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Abstract
Pythagorean fuzzy multiset (PFMS) is a generalized Pythagorean fuzzy set (PFS) with a higher degree of accuracy. It is

characterized by the capacity to handle imprecisions because of its inbuilt ability to allow repetitions of the orthodox

parameters of PFSs. Max–min–max composite relation on PFMSs has been studied and proven to be resourceful. However,

max–min–max approach used maximum and minimum values of the parameters of PFMS only without considering the

average values. This paper proposes a modified version of the max–min–max composite relation on PFMSs to enhance

reliable output by incorporating the average values of the PFMSs’ parameters. Some numerical examples are given to

juxtapose the correctness of the max–min–max composite relation on PFMSs with that of the modified version to ascertain

reliability/superiority of the modified version. To demonstrate the applicability of the proposed composite relation on

PFMSs, an illustration of medical diagnosis is considered assuming there are some patients whose symptoms are repre-

sented in Pythagorean fuzzy multi-values. To determine the diagnosis of the patients, the max–min–max composite relation

and its modified version are deployed to find the correlation between each of the patients with some suspected diseases.

Keywords Composite relation � Intuitionistic fuzzy set � Intuitionistic fuzzy multiset � Pythagorean fuzzy set �
Pythagorean fuzzy multiset � Medical diagnosis

1 Introduction

Medical diagnosis or diagnosis is the process of deciding

which illness or disease describes a patient’s signs and

symptoms. The information necessary for diagnosis is

usually collected from a history and frequently, physical

examination of the patient seeking medical attention. Over

and over again, one or more diagnosis processes, like

medical tests, are also conducted during the procedure.

Diagnosis is time and again thought-provoking, because

many signs and symptoms are uncertain. For example,

headache by itself, is a sign of numerous diseases and thus

does not show the physician what the patient is suffering

from Ejegwa and Onyeke (2020). Consequently, differen-

tial diagnosis, in which some possible explanations are

juxtaposed, must be performed, which could be best done

by Pythagorean fuzzy approach. This involves the corre-

lation of many pieces of information followed by the

recognition of patterns via composite relation. In fact, the

process of medical diagnosis is more challenging when a

patient is showing symptoms of some closely related dis-

eases; this also posed a problem to therapeutic process.

Uncertainties are a huge barrier to reckon with in

medical diagnostic processes because of fuzziness. The

invention of fuzzy sets technology by Zadeh (1965)

brought an amazing sight of relief to medical decision-

makers, because of the ability of fuzzy model to curb the

embedded uncertainties in medical diagnostic processes.

Some medical decision-making problems could not be

properly resolved with fuzzy approach because fuzzy set
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only considered membership grade whereas many medical

diagnostic processes have the component of both mem-

bership grade and non-membership grade with the possi-

bility of hesitation.

Subsequently, Atanassov (1983, 1986) introduced intu-

itionistic fuzzy sets (IFSs). This construct captured the non-

membership degree (NMD) m together with MD l of fuzzy

set with a possibility of hesitation margin (HM) p such that

lþ m� 1 and lþ mþ p ¼ 1. The concept of intuitionistic

fuzzy sets and its generalizations have been applied to

many decision-making problems (see Atanassov 1999;

Chen et al. 2016; Chen and Chang 2016; Chen et al.

2016a; Cheng et al. 2016b; Liu et al. 2020; Zeng et al.

2019; De et al. 2001; Garg and Kumar 2018; Szmidt and

Kacprzyk 2001; Jana et al. 2019a, 2020a, b; Jana and Pal

2019a, b). However, in some problems like medical diag-

nosis, the decision on the medical status of a patient may

not be taken just once and so discarding the degrees of

membership and non-membership in each of the consul-

tations may lead to a compromised diagnosis. By consid-

ering the said degrees in each of the consultations, Shinoj

and Sunil (2012) proposed intuitionistic fuzzy multiset

(IFMS) which has the same features such as intuitionistic

fuzzy set but allowing repetitions of membership grade,

non-membership grade and hesitation margin. Some fun-

damentals of intuitionistic fuzzy multisets have been

studied (Ejegwa 2016; Ejegwa and Awolola 2013), and the

methods of transforming intuitionistic fuzzy multisets to

intuitionistic fuzzy sets and fuzzy sets were explicated

(Ejegwa 2015). Myriad of applications of IFMSs have been

discussed (Das et al. 2013; Rajarajeswari and Uma

2013, 2014; Shinoj and Sunil 2013; Ulucay et al. 2019).

