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Abstract

Aggregation operators are mathematical functions and essential tools of unifying the several inputs into single valuable
output. The purpose of this paper is to analyze the aggregation operators (AOs) under the g-rung orthopair fuzzy envi-
ronment with the help of Einstein norms operations. This paper presents AOs, namely, g-rung orthopair fuzzy Einstein
weighted geometric (g-ROFEWG), g-rung orthopair fuzzy Einstein ordered weighted geometric (¢-ROFEOWG), gener-
alized g-rung orthopair fuzzy Einstein weighted geometric (Gg-ROFEWG), generalized g-rung orthopair fuzzy Einstein
ordered weighted geometric (Gg-ROFEOWG) operators. Some properties of these operators are explained. An algorithmic
model to deal with multi-attribute decision making problems in g-rung orthopair fuzzy(q-ROF) environment using gen-
eralized ¢-ROF Einstein weighted geometric operator is established. These operators can remunerate for the possible
asymmetric roles of the attributes that represent the problem. At the end, to prove the validity and feasibility of the
proposed model, we give applications for the selection of location of thermal power station and selection of best cardiac
surgeon. The comparison analysis with other existing operators shows the reliability of our work.

Keywords Einstein operators - g-rung orthopair fuzzy numbers - Geometric operators - Generalized weighted geometric
operators

1 Introduction

Multi-attribute decision making (MADM) performs an
important role in finding an excellent alternative from all
the appropriate alternatives depending upon certain
parameters or attributes. Mostly, the approach of different
alternatives and the corresponding weights for various
attributes are given in crisp values. But many decisions in
real-life problems, for which the objectives and conditions
are vague and unclear. To handle such situations, Zadeh
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(1965) gave the theory of fuzzy sets (FSs) in which the
satisfaction of an attribute is represented in terms of
membership degree (MD) between zero and one. FSs have
become one of the emerging areas in contemporary tech-
nologies of information processing (Chen and Chen 2014;
Chen et al. 2009; Chen and Niou 2011). To represent the
dissatisfaction degree (nonmembership degree) indepen-
dently, Atanassov (1986) introduced intuitionistic fuzzy
sets (IFSs) which are characterized by both the MD u and
the nonmembership degree (NMD) v in [0, 1], respectively
such that the summation of these two values is less than or
equal to 1. An IFS has various applications in different
fields of life (Chen and Cheng 2016; Chen et al. 2016).
Yager(2013a; b) introduced Pythagorean fuzzy sets (PFSs)
to broaden the space of IFSs and replaced the condition
u+v<1 with > +v*<1. PFSs are more applicable to
deal the vagueness as compared to IFSs. Moreover, Yager
(2016) proposed new notion of g-rung orthopair fuzzy sets
(¢-ROFSs) in which u?4v9<1. In decision making
problems, g-ROFSs are more capable than IFSs and PFSs,
as shown in Fig. 1.
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Fig. 1 Comparison of g-ROFNs, PFNs and IFNs spaces

