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Abstract
This paper proposes a new bi-parametric exponential fuzzy information measure. In addition to the validation of proposed

fuzzy information measure, some of its major properties are also studied. Besides, the performance of proposed fuzzy

information measure is demonstrated using two numerical examples. Further, based on the concept of TOPSIS (Technique

for Order Preference by Similarity to Ideal Solutions) method, a new improved TOPSIS method based on weighted

correlation coefficients has been introduced. Considering the importance of criteria weights in the solution of Multi-Criteria

Decision-Making (MCDM) problems, two methods have been discussed for the evaluation of criteria weights. In first

method, criteria weight evaluation from the partial information provided by experts is discussed. Second method proposes

the criteria weight evaluation in case they are completely unknown or incompletely known. The proposed MCDM method

is explained through a numerical example based on fault detection in an ill-functioning machine.

Keywords Fuzzy set � Fuzzy information measure � MCDM � TOPSIS

1 Introduction

The evolution of fuzzy set theory by Zadeh (1965) has

drawn the attention of authors worldwide. Before this

invention, probability was used to quantify the uncertainty.

But to quantify the uncertainty using probability theory, the

uncertainty should have been expressed as precise number.

The vague terms for example ‘very, more, slightly’, etc.

could not be quantified using probability theory. To

quantify the uncertainty associated with such vague terms,

the fuzzy set theory proposed by Zadeh (1965) proved to be

an effective tool. Opposite to the classical set theory in

which an element either belongs to the set or not, in fuzzy

set, each element is assigned a number lying between 0 and

1 known as its membership degree. The practical relevance

of fuzzy set in dealing with real world problems is now a

proven fact (Chen and Chen (2014), Chen et al. (2009),

Chen and Wang (2010), Chen et al. (2012a)). Fuzzy

entropy is an important term related with fuzzy set. Fuzzy

entropy measures the degree of fuzziness arising due to

ambiguity that an element belongs to the set or not. Zadeh

(1968) for the first time attempted to measure the fuzzy

entropy as weighted Shannon entropy. But this proposal

failed to serve the purpose. Another successful attempt to

quantify the degree of fuzziness arising due to the ambi-

guity of being or not being the element of a set was made

by Luca and Termini (1972). Also, they introduced a new

fuzzy entropy based on Shannon entropy. In addition to

this, Luca and Termini (1972) axiomatized the fuzzy

entropy. With this axiomatization of fuzzy entropy, several

authors proposed fuzzy entropies from their viewpoints and

applied them in distinct fields like pattern recognition,

image processing, etc. (Higashi and Klir (1982), Joshi and

Kumar (2017a), Kaufman (1980), Yager (1979)).

Decision-making is another important field where the

concept of fuzzy entropy is widely applied. Decision-

making problems involve a set of alternatives satisfying a

certain set of criteria. The main aim is to select an alter-

native which optimally satisfies the whole criteria. Such

type of problems are also named as Multi-Criteria Deci-

sion-Making (MCDM) problems. Several methods have

been proposed by researchers in the literature to solve

MCDM problems (Arya and Kumar (1989) Chen et al.
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(2012b), Chen and Chang (2016), Zeng et al. (2019), Wang

and Chen (2017), Chen and Chiou (2015), Chen et al.

(2012c)). Criteria weights play an eminent role in the

solution of a MCDM problem. Therefore, evaluation of

criteria weights needs utmost attention. Estimating the

importance of criteria weights in the solution od MCDM

problems, Chen and Li (2010) bifurcated them into two

parts: subjective weights and objective weights. Subjective

weights are provided by the experts according to their

preferences (Chu et al. (1979), Hwang and Lin (1987),

Saaty (1980)). On the other hand, objective criteria weights

are obtained by solving mathematical models without

considering the experts’ viewpoint. Entropy method, prin-

ciple element analysis (Choo and Wedley (1985), Fan

(1996)) etc. are the examples of objective criteria weights.

Among the objective methods, the entropy method is one

of the most trusted approaches of determining criteria

weights and has gained much popularity with researchers.

In present communication, we will be using the entropy

method for determining the criteria weights. Several

MCDM methods based on this approach have been pro-

posed so far.

TOPSIS (Technique for Order Preference by Similarity

to Ideal Solution) is one of the well-known techniques used

for solving MCDM problems (Joshi and Kumar

2017b, 2018b, c, d, e, c, Lalotra and Singh 2018, Singh

et al. 2019, Lalotra and Singh 2020). In conventional

TOPSIS method, an alternative which is nearest to the best

solution and farthest from the worst solution is supposed to

be the best alternative. The decision is made on the basis of

relative closeness coefficients which are obtained by

dividing the distance of an alternative from the worst

solution by sum of the distances of the same alternative

from the best and the worst solutions. To compute the

distance between alternatives and the best as well as worst

solutions, different distance measures are used. But the

distance measures used to calculate the distances of an

alternative from the best and the worst solutions just rep-

resent the distance between two numbers and do not give

the sufficient information about their correlations. For

instance, consider an example of a machine that is not

functioning properly. Intuitively, we know that there is a

strong relationship between symptoms and faulty parts of

the machine. Now, in such a case, if we correlate the

symptoms and the corresponding faulty part of the machine

with the help of fuzzy sets then distance measure used will

merely compute the distance between two numbers but not

their correlation. This may cause the loss of necessary

information and we may get erroneous results. To avoid

such situation, in this paper, we propose a TOPSIS method

based on weighted correlation coefficients introduced by

Gerstenkorn and Manko (1991).

The parametric generalization of Shannon entropy (

Shannon (1948)) proposed by Renyi (1961) caused the

attention of authors from across the world. For the first

time, the researchers observed the role of parameters in an

information measure. The presence of parameters in an

information measure makes it flexible from application

point of view and widens its scope of applications. For

example, if we face a problem based on some environ-

mental issue, different parameters may be used to represent

the different environmental factors such as humidity,

pressure, and temperature. More the number of parameters

an information measure has, more will it be flexible for

applications in diverse fields. Therefore, depending upon

the nature of problem, we need to develop more and more

flexible information measures which not only cater the

need of the hour but also are the better performers. This

study is a sincere effort in this direction. In this commu-

nication, a new bi-parametric exponential fuzzy informa-

tion measure is proposed. The proposed information

measure is a two parametric extension of exponential

entropy studied by Pal and Pal (1989). The prime aims of

introducing this communication are as follows:

• to introduce a new bi-parametric exponential fuzzy

information measure,

• to introduce a new MCDM method based on entropy

weights based correlation coefficients, and

• to utilize the proposed information measure and

proposed MCDM method in detecting the fault in a

machine.

With this aim, the subject contents of this paper are man-

aged as follows: the background literature of topic under

consideration is covered in Sect. 1. The relevant definitions

and concepts necessary related to topic are given in Sect. 2.

A new fuzzy information measure along with its validation

is proposed in Section 3. Besides discussing some major

properties, the performance of proposed fuzzy information

measure is also demonstrated through numerical examples

in Sect. 3. A new MCDM method based on weighted

correlation coefficients along with its justification is

introduced in Sect. 4. The proposed method is explained

using numerical examples in Sect.,5. Finally, the paper is

concluded with conclusions in Sect. 6.

In next Section, we present some relevant concepts and

definitions.

2 Preliminaries

Definition 2.1 (Fuzzy set (Zadeh (1965))). Let t ¼
ð‘1; ‘2; . . .; ‘nÞ be a finite universe of discourse. A fuzzy set

(FS) � in t is defined as
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� ¼ fh‘i; l�ð‘iÞij‘i 2 tg; ð1Þ

where l� : t ! ½0; 1� is the membership function and

l�ð‘iÞ represents the membership degree of ‘i 2 t to �.

Definition 2.2 (Set operations on FSs (Zadeh (1965))). For

any two FSs �1 and �2, some basic set operations are

given by

1. �1 [ �2 ¼ fh‘i;maxðl�1
ð‘iÞ; l�2

ð‘iÞÞij‘i 2 tg;
2. �1 \ �2 ¼ fh‘i;minðl�1

ð‘iÞ; l�2
ð‘iÞÞij‘i 2 tg;

3. �c ¼ fh‘i; ð1� l�ð‘iÞij‘i 2 tg.

Definition 2.3 (Sharpened version (Luca and Termini

(1972))). A FS �1 is said to be a sharpened version of

another fuzzy set �2 if

1. l�1
ð‘iÞ is less than or equal to l�2

ð‘iÞ if l�2
ð‘iÞ� 1

2
.

