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Abstract
In this paper, a parametric generalization of Shannon entropy, i.e., Logarithmic b-Norm entropy measure has been

discussed. We have also derived the desired entropy characteristics of new generalized entropy measure including its

positivity, expandability, extensivity and additivity and in addition, provided the much desired scale invariance property.

This striking property is satisfied neither by Shannon entropy nor by its existing generalization like Renyi’s and Tsallis

entropies, etc. Then we define the scale-invariant entropy measure in intuitionistic fuzzy set and discuss its several

mathematical properties and validity. Thereafter, we suggested a new multi-criteria decision-making (MCDM) method

using weighted correlation coefficient-based VIKOR approach for finding the ranking and measuring the uncertainity in

place of distance measure. The proposed decision-making technique is well described through the numerical example

based on supplier selection with the help of two approaches. In first approach we considered the case of partially known

criteria weights, whereas unknown criteria weights are discussed in second approach. The comparative results show the

flexibility and effectiveness of the proposed approach to solve problems in real life.

Keywords Shannon’s � Fuzzy set � Intuitionistic fuzzy set � Scale-invariant intuitionistic fuzzy entropy � Multi-criteria

decision-making (MCDM) � VIsekriterijumska i Kompromisno Optimizacija Resenje (VIKOR)

1 Introduction

To cope with the vague and uncertain information appro-

priately, Zadeh (1965) proposed the theory of fuzzy sets

(FSs) to extend the classical set, depicted by the mem-

bership degree (l). Before the development of FS theory,

the only method to compute uncertainty was probability.

But probability measures the uncertainty that should be

expressed in precise numbers. The indistinct terms such as

high speed, very rich, very intelligent can be quantified by

FS theory. Therefore, the FSs are more useful than classical

sets and probability theory to express uncertainty. Due to

its flexible approach, FSs find their applications in deci-

sion-making, in risk evaluation, etc. Various valuable

generalizations (Arya and Kumar 2020a) of fuzzy set the-

ory have been proposed, but FSs are not enough to handle

the hesitancy degree.

The intuitionistic fuzzy set theory was proposed by

Atanassov (1986) as a new prominent extension of FS.

IFSs studied by Atanassov (1986) are characterized by two

degrees membership ðl 2 ½0; 1�Þ and non-membership ðm 2
½0; 1�Þ and satisfying 0�ðlþ mÞ� 1. He added third factor

in the existing framework of FSs called ’intuitionistic

index’ ðpÞ with the equation lþ mþ p ¼ 1. Ratika and

Kumar (2020) introduced a measure to compute the degree

of distance between intuitionistic fuzzy set based on

Renyi–Tsallis entropy. Thus, IFSs are more flexible of

handling the uncertain real-life problems. Let us visit an

example on voting. During voting, a section of people that

votes in favor of government comprises the membership

degree and a section of people that does not vote in favor of

the government constitutes the non-membership degree. In

reality, another section of people also exists that is inde-

terminate to vote for or to vote against the government. In

FS proposed by Zadeh (1968), such section of people does
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not get due representation. To cover up this section of

people, Attanasov (1986) added one more component in

the existing structure of FS called ‘intuitionistic index’ ðpÞ.
This improved the adaptability of FSs for real-world

problems.

Weight determination is an key investigation for fuzzy

MCDM as considered by different authors (Arya and

Kumar 2020, 2020c; Fahmi et al. 2019; Joshi and Kumar

2018). Weight entropy method is frequently employed

method among other methods. Thus, entropy becomes

burning topic of FSs. Several researchers considered IFE

and suggested different formulas. New definition and for-

mula of entropy for IFs introduced by Zhu and Li (2016).

Bhandari and Pal (1975) was the initial researcher who

suggested the generalized entropy. Cosine function-based

IFE suggested by Liu and Ren (2015). Logarithmic func-

tion-based entropy suggested by Mao et al. (2013); Xiong

et al. (2017) and Mishra et al. (2017). Joshi and Kumar

(2018) implemented parameter-based entropy measure.

While changing the parameter the entropy measure is both

flexible as well consistent.

Multi-criteria decision-making (MCDM) techniques are

useful to make a choice of best alternative among multiple

decision alternatives. Therefore, multi-criteria decision-

making (MCDM) is an important area where the IFSs have

a wide scope of applications. Many theories and tools have

been developed by different authors for solving MCDM

problems (Chen and Chang 2016; Chen et al. 2016; Zeng

et al. 2019; Rani et al. 2019). Opricovic (1998) introduced

VIKOR (VIsekriterijumska Optimizacija i Kompromisno

Resenje) method, Benayoun et al. (1966) suggested the

ELECTRE (Elimination et choice translating reality ),

PROMETHEE (Preference Ranking Organization Method

for Enrichment Evaluations) technique introduced by

Brans and Mareschel (1984). Each method has its own

advantages and drawbacks. Citing the drawbacks of

PROMOTHEE and ELECTRE, Opricovic introduced an

extended VIKOR method. VIKOR method by (Opricovic

and Tzeng 2007; Arya and Kumar 2020c) provides a

comprehensive solution that makes it more suitable for

practical applications. The VIKOR method employed by

researchers till now is based on distance measure. But it

has been observed that the output of distance measure-

based decision-making methods may vary with the distance

measure used by Joshi and Kumar (2018). For deciding the

most suitable alternative many decision-making methods

uses score functions or accuracy functions. But, Ye (2010)

argued that accuracy functions or score functions do not

provide adequate information about alternatives. No study

has been conducted so far on weighted correlation coeffi-

cients based on VIKOR approach in the best of my

knowledge. Therefore, in this paper, we propose a scale

invariant using weighted correlation coefficients based on

VIKOR approach.

Further, criteria weights vector plays a deciding part to

resolve the multi-criteria decision-making (MCDM) prob-

lems. The selection of most desirable alternative is feasible

only by proper evaluation of criteria weights. After sur-

veying the literature, Chen and Li (2010) splits criteria

weight in objective and subjective methods. In subjective

method, the criteria weights are decided purely according

to the preference of decision-makers (Arya and Kumar

2020; Hwang and Lin 1987; Joshi and Kumar 2018), while

in objective weight method, the criteria weights are

determined by solving mathematical programming models

(Jamkhaneh 2018; Mahmood et al. 2018), which neglect

the subjective judgment information of DMs. Entropy

method is another reliable and entrusted approach under

objective weight evaluation category. The proposed paper

adapted an entropy method to determine the criteria

weights and and to reflect both the objective information as

well as subjective information of the DM’s. An integrated

method seems more meaningful and desirable for deter-

mining the criteria weights. This study aims the following

contributions: in this paper, we develop a new information

measure called logarithmic intuitionistic fuzzy (IF) infor-

mation measure for IFSs. It is based on the Renyi’s con-

cept. The proposed measure has some valuable properties,

which are proved to check the applicability of the proposed

measure. Next, we study a novel multi-criteria decision-

making (MCDM) problem using weighted correlation

coefficients where the weight information on the criteria is

complete known or partial unknown. Finally, a ranking

method using VIKOR is implemented to rank the

alternatives.

The motivation of this paper are: to compute the dis-

tance between ideal solutions and alternatives, generally

we use different distance measures. As Xiao and Wang

(2017) proposed intuitionistic fuzzy VIKOR method based

on distance measure and calculates the group utility and

individual regret by the distance measure, whereas we

evaluate the correlation between the different alternatives

and positive as well as negative ideal solutions to decide

the best alternative. We have not used distance measure

because in some of the special cases it cannot successfully

decide the closeness of each substitute. In this paper, we

introduce a new multi-criteria decision-making (MCDM)

method by using weighted correlation coefficient based on

VIKOR approach. For measuring the correlation degree,

we have used the correlation coefficient for IFSs and fur-

ther scale-invariant entropy measure is proposed for cal-

culating the uncertainty.

Since the continuous advancement of science requires

experimentation with more and more complex physical

systems of nature and the analysis of complex data
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structure arising from them, there has always been a quest

for new, more general measures of uncertainty that could

possibly explain such complex phenomena more accu-

rately. With this view, several other one and two parameter

generalization of the entropy functional have been pro-

posed in the literature, although not all of them have sig-

nificant applications with experimental validity.

The major contribution of our proposed work as follows:

• We proposed a new entropy measure which is scale

invariant for complete probability distribution, whereas

other entropy measures does not holds scale invariance

property. We have mentioned this generalized entropy

as the Logarithmic b Norm Entropy(LNE).