Assuming a decision-maker has a MD l ¼ 0:7 and a

NMD m ¼ 0:4 for a particular problem, then the framework

of intuitionistic fuzzy sets could not be used since

lþ m� 1. As a result, Yager (2013) proposed Pythagorean

fuzzy set which has MD l, NMD m and HM p with the

properties that lþ m� 1 and p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 � ðl2 þ m2Þ
p

. Pytha-

gorean fuzzy set is a generalized intuitionistic fuzzy set

with a more degree of accuracy. Many studies have applied

Pythagorean fuzzy sets to several applicative areas (Ejegwa

2019a, b, c, d, e, 2020a, b; Khan et al. 2019; Rahman and

Abdullah 2019; Ejegwa and Awolola 2019; Garg 2018a, b;

Zhang 2016; Jana et al. 2019b, c). By allowing the repe-

titions of MD l, NMD m and HM p, the idea of Pytha-

gorean fuzzy multisets (PFMSs) was introduced by Ejegwa

(2020c) and applied in course placement using a max–min–

max composite relation on PFMSs. Max–min–max

approach use maximum and minimum values of the

parameters of PFMS only without considering the average

values of the parameters. To this end, we are motivated to

modify max–min–max composite relation on PFMSs by

incorporating the average values for accuracy sake and

address its applicability in medical diagnostic processes.

The objectives of this paper are to

(i) show the matrix representation of PFMSs and the

transformation of PFMSs to Pythagorean fuzzy

sets,

(ii) explicate the max–min–max composite relation on

PFMSs and modify it for better output,

(iii) numerically verify the superiority of the proposed

composite relation on PFMSs over the existing

one,

(iv) apply the proposed composite relation on PFMSs

in medical diagnosis to curb embedded fuzziness.

The rest of the paper are outlined as follow; Sect. 2 pre-

sents the basic notions of PFMSs, Sect. 3 discusses com-

posite relation on PFMSs, its modified version and

numerical verifications to ascertain the advantage of the

proposed composite relation on PFMSs, Sect. 4 shows the

application of the proposed composite relation in solving

the problem of medical diagnosis where symptoms are

represented in Pythagorean fuzzy setting with multi-values,

and Sect. 5 concludes the findings in the paper.

2 Basic notions of Pythagorean fuzzy
multisets

Definition 2.1 (Atanassov 1983) An intuitionistic fuzzy

set A of X (where X is a non-empty set) is an object having

the form

A ¼
(*

lAðxÞ; mAðxÞ
x

+

j x 2 X

)

; ð1Þ

where the functions lAðxÞ; mAðxÞ : X ! ½0; 1� define MD

and NMD of the element x 2 X such that

0� lAðxÞ þ mAðxÞ� 1:

For any intuitionistic fuzzy set A of X, pAðxÞ ¼ 1 �
lAðxÞ � mAðxÞ is the intuitionistic fuzzy set index or hesi-

tation margin of A.

Definition 2.2 (Shinoj and Sunil 2012) An intuitionistic

fuzzy multiset A of X (where X is a non-empty set) is of the

form

A ¼
(*

CMAðxÞ
x

;
CNAðxÞ

x

+

jx 2 X

)

ð2Þ

where

CMAðxÞ ¼ l1
AðxÞ; . . .; lmA ðxÞ

and
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CNAðxÞ ¼ m1
AðxÞ; . . .; mmA ðxÞ;

or simply CMAðxÞ ¼ ljAðxÞ and CNAðxÞ ¼ mjAðxÞ for j ¼
1; . . .;m are the count MD and count NMD defined by the

functions CMAðxÞ; CNAðxÞ : X ! N ½0;1� such that

0�CMAðxÞ þ CNAðxÞ� 1, N ¼ N [ f0g.

