the six

rankings derived from two Minkowski-type distance-based

methods only have minor divergence with regard to the

ranking of m3 and m4. Particularly, all three results obtained
from Minkowski-type distance-based method 1 in Du

(2018) are completely consistent. Nonetheless, by taking

the parameter p ¼ 5, Minkowski-type distance-based

method 2 in (Du 2018) results in a slightly different

ranking. This shows that Du’s Minkowski-type distance-

based method is not sensitive to the variation of parameter

p.

Secondly, note that the ranking results based on the ESF

values M3
2ðQðmiÞÞ are different from those rankings based

on the HSF value M3
1ðQðmiÞÞ in general. This is due to the

fact that the MSFs with different parameter p are essen-

tially not equivalent for comparing q-ROMGs as shown in

Sect. 3. Nevertheless, it is interesting to see that the

ranking results derived from the MSFs with different

parameter p might also be identical in some cases. For

instance, the ranking based on q-ROFWA and M3
2ðQðmiÞÞ

coincides with the ranking obtained by virtue of q-ROFWA

and M3
3ðQðmiÞÞ.

Lastly, note that the ranking obtained by q-ROFWA and

� ðs;hÞ is identical to the one based on the HSF value

M3
1ðQðmiÞÞ. Meanwhile, the ranking obtained by q-ROFWG

and � ðs;hÞ is identical to the one based on the HSF value

M3
1ðGðmiÞÞ. Since all the scores sðQðmiÞÞ (1� i� 5) are

different, only the score function is used when comparing

QðmiÞ or GðmiÞ. Furthermore, it is easy to observe that the

HSF given by Eq. (2) and the score function given by

Eq. (10) are equivalent for comparing q-ROMGs. There-

fore, the ranking approaches proposed by Liu and Wang

(2018) can be seen as special cases of the newly proposed

Algorithm 1 in this situation.

In view of the above discussion, it can be concluded that

our new approach provides a general and flexible way of

handling MADM problems under a generalized orthopair

fuzzy environment.

5 Conclusion

We have investigated how to compare and rank q-ROMGs

in the complete lattice L�q from a geometric perspective. We

proposed the regular Minkowski distance of q-ROMGs and

related it to some useful distance measures in Du (2018)

and Xing et al. (2018). By using the regular Minkowski

distance, we defined the MSF of q-ROMGs, whose ratio-

nale depends on the idea that a q-ROMG farther from the

negative ideal q-ROMG should possess a greater score

value. It has been revealed that the MSF extends the IPD in

Xing et al. (2018) and the expectation score function in

Feng et al. (2019a, b) to a more general case of q-ROMGs.

We also showed that our new score functions can over-

come the difficulty that Hamming (or Euclidean) distance-

based score functions fail to distinguish the IFVs with

identical expectation score (or IPD). We investigated sev-

eral important properties of MSFs and examined the

influence of parameters p, q on the values of MSFs. It has

been shown that the parameter p in the definition of MSFs

can reflect the emphasis that decision-makers would like to

put on the non-membership degree of q-ROMGs. In fact, it

has been found that the MSF value depends more heavily

on the non-membership degree with the enlargement of the

parameter p. In addition, when two different q-ROMGs are

indiscernible since they have the same MSF value, the

parameter p can be adjusted to make them eventually

distinguishable. This enables the decision-makers to make

more flexible decisions in practical MADM applications by

setting different values of the parameter p. With the help of

the MSF and the q-ROFWA (or q-ROFWG) operator, we

also developed a generalized orthopair fuzzy soft MADM

method. Based on a benchmark problem, a brief compar-

ative analysis has been made between our method and

several well-known approaches, which demonstrate that

the newly proposed approach provides a more general and

flexible way for solving q-ROFSS based MADM problems.

In the future, we will further explore the applications of

MSFs and develop new MADM methods based on gener-

alized orthopair fuzzy soft sets.
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