• Also, we proposed intuitionistic fuzzy scale-invariant

entropy and prove its validity, whereas other intuition-

istic fuzzy measures do not hold scale invariance

property. We call such entropy is Logarithm b-Norm
intuitionistic fuzzy based on entropy.

• Thereafter, we suggested correlation coefficient-based

VIKOR approach for finding the ranking and measuring

the uncertainty in place of distance measure. Correla-

tion coefficient-based VIKOR approach has not been

used till date in best of my knowledge.

• After that, we compared our proposed work with the

existing researchers those who have used distance

measure-based VIKOR method. After comparing, we

reached to the conclusion that the proposed work attains

the best result.

To achieve the proposed objectives, the present paper is

arranged in six sections: Sect. 1, describes the contribution

of preliminary researchers in this field, origin of motivation

and goals to be attained via this contribution. In Sect. 2,

existing literature related to proposed work is reviewed and

a new scale-invariant entropy measure for probabilistic

view point has been defined. Then a new intuitionistic

fuzzy scale-invariant measure analogous to the well-known

Renyi’s and Tsallis entropy are proposed and validated.

Section 3 is utilized to recognize some basic definitions. In

Sect. 4, we proposed a scale-invariant information measure

for intuitionistic fuzzy set and proving the validation of it.

In Sect. 5, we introduced a new multi-criteria decision-

making (MCDM) technique that builds on new proposed

measure and weighted correlation coefficients-based

VIKOR approach. The application of the suggested multi-

criteria decision-making (MCDM) method in actual prob-

lems is described in Sect. 6 with the help of example on

supplier selection problem. Eventually, the last section

draws ‘‘Conclusions’’.

2 Scale-invariant generalized information
measure

Let Cn ¼ fX ¼ ð-1;-2; :::;-nÞ : -i � 0; i ¼ 1; 2; :::; n;
Pn

i¼1 -i ¼ 1g; n� 2 be a set of discrete probability distri-

bution. For any probability distribution X ¼ ð-1;-2;

:::;-nÞ 2 Cn, Shannon defined an information measure

given by

HShannonðXÞ ¼ �
Xn

i¼1

ð-iÞ logð-iÞ: ð1Þ

Renyi’s (1961) generalized Shannon measure as:

HRenyiðXÞ ¼
1

1� b
log

Xn

i¼1

-b
i

 !" #

; b[ 0ð6¼ 1Þ;

�
Pn

i¼1ð-iÞ logð-iÞ; b ¼ 1:

8
><

>:
ð2Þ

Remark 1 If b ¼ 2 in (2), (2) becomes Renyi Index or

collision entropy

i:e:; Hb¼2
RenyiðXÞ ¼ logD

Xn

i¼1

-2
i

 !�1

: ð3Þ

2. If b ! 1, the Renyi’s entropy Hb converges to the min

entropy H1:

H1ðXÞ ¼ � logðmaxðpiÞÞ: ð4Þ

However, in the literature of information theory, there exist

several versions of Shannon’s entropy (1948). We intro-

duced a new information measure bHnewðXÞ : Cn ! Rþ

(set of positive real numbers); n� 2 as follows:

bHnewðXÞ ¼
1

b�1 � b
log

Xn

i¼1

-b
i

 !1
b

� log
Xn

i¼1

-
1
b

i

 !b
2

4

3

5

¼ 1

b�1 � b
log

Pn
i¼1 -

b
i

� �1
b

Pn
i¼1 -

1
b

i

� �b

2

6
6
6
4

3

7
7
7
5

bHnewðXÞ ¼
1

b�1 � b
log

kXkb
kXkb�1

 !" #

¼ 1

b�1 � b
log kXkb � log kXkb�1

h i
;

ð5Þ

where kXkb denotes the b-Norm of the function X ¼

f-1;-2; :::;-ng defined as kXkb ¼
Pn

i¼1 -
b
i

� �b�1

.

3. If b ¼ 1, then (5) recovers Shannon entropy.
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4. bHnewðXÞ ¼b�1 HnewðXÞ, that is, (5) is symmetric with

respect to ðb , b�1Þ.
However, several generalized versions of existing

entropy (Shannon’s, Renyi’s and Tsallis entropy) are

available in the literature. By noting their similarity with

the b norm entropy, we denote the generalized entropy

given in (5) as the Logarithmic b-Norm entropy for

X 2 Cn. It is interesting to note that bHnewðXÞ is symmetric

in the tuning parameter ðb; b�1Þ.
The major advantage of Logarithmic entropy in (5) is its

scale invariance property:

bHnewðc XÞ ¼b HnewðXÞ for any X 2 Cn, c; b[ 0. This

striking property is satisfied neither by the Shannon entropy

nor by its existing generalizations like Renyi’s, Tsallis

entropies, etc. Therefore, it appears that the Logarithmic b-
Norm entropy is the parameteric generalization of the

Shannon and Renyi entropy over X 2 Cn that is scale

invariant over the complete probability distributions Cn.

2.1 Properties of generalized measure presented
in (5)

Theorem 2.1 For any X 2 Cn; and bHnewðXÞ satisfies the
following properties:

a bHnewðXÞ� 0 for all b[ 0ð6¼ 1Þ. [Non-negativity]

b bHnewð-1;-2; :::;-nÞ is a symmetric function of

ð-1;-2; :::;-nÞ.
c bHnewð0; 1Þ ¼ 0 ¼b Hnewð1; 0Þ. [Decisivity]

d For any X ¼ ð-1;-2; :::;-nÞ 2 Cn, we have

bHnewðXÞ ¼b Hnewð-1;-2; :::;-n; 0Þ.
[Expandability]

e For X ¼ ð-1;-2; :::;-nÞ 2 Cn and

N ¼ ðn1; n2; :::; nmÞ 2 Cm, let us define their indepen-

dent combination as X � N ¼ ð-injÞi¼1;:::;n;j¼1;:::;m:

Then, bHnewðX � NÞ ¼b HnewðXÞ þb HnewðNÞ.
[Shannon additivity/ Extensivity]

f bHnewð12 ; 12Þ ¼ 1. [Normalize]

g bHnewð-1;-2; :::::;-nÞ� bHnewð1n ; 1n ; :::; 1nÞ ¼ logðnÞ.
h bHnewð-1;-2; ::::;-nÞ is continuous in -0

is for all i ¼
1; 2; :::n and b[ 0.

i For b[ 0, such that lnkXkb is convex in X. Then,

bHnewðXÞ is concave in X 2 Cn.

Proof (a). The entropy bHnewðXÞ is non- negative for all

b[ 0.

We consider the following cases:

Case(i): When b[ 1, this implies b�1\1

Xn

i¼1

-b
i

 !1
b

\1 and
Xn

i¼1

-
1
b

i

 !b

[ 1: ð6Þ

Taking logarithm on both side (6),

log
Xn

i¼1

-b
i

 !1
b

\ log 1 ¼ 0 and

log
Xn

i¼1

-
1
b

i

 !b

[ log 1 ¼ 0:

ð7Þ

From (7), we get

log
Xn

i¼1

-b
i

 !1
b

� log
Xn

i¼1

-
1
b

i

 !b

\0: ð8Þ

Since, b[ 1, which implies ðb�1 � bÞ\0:

Therefore, from (8), we get

bHnewðXÞ ¼
1

b�1 � b
log

Xn

i¼1

-b
i

 !1
b

� log
Xn

i¼1

-
1
b

i

 !b
2

4

3

5[ 0

¼ 1

b�1 � b
log

Pn
i¼1 -

b
i

� �1
b

Pn
i¼1 -

1
b

i

� �b

2

6
6
6
4

3

7
7
7
5

¼ 1

b�1 � b
log kXkb � log kXkb�1

h i
;

i.e., bHnewðXÞ[ 0:

Case(ii): Similarly, for b\1, and b�1 [ 1, which

implies ðb�1 � bÞ[ 0 and we get

log
Xn

i¼1

-b
i

 !1
b

� log
Xn

i¼1

-
1
b

i

 !b

[ 0: ð9Þ

Therefore, from (9), we get

bHnewðXÞ ¼
1

b�1 � b
log

Xn

i¼1

-b
i

 !1
b

� log
Xn

i¼1

-
1
b

i

 !b
2

4

3

5[ 0

¼ 1

b�1 � b
log

Pn
i¼1 -

b
i

� �1
b

Pn
i¼1 -

1
b

i

� �b

2

6
6
6
4

3

7
7
7
5

¼ 1

b�1 � b
log kXkb � log kXkb�1

h i
;

ð10Þ

i.e., bHnewðXÞ[ 0.
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Now, combine the case (i), (ii) and property (c) that

gives non-negativity, i.e., bHnew � 0.