2. l�1
ð‘iÞ is greater than or equal to l�2

ð‘iÞ if

l�2
ð‘iÞ� 1

2
.

Definition 2.4 (Fuzzy entropy (Luca and Termini

(1972))). For any FS �, a measure Hð�Þ is said to be fuzzy

information measure if it satisfies the following properties:

Property 1. The value of Hð�Þ is zero if and only if �
ia a crisp set. This property is called Sharpness.

Property 2. The value of Hð�Þ is maximum if and only

if � is most fuzzy set. This property is called Maximality.

Property 3. The value of Hð�Þ is greater than equal to

the value of Hð ~�Þ if and only if ~� is the sharpened version

of �. This property is known as Resolution.

Property 4. The value of Hð�Þ is equal to the value of
Hð�cÞ, where �c denotes the complement of �. This

property is known as Symmetry.

Definition 2.5 (Correlation coefficients (Gerstenkorn and

Manko (1991))) For any two FSs �1 and �2, the corre-

lation coefficient ð�1;�2Þ is given by

ð�1;�2Þ ¼
Xn

i¼1

Kð�1;�2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dð�1Þ � dð�2Þ

p ; ð2Þ

where Kð�1;�2Þ ¼
Xn

i¼1
l�1

ð‘iÞl�2
ð‘iÞ

� �
, dð�1Þ ¼Xn

i¼1
ðl�1

ð‘iÞÞ2 and dð�2Þ ¼
Xn

i¼1
ðl�2

ð‘iÞÞ2.
The correlation coefficients ð�1;�2Þ satisfies the

following properties:

1. 0� ð�1;�2Þ� 1.

2. ð�1;�2Þ ¼ ð�2;�1Þ.

3. ð�1;�2Þ ¼ 1 if �1 ¼ �2.

3 A new bi-parametric exponential fuzzy
information measure

3.1 Background

Let Mn ¼ f�h ¼ ð�h1; �h2; . . .; �hnÞ; �hi � 0;
Pn

i¼1 �hi ¼ 1g,n� 2

be a set of complete probability distributions. For some

�h 2 Mn, Shannon entropy ( Shannon (1948)) is defined by

ShHð�hÞ ¼ �
Xn

i¼1

�hi logð�hiÞ: ð3Þ

Afterwards, Renyi (1961) introduced a parametric exten-

sion of Shannon’s concept given by

ReH
1ð�hÞ ¼

1

1� 1
log

Xn

i¼1

�h1i

 !
; 1[ 0ð6¼ 1Þ;

�
Pn

i¼1 �hi logð�hiÞ; 1 ¼ 1:

8
><

>:
ð4Þ

This development caused the several authors to propose

parametric extensions of Shannon entropy (Boekee and

Lubbe (1980), Havdra and Charavat (1967), Joshi and

Kumar (2016, 2018g), Tsallis (1988)). Pointing out the

limitations of Shannon (1948), Pal and Pal (1989) intro-

duced a new entropy known as exponential entropy given

by

PPHð�hÞ ¼
Xn

i¼1

�hiðe1��hi � 1Þ; �h 2 Mn: ð5Þ

The introduction of FS by Zadeh (1965) altered the way of

quantifying the fuzziness. Moreover, the pioneering study

of fuzzy entropy by Luca and Termini (1972) inspired the

authors worldwide to come up with several fuzzy infor-

mation measures. Extending the Shannon’s concept, Luca

and Termini (1972) introduced a fuzzy entropy. Following

the way by Luca and Termini (1972), Pal and Pal (1989)

proposed a new fuzzy entropy defined by

PPHð�Þ ¼ 1

nð
ffiffiffi
e

p
� 1Þ

Xn

i¼1

l�ð‘iÞe1�l�ð‘iÞ
�

þð1� l�ð‘iÞÞel�ð‘iÞ � 1
�
:

ð6Þ

The concept of Pal and Pal (1989) was further generalized

by Gupta et al. (2014) by introducing a parameter as

follows:

Granular Computing (2022) 7:49–62 51

123



GH1ð�Þ ¼ 1

n 21�1e1�2�1 � 1ð Þ
Xn

i¼1

l�ð‘iÞ1e1�l�ð‘iÞ1
�

þð1� l�ð‘iÞÞ1e1�ð1�l�ð‘iÞÞ1 � 1
�
; 0\1\1:

ð7Þ

From the above discussion, the importance of parameters in

an information measure can be easily estimated. In fact, the

problems involving several parameters may be conve-

niently represented by a multi-parametric information

measure. For example, an environmental problem may

involve the parameters such as temperature, pressure, and

humidity. Motivated by this, we now propose a new bi-

parametric exponential fuzzy information measure.

3.2 Definition

For some FS �, define

In (8), second and third cases, respectively, denote fuzzy

entropies analogous to that of studied by Gupta et al.

(2014) and Pal and Pal (1989).

The proposed information measure (8) being symmetric

in nature, we will study only one case, that is,

0\1\1; 1\.\1.

In the next section, we validate the existence of (8) by

satisfying the axioms in Definition (2.4).

3.3 Validation of proposed measure (8)

Theorem 3.1 The proposed information measure (8) is a

valid fuzzy information measure.

Proof Property 1. First, we suppose that � is a crisp set,

that is, l�ð‘iÞ ¼ 1 or 0 for all ‘i 2 t. Therefore, (8) gives
.
1Hð�Þ ¼ 0for all0\1\1; 1\.\1: ð9Þ

Conversely, suppose that .
1Hð�Þ ¼ 0. This implies

1

21�1e1�2�1 � 21�.e1�2�.ð Þ
Xn

i¼1

l�ð‘iÞ1eð1�l�ð‘iÞ1Þ þ ð1� l�ð‘iÞÞ1e1�ð1�l�ð‘iÞÞ1
� �h

� l�ð‘iÞ.eð1�l�ð‘iÞ.Þ þ ð1� l�ð‘iÞÞ.e1�ð1�l�ð‘iÞÞ.
� �i

¼ 0:

ð10Þ

Since 0\1\1; 1\.\1, therefore, we have

21�1e1�2�1
[ 21�.e1�2�.

: ð11Þ

Moreover, 0� l�ð‘iÞ� 1 implies

l�ð‘iÞ1eð1�l�ð‘iÞ1Þ þ ð1� l�ð‘iÞÞ1e1�ð1�l�ð‘iÞÞ1

� l�ð‘iÞ.eð1�l�ð‘iÞ.Þ þ ð1� l�ð‘iÞÞ.e1�ð1�l�ð‘iÞÞ. :

ð12Þ

Therefore, from (11) and (12), we have

0\
A1 � B1

21�1e1�2�1 � 21�.e1�2�. � 1; ð13Þ

where

A1 ¼ l�ð‘iÞ1eð1�l�ð‘iÞ1Þ þ ð1� l�ð‘iÞÞ1e1�ð1�l�ð‘iÞÞ1 ;

B1 ¼ l�ð‘iÞ.eð1�l�ð‘iÞ.Þ þ ð1� l�ð‘iÞÞ.e1�ð1�l�ð‘iÞÞ. :

This shows that .
1Hð�Þ ¼ 0 implies

l�ð‘iÞ1eð1�l�ð‘iÞ1Þ þ ð1� l�ð‘iÞÞ1e1�ð1�l�ð‘iÞÞ1
� �

¼ l�ð‘iÞ.eð1�l�ð‘iÞ.Þ þ ð1� l�ð‘iÞÞ.e1�ð1�l�ð‘iÞÞ.
� �

:

ð14Þ

Since 1; .[ 0 and 1 6¼ ., then (14) will hold only if

l�ð‘iÞ ¼ 1 or 0. This proves Property 1.

Property 2. Consider a function w given by

wðx; 1; .Þ ¼
x1e1�x1 þ ð1� xÞ1e1�ð1�xÞ1� �

� x.e1�x. þ ð1� xÞ.e1�ð1�xÞ.� �

21�1e1�2�1 � 21�.e1�2�. ;

ð15Þ

where 0\1\1; 1\.\1 and 0� x� 1.