For solving MADM issues and for a single decision in
case of collective information, AOs have a key role. The cue
of weighted AOs was presented by Yager (1988). The
applications of novel geometric AOs for IFSs in MADM
were presented by Xu and Yager (2006). The notion of
intuitionistic fuzzy AOs was given by Xu (2007). The
induced geometric AOs for IFSs were studied by Wei
(2010). Wang and Liu (2011) discussed the intuitionistic
fuzzy Einstein weighted geometric (IFEWG) operators.
Yager (2013a, b) studied both averaging and geometric
operators under Pythagorean fuzzy (PF) environment. Peng
and Yang (2016; 2016) studied the fundamental properties
of PF AOs. Zeng et al. (2016) developed a hybrid method
for PF MADM. Garg (2017) developed the generalized PF
Einstein weighted geometric AOs. Rahman et al. (2017)
discussed the PF Einstein weighted geometric AOs with
multiple-attribute group decision making applications.
Akram et al. (2019a, b) discussed the Pythagorean Dombi
fuzzy AOs. Shahzadi and Akram (2020) introduced the PF
Yager AOs. Liu and Wang (2018) expressed g-ROF
weighted AOs. Dombi AOs under ¢g-ROF data were handled
by Jana et al. (2019). The idea of g-rung orthopair fuzzy
power Maclaurin symmetric mean operators was studied by
Liu et al. (2018a, b). Some g-rung orthopair fuzzy Bon-
ferroni mean operators were discussed by Liu and Liu
(2018). Garg and Chen (2020) introduced the neutrality
AOs of g-ROFSs. For other terminologies not discussed in
the paper, the readers are referred to (Akram and Adeel
2018; Akram and Ali 2019, 2020; Akram et al.
2019a, b, 2020a, b; Akram and Bashir 2020; Akram and
Shahzadi 2020a, b; Bai et al. 2018; Garg and Rani 2019;
Joshi and Gegov 2019; Khan et al. 2019; Liu et al. 2018a, b;
Peng and Yang 2016; Peng and Yuan 2016; Peng et al.
2018; Wang and Liu 2012; Wei 2017; Wei et al. 2017; Wei
and Lu 2018a, b; Yager 1994; Zhang et al. 2014).

The motivations of this article are outlined as follows:
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1. The judgement of a perfect alternative in a g-ROF
environment is a laborious MADM problem. In
existing techniques, assessment information is charac-
terized by IF and PF numbers which promote to do
work in g-rung orthopair fuzzy numbers (g-ROFNs).

2. g-ROFNs demonstrate extraordinary execution in pro-
viding vague, reliable, and inexact assessment
information.

3. Taking into account that Einstein AOs are a straight
forward, however ground-breaking, approach for solv-
ing decision making issues, this article, in general,
aims to define Einstein AOs in the ¢g-ROF context to
tackle difficult problems of choice.

4. Finstein AOs make the decision results more precise
and exact when applied to real-life MADM based on
the ¢g-ROF environment.

5. The proposed operators overcome the restrictions of
existing operators.

The main contributions of this article are:

1. The idea of Einstein AOs is extended to g-ROFNs and
properties of these operators are discussed.
2. An algorithm is developed to handle complex realistic
problems with ¢g-ROF data.
3. Two MADM problems are discussed using proposed
operators.
4. At the end, the benefits and characteristics of these
operators are discussed by comparison analysis.
The remaining paper is as follows: In Sect. 2, we recalled
some basic definitions. In Sect. 3, Einstein operational laws
for g-ROFNs are promoted. In Sect. 4 and Sect. 5, g-
ROFEWG and ¢-ROFEOWG operators are proposed,
respectively and related results to them. In Sect. 6, the idea
of Gg-ROFEWG and Gg-ROFEOWG operators is handled.
In Sect. 7, an algorithm for our new model is proposed and
two MADM problems, one of which is the selection of
location for thermal power station and other one is selec-
tion of best cardiac surgeon under these operators are
discussed. Section 8 provides the comparison analysis of
our model with generalized Pythagorean fuzzy Einstein
weighted geometric (GPFEWG) (Garg 2017), intuitionistic
fuzzy Einstein weighted geometric IFEWG) (Wang and
Liu 2011), g-rung orthopair fuzzy generalized Maclaurin
symmetric mean (q-ROFGMSM) Liu and Wang (2020)
operators. In Sect. 9, we have concluded results related to
our proposed model.

2 Preliminaries

Definition 1 (Yager 2016) A g-ROFS & on non-empty set
X is given by
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’{g = {<X, ,u%(X), Vﬁ('x)>}7
where g : X — [0,1] and vz : X — [0,1] show the MD
and NMD of an element x € X, respectively. wg(x) =

/1= (3"

element. For easiness, & = {(x, uz(x),vg(x))}, called g-
ROFN represented by & = ( Uz VE).