For each intuitionistic fuzzy multiset A of X, CHAðxÞ ¼
1 � CMAðxÞ � CNAðxÞ is the intuitionistic fuzzy multisets

index or count HM of A, where

CHAðxÞ ¼ p1
AðxÞ; . . .; pmA ðxÞ.

Definition 2.3 (Yager 2013) A Pythagorean fuzzy sets A of

X (where X is a non-empty set) is the set of ordered pairs

defined by

A ¼
(*

lAðxÞ; mAðxÞ
x

+

j x 2 X

)

; ð3Þ

where the functions lAðxÞ; mAðxÞ : X ! ½0; 1� define the

MD and NMD of the element x 2 X to A such that

0�ðlAðxÞÞ2 þ ðmAðxÞÞ2 � 1. Assuming ðlAðxÞÞ2 þ
ðmAðxÞÞ2 � 1, then there is a degree of indeterminacy of

x 2 X to A defined by pAðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 � ½ðlAðxÞÞ2 þ ðmAðxÞÞ2�
q

and pAðxÞ 2 ½0; 1�.

Definition 2.4 (Ejegwa 2020c) A Pythagorean fuzzy

multiset A of X (where X is a non-empty set) is charac-

terized by

A ¼
(*

CMAðxÞ
x

;
CNAðxÞ

x

+

jx 2 X

)

ð4Þ

alternatively,

A ¼ fhx;CMAðxÞ;CNAðxÞijx 2 Xg ð5Þ

where

CMAðxÞ ¼ l1
AðxÞ; . . .; lmAðxÞ

and

CNAðxÞ ¼ m1
AðxÞ; . . .; mmAðxÞ;

or simply CMAðxÞ ¼ ljAðxÞ and CNAðxÞ ¼ mjAðxÞ for j ¼
1; . . .;m are the count MD and count NMD defined by the

functions CMAðxÞ; CNAðxÞ : X ! N ½0;1� such that

0� ½CMAðxÞ�2 þ ½CNAðxÞ�2 � 1, N ¼ N [ f0g.

For any Pythagorean fuzzy multiset A of X,

CHAðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 � ½CMAðxÞ�2 � ½CNAðxÞ�2
q

ð6Þ

is the count HM of A, where

CHAðxÞ ¼ p1
AðxÞ; :::; pmAðxÞ:

The count HM CHAðxÞ is the degree of non-determinacy of

x in A and CHAðxÞ 2 ½0; 1�. The count HM is the function

that expresses lack of knowledge of whether x 2 A or

x 62 A.

Throughout this paper PFMSðXÞ denotes the set of all

PFMS of X.

Definition 2.5 (Ejegwa 2020c) Suppose A 2 PFMSðXÞ.
Then, the level/ground set of A is

A� ¼ fx 2 XjCMAðxÞ[ 0; CNAðxÞ\1g. It follows that, A�
is a subset of X.

Definition 2.6 (Ejegwa 2020c) Let A;B 2 PFMSðXÞ.
Then A and B are said to be equal if and only if CMAðxÞ ¼
CMBðxÞ and CNAðxÞ ¼ CNBðxÞ 8x 2 X.

Definition 2.7 (Ejegwa 2020c) Suppose A;B 2 PFMSðXÞ,
then A � B if CMAðxÞ�CMBðxÞ and CNAðxÞ�CNBðxÞ
8x 2 X. Also A 	 B if A � B and A 6¼ B.

Definition 2.8 (Ejegwa 2020c) Let A;B 2 PFMSðXÞ.
Then the following operations hold.