(b–c). Here, property (b) and (c) are proved precisely by

the definition of Logarithmic Norm entropy.

(d). By definition (5), this proves the property trivially.

(e). First, we note that, for any b[ 0, we have

kX � Nkb ¼
Xn

i¼1

Xm

j¼1

ð-injÞb
 !1

b

¼
Xn

i¼1

ð-iÞb
Xm

j¼1

ðnjÞb
 !1

b

¼kXkb:kNkb:

Therefore, for b 6¼ 1ðb[ 0Þ, we get

bHnewðX � NÞ ¼ 1

b�1 � b
lnkX � Nkb � lnkX � Nkb�1

h i

¼b HnewðXÞ þb HnewðNÞ:

(h). The proof for the case b 6¼ 1 follows directly from the

continuity of the norm functionals kXkb and the Loga-

rithmic function.

(i). Let us assume the property (j) holds and take

X1;X2 2 Cn, k 2 ½0; 1�. Take b\1, by Minkowski inequal-

ity, we have

kk X1 þ ð1� kÞ X2kb � k kX1kb þ ð1� kÞ kX2kb: ð11Þ

Combining it with the monotonicity and concavity of

logarithmic function, we get

ln kkX1þð1� kÞ X2kb�ln ½k kX1kbþð1� kÞ kX2kb�
� k ln kX1kb þ ð1� kÞ ln kX2kb:

On the other hand, by convexity of ln kX1kb�1 , we get

ln kk X1 þ ð1� kÞ X2kb�1 � k ln kX1kb�1

þ ð1� kÞ ln kX2kb�1 :

Thus, along with ðb�1 � bÞ[ 0, for b\1 finally we get

bHnewðk X1 þ ð1� kÞ X2Þ

¼ 1

b�1 � b
ln kk X1 þ ð1� kÞ X2kb
h

�ln kk X1 þ ð1� kÞ X2kb�1

i

� 1

b�1 � b
k ln kX1k þ ð1� kÞ kX2kb
h

�k ln kX1kb�1 � ð1� kÞ ln kX2kb�1

i

¼ 1

b�1 � b
k fln kX1k � ln kX1kb�1g þ ð1� kÞ fkX2kb
h

�ln kX2kb�1

i

¼ k bHnewðX1Þ þ ð1� kÞ bHnewðX2Þ:
ð12Þ

This proves the concavity of scale-invariant entropy. h

3 Scale-invariant intuitionistic fuzzy
information measure

Definition 3.1 (Zadeh 1968) Let Y ¼ ðy1; y2; :::; ynÞ be a

non-empty set, FS ~S is given by

~S ¼ fhyi; l ~SðyiÞijyi 2 Yg; ð13Þ

where l ~S : Y ! ½0; 1� denotes the membership function and

l ~SðyiÞ 2 ½0; 1� represents the membership degree of yi 2 Y

in ~S.

The idea of FSs extended by Atanassov (1986) by

adding one more component named ‘‘Hesitancy Degree’’,

thus presenting a new concept called ‘‘Intuitionistic Fuzzy

Set (IFS)’’.

Definition 3.2 (Atanassov 1986) For a universe of dis-

course Y ¼ ðy1; y2; :::; ynÞ, an IFS Ŝ is given by

Ŝ ¼ fhyi; lŜðyiÞ; mŜðyiÞijyi 2 Yg; ð14Þ

where lŜðyiÞ denotes membership degree and mŜðyiÞ
denotes non-membership degrees of yi 2 Y in Ŝ satisfying

0� lŜðyiÞ þ mŜðyiÞ� 1. The number pŜðyiÞ ¼ 1� lŜðyiÞ �
mŜðyiÞ denotes the intuitionistic index or hesitancy degree.

If we take pŜðyiÞ ¼ 0, then IFS become FSs. For an IFS ,

ðlŜðsiÞ; mŜðsiÞÞ is termed as intuitionistic fuzzy number

(IFN) where every IFN is represented as k ¼ ðlk; mkÞ,
where lk and mk lie in [0, 1] with lk þ mk � 1. In addition to

this, ~SðkÞ ¼ lk � mk and ĤðkÞ ¼ lk þ mk we represent the

‘‘score value ’’ and ‘‘accuracy degree’’ of k, respectively.
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In this article, IFS(Y) and FS(Y) constitute the set of all

IFSs and set of all FSs on Y independently. Logarithms are

assigned to the base 020 unless or otherwise stated.

Definition 3.3 (Xu 2007; Yager 2006) Let IFNs k1 ¼ ðlk1 ,
mk1Þ , k2 ¼ ðlk2 , mk2Þ and k3 ¼ ðlk3 , mk3Þ, the set operations
are stated as below:

1. k1 þ k2 ¼ ðlk1 þ lk2 � lk1lk2 ; mk1mk2Þ,
2. k1 � k2 ¼ ðlk1lk2 ; mk1 þ mk2 � mk1mk2Þ,
3. bk ¼ 1� ð1� lkÞb; ðmkÞb

� �
; b[ 0,

4. kb ¼ ðlkÞ
b; 1� ð1� mkÞb

� �
; b[ 0.

Definition 3.4 (Xia and Xu 2012) Let ki ¼ ðlki , mkiÞ,
where ði ¼ 1; 2; :::; nÞ be a group of IFNs. Suppose j ¼
ðj1; j2; :::; jnÞT be the weight vector of kiði ¼ 1; 2; :::; nÞ
where ji 2 ½0; 1� fulfilling the condition

Pn
i¼1 ji ¼ 1.

Function SIFWA : Un ! U defined as

SIFWAðk1; k2; :::; knÞ ¼ j1k1 þ j2k2 þ :::þ jnkn

¼
Qn

i¼1 l
ji
ki

Qn
i¼1 l

ji
ki
þ
Qn

i¼1ð1� lkiÞ
j

i

;

Qn
i¼1 m

ji
ki

Qn
i¼1 m

ji
ki
þ
Qn

i¼1ð1� mkiÞ
j

i

 !

ð15Þ

is known as symmetric intuitionistic fuzzy weighted aver-

aging (SIFWA) operator.

Definition 3.5 (Atanassov 1986) ( Operations on IFSs ).

For any T̂ ; Ŝ 2 IFSðYÞ defined by:

T̂ ¼fhyi; lT̂ðyiÞ; mT̂ðyiÞijyi 2 Yg; ð16Þ

Ŝ ¼fhyi; lŜðyiÞ; mŜðyiÞijyi 2 Yg; ð17Þ

the regular set operations and relations are considered as:

1. T̂ � Ŝ if and only if T̂ � Ŝ, i.e., if lT̂ðyiÞ� lŜðyiÞ and
mT̂ðyiÞ� mŜðyiÞ for lŜðyiÞ� mŜðyiÞ, or if lT̂ðyiÞ� mŜðyiÞ
and mT̂ðyiÞ� mŜðyiÞ, for lŜðyiÞ� mŜðyiÞ for any yi 2 Y ;

2. T̂ ¼ Ŝ if and only if T̂ � Ŝ and Ŝ � T̂ ;

3. T̂
c ¼ fhyi; mT̂ðyiÞ; lT̂ðyiÞijyi 2 Yg;

4. T̂ \ Ŝ ¼ fhlT̂ðyiÞ ^ lŜðyiÞand mT̂ðyiÞ _ mŜðyiÞijyi 2 Yg;
5. T̂ [ Ŝ ¼ fhlT̂ðyiÞ _ lŜðyiÞand mT̂ðyiÞ ^ mŜðyiÞijyi 2 Yg.

4 Entropy for FSs and IFSs

Definition 4.1 (Zadeh 1965) (Fuzzy Entropy ). A real

function ~/ : FSðYÞ ! ½0;1Þ is termed as fuzzy entropy

whenever it satisfies the subsequent properties:

1. ~S is crisp set if and only if ~/ð ~SÞ ¼ 0; For all ~S 2 FSðYÞ.