Definition 2 (Yager 2016) Consider two g-ROFNs &, =

(Mg, v5,) and §, =
ROFNs are

L & ed= <\“//ﬂg] + g — /ﬂg,quzvvl,ﬂ@’

_ g 2
2§08, = <Nf§-1:“?§2ﬂ \/V%l + V%Z - V%, Vi§2>’
3. Vg'1:<q 1—(1- .u,yl) >v

4. g‘g:< . al—(l-v&)">7wherev>0-

+ (vz(x))? is indeterminacy degree of an

<u7§2, vg,). The operational laws on g-

Definition 3 (Yager 2016) Consider a ¢-ROFN
& = (ug,vg). The score S(§F) and accuracy functions

A(F) of & are
S(F) = 1 — 18,
A(S) = 1 + %,

where S(g) €
where A(g) €

[_171]7
0, 1].

Definition 4 (Yager 2016) Consider two ¢g-ROFNs &, =
(Mg, v5,) and §, = (ug,,v3,)- Then

1. If S(&F,)<S(d,), then §, < &,,
. IFS(F,) > S(&,), then &, > &,.
3. If S(&,) = S(%&,), then

a. If A(F,) <A(S,), then §, < §,,
b. If A(E,) > A(S,), then &, > &,,
¢ IFA(F) = A(5,). then §, ~F».

Definition 5 (Garg 2016) The Einstein sum @, and Ein-
stein product ®. under the PF environment are defined as

X2 +y?
Se(x,y) = \/m,

T.(x,y) = iy

\/1 (1 —x2).

(1—y7)

3 g-ROFNs under Einstein operational law
The Einstein operations for g-ROFNs are defined as
follows:

Definition 6 Let § = (u,v), &, =
be g-ROFNs and y > 0, then

<,u1,V]>, 8‘2 = <:u2a V2>

W =g 1z
(i) 31 Ne &) = (min{py, g }, max{vi,v2})
(i) F Ve & = (max{u, up}, min{v;,v,})

a4
: < _ [ e Mty VieV2
(IV) %1 @6 3 2 < 1“"/“1"(#3 q 1+(1 V )6(1 W >>
a0
c — ety qf VitV
v & =
( ) E§1 €02 < q 1+(1—,u‘17)‘e(l—,u§)7 1+1l (‘2>

; x— (U p)’ —(1—pa)’ N
V) 7S = < (T+pe) +(1—p1)" \f//(zvq)‘f'+(w)v>

(1v1)" —(1—va)”
(14v4)"+(1—va)"

(ty,v1) and &, =
& and §, =

.. . 2
vii ¥ =
i s <\"/<2u")7+<m)7"
Theorem 1 Let § = (ug,vg), & =
(Up,v2) be three q-ROFNs; then, §; =
&, ®e &, are also g-ROFNs.

Proof Since y>0 and § be a ¢-ROFN, therefore,
0<puz(x) <1, 0<vz(x)<1, and O0<(uz(x))?!+
()< 1, then 1 — (i) = (v3(x) 20, 1-

(vz(x)* > (uz(x))* >0, and (1 — (uz(x))?)" > (vz(x))’,
then, we have

V2(p5(x))’ V2 (u}(X))
1@ = ()" + (5 () ¢<1+<v + ((a5())7)
and
V L+ ()" = (1= (30" _ %1 T (550 — (1)
T+ @)+ (1= ()7~ \ T+ (00)) + (50))7
Thus

Furthermore,
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iff (u5(0)" + (v3(x)* =

Thus, &, = & is a ¢-ROFN for y > 0. O
Theorem 2 Let y,y,,7, >0, then

(1) &) ®c § = &) B &

(il) &) @ & = & & &,

(iii) (&) ® ¢ 2) = ag'l Qe ¢ 2

(IV) (egl De ¢ 2) V-el§] DBe V-eSr

(V) ?V} ®e f?/z — C’s’. (n+72)

(Vi) 91-c8 De 728 = (01 +72)-c

(vii) (3) = ()"

(Vili) 1-e(72-¢8) = (71-672)-c &

Proof We prove (i), (iii), (v) and similarly others can be

verified.
()
Uy-elo q Vcll + Vg >
+ (= pf)e(T—pd) Y 1400
Ha-ely a vg + VC{ >
T\ Tk