(i) A ¼
(*

CNAðxÞ
x

;
CMAðxÞ

x

+

j x 2 X

)

(ii) A [ B ¼
(*

maxðCMAðxÞ;CMBðxÞÞ
x

;

minðCNAðxÞ;CNBðxÞÞ
x

+

j x 2 X

)

(iii) A [ B ¼
(*

minðCMAðxÞ;CMBðxÞÞ
x

;

maxðCNAðxÞ;CNBðxÞÞ
x

+

j x 2 X

)

Definition 2.9 Let X ¼ fxig for i ¼ 1; :::; n. Then, the

PFMS A of X is a Pythagorean fuzzy set A of X by the

computations:

1

n
CMAðxiÞ ¼ lAðxiÞ;

1

n
CNAðxiÞ ¼ mAðxiÞ: ð7Þ

Clearly, every Pythagorean fuzzy set is a PFMS but the

converse is not true (in particular, if i ¼ 1).

Example 2.10 If A is an PFMS of X ¼ fx; yg such that

A ¼
(*

ð0:7; 0:5; 0:4Þ; ð0:3; 0:5; 0:6Þ
x

+

;

*

ð0:8; 0:6; 0:4Þ; ð0:4; 0:5; 0:5Þ
y

+)

:

To enhance computation, an PFMS A becomes a Pytha-

gorean fuzzy set
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A ¼
(*

0:5333; 0:4667

x

+

;

*

0:6; 0:4667

y

+)

;

and the CHAðxÞ and CHAðyÞ can be computed using (6).

Definition 2.11 Let X ¼ fxig for i ¼ 1; . . .; n. If

A ¼
(*

ðl1
Aðx1Þ; :::; lmAðx1ÞÞ; ðm1

Aðx1Þ; :::; mmAðx1ÞÞ
x1

+

;

. . .;

*

ðl1
AðxnÞ; :::; lmAðxnÞÞ; ðm1

AðxnÞ; . . .; mmAðxnÞÞ
xn

+)

is a PFMS of X. Then, A can be represented in matrix form

as

A ¼
l1
Aðx1Þ ::: lmAðx1Þ
m1
Aðx1Þ ::: mmAðx1Þ

 !

x1;

. . .

l1
AðxnÞ ::: lmAðxnÞ
m1
AðxnÞ ::: mmAðxnÞ

 !

xn

Using Example 2.10, we have

A ¼
0:7 0:5 0:4

0:3 0:5 0:6

� �

x

;

0:8 0:6 0:4

0:4 0:5 0:5

� �

y

3 Composite relation on Pythagorean fuzzy
multisets

In this section, we recall the composite relation on PFMSs

(Ejegwa 2020c). Suppose X and Y are non-empty sets.

Then, a Pythagorean fuzzy multi-relation (PFMR) R from

X to Y is a PFMS of X 
 Y characterised by CMR and CNR,

denoted by RðX ! YÞ.

3.1 Max–min–max composite relation
on Pythagorean fuzzy multisets

Definition 3.1 Suppose A 2 PFMSðXÞ. Then, the max–

min–max composition of RðX ! YÞ with A is a PFMS B of

Y defined by B ¼ R � A where

CMBðyÞ ¼ maxxðmin½CMAðxÞ;CMRðx; yÞ�Þ
CNBðyÞ ¼ minxðmax½CNAðxÞ;CNRðx; yÞ�Þ

�

; ð8Þ

8x 2 X and y 2 Y

Definition 3.2 If QðX ! YÞ and RðY ! ZÞ are PFMRs.

Then, the max–min–max composition R �Q is a PFMR

from X to Z where

CMR�Qðx; zÞ ¼ maxyðmin½CMQðx; yÞ;CMRðy; zÞ�Þ
CNR�Qðx; zÞ ¼ minyðmax½CNQðx; yÞ;CNRðy; zÞ�Þ

�

;

ð9Þ

8ðx; zÞ 2 X 
 Z and 8y 2 Y .

Remark 3.3 From Definitions 3.1 and 3.2, the max–min–

max composite relation B or R �Q can be computed by

b ¼ CMBðyÞ � CNBðyÞCHBðyÞ ð10Þ

8y 2 Y . Alternatively,

b ¼ CMR�Qðx; zÞ � CNR�Qðx; zÞCHR�Qðx; zÞ ð11Þ

8ðx; zÞ 2 X 
 Z.