2. If l ~S ¼ 0:5 if and only if ~/ð ~SÞ is maximum for all

~S 2 FSðYÞ.
3. For any ~T; ~S 2 FSðYÞ; ~/ð ~TÞ� ~/ð ~SÞ if ~T is crisper than

~S, that is, l ~T � l ~S if l ~S � 0:5 and l ~T � l ~S if l ~S � 0:5.

4. ~/ð ~SÞ ¼ ~/ð ~SÞc, where ð ~SÞc denotes complement of
~S 2 FSðYÞ.

Since for an IFS, lþ mþ p ¼ 1, accordingly, seeing

ðl; m; pÞ as probability distribution, Hung and Yang (2006)

gave a new entropy for IFSs, by extending the idea of Luca

and Termini (1972).

Definition 4.2 (Atanassov 1986) (Intuitionistic fuzzy

entropy). A real function �/ : IFSðYÞ ! ½0;1Þ is known as

an entropy on IFS(Y) if the following properties are

satisfied:

1. Ŝ is a crisp set if and only if �/ðŜÞ ¼ 0.

2. The value of �/ðŜÞ is maximum at lŜ ¼ mŜ ¼ pŜ ¼ 1
3
.

3. �/ðT̂Þ� �/ðŜÞ if and only if T̂ is crisper than Ŝ, that is,

lT̂ � lŜ; mT̂ � mŜ if minðlT̂ ; mŜÞ� 1
3
, and

lT̂ � lŜ; mT̂ � mŜ if maxðlŜ; mŜÞ� 1
3
.

4. �/ðŜÞ ¼ �/ðŜÞc where ðŜÞc denotes complement of Ŝ.

Definition 4.3 (Szmidt and Kacprzyk 2002) An entropy on

IFS(Y) is a real-valued function A: IFSðYÞ ! ½0; 1�, which
fulfills the properties as below:

@1. AðT̂Þ ¼ 1 if and only if lT̂ðyiÞ ¼ mT̂ðyiÞ, for all

yi 2 Y .

@2. AðT̂Þ ¼ 0 if and only if T̂ is crisp set, i.e., lT̂ðyiÞ ¼
0; mT̂ðyiÞ ¼ 1 or lT̂ðyiÞ ¼ 1; mT̂ðyiÞ ¼ 0 for all yi 2 Y .

@3. AðT̂Þ�AðŜÞ if and only if T̂ � Ŝ.

@4. AðT̂Þ ¼ AðT̂Þc.

Definition 4.4 [Correlation coefficients (Gerstenkorn and

Manko 1991)]. Suppose Ŝ1 ¼ fhyi; lŜ1ðyiÞ; mŜ1ðyiÞijyi 2 Yg
and Ŝ2 ¼ fhyi; lŜ2ðyiÞ; mŜ2ðyiÞijyi 2 Yg are two IFSs. Ger-

stenkorn and Manko define correlation coefficient iðŜ1; Ŝ2Þ
between Ŝ1 and Ŝ2 as follows:

iðŜ1; Ŝ2Þ ¼
FðŜ1; Ŝ2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

wðŜ1Þwð ^S2Þ
q ; ð18Þ

where

FðŜ1; Ŝ2Þ ¼
Xn

i¼1

lŜ1ðyiÞlŜ2ðyiÞ þ mŜ1ðyiÞmŜ2ðyiÞ
� �

ð19Þ

represents the correlation between two IFSs Ŝ1 and Ŝ2, and
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wðŜ1Þ ¼
Xn

i¼1

ðlŜ1ðyiÞÞ
2 þ ðmŜ1ðyiÞÞ

2
� �

; ð20Þ

wðŜ2Þ ¼
Xn

i¼1

ðlŜ2ðyiÞÞ
2 þ ðmŜ2ðyiÞÞ

2
� �

; ð21Þ

are respective informational energies of Ŝ1 and Ŝ2.

The correlation coefficient FðŜ1; Ŝ2Þ satisfies the fol-

lowing properties:

1. 0�FðŜ1; Ŝ2Þ� 1.

2. FðŜ1; Ŝ2Þ ¼ FðŜ2; Ŝ1Þ.
3. FðŜ1; Ŝ2Þ ¼ 1 if Ŝ1 ¼ Ŝ2.

Now we introduce a new entropy measure called Loga-

rithmic intuitionistic fuzzy entropy of IFSs with the help of

above concepts.

Now, corresponding to Shannon entropy, Luca and

Termini (1972) proposed a fuzzy entropy as below:

HLTð ~SÞ ¼ � 1

n

Xn

i¼1

½l ~SðyiÞlogðl ~SðyiÞÞ

þ ð1� l ~SðyiÞlogð1� l ~SðyiÞÞÞ�;
ð22Þ

where ~S 2 FSðYÞ and yi 2 Y . Bhandari and Pal (1975)

extended Renyi’s idea for introducing a new fuzzy entropy

which is given by

HBPð ~SÞ

¼ 1

nð1� aÞ
Xn

i¼1

log ðl ~SðyiÞÞ
a þ ð1� l ~SðyiÞÞ

a� �
:

ð23Þ

Further extending the idea of Verma and Sharma (2014),

we proposed a scale-invariant information measure for

IFSs.

Definition 4.5 For any T̂ 2 IFSðYÞ, we define:

AbðT̂Þ ¼
1

nðb�1 � bÞ
Xn

i¼1

log

ððlT̂ðyiÞÞ
b þ ðmT̂ðyiÞÞ

bÞ 	 ðlT̂ðyiÞ þ mT̂ðyiÞÞ
ð1�bÞ þ 21�bpT̂ðyiÞ

� �1
b

ððlT̂ðyiÞÞ
b�1

þ ðmT̂ðyiÞÞ
b�1

Þ 	 ðlT̂ðyiÞ þ mT̂ðyiÞÞ
ð1�b�1Þ þ 21�b�1

pT̂ðyiÞ
� �b

2

6
4

3

7
5;

b[ 0ð6¼ 1Þ:

ð24Þ

Then (24) is a Logarithmic b-Norm intuitionistic fuzzy

information measure.

Particular cases:

1. If b ¼ 1, then (24) becomes Vlachos and Sergiadis

(2007) entropy.

2. If b ¼ 1 and Hesitancy pT̂ðyiÞ ¼ 0, (24) becomes De

Luca and Termini (1972) entropy.

3. If pT̂ðyiÞ ¼ 0, then (24) becomes fuzzy information

measures corresponding to the measure (5).

4. AbðT̂Þ ¼ Ab�1ðT̂Þ, i.e., (24) is symmetric for intuition-

istic case and also satisfies the translating invariant

property.

Now, we explain the existence of the measure (24) as

below.

4.1 Proof of validity for (24)

Theorem 4.1 The measure AbðT̂Þ in (24)is a valid intu-

itionistic fuzzy entropy of order b.

Proof We validate the measure (24) by satisfying the

axioms @1 � @4.

(@1). Prove that AbðT̂Þ ¼ 1 if and only if

lT̂ðyiÞ ¼ mT̂ðyiÞ. Putting lT̂ðyiÞ ¼ mT̂ðyiÞ in (24), then we

get AbðT̂Þ ¼ 1. In the converse part,suppose AbðT̂Þ ¼ 1

then we have to show that lT̂ðyiÞ ¼ mT̂ðyiÞ for all yi 2 Y .

For proving the above, we use the following inequality:

xb þ jb

2
� xþ j

2

� �b
; 0�x; j� 1 and b[ 1; ð25Þ

where equality holds if and only if x ¼ j. For b[ 1, we

have

1

b�1 � b
log

ðxb þ jbÞ 	 ðxþ jÞ1�b þ 21�bð1� x� jÞ
� �1

b

ðxb�1þjb
�1Þ 	 ðxþjÞ1�b�1

þ21�b�1ð1� x�jÞ
� �b

2

6
4

3

7
5�1:

ð26Þ

By taking lT̂ðyiÞ ¼ x; mT̂ðyiÞ ¼ j and lT̂ðyiÞ þ mT̂ðyiÞ þ
pT̂ðyiÞ ¼ 1 in (26), we have

1

nðb�1 � bÞ
log

ððlT̂ðyiÞÞ
b þ ðmT̂ðyiÞÞ

bÞ 	 ðlT̂ðyiÞ þ mT̂ðyiÞÞ
ð1�bÞ þ 21�bpT̂ðyiÞ

� �1
b

ððlT̂ðyiÞÞ
b�1

þ ðmT̂ðyiÞÞ
b�1

Þ 	 ðlT̂ðyiÞ þ mT̂ðyiÞÞ
ð1�b�1Þ þ 21�b�1

pT̂ðyiÞ
� �b

2

6
4

3

7
5� 1:

ð27Þ

Therefore, AbðT̂Þ ¼ 1 if and only if lT̂ðyiÞ ¼ mT̂ðyiÞ.
(@2). Let T̂ be a crisp set. This implies, either

lT̂ðyiÞ ¼ 1, mT̂ðyiÞ ¼ 0; or lT̂ðyiÞ ¼ 0, mT̂ðyiÞ ¼ 1.