%1®E(2:<

Y1+
Hi-elp a VLII+VC2]>
T | Tl

(7

= 0}2 Re 8‘1-

(iii)

8’1®58'2:<\/1

is equivalent to

@ Springer

< V20 et
Y@= uD)e@ = 1) + uler

(LD (T +v) — (1 —]).(1 - V§)>
(V)T T (=) (1 =)
Take =1 +vD).(1+v)), b=(1—-v]).(1-v),
c=pl.ud, and d = (2 — ul).e(2 — ), then
V2¢ Lfa— b>
Vot '

By the Einstein g-ROF law,
(F) ® &)
JJa—Db\7
a+b

_ <£
ey
( V2R
o0+ @

i )]
reiay)

7 b
+(1 =45

1

1
_/ V2 {,/W
o qhy+c/ a*+by

81®612:

8’1®6$’22<

V218
V(2= ) 2= 1) + (1) e (ug)

(L)) (14+5) — (I—V‘l’)”-e(l—vg)"’>
(L) (L) + (1 =) (1 =15) /7
On the other hand,

- V24 )’
& _<e/<2u?>y+<r$>y’ (T+v) + (1 =iy

_< V2¢ qal_bl>
o+ \ar+b/’

where  a; = (1+v{)", by =(1-vl),
02 = (1), b = (1) &2 = ()"
D, = (2 — pd)’, therefore,
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N . /2¢1 a;—Db , /2¢ a; —Db
81’ Qe 1 2y = : ! gh Qe %}2 = 1 y 1 1
\/ C] ap +b] qb] =+ ¢ ap +b1
ofaz — by @ V2 gfaa =Dy
ap + by NV + 6 | a+b
2
< 2 (DHrtlﬂ) EE%HCZ) _< 20y (D1+t|[l) tzéercz)
2 2 T\, 2 26 3
\/ Y Jtrlc 5(1 Dzjrrz) 1+ (1 Dy iltl) f(l - szcz)
—b —b
Z}eri + :§+b§ > al+bl + o ao+b2 >
b, am-b b b
L+ 078 b L+ 050 e arrhs
_ V2010 Q)0 — bl-fb2> _ V2010 @10y — bl~(52>
B VD1.Dy + €102 "\ ar.caz + by by B V/D1.Dy + €. 6C2 ar.cap + by..by
_ < V2114 _ < 2
Y2 —ul) e — 1) + (1)) (u3) (2 — pa)" 72 4 ()t
</(1+V )” (1+V ) (1 _VLII) (1 _VZ) > (1+vq))'1+/2 _(1 _vq)"/l-H’z
q : 7
(1+V ) (1+V ) (1—\) ) '5(17‘) ) (1_’_vq)'/1+72+(1_vq)71+}'2>
Hence, (&, @ &) = &, @ &, =),
(v) For 7,7, > 0. Hence, §' ®, F2 = Fnt7), O
F :< V2 _ (1 +Vq):y;] - (1- "q):):]> Theorem 3 Let &, = (4, v1), & = (i, v2) be two g-
V(2= )+ (ua) ()T 4 (1= )t ROFNs, then

2¢ .Ja; —Db >
WDI“V_CI, a1+b1 '

(
w2< V%h hﬂda+m
{

=

—(1—v)"
(T4 va)2 4 (1 — va)™ >

where =144, b=
b =(2—ud)l, forj=1,2.

(1= 6= ()™

D) FAF; =
(i) &7 Ve &5 =

(iii) (&i De 8’3 = (31 e gz)c

(iv) &) @ & = (F; B &)