3.2 Modified composite relation on Pythagorean
fuzzy multisets

Now, we propose the modified composite relation on

PFMSs and demonstrate its advantage over the max–min–

max composite relation using some numerical examples.

Definition 3.4 Suppose A 2 PFMSðXÞ. Then, the modified

composite relation of RðX ! YÞ with A is a PFMS B� of Y

defined by B� ¼ R � A where

CMB� ðyÞ ¼ maxx

"

CMAðxÞ þ CMRðx; yÞ
2

#

CNB� ðyÞ ¼ minx

"

CNAðxÞ þ CNRðx; yÞ
2

#

9

>

>

>

>

>

=

>

>

>

>

>

;

; ð12Þ

8x 2 X and y 2 Y .

Definition 3.5 If QðX ! YÞ and RðY ! ZÞ be two

PFMRs. Then, the modified composite relation ðR �QÞ� is

a PFMR from X to Z where

CMðR�QÞ� ðx; zÞ ¼ maxy

"

CMQðx; yÞ þ CMRðy; zÞ
2

#

CNðR�QÞ� ðx; zÞ ¼ miny

"

CNQðx; yÞ þ CNRðy; zÞ
2

#

9

>

>

>

>

>

=

>

>

>

>

>

;

;

ð13Þ

8ðx; zÞ 2 X 
 Z and 8y 2 Y .

Remark 3.6 From Definitions 3.4 and 3.5, the modified

composite relation B� or ðR �QÞ� can be computed by

b� ¼ CMB� ðyÞ � CNB� ðyÞCHB� ðyÞ ð14Þ

8y 2 Y . Alternatively,

b� ¼ CMðR�QÞ� ðx; zÞ � CNðR�QÞ� ðx; zÞ

 CHðR�QÞ� ðx; zÞ;

ð15Þ

8ðx; zÞ 2 X 
 Z.

Proposition 3.7 Suppose R and Q are two PFMRs on X 

Y and Y 
 Z, respectively. Then
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(i) ðR�1Þ�1 ¼ R,

(ii) ðQ � RÞ�1 ¼ R�1 �Q�1.

3.3 Numerical examples

This subsection shows the performance index of the

modified PFMR in comparison to the performance index of

max–min–max PFMR using following examples.

Example 3.8 Suppose E;F 2 PFMSðXÞ for X ¼ fxig for

i ¼ 1; 2; 3. If

E ¼
0:6 0:5 0:7

0:2 0:3 0:1

� �

x1

;

0:4 0:7 0:1

0:6 0:4 0:8

� �

x2

;

0:5 0:4 0:6

0:3 0:5 0:1

� �

x3

F ¼
0:6 0:8 1:0

0:2 0:1 0:0

� �

x1

;

0:7 0:6 0:8

0:3 0:4 0:2

� �

x2

;

0:6 0:5 0:7

0:1 0:2 0:0

� �

x3

Using Definitions 3.1 and 3.2, respectively we have

min½CMRðei; xjÞ;CMSðxj; fkÞ� ¼ 0:6; 0:4; 0:5

implying that

CMBðei; fkÞ ¼ max
xj2X

½0:6; 0:4; 0:5� ¼ 0:6:

Applying this to E and F, we see that the minimum of the

membership values of the elements in E and F, respec-

tively are 0.6, 0.4 and 0.5.

Also,

max½CNRðei; xjÞ;CNSðxj; fkÞ� ¼ 0:2; 0:6; 0:3

implying that

CNBðei; fkÞ ¼ min
xj2X

½0:2; 0:6; 0:3� ¼ 0:2:

It follows that the maximum of the non-membership values

of the elements in E and F, respectively are 0.2, 0.6 and

0.3.