Then from (24), we find that AbðT̂Þ ¼ 0. Conversely, let

AbðT̂Þ ¼ 0. Therefore, (24) gives

1

nðb�1 � bÞ
Xn

i¼1

log

ððlT̂ðyiÞÞ
b þ ðmT̂ðyiÞÞ

bÞ 	 ðlT̂ðyiÞ þ mT̂ðyiÞÞ
ð1�bÞ þ 21�bpT̂ðyiÞ

� �1
b

ððlT̂ðyiÞÞ
b�1

þ ðmT̂ðyiÞÞ
b�1

Þ 	 ðlT̂ðyiÞ þ mT̂ðyiÞÞ
ð1�b�1Þ þ 21�b�1

pT̂ðyiÞ
� �b

2

6
4

3

7
5 ¼ 0:

ð28Þ

Therefore, (28) will hold only if
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ððlT̂ðyiÞÞ
b þ ðmT̂ðyiÞÞ

bÞ 	 ðlT̂ðyiÞ þ mT̂ðyiÞÞ
ð1�bÞ

�

þ21�bpT̂ðyiÞ
	1
b¼ ððlT̂ðyiÞÞ

b�1

þ ðmT̂ðyiÞÞ
b�1

Þ
�

	ðlT̂ðyiÞ þ mT̂ðyiÞÞ
ð1�b�1Þ þ 21�b�1

pT̂ðyiÞ
�b

:

ð29Þ

Since b 6¼ 1, then (28) holds. We may conclude that T̂ is a

crisp set if and only if AbðT̂Þ ¼ 0.

ð@3). AbðT̂Þ�AbðŜÞ if and only if T̂ � Ŝ. Now, we have

to prove that (24) satisfies ð@3Þ. For this, we define the

function:

qðg1; g2Þ ¼
1

b�1 � b
log

ðgb1 þ gb2Þðg1 þ g2Þ1�b þ 21�bð1� g1 � g2Þ
� �1

b

ðgb
�1

1 þ gb
�1

2 Þðg1 þ g2Þ1�b�1

þ 21�b�1ð1� g1 � g2Þ
� �b

2

6
4

3

7
5;

ðg1; g2Þ 2 ½0; 1�:
ð30Þ

q is an decreasing and increasing function with respect to

g2 and g1, respectively. Calculating the critical points and

putting
oqðg1;g2Þ

og1
¼ 0 and

oqðg1;g2Þ
og2

¼ 0, gives

g1 ¼ g2:

h

Some cases that arise are:

1: When g1 � g2;
oqðg1; g2Þ

og1
� 0 if b[ 1 and

oqðg1; g2Þ
og1

� 0 if b\1:

2: When g1 � g2;
oqðg1; g2Þ

og2
� 0 if b[ 1 and

oqðg1; g2Þ
og2

� 0 if b\1:

We conclude from above cases 1 and 2 that qðg1; g2Þ is an
increasing function:

3: When g1 � g2 ;
oqðg1; g2Þ

og1
� 0 if b[ 1 and

oqðg1; g2Þ
og1

� 0 if b\1:

4: When g1 � g2 ;
oqðg1; g2Þ

og2
� 0 if b[ 1 and

oqðg1; g2Þ
og2

� 0 if b\1:

We conclude from above cases 3 and 4 that qðg1; g2Þ is an
decreasing function.

Therefore, we may conclude that AbðT̂Þ�AbðSÞ if

T̂ � S.

(@4).AbðT̂Þ ¼ AbðT̂Þc.
We know that ðT̂Þc ¼ fhyi; mT̂ðyiÞ; lT̂ðyiÞijyi 2 Yg.This

implies

lðT̂ÞcðyiÞ ¼ mT̂ðyiÞ; mðT̂ÞcðyiÞ ¼ lT̂ðyiÞ:

We get from (24)

AbðT̂Þ ¼ AbðT̂Þc: ð31Þ

Therefore, AbðT̂Þ is a valid intuitionistic fuzzy entropy

measure. (24) also satisfies the following additional

properties.

Theorem 4.2 For any two IFSs T̂ and Ŝ satisfying T̂ � Ŝ

or Ŝ � T̂ , the following holds:

AbðT̂ [ ŜÞ þ AbðT̂ \ ŜÞ ¼ AbðT̂Þ þ AbðŜÞ: ð32Þ

Proof Suppose Y1 and Y2 are two parts of Y,

Y1 ¼ fyi 2 Y : T̂ � Ŝg; Y2 ¼ fyi 2 Y : Ŝ � T̂g: ð33Þ

We get for all yi 2 Y1 and yi 2 Y2,

lT̂ðyiÞ� lŜðyiÞ; mT̂ðyiÞ� mŜðyiÞ;

lT̂ðyiÞ� lŜðyiÞ; mT̂ðyiÞ� mŜðyiÞ:
ð34Þ

From (32), (33) and (34) may be proved easily. h

Corollary Let T̂ 2 IFSðYÞ and ðT̂Þc denote the complement
of T̂.

AbðT̂Þ ¼ AbðT̂Þc ¼ AbðT̂ [ ðT̂ÞcÞ ¼ AbðT̂ \ ðT̂ÞcÞ: ð35Þ

Theorem 4.3 If T̂ be a crisp set, then AbðT̂Þ contains

minimum value and if T̂ be most intuitionistic fuzzy set,

then AbðT̂Þ has the maximum value. So, the maximum and

minimum values are independent.

5 Application of the proposed measure
in decision-making

The VIKOR method by Opricovic (1998) determines the

best alternatives on the basis of closeness of alternatives

with extreme solutions, i.e., positive along with negative

ideal solutions. On basis of intuitionistic fuzzy measure,

this section presents stepwise algorithm for the proposed

VIKOR method. Therefore, determination for justified

criteria weights are quite important. The importance of
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criteria weights divided in two weights, i.e., subjective and

objective weights.

5.1 Algorithm to determine criteria weights

Criteria weights play a deciding role in finding the solution

of multi-criteria decision-making (MCDM) problems.

Algorithm to determine the weights based on proposed

entropy:

1. A MCDM problem may be constituted by a m	 n

matrix with m-rows representing alternatives

ðuiÞ1� i�m and n�columns constituting criteria

ð.jÞ1� j� n. Consider the intuitionistic fuzzy decision

matrix specified by

D = [dij ]m×n =

⎛
⎜⎜⎝

�1 �2 · · · �n

ϕ 1 d11 d12 . . . d1n

ϕ 2 d21 d22 . . . d2n
...

...
...

. . .
...

ϕ m dm 1 dm 2 . . . dmn

⎞
⎟⎟⎠,

ð36Þ

where dij ¼ ð �lij; �mijÞ; i ¼ 1; 2; :::;m and j ¼ 1; 2; :::; n.

2. In this step, by using (24), the intuitionistic fuzzy

entropy provided by ~D can be obtained as Fj;

j ¼ 1; 2; :::; n.

The whole process of criteria weight evaluation is divided

into two parts as follows:

5.1.1 (a) In case the criteria weights are known partially

Practically, there are two constraints in criteria weight

determination. First, it is difficult to find an expert having

expertise in all fields, and second to hire the experts of all

fields is a costly affair. In fact, it is easy to extract their

views in forms other than precise numbers, for example,

linguistic variables, in the form of intervals, etc. In such

cases, partial details about criteria weights are available

with us. The whole details expressed by decision-makers

can be compiled by means of set denoted by WT . We use

the concept of minimum entropy proposed by Wang and

Wang (2012) to extract criteria weights from the set WT .