(v) (81 Ve 8‘2) De (8’1 Ae C8"2) = 31 D ¥,
(Vi) (&) Ve &) @ (&1 A &) = &) @ &,

Proof 1t is obvious. O

(M2, v2) and §; =

(&) Ve &)°
(%1 Ne b z)c

Theorem 4 Let &, = (u,v1), &, =
(us, v3) be three q-ROFNs, then

(i) (8‘1 Ve 8’2) Ne 8‘3 = (81 Ne 8’3) Ve (8'2 Ne %3)
(ii) (3’1 Ne 32) Ve 3’3 = (g'l Ve 8’3) Ne ((’5'2 Ve 8’3)
(iii) (%1 Vet 2) De ¢ 3 = (%1 De ¢ 3) Ve (%2 De 1 3)
(1iv) (&) Ae &) B B3 = (&) De &3) Ae (T, D B3)
(V) (&) Ve By) @e &3 = () ®e F3) Ve (§, Oc &3)
(Vi) (&) Ae &) @ &; = (&) ®e 33) Ne (Ty @ 3’3)
Proof It is obvious. O
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4 g-Rung orthopair fuzzy Einstein weighted
geometric operators

The Einstein weighted geometric operators under g-ROF
environment are defined here.
Definition 7 Let &; = (14, v)(i = 1,2,...,s) be a collec-
tion of g-ROFNs and ¢; is the weight vector (WV) of 81
with ; > 0and )77 | @; = 1, then ¢-ROFEWG operator is
a mapping Q> — Q such that

g —ROFEWG(F,, &), &) =57 Q F,7” @ ... @ &,
(1)
If ¢;=1/s, Vi, then ¢-ROFEWG operator becomes g-

ROFWG operator

q—ROFWG(F,, &, &) = (F ®c & O - - D¢ o)

Theorem 5 Let i’s’i =
value using Equation 1 is

g — ROFEWG(,, &y, .-
_< V2115 1
\ H;;l(z — 1) + T ()" )

H
+v

Proof We prove Eq. 2 by mathematical induction.
When s = 2,

q— ROFEWG(TS’] ) C5’2) =

(4, i) € g-ROFNs, then aggregated

'78‘5)

%—Hmu—ﬁw>

O T (=)™

8.1 ? ®E 82‘/’2'

From Theorem 1, both §&,”" and &,% are ¢-ROFNs and
value of &7 ®. &, is a ¢-ROFN. Using (vii) in
Definition 6,

0 ,< V2! WLV — (1= v?)“">
: ST+ @) AT )7/
% 0 < V25 L) = (1 v%)‘”2>
4 = 5 q\ P2 [
TNV )T )

Then

@ Springer

g — ROFEWG(F,, &,) = & @ &,

Vau! V2uy?
V)" )™ )\ )+ ()™

B < 4 zlulwl zluwz ’
\/l + (1~ gty « (1 - )
(l+v(’)m (1- ‘]I)‘/’I (l+v‘2’)“’2—(l—vg)"’2

. (R A g L ey o gy >

(H—v‘/)wl —(1—v))? (Iv)72— (1)
l + ((]+V )rP1+(1 }{)471) ( 2 2

N2 +(1-)"

— < \(Vzllqlal'énu(zpz

A\ V@)= i) W) ()

</(1 + v‘I’)‘Pl.E(l + vg)% - (1- v({)fpl.e(l .
(1+vH"

.5(1 + Vg)wz + (1 - vlli)(/)l-e(l -
Thus, result holds when s = 2.
Suppose result holds for s = &,

q — ROFEWG(§,, &, - - - &)
- < \/_H —1 ,u]
i s Ty
q Hle(l + v?)(/)i - Hf:l(l — vq)(p]>
T ()7 + T
Now for s =k + 1, ¢ — ROFEWG(J,, &,, - -
. o
:< \Vinizl /‘iwl
(’/H{L(Z — )"+ T, ()™
(MM
TTi (1)) + T, (1 =)™

5 Birr)

< V2
(/(2 _ :uk+l)(pk+l + (’uz+l)(f’k+l
. (1 + VZJrl)(le _ (1 _ VZJrl)(le
(1 + VZ )‘/’k+1 + (1 _ vz ])(Pk+l
< \[V_Hk+1 (P]
k+1 k+1
YTl e - m%+nnwn

ST 0 =TT (=)
TTE () + TIE (=) )

Thus, result is true for s = k + 1. Hence, Equation 2 holds,
YV s. (|

Lemma 1 Let & = (i, i), ¢; > 0 and 373, ¢; = 1, then
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s
i=1 i=1

equality holds iff § =&, = ... = B.-
Theorem 6 If §; = (145, v;) € q-ROFNs, then

q — ROFEWG(S,,&,, .., &.) € ¢ — ROFN.