Thus

b ¼ 0:6 � ð0:2 
 0:7746Þ ¼ 0:4451:

Now, by applying the modified composite relation on E

and F using Definitions 3.4 and 3.5, we have

CMRðei; xjÞ þ CMSðxj; fkÞ
2

¼ 0:7; 0:55; 0:55

that is,

CMB� ðei; fkÞ ¼ max
xj2X

½0:7; 0:55; 0:55� ¼ 0:7:

Similarly,

CNRðei; xjÞ þ CNSðxj; fkÞ
2

¼ 0:15; 0:45; 0:2

that is,

CNB� ðei; fkÞ ¼ min
xj2X

½0:15; 0:45; 0:2� ¼ 0:15:

Thus

b� ¼ 0:7 � ð0:15 
 0:6982Þ ¼ 0:5953:

From the computations, the modified composite relation

gives a better relation between E and F when compare to

max–min–max composite relation.

Example 3.9 Suppose G;H 2 PFMSðXÞ for X ¼ fxig for

i ¼ 1; . . .; 5.

G ¼
0:6 0:8 1:0

0:4 0:6 0:2

� �

x1

;

0:5 0:6 0:4

0:7 0:4 1:0

� �

x2

;

0:8 0:7 0:9

0:4 0:6 0:2

� �

x3

;

0:7 0:5 0:9

0:2 0:1 0:3

� �

x5

H ¼
0:7 0:6 0:8

0:3 0:2 0:4

� �

x1

;

0:4 0:6 0:2

0:7 0:5 0:9

� �

x3

;

0:9 0:8 1:0

0:2 0:4 0:0

� �

x4

Certainly, G� 6¼ H�.

From Definitions 3.1 and 3.2, respectively, we have

min½CMRðgi; xjÞ;CMSðxj; hkÞ� ¼ 0:7; 0:0; 0:4; 0:0; 0:0

and

CMBðgi; hkÞ ¼ max
xj2X

½0:7; 0:5; 0:4; 0:9; 0:7� ¼ 0:7:

Similarly,

max½CNRðgi; xjÞ;CNSðxj; hkÞ� ¼ 0:4; 1:0; 0:7; 1:0; 1:0

and

CNBðgi; hkÞ ¼ min
xj2X

½0:4; 1:0; 0:7; 1:0; 1:0� ¼ 0:4:

Thus

b ¼ 0:7 � ð0:4 
 0:5916Þ ¼ 0:4634:

Also, computing b� using Definitions 3.4 and 3.5, we get

CMRðgi; xjÞ þ CMSðxj; hkÞ
2

¼ 0:75; 0:25; 0:6; 0:45; 0:35

and

CMBðgi; hkÞ ¼ max
xj2X

½0:75; 0:25; 0:6; 0:45; 0:35� ¼ 0:75:

Again,
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CNRðgi; xjÞ þ CNSðxj; hkÞ
2

¼ 0:35; 0:85; 0:55; 0:6; 0:6

and

CNBðgi; hkÞ ¼ min
xj2X

½0:35; 0:85; 0:55; 0:6; 0:6� ¼ 0:35:

Then

b� ¼ 0:75 � ð0:35 
 0:5612Þ ¼ 0:5536:

In this example also, the modified composite relation yields

a better relation between G and H. Table 1 provides a quick

comparison between the modified composite relation b�

and the max–min–max composite relation b on PFMSs.

4 Diagnostic processes using composite
relations in Pythagorean fuzzy
environment

Medical diagnosis/testing is a delicate exercise because

failure to make the right decision may lead to the death of

the patient. In this section, we present a scenario of

mathematical approach of medical diagnosis to ascertain

the medical conditions of some patients via a novel com-

posite relation on PFMSs, where the symptoms or clinical

manifestations of the diseases are represented in PFMSs

framework using a hypothetical approach.

Assuming there are four patients represented by the set

Pj for j ¼ 1; 2; 3; 4, who are billed for medical diagnosis

due to the manifestation of some symptoms. After critical

analysis on the samples collected from Cj, the following

major symptoms are observed;

S ¼ fs1; s2; s3; s4; s5g;

where s1 ¼ fever, s2 ¼ cough, s3 ¼ shortness of breath or

breathing difficulties, s4 ¼ sore throat, and s5 ¼ headache.