Differentiating, (15) with respect to x, we get

.
1Hð�Þ ¼

1

n 21�1e1�2�1 � 21�.e1�2�.ð Þ
Xn

i¼1

l�ð‘iÞ
1eð1�l�ð‘iÞ1Þ þ ð1� l�ð‘iÞÞ

1e1�ð1�l�ð‘iÞÞ1
� �h

� l�ð‘iÞ.eð1�l�ð‘iÞ.Þ þ ð1� l�ð‘iÞÞ.e1�ð1�l�ð‘iÞÞ.
� �i

;

either 0\1\1; 1\.\1 or 0\.\1; 1\1\1;

1

n 21�1e1�2�1 � 2ð Þ
Xn

i¼1

l�ð‘iÞ
1eð1�l�ð‘iÞ1Þ þ ð1� l�ð‘iÞÞ

1e1�ð1�l�ð‘iÞÞ1 � 2
� �

; 1 ¼ 0 or . ¼ 0;

1

nð
ffiffiffi
e

p
� 2Þ

Xn

i¼1

l�ð‘iÞe1�l�ð‘iÞ þ ð1� l�ð‘iÞÞel�ð‘iÞ � 2
� �

; 1 ¼ 1; . ¼ 0 or 1 ¼ 0; . ¼ 1:

8
>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>:

ð8Þ
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ow
ox

¼ A2 � B2

21�1e1�2�1 � 21�.e1�2�. ; ð16Þ

where

A2¼.x.�1ð1�x.Þe1�x.�.ð1�xÞ.�1ð1�ð1�xÞ.Þeð1�ð1�xÞ.Þ;

B2¼1x1�1ð1�x1Þe1�x1�1ð1�xÞ1�1ð1�ð1�xÞ1Þeð1�ð1�xÞ1Þ:

To determine the stationary points, we express (16) as

ow
ox

¼
bA þ bB þ bC þ bD

21�1e1�2�1 � 21�.e1�2�. ; ð17Þ

where

bA ¼ .x.�1ð1� x.Þe1�x. ;

bB ¼ �.ð1� xÞ.�1ð1� ð1� xÞ.Þeð1�ð1�xÞ.Þ;

bC ¼ �1x1�1ð1� x1Þe1�x1 ;

bD ¼ 1ð1� xÞ1�1ð1� ð1� xÞ1Þeð1�ð1�xÞ1Þ:

ð18Þ

On replacing x with 1� x in bA and bC , we find that

bA þ bB ¼ 0 ¼ bC þ bD. Therefore,
ow
ox

¼ 0 at x ¼ 1� x.

This implies that x ¼ 1
2
is the stationary point.

To prove that w has maximum value x ¼ 1
2
, we prove

that w is concave at x ¼ 1
2
. For this, differentiating (15)

twice with respect to x and computing its value at x ¼ 1
2
, we

get

o2w
ox2

� �

x¼1
2

¼ A3 � B3

21�1e1�2�1 � 21�.e1�2�. ; ð19Þ

where

A3 ¼ e1�:5. 4.222�2. � 2.222�3. � 2.ð.� 1Þ22�.
�

þ2.ð.� 1Þ22�2.
�
;

B3 ¼ e1�:51 41222�21 � 21222�31 � 21ð1� 1Þ22�1
�

þ21ð1� 1Þ22�21
�
:

Now, (19) is negative for all 0\1\1; 1\.\1 which

shows that the function w is concave with maximum value

at the point x ¼ 1
2
. This proves that .

1Hð�Þ has maximum

value when � is the most fuzzy set.

Property 3. In Property 2, it is proved that the measure
.
1Hð�Þ is a concave function with point of inflexion at

x ¼ 1
2
. From this, it may be easily concluded that the

measure .
1Hð�Þ is an increasing function in the interval [0,

0.5) and decreasing function in the interval (0.5, 1]. This

proves Property 3.

Property 4. This property follows directly from the

definition.

Thus, the existence of proposed measure .
1Hð�Þ is

established.

In next section, we discuss some major properties of

proposed measure (8).

3.4 Properties of measure (8)

Theorem 3.2 For any two fuzzy sets �1 and �2,
.
1Hð�1 [ �2Þ þ .

1Hð�1 \ �2Þ ¼ .
1Hð�1Þ þ .

1Hð�2Þ.

Corollary For any fuzzy set � and its complement �c,
.
1Hð� [ �cÞ þ .

1Hð� \ �cÞ ¼ .
1Hð�Þ þ .

1Hð�cÞ:

Theorem 3.3 The maximum value of .
1Hð�Þ takes place

when � is most fuzzy set and minimum value takes place

when � is least fuzzy set. Moreover, both of the values are

independent of 1 and ..

Proof The proofs of the abovementioned theorems as well

as corollary are given in Appendix ‘A’. h

3.5 A demonstration of performance

The adjectives like ‘slightly’, ‘more or less’ are used to

modify the linguistic variables. Fuzzy sets proposed by

Zadeh (1965) have been proved to be an effective tool to

characterize the linguistic variables. Therefore, the adjec-

tives such as very and slightly can be supposed as opera-

tions on fuzzy sets. Using these operations on fuzzy sets, in

this section, we compare the performance of proposed

measure (8) with some other existing fuzzy information

measures in the literature. For a fuzzy set �, the modifier of

� is defined as

�n ¼ fh‘i; l�ð‘iÞnij‘i 2 tg: ð20Þ

Hwang and Yang (2008) and Hung and Yang (2008) define

the concentration of a fuzzy set � as CONð�Þ ¼ �2 and

dilation of a fuzzy set � as DILð�Þ ¼ �1
2. The two terms,

that is, concentration and dilation are frequently used to

modify the fuzzy sets. Thus, we use these terms as math-

ematical operators to characterize the linguistic variables as

follows:

More or Lessð�Þ¼DILð�Þ¼�1
2;VeryA¼CONð�Þ¼�2;

Quite Veryð�Þ¼�3;VeryVeryð�Þ¼�4:

ð21Þ

Many authors (De et al. (2001), Hung and Yang (2006),

Hwang and Yang (2008), Joshi and Kumar (2018a), Xia

and Xu (2012)) have utilized these operators as a criteria of

performance of a fuzzy set as follows:

Hð�1
2Þ[Hð�Þ[Hð�2Þ[Hð�3Þ[Hð�4Þ; ð22Þ

where Hð�Þ denotes the fuzzy entropy of a fuzzy set �.

Therefore, we use (22) as a criteria to compare the
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performance of proposed fuzzy information measure with

other measures. Before comparison, we characterize the

fuzzy sets �1
2;�2;�3;�4 in terms of linguistic variables as

follows:

Characterize �1
2 as ‘‘More or Less Large}

Characterize �2 as ‘‘Very Large}

Characterize �3 as ‘‘Quite Very Large}

Characterize �4 as ‘‘VeryVery Large}:

ð23Þ

For comparison sake, we take two examples adapted from

Joshi and Kumar (2018a).

Example 1 Consider a fuzzy set � defined on a universe

of discourse X ¼ ða; b; c; d; eÞ given by

� ¼ fða; :1Þ; ðb; :3Þ; ðc; :4Þ; ðd; :9Þ; ðe; 1Þg: ð24Þ

Characterizing the linguistic variables, we tag � as

‘‘Large’’. Using this characterization, following fuzzy sets

may be generated:

�1
2 ¼fða; :316Þ; ðb; :548Þ; ðc; :632Þ; ðd; :949Þ; ðe; 1Þg;

�2 ¼fða; :010Þ; ðb; :090Þ; ðc; :160Þ; ðd; :810Þ; ðe; 1Þg;
�3 ¼fða; :001Þ; ðb; :027Þ; ðc; :064Þ; ðd; :0729Þ; ðe; 1Þg;
�4 ¼fða; 0Þ; ðb; :008Þ; ðc; :026Þ; ðd; :656Þ; ðe; 1Þg:

ð25Þ

To compare the performance of proposed measure, we

consider the following well-known fuzzy information

measures proposed by various authors given by

1. Fuzzy information measure proposed by Hwang and

Yang (2008),

Hhyð�Þ ¼
ffiffiffi
e

p
ffiffiffi
e

p
� 1

Xn

i¼1

1� e�l�c ð‘iÞ
� �

I½l�c ð‘iÞ� 1
2
�

h

þ 1� e�l�ð‘iÞ
� �

I½lDc ð‘iÞ\1
2
�

i
:

ð26Þ

2. Fuzzy information measure introduced by Pal and Pal

(1989),

PPHð�Þ ¼ 1

n

Xn

i¼1

l�ð‘iÞe1�l�ð‘iÞ
h

þð1� l�ð‘iÞÞel�ð‘iÞ � 1
i
:

ð27Þ

3. Fuzzy information measure proposed by Li and Liu

(2008),

Hllð�Þ ¼
Xn

i¼1

SðCrðn� ¼ xiÞÞ: ð28Þ

4. Fuzzy information measure introduced by Yager

(1979),

Hyagerð�Þ ¼ 1� dpð�;�cÞ
n

1
p

: ð29Þ

5. Fuzzy information studied by Gupta et al. (2014),

GH1ð�Þ

¼ 1

n 21�1e1�2�1 � 1ð Þ
Xn

i¼1

l�ð‘iÞ1eð1�l�ð‘iÞ1Þ
�

þð1� l�ð‘iÞÞ1e1�ð1�l�ð‘iÞÞ1 � 1
�
; 0\1\1:

ð30Þ

6. Fuzzy information measure studied by Kosko (1986),

HKOð�Þ ¼ dpð�;�nearÞ
dpð�;�farÞ

: ð31Þ

The computed values of fuzzy information measures (26)

to (31) and proposed information measure (8) for the fuzzy

sets defined in (25) are displayed in Table 1.