Proof Since ; = {1, vi) € g¢-ROFNS, s0 0 < g5, v; < 1 and
0< u;] + viq < 1. Therefore,

Hiszl(l + Viq)(pi - H?:l(l - V?)wi

H?:l(l + Viq)(pi + H?:l(l - V?)(pi

. 2], (1 =v)" (3)
[T (U v + T, (1 = v
<1 —H;u —v)A <1
Also,
(1+v) > :>H (1+) H;(l—vf)zo.
Therefore,

ISR SR
[T (07 + T ()7 =

Thus, 0 <v,_rorewc < 1.
Moreover,

2Hf:1(u?)"’i
[Goi 2= ) + T, ()™
B MRk
=~ 3 - 3 -
[T (1 + Vg)w' + [T, (1 =%

)i
< Hl 1 ] < L
Also,
N q\ ¢;
ﬁ(u?)‘”i >0 21T ()" 0
2 5 : 3 - >0.
o [Go (2= u)” + T (w)”

Thus, 0 < Hg—ROFEWG < 1. Moreover,

Iy ROFEWG T V- ROFEWG
. ZHjszl(ﬂ?)wi
H?:l(z - ﬂiq)(pi + 1_[15:1(:“?)(/)i
n [T (T v =TT (1 —v)?
Hjszl(] + V?Ypi + H?:l(] - Viq)(pi
SR U
I v + T (=)
2Hjs:1(1 - V?)(ﬂi
HjS:l (1+ V;{)q)i + H?:l(l - V?)(pi

+1-

=1.
Hence, g-ROFEWG € [0, 1]. Therefore,

q — ROFEWG(§,, &,, .. ., &.) € ¢ — ROFN.

Corollary 1 The qg-ROFEWG and q-ROFWG operators
have the relationship:

qg-ROFEWG (&1, 82 Be) > q-ROFWG
(&1, &y Bo)-

Proof Let ¢-ROFEWG (&, &,,- -
and ¢-ROFWG (&, &5, &) =

s NG s
Hj:l(l + vi) ] +Hi:1(1
S N
+ E 1:1(1 —v)" =2,

then from 3, we get

3} %5) = ( l\nv“g) ?ﬁ
(ug,vg) = &. Since

o s
=TS D ()

q Hle(l + v?)(pi _ H 1 — v \/ H r/’u
TTis (1) + T ( l—v ‘”'
& v~§ <vg,
equality holds iff vi = v, = ... = v..
Also,
2 Hjs:l (ﬂ?)wi 2 Hiszl (Hiq)q)i

: >
[Go 2= )% + T () = 2 (2 — ) + 220, o
S
> [wh?
i=1

This implies

q ZHIS 1(.“Iq)q)i
\/H1 1(2 :u])(/)[ +H[ 1 'ul H

equality holds iff py = u, =
Thus,
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T~ (vg)" = S(B).
5 8) > q-

S(F) = (uh)" — (Vi)
If S(F") > S(F), then ¢-ROFEWG(F,, &>, - -

> (ng)

ROFWA(F,, &, &.). If S(F)=38(F), that is,
(W5)" — () = ()" = (v3)", then by condition &> i
and /5 <vg; thus, the accuracy function
B

AF') = ( D) = (V)1 = (uz)" = (v5)" = A(B)-

Thus
q— ROFEWG(‘{‘}I, 8os v o %5) =q— ROFWG(?}] s 8- o %S).
Hence,
q— ROFEWG({S‘I, 8-+ Es) >q— ROFWG({S'17 85+ ‘&9),
equality holds iff §, = §, = =3, O
Example 1 Let &, =(0.7,0.6), &, =(0.8,04), &, =

(0.7,0.5) be four ¢-ROFNs and
, take g = 3, then

(0.5,0.7) and &, =
@ =(03,02,0.3,02)"

q— ROFEWG(?]) %27 837 t 4)
_ < fH] 1/‘1
YT 2 = 1) + T )™

a H?:l (I+ V?)(pi - H?:l (1- V?)(pi>
T (1 + v+ T (1= v
B < V2% 065 - 1.20—0.79>

V1684027V 1.2040.79
— (0.66,0.59).