Entropy value of an alternative ui covering the criteria

.j is specified by:

FjðuiÞ ¼
Xn

i¼1

Fb�1

b ðdijÞ; ð37Þ

where

Fb�1

b ðdijÞ

¼ 1

nðb�1 � bÞ
Xm

i¼1

log

ððlTðyiÞÞb þ ðmTðyiÞÞbÞ 	 ðlTðyiÞ þ mTðyiÞÞð1�bÞ þ 21�bpTðyiÞ
� �1

b

ððlTðyiÞÞb
�1

þ ðmTðyiÞÞb
�1

Þ 	 ðlTðyiÞ þ mTðyiÞÞð1�b�1Þ þ 21�b�1

pTðyiÞ
� �b

2

6
4

3

7
5:

ð38Þ

For the determining of optimal criteria weights, we con-

struct a linear programming model which is specified by

minF ¼
Xm

i¼1

FjðuiÞ ¼
Xm

i¼1

Xn

j¼1

fjF
b�1

b ðdijÞ
" #

¼ 1

nðb�1 � bÞ
Xm

i¼1

Xn

j¼1

fj log

ððlTðyiÞÞb þ ðmTðyiÞÞbÞ 	 ðlTðyiÞ þ mTðyiÞÞð1�bÞ þ 21�bpTðyiÞ
� �1

b

ððlTðyiÞÞb
�1

þ ðmTðyiÞÞb
�1

Þ 	 ðlTðyiÞ þ mTðyiÞÞð1�b�1Þ þ 21�b�1

pTðyiÞ
� �b

2

6
4

3

7
5;

ð39Þ

which fulfills
Pn

j¼1 fj ¼ 1; fj 2 WT . On solving (39), the

criteria weights vector is stated by arg min

F ¼ ðf1; f2; :::; fnÞ
0
.

5.1.2 (b) In case the criteria weights are unknown

In the case where the criteria weights are unknown, we

employ the procedure introduced by Chen and Li (2010) as

follows:

fj ¼
1� Fj

n�
Pn

j¼1 Fj
; j ¼ 1; 2; :::; n; ð40Þ

where

Fb�1

b ðdijÞ

¼ 1

nðb�1 � bÞ
Xm

i¼1

log

ððlTðyiÞÞb þ ðmTðyiÞÞbÞ 	 ðlTðyiÞ þ mTðyiÞÞð1�bÞ þ 21�bpTðyiÞ
� �1

b

ððlTðyiÞÞb
�1

þ ðmTðyiÞÞb
�1

Þ 	 ðlTðyiÞ þ mTðyiÞÞð1�b�1Þ þ 21�b�1

pTðyiÞ
� �b

2

6
4

3

7
5:

ð41Þ

5.2 VIKOR method

In the VIKOR method, multi-criteria decision-making

(MCDM) problems are solved by setting the IFSs. This

introduces a new criteria weight method by subjective and

objective weights. On the basis of correlation coefficients,

this section presents a stepwise algorithm for the proposed

IF-VIKOR method. For a multi-criteria decision-making

(MCDM) problem with an m alternatives

uiði ¼ 1; 2; :::;mÞ, let the decision-makers be FYjðj ¼
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1; 2; :::; nÞ which are decided to the best alternatives. Each

n-decision-makers has a weight xjðj ¼ 1; 2; :::; nÞ, satisfy-
ing

Pn
j¼1 xj ¼ 1. The proposed VIKOR method is sum-

marized in following steps.

5.2.1 (a) Construction of IF decision matrix

Compile the information obtained by decision-makers FYp

by means of intuitionistic Fuzzy decision matrix. Let dpij be

IFN given by pth decision-makers. The entries of the

matrix are the IFNs, that is dpij ¼ ðlpij; m
p
ijÞ which can be

computed as below:

dpij ¼
Xk

p¼1

xpd
p
ij

¼
Qk

p¼1ðl
p
ijÞ

xp

Qk
p¼1ðl

p
ijÞ

xp þ
Qk

p¼1ð1� lpijÞ
xp

;

Qk
p¼1ðm

p
ijÞ

xp

Qk
p¼1ðm

p
ijÞ

xp þ
Qk

p¼1ð1� mpijÞ
xp

 !

;

where i ¼ 1; 2; :::;m and j ¼ 1; 2; :::; n:

ð42Þ

5.2.2 (b) Normalized the IF decision matrix

Let ð~tijÞ be a intuitionistic decision matrix which is nor-

malized by the proposed method of Xu and Hu (2010) as

follows:

~tij ¼
Xn

j¼1

ið!þþ
j ; dijÞ

ið!þþ
j ;!��

j Þ
: ð43Þ

5.2.3 (c) Determination of subjective weights

Let fpj ¼ ðlpj ; m
p
j Þ be the weight given by decision-makers

FYp. Therefore, we calculate IF weights ðfjÞ for different

criteria by using the operator SIFWA:

fj ¼ SIFWA f1j ; f
2
j ; :::; f

k
j

� �
¼
Xk

p¼1

xpf
p
j

¼
Qk

p¼1ðl
p
j Þ

xp

Qk
p¼1ðl

p
j Þ

xp þ
Qk

p¼1ð1� lpj Þ
xp

;

Qk
p¼1ðm

p
j Þ

xp

Qk
p¼1ðm

p
j Þ

xp þ
Qk

p¼1ð1� mpj Þ
xp

 !

;

ð44Þ

where fj ¼ ðlj; mjÞ; j ¼ 1; 2; :::; n.

5.2.4 (d) Normalize the subjective weights

We obtained the subjective weights (Li et al. 2015; Boran

et al. 2011) by normalizing the weight ðfzj Þ, satisfying
Pn

j¼1 f
z
j ¼ 1:

fzj ¼
lj þ sj

lj
ljþmj

� �

Pn
j¼1 lj þ sj

lj
ljþmj

� �� � ; ð45Þ

where sj ¼ 1� lj � mj.

5.2.5 (e) Determination of objective weights

To calculate the objective weights fbj described in (5.1

(a),(b)).

5.2.6 (f) Determine the solutions and cost criteria

We define the relative intuitionistic fuzzy best solution

!þþ
j ¼ ðlþþ

j ; mþþ
j Þ and the relative intuitionistic fuzzy

worst solution !��
j ¼ ðl��

j ; m��
j Þ as follows:

!þþ
j ¼

maxi dij; for benefit criteria

mini dij; for cost criteria;




ð46Þ

and

!��
j ¼

mini dij; for benefit criteria

maxi dij; for cost criteria:




ð47Þ

5.2.7 (g) Calculation of Ti and Ri

Let us find the values of Ti;Ri and Qi , i ¼ 1; 2; :::;m,

where Ti is a group utility value, Ri is a individual regret

value and Qi is compromise value:

Ti ¼H
Xn

j¼1

fzj ~tij þ ð1�HÞfbj ~tij ¼
Xn

j¼1

cwj ~tij; ð48Þ

Ri ¼maxðcwj ~tijÞ; ð49Þ

where cwj ¼
Pn

j¼1 Hfzj þ ð1�HÞfbj
� �

is the amalgamation

of subjective and objective weights and H presents the

relation between subjective and objective weights which

lies between 0 and 1 ; i:e:; H 2 ½0; 1� and H ¼ 0:5.

5.2.8 (h) Determination of VIKOR index (QiÞ

Qi ¼ W
Ti � T��

Tþþ � T�� þ ð1�WÞ Ri � R��

Rþþ � R�� ; ð50Þ

where W and ð1�WÞ represent the weights for Ti and Ri.

We put the value of W ¼ 0:5. We take in (4.17) Tþþ ¼
max Ti ; T

�� ¼ min Ti ;R
þþ ¼ max Ri and R�� ¼ min Ri.
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5.2.9 (i) The values of Ti ,Ri and Qi are arranged
in ascending order

Then we rank the alternatives. The alternatives satisfy the

following conditions:

�C1 (acceptable advantage) If Qð!2 � !1Þ� 1
n�1

, where

!1 and !2 are first and second ranked alternatives in !i

column.

�C2 (acceptable stability) The alternative !1 should also

be ranked first in Ri and Ti columns.

The alternative !i will be the most desirable one if both

the conditions are concurrently satisfied. If both the con-

ditions are not satisfied simultaneously, then we proceed

for compromise solutions as follows:

1. If the condition �C2 is not satisfied then ð!1;!2Þ is the
set of compromise solution.

2. If the condition �C1 is not satisfied then the set

ð!1;!2; :::;!MÞ constitutes the compromise solution,

where !M is defined by

Qð!MÞ � Qð!1Þ\ 1

n� 1
: ð51Þ

The number n in (51) denotes the total number of criteria

and the number M represents the maximum of ranks of the

alternatives in column Qi satisfying (51).