The observations obtained from Table 1 are summarized

as follows:

Hhyð�
1
2Þ[Hhyð�Þ[Hhyð�2Þ[Hhyð�3Þ[Hhyð�4Þ;

PPHð�1
2Þ[ PPHð�Þ[ PPHð�2Þ[ PPHð�3Þ[ PPHð�4Þ;

HKOð�
1
2Þ\HKOð�Þ[HKOð�2Þ[HKOð�3Þ[HKOð�4Þ;

Hllð�
1
2Þ[Hllð�Þ[Hllð�2Þ[Hllð�3Þ[Hllð�4Þ;

Hyagerð�
1
2Þ[Hyagerð�Þ[Hyagerð�2Þ[Hyagerð�3Þ

[Hyagerð�4Þ;
GH1ð�

1
2Þ[ GH1ð�Þ[ GH1ð�2Þ[ GH1ð�3Þ[ GH1ð�4Þ;

.
1Hð�1

2Þ[ .
1Hð�Þ[ .

1Hð�2Þ[ .
1Hð�3Þ[ .

1Hð�4Þ:
ð32Þ

From (32), it may be observed that

Hhy;
PPH;Hll;Hyager;

GH1 and .
1H follow the pattern (22)

whereas HKO do not. This shows that the performance of

measure HKO is not better as compared to other measures.

For further comparison, we consider another Example.

Example 2 On a universe of discourse X ¼ fba; bb; bc; bd ; beg,
consider another fuzzy set defined by

e� ¼ fðba; :2Þ; ðbb; :3Þ; ðbc; :4Þ; ðbd; :7Þ; ðbe; 1Þg: ð33Þ

Again, using (20), we generate the following fuzzy sets.
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e�
1
2 ¼fðba; :447Þ; ðbb; :548Þ; ðbc; :632Þ; ðbd; :837Þ; ðbe; 1Þg;
e�2 ¼fðba; :040Þ; ðbb; :090Þ; ðbc; :160Þ; ðbd; :490Þ; ðbe; 1Þg;
e�3 ¼fðba; :008Þ; ðbb; :027Þ; ðbc; :064Þ; ðbd; :0343Þ; ðbe; 1Þg;
e�4 ¼fðba; :002Þ; ðbb; :008Þ; ðbc; :026Þ; ðbd; :240Þ; ðbe; 1Þg:

ð34Þ

The computed values of Hhy;
PPH; GH1 and .

1H are shown

in Table 2.

A Discussion on performance: Thus, all the four mea-

sures, that is, Hhy;
PPH; GH1 and

.
1H, considered in Table 2

follow the sequence given in (22). This conclusion gener-

ates a natural query in mind that which information mea-

sure is better than others. On analyzing the eight fuzzy

information measures considered so far, we observe that all

the information measures except the proposed one are

either rigid or contains one parameter. Therefore, the

measures (26), (27), (28), (29) and (31) are not suitable for

the applications which involve parameters. Also, the

measure (30) is one parametric which restricts its scope of

application to the problems involving one parameter only.

On the other hand, the proposed measure (8) is a bi-para-

metric information measure which enhances its scope of

applications. This establishes the fact that the proposed

measure (8) is effective and its performance is considerably

good.

4 Application of proposed measure
in decision-making

A multi-criteria decision-making (MCDM) is the process

of selecting the most desirable alternative satisfying the

established criteria. As discussed earlier, the criteria

weights play a decisive role in the selection of the most

appropriate alternative. The improper evaluation of criteria

weights may lead to the selection of an inferior alternative

which ultimately may appear in the form of loss. Therefore,

the evaluation of criteria weights needs utmost attention

while solving a MCDM problem. In the present study, we

adopt two approaches to evaluate criteria weights: First

approach includes the case when we have partial infor-

mation about criteria weights and second approach is based

on when the criteria weights are incompletely known or

completely unknown.

4.1 A new TOPSIS method based on weighted
correlation coefficients

4.1.1 Justification of proposed method

Technique for Order Preference by Similarity to Ideal

Solutions (TOPSIS) is one of the widely used techniques to

solve MCDM problems. In TOPSIS method, two extreme

solutions, that is, the best possible solution and the worst

possible solution are determined and an alternative closest

to the best solution and farthest from the worst solution is

chosen as the most desirable alternative. To check the

degree of closeness with extreme solutions, different dis-

tance measures are used. Now, it has been proved that

results of TOPSIS method vary with the change of distance

measure used (Joshi and Kumar (2018f)). Therefore,

instead of using distance measure based TOPSIS method, a

new improved TOPSIS method based on correlation

coefficients is being proposed in this study. Further, Ye

(2010) argued that the techniques used in fuzzy decision-

making either use score function or accuracy functions that

do not give sufficient information about alternatives.

Therefore, these methods are not reliable and a substitute is

necessary for decision-making. With this viewpoint, Ye

Table 1 Computed values of

information measures (26)–(31)

and (8)

Hhyð�Þ PPHð�Þ HKOð�Þ Hllð�Þ HyagerðDÞ GH1¼:8ð�Þ .ð¼7Þ
1ð¼:5ÞHð�Þ

�1
2 .505 .599 .220 .810 .397 .630 .630

� .397 .510 .311 .723 .360 .564 .566

�2 .212 .311 .099 .378 .167 .378 .368

�3 .167 .232 .078 .870 .145 .281 .287

�4 .165 .209 .082 .692 .151 .238 .253

Table 2 Computed values of information measures (26)–(31) and (8)

Hhyð e�Þ PPHð e�Þ GH1¼8ð e�Þ .ð¼25Þ
1ð¼:8Þ Hð e�Þ

e�
1
2 .653 .694 .630 .761

e� .616 .661 .563 .754

e�2 .577 .409 .378 .549

e�3 .393 .259 .281 .333

e�4 .298 .177 .238 .238

Granular Computing (2022) 7:49–62 55

123



(2010) proposed an alternative method for fuzzy decision-

making. But in his proposed technique, Ye (2010) con-

sidered the correlation between alternatives and the best

solution only thus neglecting the correlation between

alternatives and the worst solution.

In the next Subsection, we propose a MCDM method by

considering the correlation of alternatives with the best and

the worst possible solutions.

4.1.2 The proposed method

The procedural steps of proposed MCDM method are as

follows:

Step 1. Preparation of fuzzy decision matrix

Represent the given MCDM problem in matrix form

with rows representing alternatives giði ¼ 1; 2; . . .;mÞ
and columns denoting criteria Wjðj ¼ 1; 2; . . .; nÞ as

follows:

W1 W2 . . . Wn

eMm�n ¼

g1

g2

..

.

gm

bl11 bl12 . . . bl1n

bl21 bl22 . . . bl2n

..

. ..
. . .

. ..
.

blm1 blm2 . . . blmn

0
BBBB@

1
CCCCA
;

ð35Þ

where blij ¼ l gi;Wj

� �
denotes the degree of satisfaction of

the alternative gi to the criteria Wj. To determine the

degree of satisfaction of gi’s corresponding to criteria

Wj’s, we apply the following method:

lij ¼
nyði; jÞ
N

ð36Þ

where nyði; jÞ denotes the number of experts who support

gi corresponding to criteria Wj and N represents the total

number of experts.

Step 2. Normalization of decision matrix

To treat all the criteria at a par, normalize the matrix

obtained in Step 1 as follows:

lij ¼
blij for Benefit Criteria;

ð1� blijÞ for Cost Criteria:

(
ð37Þ

Let the matrix so obtained be represented by M

W1 W2 . . . Wn

Mm�n ¼

g1

g2

..