Now,

q— ROFWG(%U 8‘23 %37 [ 4)

- <H<ui>wu - TT0 - >>

=1 =1

= (0.65,0.59).

= ¢-ROFEWG(§,, &, &3, &) > -

ROFWG(EU &27 ;}37 84)

Proposition 1 Let §; = (u,v;) € g-ROFNs and ¢, is the

weight of ;, such that ¢; € [0,1] and 373, ¢; = 1.
(i) Idempotency: If §, = §, = 1y, Vo) for all j, then

q— ROFEWG(§,, &y, 8.) = &,

@ Springer

Proof As §; = (14,,v,) € ¢-ROFNs, Vi, then

q—ROﬂﬁWﬂ?plp_,§)
— < \(%_HI 1#0
YT 2= )7+ T ()

.

(14997 =TT (1 )"

a| i

1

TT (1 + v + TI(1 — v8)”

=1

\/— Z] 1 Pi
—f >Z?:l "k (i 2
(144 —(1- Vq)251¢i>
(1+v8) 11/’1_|_(1_v0)z i
= Au()av()

O

(ii) Boundedness: Let &
& = (max;(g), minj(v;)), then

& <q—ROFEWG(E,, 3, - -

= (mini(ui),maxi(vi)),

LE)ST

Proof Consider fx) =1=,x€10,1], then
fx) = fﬁ <0, so f(x) is a decreasing function (DF).

As vl <vq<v Vi=1,2,...,s,

i,min — i,max’
f(v:]max) <f( ) <f( 1mm) VI, that 1S,

7 _
i,max 1 vi 1 V] min

T 14+v T 140

i,max i i,min

[0,1] and Zf:, @ =

then

11—
1+

, Vi. Let ¢; € 1, then
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=
o 1+ v?mm < 1 < 1+ v?max
I RN W
1+ Hi:] 14!
1+vl )< 2 1+
< +vi,min — . 1—yd P; +vi.,max
1+T1[, (ﬁ)
2

= q
i,min < 1t [ 1 < vj,max
s i

U+ Tl Ty

B 9\ P; s a9\ Pi
ol [ ()" =TT, (=)™

d = & SV
j,min — H;’:l (1 + V?)[/)i + H;:l(l _ V:I) Pj J,max

Thus,

o< [E (U )7 =TT, (1 = v)”
.mimn = N "
' [T (T 4+ T, (1 =)™
Consider g(y) = ?,y € (0, 1], then g'(y) = —y%, ie., g(y)
is a DF on (0, 1]. Since uf ; <pu'<p! ., Vi, then
8(1 ) < 8(u) <g(p in): Vi, e,

< Vi max- (4)

2_M;I,max<2_'u;l<2_'u;]‘min

q — — q
'ui,max fu] 'ui.min

Then,

o @; @;
2- 'u;{,max l < 2- N? l < 2- 'u?,min I
'uzmax B 'u? B l't?.min

4 P _ 4\ P 4 P
T (o) T2 < (25t
1= Mj.max i=1 lu] i=1 'ui,min

LTI
= ‘uﬁmin S 2— 4l P = ‘u?max
s :
1 +Hi:1( #;,,)
\ 20T ()"

=ul < , 5 - <ud
o = TG — W+ T G = e

=l min < VI
i,min = - o )
YT 2 = i)™ + T ()"

S ,ui‘max .