The step-by-step procedure of the proposed VIKOR

method is demonstrated with the help of Fig. 1. After the

compilation of information by different experts, we con-

structed the IF decision matrix using Eq. (42). In the next

step, we normalized the IF decision matrix with the help of

Eq. (43). In the following steps, we determined the criteria

weights and extreme solutions with the help of Eqs. (44)–

(47). After that VIKOR index is to be determined with the

help of group utility and individual regret value using

Eq. (50). In the final step, ranking has been given to the

different alternatives.

6 Numerical example

Now, we solved the problem with application of multi-

criteria decision-making (MCDM) VIKOR method.

6.1 Approach 1: in case criteria weights are
known partially

The manufacturers of laptops want to hire potential sup-

pliers for supply of parts. They receive five options, say

uiði ¼ 1; 2; 3; 4; 5Þ. The most appropriate supplier com-

pany has hired five experts, say FYiði ¼ 1; 2; 3; 4; 5Þ. The
council of company has fixed five criteria given by

Functionality ðn1Þ, Reliability ðn2Þ, Customer Satisfaction

ðn3Þ, Quality ðn4Þ, Cost ðn5Þ.
In Tables 1 and 2, we express the alternative for rating

and criteria weights in the form of linguistic terms using

IFNs. Here it is to be noted that on the basis of historical

data and/or a questionnaire responded by experts of con-

cerned domain, IFNs could be defined. The experts dis-

played our assessment and important criteria weights are

shown in Tables 3 and 4.

Step 1: Intuitionistic fuzzy decision matrix obtained by

Eq. 42 is depicted in Table 5.

Step 2: The subjective criteria weights calculated by

Eq. 44 are depicted in Table 6.

Step 3: In this step, we normalized the subjective criteria

weights with the help of Eq. 45 given in Table 7.

Step 4: In order to compute the values of objective

weights let us consider the set of information with weights

denoted by:

M̂ ¼f0:15� f1 � 0:30; 0:20� f2 � 0:45; 0:25

� f3 � 0:50; 0:10� f4 � 0:25; 0:30� f5 � 0:65g:
ð52Þ

The construction for objective weights in programming

model:

minF ¼ 0:7104f1 þ 0:5325f2 þ 0:5979f3 þ 0:2518f4

þ 0:7127f5;

¼ subject to

0:15� f1 � 0:30;

0:20� f2 � 0:45;

0:25� f3 � 0:50;

0:10� f4 � 0:25;

0:30� f5 � 0:65;

f1 þ f2 þ f3 þ f4 þ f5 ¼ 1:

8
>>>>>>>>>>><

>>>>>>>>>>>:

ð53Þ

The criteria objective weight vector function is obtained by

solving the (53),

f ¼ ð0:15; 0:20; 0:25; 0:10; 0:30ÞW :

Step 5: Normalized intuitionistic Fuzzy decision matrix is

obtained by Eq. 43 which is depicted in Table 8.

Step 6: The values of Ti ,Ri , Qi for all alternatives are

calculated using Eqs. 48–50, where Ti is the utility value,

Ri is the individual regret and Qi is the VIKOR index.

Step 7: After that we have rated the values of T, R and

Q which are calculated in Table 9 and depicted in

Table 10. First ranking is given to the alternative having

lower value among all the alternatives and so on.

Step 8: In this step, we have provided the preferential

sequences of alternatives on the basis of rating scale such
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as corresponding to T, u4 has the lower rating, whereas u5

has the highest rating. In a similar fashion, we have given

the preference to the R and Q depending upon their cor-

responding values.

Analysis of Table 11 reveals that alternatives u5 and u1

are, respectively, ranked first and second in column of Qi.

Also

Qðu1Þ � Qðu5Þ ¼ 0:0616� 0 ¼ 0:0616\ 1
5�1

¼ 0:25.

Therefore, �C1 is not satisfied. Moreover, the alternative u5

is also ranked first in columns of T and R, which means �C2

is satisfied. u5 [u1 [u2 [u3 [u4; we obtain the best

alternative as u5.

6.2 Sensitive analysis

In this section, we have incorporated sensitive analysis to

show the behavior of compromise solution. We analyzed

that reliability and fuzzy information are affecting by

changing weight W. In this way compromise solution

becomes more versatile for practical purpose. We have

taken distinct values to show the impact of W on com-

promise solution. The values achieved by changing the

weight W are as shown in Table 12. Ranking obtained is as

u5 [u1 [u2 [u3 [u4. After analyzing Table 12, it is

observed that same ranking sequence is obtained on dif-

ferent values of W. It shows that there is no effect of W on

ranking sequence and consequently compromise solution

has considered all the linguistic information. Sensitivity

outcomes at the distinct values of W are depicted by Fig. 2.

6.3 Approach 2: in case of unknown criteria
weights

In this section, we have to find the solution of the above

example in case of unknown criteria weights. The step-by-

step computational procedure are as follows:

Fig. 1 Graphical display of the proposed decision-making method
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Step 1: Firstly, we have calculated the different values

of criteria weights corresponding to different alternatives

with the help of Eq. 40. The calculated values of criteria

weights are shown in Eq. 54:

f1 ¼ 0:1861; f2 ¼ 0:1980; f3 ¼ 0:2083; f4 ¼ 0:2222

and f5 ¼ 0:1854:

ð54Þ

Step 2: After that we have calculated the positive ð!þþ
j Þ

and negative ð!j��Þ ideal solution using Eqs. (46) and

(47). The computed values of positive ð!þþ
j Þ and negative

ð!j��Þ ideal solution are depicted in Table 13.

Step 3: In this step, we have computed the values of Ti ,

Ri and Qi using Eqs. (48)–(50) corresponding to the dif-

ferent alternatives. The calculated values are demonstrated

in Table 14.

Step 4: Depending on the values of Ti , Ri and Qi,

ranking was assigned to the different alternatives as shown

in Table 15.

Step 5: The preferential sequences of alternatives on the

basis of Table 14 are shown in Table 16.

Analysis of Table 16 shows that alternatives u5 and u1

are, respectively, ranked first and second in column of Qi.

Also

Qðu1Þ � Qðu5Þ ¼ 0:3990� 0 ¼ 0:3990[ 1
5�1

¼ 0:25.

Therefore, �C1 is satisfied. Moreover, the alternative u5 is

also ranked first in columns of T and R, it means �C2 is

satisfied. u5 [u1 [u2 [u3 [u4, we obtain the best

alternative as u5. Therefore, the supplier represented by the

alternative u5 is the most preferred one.

6.3.1 Comparative analysis

To further explore the efficacy and execution of proposed

work, comparison has been carried out with same numer-

ical example with same presumptions and information of

weights. Radhika and Sammeer Kumar (2017) introduced a

MCDM method that provides ranking of available

alternatives based on distance measure. However, Divsalar

(2017) presented VIKOR method as a qualitative multi

attribute group decision-making approach which is based

on extended hesitant fuzzy linguistic term (EHFLTS) dis-

tance measures. Victor (2017) presented a hybrid system

by combining FCM with VIKOR method which

is also based on distance measure, whereas Afful-Dadzie

(2014) proposed a fuzzy VIKOR frame to find the ranking

Table 2 Rating the criteria weights in terms of linguistic

Linguistic variables Intuitionistic fuzzy numbers

Very low (VL) (0.80,0.15)

Low (L) (0.60,0.25)

Medium low (ML) (0.40, 0.50)

Medium (M) (0.50,0.45)

High (H) (0.15,0.75)

Very high (VH) (0.05,0.90)

Table 3 Decision-maker’s output

Criteria Decision-makers Alternatives

x1 z1 z2 z3 z4 z5

EY1 F VG MG MP G

EY2 MG VG G G G

EY3 MG G MG F VG

EY4 G G MG F VG

EY5 G VG MP G F

x2 EY1 MG G MG VG MG

EY2 F F MG G VG

EY3 F MG VG G MG

EY4 G VG MG G VG

EY5 MG G VG G MG

x3 EY1 F F MG G VG

EY2 G MG MG VG MG

EY3 G MG MG VG MG

EY4 G MG MG VG MG

EY5 G VG MP G G

x4 EY1 G G G G G

EY2 F MG VG VG G

EY3 G MG MG VG F

EY4 F MG VG VG G

EY5 G G G G G

x5 EY1 MG VG G MG G

EY2 G F F VG G

EY3 MG VG G MG G

EY4 G F F VG G

EY5 MG VG G MG GTable 1 Alternatives for rating in terms of linguistic

Linguistic variables Intuitionistic fuzzy numbers

Very poor (VP) (0.20,0.75)