.

gm

l11 l12 . . . l1n
l21 l22 . . . l2n

..

. ..
. . .

. ..
.

lm1 lm2 . . . lmn

0
BBBB@

1
CCCCA
;

ð38Þ

. Step 3. Determination of criteria weights

As discussed earlier, the criteria weights play an

important role in the solution of a MCDM problem. This

implies that evaluation of criteria weights needs due

attention. With this point in mind, we bifurcate the process

of determination of criteria weights into two parts as

follows:

Approach I: If the Information Available about cri-

teria Weights is Partial

The advice of experts involved in decision-making

process matters very much. But all the experts may not be

well-versed with all the aspects of a problem. Therefore, it

is not possible to have such reliable advice every time. This

may also be due to lack of time, limited expertise about

problem domain etc. that experts do not express themselves

in the form of precise numbers. In fact, they prefer to

express themselves in the form of intervals. We compile

this available partial information about criteria weights in

the form of a set denoted by R. To determine the criteria

weights, we use the principle of minimum entropy sug-

gested by Wang and Wang (2012) as follows:

The total entropy of an alternative gi across all the

criteria Wj is given by

.
1HðgiÞ ¼

Xn

j¼1

.
1HðlijÞ

¼
Xn

j¼1

1

n 21�1e1�2�1 � 21�.e1�2�.ð Þ

�

l1ije
ð1�l1ijÞ þ ð1� lijÞ1e1�ð1�lijÞ1

� �h

� l.ije
ð1�l.ijÞ þ ð1� lijÞ.e1�ð1�lijÞ.

� �i�
;

¼ 1

n 21�1e1�2�1 � 21�.e1�2�.ð Þ
Xn

j¼1

l1ije
ð1�l1ijÞ þ ð1� lijÞ1e1�ð1�lijÞ1

� �h

� l.ije
ð1�l.ijÞ þ ð1� lijÞ.e1�ð1�lijÞ.

� �i
:

ð39Þ

Since, each alternative is a fair competition, then, the

weight coefficients corresponding to same criteria should

also be same. Therefore, to determine the optimal criteria

weights, we construct the following programming model:

minðIÞ ¼
Xm

i¼1

wj
.
1H gið Þ
� �� �

¼ 1

n 21�1e1�2�1 � 21�.e1�2�.ð Þ
Xm

i¼1

Xn

j¼1

wj l1ije
ð1�l1ijÞ þ ð1� lijÞ

1e1�ð1�lijÞ1
� �h�

� l.ije
ð1�l.ijÞ þ ð1� lijÞ.e1�ð1�lijÞ.

� �i�

ð40Þ
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subject to the condition
Pn

j¼1 wj ¼ 1;wj 2 R. On solving

(40), we get the criteria weight vector in the form

argminE ¼ ðw1;w2; . . .;wnÞ0 as an optimal solution,

where 0 denotes the transpose.

Approach II: If the criteria Weights are Unknown

To obtain the criteria weights in this case, we employ

the method suggested by Chen and Li (2010) as follows:

wj ¼
1� .

1HðlijÞ
n�

Pn
j¼1

.
1HðlijÞ
� � ; ð41Þ

where

.
1HðlijÞ ¼

1

21�1e1�2�1 � 21�.e1�2�.ð Þ
Xm

i¼1

l1ije
ð1�l1ijÞ þ ð1� lijÞ1e1�ð1�lijÞ1

� �h

� l.ije
ð1�l.ijÞ þ ð1� lijÞ.e1�ð1�lijÞ.

� �i
:

ð42Þ

Step 4. Determination of extreme solutions

Determine the best solution ðgHÞ as well as worst

solution ðgHÞ as follows:

g
H ¼ max ðlijÞ andgH ¼ min ðlijÞ; for all

i ¼ 1; 2; . . .m; j ¼ 1; 2; . . .; n:
ð43Þ

Step 5. Determination of weighted correlation

coefficients

Determine the weighted correlation coefficients

gi’sði ¼ 1; 2; . . .;mÞ with g
H and gH using Defini-

tion (2.5) as follows:

ðgi;g
HÞ ¼ wjKðgi;g

HÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
wj dðgiÞ � dðgHÞð Þ

p ;

ðgi;gHÞ ¼
wjKðgi;gHÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

wj dðgiÞ � dðgHÞð Þ
p :

ð44Þ

Step 6. Determination of relative closeness coefficients

Determine the relative correlation coefficients viði ¼
1; 2; . . .;mÞ as follows:

vi ¼
ðgi;gHÞ

ðgi;gHÞ þ ðgi;gHÞ : ð45Þ

Step 7. Ranking of alternatives

Arranging the gi’s according to the values of

vi’sði ¼ 1; 2; . . .;mÞ in descending order, we obtain the

preferential sequence of alternatives.

In subsequent Section, we explain the proposed MCDM

method through numerical examples.

5 Illustrated numerical examples

Vagueness in scientific studies is presenting a challenging

dimensions. Fuzzy set theory proposed by Zadeh (1965)

has proved to be effective tool to characterize such

vagueness. To counter the menace of vagueness in scien-

tific studies, there is a need to develop information mea-

sures and relevant methods which can measure the

vagueness in the underlying characterizing fuzzy sets. The

example considered in this Section highlights the need of

such measures and methods. Consider an example of a

factory in which a machine is not functioning properly. In

large-scale units, such occurrences are frequent and needs

immediate attention otherwise it may slow down the pro-

duction rate which ultimately may appear in the form of

loss to the company. To keep the machine going on

smoothly, the immediate detection of fault in the machine

is necessary. To locate the fault in the machine at the

earliest can be one of the best examples of the applied

intelligence. Since, symptoms the machine is showing and

the part of the machine in which fault is located are

strongly correlated, therefore, the proposed MCDM

method can be applied successfully in this case.

5.1 For partially known criteria weights

Example To perform the task, we broadly divide the

machine under observation into five parts say

g1;g2;g3;g4;g5. Let ðW1;W2;W3;W4Þ denote the set of
symptoms bearing certain relationship with faulty sections

that the machine is indicating on the basis of which the

faulty section is to be fixed. Sometimes, different faults

have common symptoms which give rise to fuzziness in

determining the exact faulty part of the machine. Fuzzy

sets proposed by Zadeh (1965) are helpful in dealing with

such vagueness. Therefore, we use the proposed fuzzy

information measure for the purpose. Using (36), let the

Table 3 Fuzzy decision matrix ðMÞ5�4

W1 W2 W3 W4

g1 .7 .4 .5 .6 (46)

g2 .7 .8 .6 .3

g3 .6 .3 .4 .7

g4 .8 .1 .4 .5

g5 .6 .2 .1 .6
.
1HðWjÞ .9601 .8742 .9221 .9821
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degree of relationship that a symptom bears with a par-

ticular part of the machine under observation be repre-

sented by the fuzzy decision matrix given by

Let the information available about criteria weights be

denoted by the set R given by

R ¼ f0�w1 � :3; :1�w2 � :2; :2�w3 � :5; :1�w4 � :3g
ð47Þ

subject to the condition
P4

j¼1 wj ¼ 1.

Now, we apply the proposed MCDM method to select

the faulty section of the machine. The computational pro-

cedure is as follows:

Step 1. The given MCDM problem is represented by the

matrix (46).

Step 2. Since, we are dealing with the problem of

detection of fault in the machine, therefore, there is no

benefit or cost criteria. Therefore, the normalized fuzzy

decision matrix is represented by the fuzzy decision matrix

(46) itself.

Step 3. To determine the weight-age of symptoms, we

proceed as follows:

1. Using proposed information measure (8), the computed

values of information for each symptom

Wj; ðj ¼ 1; 2; 3; 4Þ, that is, .
1HðWjÞ are shown in last

row of Table 1.

2. Using (40), we construct the the following program-

ming model:

minðIÞ ¼:9601w1 þ :8742w2 þ :9221w3 þ :9821w4

subject to

0�w1 � :3;

:1�w2 � :2;

:2�w3 � :5;

:1�w4 � :3;
P4

i¼1 wi ¼ 1:

8
>>>>>><

>>>>>>:

ð48Þ

3. Solving the linear programming model (48) using

MATLAB, the criteria weights so obtained are given

by

w1 ¼ :2;w2 ¼ :2;w3 ¼ :5;w4 ¼ :1: ð49Þ

The syntax for MATLAB code is provided in

Appendix ‘B’.