Suppose D ¼ fD1;D2;D3;D4;D5g are set of diseases

with relatively common symptoms, where D1 ¼ influenza,

D2 ¼ viral fever, D3 ¼ hay fever, D4 ¼ pneumonia, and

D5 ¼ common cold which P1, P2, P3, and P4 are likely to

be infected with.

The Pythagorean fuzzy multi-relation NðS ! DÞ is

hypothetically given in Table 2 based on the medical

knowledge of the enlisted diseases. The Pythagorean fuzzy

multi-relation MðP ! SÞ is hypothetically given in

Table 3 based on the medical analysis on

Pj ¼ fP1;P2;P3;P4g. After applying Eq. (7) on Tables 2

and 3 (for the ease of computations), we obtain the values

of the membership and non-membership grades of B and

B� in Tables 4 and 6. After computing the degree of

hesitation count via Eq. (6), we calculate b and b� as

presented in Tables 5 and 7.

The first row represents the count membership degrees

while the second row represents the count non-membership

degrees, respectively.

The Pythagorean fuzzy multi-values in Table 3 were

taken at three different times to curb any chance of error;

this is unlike in the instance of Pythagorean fuzzy values.

The first column represents the first result in both mem-

bership and non-membership grades, the second column

and the third column likewise.

Applying max–min–max composite relation, we obtain

Tables 4 and 5, respectively.

The following diagnoses are obtained from Table 5; P1

is diagnosed with influenza and viral fever with some

symptoms of pneumonia and common cold in that order,

P2 is diagnosed with influenza (but should be treated for

viral fever and pneumonia), P3 is diagnosed of influenza

and viral fever (but should be treated for pneumonia), P4 is

diagnosed with pneumonia and common cold (but should

be treated for influenza). It is noticed that P1 and P3 are

diagnosed of the same ailments (but P1 has a common cold

in addition.)

Using the modified approach, we obtain Tables 6 and 7,

respectively.

From Table 7, we infer that P1 is tested positive for viral

fever in a severe situation with very prominent symptoms

of influenza, pneumonia, common cold and hay fever in

that order. P2 is tested positive for viral fever in a mild

situation with less viral load. P3 is tested positive for viral

fever in a severe situation with very prominent symptoms

of influenza, pneumonia, hay fever and common cold in

that order. P4 is tested positive for both viral fever and

common cold in a mild situation with some symptoms of

influenza and pneumonia in that order.

It is observed that P1 and P3 situations are very severe

with the same viral load, follow by P4 and P2 in that order.

In fact, P2 has a very less viral load in comparison to the

other cases. All the suspected cases test positive for viral

fever but with a different viral load to enhance treatment

and attention.

Synthesizing the information in Tables 5 and 7, we

observe that the diagnoses given by max–min–max com-

posite relation are different from the diagnostic results

gotten from the modified approach. Notwithstanding, the

diagnostic results of the modified approach are reliable

because the average of the membership and non-

Table 1 Comparison between b and b�

PFMRs Example 3.8 Example 3.9

b 0.4451 0.4634

b� 0.5953 0.5536
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membership grades of the symptoms were considered

unlike the max–min–max approach where the minimum of

the membership grades and the maximum of the non-

membership grades of the symptoms were considered.

Thus, it is meet to say that the results of the modified

approach are more precise and reliable.