Poor (P) (0.15,0.85)

Moderately poor (MP) (0.25, 0.65)

Fair(F) (0.25,0.75)

Moderately good (MG) (0.75,0.20)

Good (G) (0.60,0.15)

Very good (VG) (0.10,0.90)
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in fuzzy environment with the help of linguistic variables

to deal with uncertainty and subjectivity. We have pro-

posed a new entropy measures which is scale invariant for

complete probability distribution and proposed correlation

coefficient-based VIKOR approach for finding the ranking

and measuring the uncertainty in place of distance

measure. From the exploration of Table 17, it is observed

that ranking order is different by different researchers, but

the optimal alternative is same which revealed that the

proposed method of this work has evident reliability in

intuitionistic fuzzy domain. But the strategy of proposed

work is more efficient among existing approaches and valid

Table 4 Importance weights for criteria

Criteria Decision-makers

EY1 EY2 EY3 EY4 EY5

x1 VH VH VH H H

x2 H H M H H

x3 H MH H H MH

x4 H H M H H

x5 VH VH VH H H

Table 5 IF decision matrix
.1 .2 .3 .4 .5

u1 (0.6349, 0.1530) (0.4567, 0.1539) (0.5764, 0.1360) (0.6878, 0.0645) (0.6378, 0.1530)

u2 (0.3654, 0.1276) (0.8768, 0.0145) (0.7483, 0.1323) (0.7543, 0.0654) (0.6545, 0.0912)

u3 (0.7345, 0.2021) (0.6748, 0.0541) (0.2365, 0.0112) (0.8761, 0.0065) (0.7634, 0.1134)

u4 (0.9870, 0.1132) (0.6754, 0.0654) (0.8790, 0.0321) (0.6060, 0.2117) (0.5768, 0.2502)

u5 (0.3654, 0.1276) (0.5876, 0.0564) (0.6643, 0.1055) (0.8033, 0.0201) (0.5716, 0.2300)

Aj 0.7104 0.5325 0.5979 0.2518 0.7127

Table 6 Subjective criteria

weights
.1 .2 .3 .4 .5

(0.7230, 0.1422) (0.6729, 0.0546) (0.6407, 0.0600) (0.7579, 0.0426) (0.6445,0.1578)

Table 7 Normalized subjective criteria weights

.1 .2 .3 .4 .5

0.1888 0.2090 0.2066 0.2140 0.1815

Table 8 Normalized intuitionistic fuzzy decision matrix ð ~tijÞ

Alternatives .1 .2 .3 .4 .5

u1 1.0170 1 1.0177 1.0274 1.0171

u2 1 1.0533 1.0401 1.0508 1.0455

u3 0.9669 0.9982 1 1.0008 0.9910

u4 1.0451 1.0449 1.0420 1.0195 1

u5 1 1.0452 1.0412 1.0504 0.9840

Table 9 The values of T, R and Q

Values u1 u2 u3 u4 u5

T 1.0091 1.0174 1.0281 1.1412 1.0054

R 0.3281 0.3298 0.3366 0.3763 0.3230

Q 0.0616 0.1080 0.2112 1 0

Table 10 Rating for T, R and Q

Values u1 u2 u3 u4 u5

T 2 3 4 5 1

R 2 3 4 5 1

Q 2 3 4 5 1

Table 11 Preferential sequences of alternatives

By T u5 [u1 [u2 [u3 [u4

By R u5 [u1 [u2 [u3 [u4

By Q u5 [u1 [u2 [u3 [u4
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for different multi-criteria decision-making (MCDM)

problems.

The proposed work can easily pursue the case where

information regarding weight is unknown or partially

known, whereas compared approaches cannot manage such

type of situations. The proposed work incorporates entropy

measures in addition to normalization of subjective and

objective weights to compute more consistent and reliable

information. Additionally, we have evaluated objective

weight vector by using mathematical model. The main

advantage of this work is that we have normalized the

decision matrix using correlation coefficient based on

VIKOR method. Secondly, the proposed work can provide

a adjustable technique to deal with MCDM problems,

Table 12 Values of Ti;Ri and Qi obtained on changing weight ðWÞ

T W u1 u2 u3 u4 u5 Ranking Compromise solution

1.0091 1.0174 1.0281 1.1412 1.0054 u5 [u1 [u2 [u3 [u4 u5

R 0.3281 0.3298 0.3366 0.3763 0.3230 u5 [u1 [u2 [u3 [u4 u5

0 0.0957 0.1276 0.2552 1.0000 0.0000 u5 [u1 [u2 [u3 [u4 u5

0.1 0.0888 0.1237 0.2464 1.0000 0.0000 u5 [u1 [u2 [u3 [u4 u5

0.2 0.0820 0.1197 0.2376 1.0000 0.0000 u5 [u1 [u2 [u3 [u4 u5

0.3 0.0752 0.1158 0.2288 1.0000 0.0000 u5 [u1 [u2 [u3 [u4 u5

0.4 0.0683 0.1119 0.2200 1.0000 0.0000 u5 [u1 [u2 [u3 [u4 u5

Q 0.5 0.0616 0.1080 0.2112 1.0000 0.0000 u5 [u1 [u2 [u3 [u4 u5

0.6 0.0546 0.1041 0.2024 1.0000 0.0000 u5 [u1 [u2 [u3 [u4 u5

0.7 0.0478 0.1001 0.1936 1.0000 0.0000 u5 [u1 [u2 [u3 [u4 u5

0.8 0.0409 0.0962 0.1848 1.0000 0.0000 u5 [u1 [u2 [u3 [u4 u5

0.9 0.0341 0.0923 0.1760 1.0000 0.0000 u5 [u1 [u2 [u3 [u4 u5

1 0.0272 0.0884 0.1672 1.0000 0.0000 u5 [u1 [u2 [u3 [u4 u5

Table 13 Positive ideal and

negative ideal solution
.1 .2 .3 .4 .5

!þþ
j

(0.9870,0.1132) (0.8768,0.0145) (0.8790,0.0321) (0.8761,0.0065) (0.7634,0.0912)

!��
j (0.3654,0.2021) (0.4567,0.1539) (0.2365,0.1360) (0.6060, 0.2117) (0.5716,0.2502)

Table 14 The values of T, R and Q

Values u1 u2 u3 u4 u5

T 1.1019 1.1102 1.1948 1.2028 1.0921

R 0.6504 0.7736 0.8728 0.9878 0.2304

Q 0.3990 0.4003 0.4844 0.5090 0

Table 15 Rating For T, R and Q

Values u1 u2 u3 u4 u5

T 2 3 4 5 1

R 2 3 4 5 1

Q 2 3 4 5 1

Table 16 Preferential sequences of alternatives

By T u5 [u1 [u2 [u3 [u4

By R u5 [u1 [u2 [u3 [u4

By Q u5 [u1 [u2 [u3 [u4

Fig. 2 Analysis of the W to the outcomes of the alternatives
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where information regarding weight is partially known or

fully unknown. Thus we can conclude that the outcomes of

proposed work is more practicable and straightforward for

ranking.

7 Conclusion

In this paper, we generalized entropy measure for intu-

itionistic fuzzy set which is called scale-invariant entropy

generalization of Shannon. Moreover, a novel multi-crite-

ria decision-making (MCDM) process using weighted

correlation coefficients-based VIKOR approach is intro-

duced. The working of the proposed decision-making

process is thoroughly interpreted with the help of two

numerical illustrations considering selection of the most

appropriate supplier with the help of ranking. The numer-

ical examples are discussed with two different approaches

about the evaluation of criteria weights. In the first

approach, we consider the case of partially known criteria

weights, whereas unknown criteria weights are discussed in

the second approach. The output of proposed multi-criteria

decision-making (MCDM) method is compared with other

well-known decision-making methods like the VIKOR

method. The proposed measure entropy IF can be elon-

gated to more general sets such as interval-valued intu-

itionistic Fuzzy sets, picture fuzzy set, Q-orthopair fuzzy

set, etc. Further, some of the most representative compu-

tational intelligence algorithms can be used to solve the

problems, like monarch butterfly optimization (MBO),

earthworm optimization algorithm (EWA), elephant herd-

ing optimization (EHO), month search (MS) algorithm.
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