Step 4. Using (43), the compute values of g
H and gH are

given by

g
H ¼ ð:8; :8; :6; :7Þ andgH ¼ ð:6; :1; :1; :3Þ: ð50Þ

Step 5. The computed values of weighted correlation

coefficients using (44) are given by

ðg1;g
HÞ ¼:9636; ðg2;g

HÞ ¼ :9536; ðg3;g
HÞ

¼:9420; ðg4;g
HÞ ¼ :8482; ðg5;g

HÞ
¼ :7525;

ðg1;gHÞ ¼:6742; ðg2;gHÞ ¼ :7023; ðg3;gHÞ
¼ :6725; ðg4;gHÞ

¼:5999; ðg5;gHÞ ¼ :5785:

ð51Þ

Step 6. The computed values of relative correlation coef-

ficients viði ¼ 1; 2; 3; 4; 5Þ using (45) are given by

v1¼ :4117;v2¼ :4241;v3¼ :4166;v4¼ :4143;v5¼ :4346:

ð52Þ

Step 7. Arranging the sections g1;g2;g3;g4;g5 of the

machine, according to the values of vis in descending

order, the preferential sequence of faulty sections so

obtained is given by

g5 	 g2 	 g3 	 g4 	 g1: ð53Þ

Thus, g5 is the section of the machine in which fault is

located.

A comparative analysis: To compare the performance

of proposed method, the same Example was computed

using the weighted correlation coefficients method pro-

posed by Ye (2010) and the output so obtained is given by

g1 	 g2 	 g3 	 g4 	 g5 with g1 as the best alterna-

tive. If we compute the above example by using conven-

tional fuzzy TOPSIS method and using the Hamming

distance as the distance measure, the preferential sequence

of alternatives so obtained is given by: g2 	 g1 	 g3 	
g4 	 g5 with g2 as the best alternative. Thus, all the

three methods used to determine the best alternative in

same example are producing the different outputs. Now, a

natural question that arise in mind is that which output is

most reliable. This is an established fact that different

algorithms are defined with different viewpoints ( Joshi and

Kumar (2017c)). Due to this difference in viewpoints, the

weight-age given to different criteria in a problem may

vary which ultimately may change the output. We start

with Ye’s method ( Ye (2010)). Ye’s method ( Ye (2010))

is based on the correlation of alternatives with the best

solution only whereas the correlation with the worst solu-

tion is not considered. Even in TOPSIS method, which is

one of the widely used method, the best alternative is

decided on the basis of relative closeness coefficients in

which distances of the alternative from both solutions, that

is, the best solution and the worst solution are considered.

This is due to this reason that the most preferred alternative

obtained using Ye’s method may not be always be the best

one. Moreover, as mentioned earlier in Sect. 1, that is,

‘Introduction’, a distance measure based TOPSIS method
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do not consider the correlation between two objects due to

which a certain amount of useful information may be lost.

Therefore, the output of a such a TOPSIS method may not

be reliable. Thus, in MCDM problems where the criteria

bears certain correlation with alternatives, the proposed

MCDM method may be the best choice. This establishes

the efficacy of proposed MCDM method.

5.2 If criteria weights are unknown

Now, we compute the above Example for the case when

criteria weights are unknown to us. The computational

steps are as follows:

Step 1. The computed values of symptoms weights

using (41) are given by

w1 ¼ :1526;w2 ¼ :4811;w3 ¼ :2979;w4 ¼ :0685: ð54Þ

Step 2. The computed values of g
H and gH are same

as given in (50).

Step 3. The computed values of weighted correlation

coefficients using (44) are given by

ðg1;g
HÞ ¼:9695; ðg2;g

HÞ ¼ :9621;

ðg3;g
HÞ ¼:9458; ðg4;g

HÞ ¼ :7673; ðg5;g
HÞ

¼ :7995;

ðg1;gHÞ ¼:6315; ðg2;gHÞ ¼ :7120; ðg3;gHÞ
¼ :6213;

ðg4;gHÞ ¼:5196; ðg5;gHÞ ¼ :5358:

ð55Þ

Step 4. The calculated values of vi’sði ¼ 1; 2; . . .;mÞ are

given by

v1¼ :3944;v2¼ :4253;v3¼ :3965;v4¼ :4038;v5¼ :4013:

ð56Þ

Step 5. Applying Step 7 of proposed method, the prefer-

ential sequence so obtained is given by

g2 	 g4 	 g5 	 g3 	 g1: ð57Þ

Thus, this is the g2 section in which fault is located.

Moreover, the proposed decision-making model may

also be applied in other real-world applications, for

example, to select the most appropriate supplier for a

company, to select the most suitable site for project

installation, for purchasing a suitable flat meeting almost

all the requirements of a common man, to invest a sum of

money to have good returns and any other problem

involving conflicting criteria and fuzziness in decision-

making.

6 Conclusions

In this paper, we have successfully introduced a new

fuzzy information measure as an extension of the fuzzy

information measure studied by Gupta et al. (2014). A

new modified TOPSIS method based on weighted cor-

relation coefficients is proposed. Estimating the impor-

tance of criteria weights, two methods of determining the

criteria weights are discussed: for partially known criteria

weights and for unknown criteria weights. Further, the

proposed information measure and proposed MCDM

method have been utilized in locating the fault in a

machine.

Limitations and future scope: One of the major limi-

tations of the proposed work is that it is based on the

complete probability distribution, that is, ð�h1; �h2; . . .; �hnÞ
such that

Pn
i¼1 �hi ¼ 1. In practice, this may not always the

case, that is, sum of probabilities may exceed one or lesser

than one, for example D-numbers studied by Deng (2012).

Another limitation of this study is that the proposed deci-

sion-making method is based on fuzzy information only

whereas in practice there exists several generalizations of

fuzzy sets, for example, intuitionistic fuzzy sets studied by

Atanassov (1986), hesitant fuzzy set introduced by Torra

and Narukawa (2009), neutrosophic set Smarandache

(2006) etc. Therefore, there is need to develop more gen-

eral decision-making methods. The work is under consid-

eration and will be reported somewhere else.
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Appendix A

Proof of Theorem (3.2) To prove the theorem, we bifurcate

the universe of discourse X ¼ ð‘1; ‘2; . . .; ‘nÞ as follows:
X1 ¼f‘i 2 Xj �1 ð‘iÞ 
 �2ð‘iÞg

andX2 ¼ f‘i 2 Xj �1 ð‘iÞ � �2ð‘iÞg:
ð58Þ

This implies that for all ‘i 2 X1, l�1
ð‘iÞ� l�2

ð‘iÞ and for

all ‘i 2 X2, l�2
ð‘iÞ� l�1

ð‘iÞ, where l�1
ð‘iÞ and l�2

ð‘iÞ
denote the membership degrees of �1 and �2, respectively.

This gives
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For all‘i2X1;l�1[�2
ð‘iÞ¼maxðl�1

ð‘iÞ;l�2
ð‘iÞÞ¼l�2

ð‘iÞ;
andl�1\�2

ð‘iÞ¼minðl�1
ð‘iÞ;l�2

ð‘iÞÞ¼l�1
ð‘iÞ:

ð59Þ

Similarly,

For all‘i2X2;l�1[�2
ð‘iÞ¼maxðl�ð‘iÞ;l�2

ð‘iÞÞ¼l�1
ð‘iÞ;

andl�1\�2
ð‘iÞ¼minðl�1

ð‘iÞ;l�2
ð‘iÞÞ¼l�2

ð‘iÞ:
ð60Þ

Now, to prove theorem (3.2), consider

.
1Hð�1[�2Þþ .

1Hð�1\�2Þ¼
A4þB4

n 21�1e1�2�1 �21�.e1�2�.ð Þ ;

ð61Þ

where

A4 ¼ A41 � A42;B4 ¼ B41 � B42

and

A41 ¼
Xn

i¼1

l�1[�2
ð‘iÞ1eð1�l�1[�2

ð‘iÞ1Þ
�

þð1� l�1[�2
ð‘iÞÞ1e1�ð1�l�1[�2

ð‘iÞÞ1
�
;

A42 ¼
Xn

i¼1

l�1[�2
ð‘iÞ.eð1�l�1[�2

ð‘iÞ.Þ
�

þð1� l�1[�2
ð‘iÞÞ.e1�ð1�l�1[�2

ð‘iÞÞ.
�
;

B41 ¼
Xn

i¼1

l�1\�2
ð‘iÞ1eð1�l�1\�2

ð‘iÞ1Þ
�

þð1� l�1\�2
ð‘iÞÞ1e1�ð1�l�1\�2

ð‘iÞÞ1
�
;

B42 ¼
Xn

i¼1

l�1\�2
ð‘iÞ.eð1�l�1\�2

ð‘iÞ.Þ
�

þð1� l�1\�2
ð‘iÞÞ.e1�ð1�l�1\�2

ð‘iÞÞ.
�
:

Using (59) and (60), we get

.
1Hð�1 [ �2Þ þ .