5 Conclusion

Medical diagnosis is an essential exercise because it

determines recovery and so, a wrong diagnosis could lead

to death or very critical cases. In this paper, we have

addressed the mathematical approach of medical diagnosis

using a modified composite relation on PFMSs, where

symptoms were captured in Pythagorean fuzzy multi-val-

ues to prevent any chance of error-influence on the diag-

nostic processes. The nexus between Pythagorean fuzzy

multi-values and Pythagorean fuzzy values was established

with the aid of a proposed formula, and the matrix

representation of PFMSs was introduced. Max–min–max

composite relation on PFMSs has been studied (Ejegwa

2020c). However, max–min–max approach used maximum

and minimum values of the parameters of PFMS only

without considering the average values. To remedy this

limitation, we have modified max–min–max composite

relation on PFMSs to enhance reliable output by incorpo-

rating the average values of the PFMSs’ parameters. The

modified composite relation on PFMSs was verified to have

high performance over the max–min–max composite rela-

tion. A hypothetical case of medical diagnosis on some

selected patients was considered via the modified com-

posite relation on PFMSs. Medical diagnosis on four

patients was considered in the hypothetical case. An

algorithmic approach embedded with the modified

approach could be employed to address the medical diag-

nosis of more patients in future research.

Table 2 NðS ! DÞ

N D1 D2 D3 D4 D5

s1 0:8 0:7 0:9
0:1 0:2 0:0

� �

1:0 0:9 0:8
0:2 0:3 0:1

� �

0:5 0:4 0:6
0:3 0:2 0:1

� �

0:6 0:7 0:9
0:3 0:3 0:3

� �

0:4 0:5 0:3
0:2 0:3 0:1

� �

s2 0:9 0:8 0:7
0:3 0:2 0:1

� �

1:0 0:9 0:8
0:2 0:1 0:0

� �

0:6 0:5 0:7
0:3 0:1 0:2

� �

0:7 0:6 0:5
0:2 0:1 0:0

� �

0:6 0:5 0:4
0:2 0:1 0:0

� �

s3 0:6 0:5 0:4
0:3 0:2 0:4

� �

0:9 0:7 0:8
0:2 0:1 0:3

� �

0:3 0:1 0:2
0:8 0:6 0:7

� �

0:6 0:7 0:5
0:2 0:3 0:1

� �

0:0 0:0 0:0
0:7 0:8 0:9

� �

s4 0:3 0:4 0:2
0:8 0:6 0:7

� �

0:6 0:4 0:5
0:4 0:3 0:2

� �

0:5 0:4 0:3
0:4 0:3 0:2

� �

0:9 0:8 0:7
0:3 0:2 0:1

� �

0:7 0:8 0:9
0:1 0:2 0:3

� �

s5 0:8 0:7 0:9
0:2 0:3 0:4

� �

0:6 0:5 0:7
0:2 0:1 0:0

� �

0:2 0:3 0:4
0:7 0:6 0:5

� �

0:4 0:3 0:5
0:4 0:5 0:3

� �

0:3 0:2 0:1
0:7 0:8 0:9

� �

Table 3 MðP ! SÞ

M s1 s2 s3 s4 s5

P1 0:8 0:7 0:9
0:1 0:2 0:0

� �

0:6 0:5 0:7
0:1 0:2 0:0

� �

0:2 0:3 0:1
0:8 0:7 0:9

� �

0:6 0:5 0:7
0:1 0:2 0:0

� �

0:1 0:2 0:0
0:6 0:5 0:7

� �

P2 0:8 0:9 0:7
0:0 0:0 0:0

� �

0:4 0:3 0:5
0:4 0:4 0:4

� �

0:5 0:6 0:7
0:2 0:1 0:0

� �

0:2 0:1 0:0
0:7 0:5 0:9

� �

0:1 0:2 0:0
0:9 0:7 0:8

� �

P3 0:7 0:8 0:9
0:2 0:0 0:1

� �

0:9 0:7 0:8
0:1 0:2 0:0

� �

0:0 0:0 0:0
0:7 0:5 0:6

� �

0:3 0:2 0:1
0:5 0:7 0:9

� �

0:0 0:0 0:0
0:5 0:6 0:4

� �

P4 0:5 0:6 0:7
0:2 0:1 0:0

� �

0:4 0:6 0:5
0:4 0:3 0:5

� �

0:3 0:2 0:4
0:4 0:4 0:4

� �

0:7 0:6 0:8
0:3 0:2 0:1

� �

0:4 0:3 0:2
0:5 0:4 0:3

� �
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