1Hð�1 \ �2Þ

¼
ðA0

41 þ A00
41Þ � ðA0

42 þ A00
42Þ

	 

þ ðB0

41 þ B00
41Þ � ðB0

42 þ B00
42Þ

	 


n 21�1e1�2�1 � 21�.e1�2�.ð Þ ;

ð62Þ

where

A0
41 ¼

X

X1

l�2
ð‘iÞ1eð1�l�2

ð‘iÞ1Þ þ ð1� l�2
ð‘iÞÞ1e1�ð1�l�2

ð‘iÞÞ1
� �

;

A00
41 ¼

X

X2

l�1
ð‘iÞ1eð1�l�1

ð‘iÞ1Þ þ ð1� l�1
ð‘iÞÞ1e1�ð1�l�1

ð‘iÞÞ1
� �

;

A0
42 ¼

X

X1

l�2
ð‘iÞ.eð1�l�2

ð‘iÞ.Þ þ ð1� l�2
ð‘iÞÞ.e1�ð1�l�2

ð‘iÞÞ.
� �

;

A00
42 ¼

X

X2

l�1
ð‘iÞ.eð1�l�1

ð‘iÞ.Þ þ ð1� l�1
ð‘iÞÞ.e1�ð1�l�1

ð‘iÞÞ.
� �

;

B0
41 ¼

X

X1

l�1
ð‘iÞ1eð1�l�1

ð‘iÞ1Þ þ ð1� l�1
ð‘iÞÞ1e1�ð1�l�1

ð‘iÞÞ1
� �

;

B00
41 ¼

X

X2

l�2
ð‘iÞ1eð1�l�2

ð‘iÞ1Þ þ ð1� l�2
ð‘iÞÞ1e1�ð1�l�2

ð‘iÞÞ1
� �

;

B0
42 ¼

X

X1

l�1
ð‘iÞ.eð1�l�1

ð‘iÞ.Þ þ ð1� l�1
ð‘iÞÞ.e1�ð1�l�1

ð‘iÞÞ.
� �

;

B00
42 ¼

X

X2

l�2
ð‘iÞ.eð1�l�2

ð‘iÞ.Þ þ ð1� l�2
ð‘iÞÞ.e1�ð1�l�2

ð‘iÞÞ.
� �

:

On computing (62), we get

.
1Hð�1 [ �2Þ þ .

1Hð�1 \ �2Þ ¼ .
1Hð�1Þ þ .

1Hð�2Þ:
ð63Þ

Corollary Proof follows directly from the proof of theorem

(3.2) by taking �2 ¼ �c
1.

Proof of Theorem (3.3): First, we prove that .
1Hð�Þ is

independent of 1 when � is most fuzzy set, that is,

l�ð‘iÞ ¼ 0:5 for all ‘i 2 X. Therefore, substituting

l�ð‘iÞ ¼ :5 in (8), we get

.
1Hð�Þ ¼

n 21�1e1�2�1 � 21�.e1�2�.� �

n 21�1e1�2�1 � 21�.e1�2�.ð Þ ¼ 1; ð64Þ

which is free of 1 and ..
Similarly, if � is least fuzzy set, that is, taking l�ð‘iÞ ¼

1or0 in (8), we find that .1Hð�Þ ¼ 0 which is again free of 1

and .. This proves the theorem.

Appendix B

Consider an linear programming problem (LPP) of mini-

mization type defined by

Z ¼min
X

f TX; ð65Þ

such that

M � X� ub;

Meq � X ¼ beq;

lb�X� ub;

8
><

>:
ð66Þ

where f ;X; ub; beq; lb are vectors and M and Meq are

matrices.
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The syntax for MATLAB code for solving above LPP is

given by

½X; fval� ¼ linprogðf ;M; b;Meq; beq; lb; ubÞ: ð67Þ

The Example discussed in Sect. 5.1 is solved as follows:

X ¼

w1

w2

w3

w4

2

664

3

775 represents the function to be optimized and

f ¼

:9601
:8742
:9221
:9821

2

664

3

775 denotes the coefficient vector.M is matrix of

constraints given by

M ¼

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

2

6664

3

7775: ð68Þ

ub ¼ ð:3; :2; :5; :3Þ is the upper bound of constraints and

lb ¼ ð0; :1; :2; :1Þ represents the lower bound of con-

straints. Further, Meq ¼ ð1; 1; 1; 1Þ, beq ¼ 1 and fval is the

optimum value of X.

References

Atanassov KT (1986) Intuitionistic fuzzy sets. Fuzzy Sets Syst

20(1):87–96

Atanassov KT, Gargov G (1989) Interval valued intuitionistic fuzzy

sets. Fuzzy Sets Syst 31(3):343–349

Arya V, Kumar S (2020) Knowledge measure and entropy: a

complementary concept in fuzzy theory. Granul Comput. https://

doi.org/10.1007/s41066-020-00221-7

Boekee DE, Vander Lubbe JCA (1980) The R-norm information

measure. Inform Control 45:136–155

Chen T, Li C (2010) Determining objective weights with intuitionistic

fuzzy entropy measures: a comparative analysis. Inf Sci

180:4207–4222

Chu ATW, Kalaba RE, Spingarn K (1979) A comparison of two

methods for determining the weights of belonging fuzzy sets.

J Optimiz Theor App 27:531–538

Choo EU, Wedley WC (1985) Optimal criteria weights in repetitive

multi criteria decision making. J Oper Res Soc 36:983–992

Chen S-M, Chen S-W (2015) Fuzzy forecasting based on two-factors

second-order fuzzy-trend logical relationship groups and the

probabilities of trends of fuzzy logical relationships. IEEE Trans

Cybernet 45(3):391–403

Chen S-M, Ko Y-K, Chang Y-C, Pan J-S (2009) Weighted fuzzy

interpolative reasoning based on weighted increment transfor-

mation and weighted ratio transformation techniques. IEEE

Trans Fuzzy Syst 17(6):1412–1427

Chen S-M, Wang N-Y (2010) Fuzzy forecasting based on fuzzy-trend

logical relationship groups. IEEE Trans Syst Man, Cybernet Part

B 40(5):1343–1358

Chen S-M, Chu H-P, Sheu T-W (2012) TAIEX forecasting using

fuzzy time series and automatically generated weights of

multiple factors. IEEE Trans Syst Man Cybernet Part A

42(6):1485–1495

Chen S-M, Cheng S-H, Lan T-C (2016) Multicriteria decision making

based on the TOPSIS method and similarity measures between

intuitionistic fuzzy values. Inf Sci 367–368:279–295

Chen S-M, Chang C-H (2016) Fuzzy multiattribute decision making

based on transformation techniques of intuitionistic fuzzy values

and intuitionistic fuzzy geometric averaging operators. Inf Sci

352–353:133–149

Zeng S, Chen S-M, Kuo L-W (2019) Multiattribute decision making

based on novel score function of intuitionistic fuzzy values and

modified VIKOR method. Inf Sci 488:76–92

Wang C-Y, Chen S-M (2017) Multiple attribute decision making

based on interval-valued intuitionistic fuzzy sets, linear pro-

gramming methodology, and the extended TOPSIS method. Inf

Sci 397–398:155–167

Chen S-M, Chiou C-H (2015) Multiattribute Decision Making Based

on Interval-Valued Intuitionistic Fuzzy Sets, PSO Techniques,

and evidential reasoning methodology. IEEE Trans Fuzzy Syst

23(6):1905–1916

Chen S-M, Yang M-W, Yang S-W, Sheu T-W, Liau C-J (2012)

Multicriteria fuzzy decision making based on interval-valued

intuitionistic fuzzy sets. Expert Syst Appl 39(15):12085–12091

Deng Y (2012) D numbers: theory and applications. J Inf Comput Sci

9(9):2421–2428

De Luca A, Termini S (1972) A definition of non-probabilistic

entropy in the setting of fuzzy set theory. Inf Control 20:301–312

De SK, Biswas R, Roy AR (2001) An application of intuitionistic

fuzzy sets in medical diagnosis. Fuzzy Sets Syst 117(2):209–213

Fan ZP (1996) Complicated multiple attribute decision making:

Theory and applications. Ph.D. Dissertation, Northeastern uni-

versity, Shenyang China

Gupta P, Arora HD, Tiwari P (2014) On some generalized exponen-

tial entropy for fuzzy sets. In: Proceeding of 3rd international

conference on reliability, infocom technologies and optimization

(ICRITO) (Trends and Future Directions) Oct 8-10: 309-311

Gerstenkorn T, Manko J (1991) Correlation of intuitionistic fuzzy

sets. Fuzzy Sets Syst 44:39–43

Hung WL, Yang MS (2006) Fuzzy entropy on intuitionistic fuzzy

sets. Int J Intell Syst 21:443–451

Hwang CH, Yang MS (2008) On entropy of fuzzy sets. Int J

Uncertainty Fuzziness Knowl-Based Syst 16:519–527

Hung WL, Yang MS (2008) On the j-divergence of intuitionistic

fuzzy sets and its application to pattern recognition. Inf Sci

178(6):1641–1650

Hung WL, Yang MS (2004) Similarity measures of intuitionistic

fuzzy sets based on Housedorff distance. Pattern Recognit Lett

25:1603–1611

Havdra JH, Charvat F (1967) Quantification method classification

process: concept of structral a-entropy. Kybernetika 3:30–35

Higashi M, Klir GJ (1982) On measures of fuzziness and fuzzy

complements. Int J Gen Syst 8:169–180

Hwang CL, Lin MJ (1987) Group decision making under multiple

criteria: methods and applications. Springer, Berlin

Joshi R, Kumar S (2018a) An ðR; SÞ-norm fuzzy information measure

with its application in multiple attribute decision making. Comp

Appl Math 37(3):2943–2964

Joshi R, Kumar S (2017a) A new exponential fuzzy entropy of order-

ða; bÞ and its application in multiple attribute decision making.

Commun Math Stat 5(2):213–229

Joshi R, Kumar S (2018b) An intuitionistic fuzzy ðd; cÞ-norm entropy

with its application in supplier selection problem. Comp Appl

Math 37(5):5624–5649

Joshi R, Kumar S (2018c) An intuitionistic fuzzy information

measure of order ða;bÞ with a new approach in supplier

Granular Computing (2022) 7:49–62 61

123

https://doi.org/10.1007/s41066-020-00221-7
https://doi.org/10.1007/s41066-020-00221-7


selection problems using an extended VIKOR method. J Appl

Math Comput 60:27–50

Joshi R, Kumar S (2018d) A new parametric intuitionistic fuzzy

entropy and its applications in multiple attribute decision

making. Int J Appl Comput Math 4:52–74

Joshi R, Kumar S (2018e) An ðR0; S0Þ-norm fuzzy relative information

measure and its applications in strategic decision making. Comp

Appl Math 37(4):4518–4543

Joshi R, Kumar S (2017b) A new intuitionistic fuzzy entropy of order-

a with applications in multiple attribute decision making. Adv

Intell Syst Comput 546:212–219

Joshi R, Kumar S, Gupta D, Kaur H (2017c) A Jensen-a-norm
dissimilarity measure for intuitionistic fuzzy sets and its

applications in multiple attribute decision making. Int J Fuzzy

Syst 20(4):1188–1202

Joshi R, Kumar S (2016) ðR; SÞ-norm information measure and a

relation between coding and questionnaire theory. Open systems

and information dynamics. https://doi.org/10.1142/

S1230161216500153

Joshi R, Kumar S (2018f) A novel fuzzy decision making method

using entropy weights based correlation coefficients under

intuitionistic fuzzy environment. Int J Fuzzy Syst 21(1):232–242

Joshi R, Kumar S (2018g) A new weighted ða;bÞ-norm information

measure with application in coding theory. Physica A

510:538–551

Kaufman A (1980) Fuzzy subsets: fundamental theoretical elements,

vol 3. Academic Press, New York

Kosko B (1986) Fuzzy entropy and conditioning. Inf Sci

40(2):165–174

Khatter K (2020) Interval valued trapezoidal neutrosophic set: multi-

attribute decision making for prioritization of non-functional

requirements. J Ambient Intell Human Comput. https://doi.org/

10.1007/s12652-020-02130-8

Li P, Liu B (2008) Entropy of credibility distributions for fuzzy

variables. IEEE Trans Fuzzy Syst 16:123–129

Liu H, Wang G (2007) Multi-criteria decision-making methods based

on intutionistic fuzzy sets. Eur J Oper Res 179:220–233

Pal NR, Pal SK (1989) Object background segmentation using new

definition of entropy. IEE Proc E 366:284–295

Pal NR, Pal SR (1992) Higher order fuzzy entropy and hybrid entropy

of a set. Inf Sci 61(3):211–231

Qin Y, Cui X, Huang M, Zhong Y, Tang Z, Shi P (2020) Multiple-

attribute decision-making based on picture fuzzy Archimedean

power Maclaurin symmetric mean operators. Granul comput.

https://doi.org/10.1007/s41066-020-00228-0

Renyi A (1961) On measures of entropy and information. Proc. 4th

Barkley symp. on Math. Stat. and Probability. University of

California Press 1:547–561

Shannon CE (1948) The mathematical theory of communication. Bell

Syst Tech J 27(379–423):623–656

Saaty TL (1980) The analytical hierarchy process. Mc-graw hill, New

York

Smarandache F (2006) Neutrosophic set- a generalization of the

intuitionistic fuzzy set. IEEE Int Conf Granular Comput

2006:1635754. https://doi.org/10.1109/GRC

Torra V, Narukawa Y (2009) On hesitant fuzzy sets and decision. The

IEEE conference on fuzzy systems, Jeju Island, Korea,

1378-1382

Lalotra S, Singh S (2018) On a knowledge measure and an

unorthodox accuracy measure of an intuitionistic fuzzy

set(s) with their applications. Int J Comput Intell Syst

11:1338–1356

Singh S, Lalotra S, Sharma S (2019) Dual concepts in fuzzy theory:

entropy and knowledge measure. Int J Intell Syst

34(5):1034–1059

Lalotra S, Singh S (2020) Knowledgemeasure of hesitant fuzzy set

and its application in multi-attribute decision-making. Comp

Appl Math. https://doi.org/10.1007/s40314-020-1095-y

Tsallis C (1988) Possible generalization of Boltzman-Gibbs statistics.

J Stat Phys 52:480–487

Wang J, Wang P (2012) Intutionistic linguistic fuzzy multi-criteria

decision-making method based on intutionistic fuzzy entropy.

Control Decis 27:1694–1698

Xia M, Xu Z (2012) Entropy/cross entropy-based group decision

making under intuitionistic fuzzy environment. Inform Fusion

13:31–47

Yager RR (1979) On measures of fuzziness and negation, part I:

membership in the unit interval. Int J General Syst 5:221–229

Ye J (2010) Fuzzy decision-making method based on the weighted

correlation coefficient under intuitionistic fuzzy environment.

Euro J Oper Res 205:202–204

Zadeh LA (1965) Fuzzy sets. Inform Comput 8:338–353

Zadeh LA (1968) Probability measures of fuzzy events. J Math Anal

Appl 23:421–427

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

62 Granular Computing (2022) 7:49–62

123

https://doi.org/10.1142/S1230161216500153
https://doi.org/10.1142/S1230161216500153
https://doi.org/10.1007/s12652-020-02130-8
https://doi.org/10.1007/s12652-020-02130-8
https://doi.org/10.1007/s41066-020-00228-0
https://doi.org/10.1109/GRC
https://doi.org/10.1007/s40314-020-1095-y

	Multi-criteria decision-making based on bi-parametric exponential fuzzy information measures and weighted correlation coefficients
	Abstract
	Introduction
	Preliminaries
	A new bi-parametric exponential fuzzy information measure
	Background
	Definition
	Validation of proposed measure (8)
	Properties of measure (8)
	A demonstration of performance

	Application of proposed measure in decision-making
	A new TOPSIS method based on weighted correlation coefficients
	Justification of proposed method
	The proposed method


	Illustrated numerical examples
	For partially known criteria weights
	If criteria weights are unknown

	Conclusions
	Acknowledgements
	Appendix A
	Appendix B
	References