(5)

Let ¢-ROFEWG(E,&,,.. &) = & = (uz,vg), then

from (4) and (5),
Hmin < U < Hmax> Vmin < Vg < Vmax,

WHere iy = Mn{4i}. gy = max{4i}. Voo = min{s;}

q4 =
min

S(F") and S(F) = pf —vE > pihiy — Vi = S(F7). As
S(F)<S(F") and S(F) > S(F ). So
8'_ Sq - ROFEWG(%]) 8’2a ) g'g) S 8‘4_-

and Vi = max{vi}. S0, S(&) = i — v < phax — v

(iii) Monotonicity: When {§i <P;,Vi, then

g — ROFEWG(F,, &, . . ., &) <q — ROFEWG(P,, P, ..., Ps).

Proof 1t is similar to (ii), so we omit it. O

(iv) If n = (u,, vy) is a g-ROFN, then
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g —ROFEWG(1 ®c &, 1 Qc &5, - -
=13 ®q— ROFEWG(E,, &,, - -

*9 ’7 ®6 35)
il 8‘5)

Proof As R; and 5 are ¢g-ROFNss, Vi,

&R, < MR, ety ’
U2 = )2 = i) + et
(14 g )e(L+ i) — (1= vg).e(1 — i)
(U g ) (1 + ) + (1 — )1 — v))
Therefore, by Theorem 5, q — ROFEWG
77®e i’flﬂl& 8’2’-- N Qe g’;)
p 2HI ! ‘/’1
H]l _a(p‘—i_l_[[ l()

</H1:1 (1+ B =TI (1= B)" >
YT+ P+ T (1 - B

2115 (u%i uf?) "
Hi)-e(2 = ui?))% [T (ui’eiuﬁ’i) "

< (-

i=

T () 9) = T (98- <1+vz>)‘“>
TTi- (1 v ) 1+vn)w'+H ()14 0)”
:< \fl_[ 1 (1R et

s b
{/_nl (2 — 1) .2 — ) + n;;l (1, )"kl

o Thim (1493 ) e (U vi) =TTy (14 v )™e (1 + i)
T (19 ) Pe( +vi) + TIy (1 + v )7 (14 v7)

:<lui17 vi1> ® q— ROFEWG(%U A X
1 © q — ROFEWG(,, .. - B.)-

-+ 8.)

where

B 2t -1
(2 = pg)-e(2 = pf) + g

ﬁ_(1+v1qe,) (L) = (1 =g ).e(1 =)
(L) (T +v) + (1= )1 =)
Hence
g — ROFEWG (1 ®c &, 1 ®c Fas- - 1 @ &)
=1 ®q—ROFEWG(§,, &, - -, &.)-

@ Springer

5 g-Rung orthopair fuzzy Einstein ordered
weighted geometric operators

Definition 8 Let &, = (,vj) € ¢-ROFNs and ¢; is the
weight of & with ¢; >0 and >, ¢; =1, then g¢-
ROFEOWG operator is a mapping Q° — Q such that

g~ ROFEOWG(F,. §y. . &) = 1) 0 Bl e - 0 T,

where (9(1),0(2),...,0(s)) is the permutation of (j =
1,2,...,5) such that 30(171) > %a(i)’vi =1,2,...,5

Theorem 7 Ler §; = (4, i) € g-ROFNs, then aggregated
value using g-ROFEOWG is a q-ROFN and

q — ROFEOWG(§,, &, &.)
_ < V2TT 1y
/118 _ 4 \%i s RCE
\/Hj:l(z fug(i)) L Hizl(#a(i)) ] (6)

T (087 =TT (1= vE)™
H[ 1(1+V )(p[—i_H] 1(1_‘)3(1))(/)i .

Proof Using the similar arguments as used in Theorem 5,
we can prove it. O

We give some properties without their proofs.

Corollary 2 The g-ROFEOWG and q-ROFOWG operators
have the relation:

¢ — ROFEOWG(F,, &,, .., 8.) > ¢ — ROFOWG(F,, &y, - - -, B)-
Example 2 Let &, =(0.6,0.7), &, =(0.8,0.7), &, =

(0.6,0.9) and §, =(0.9,0.4) be four ¢g-ROFNs and
@ =(03,03,0.2,02)", take g = 3. As

S(&) = (0.6)" = (0.7)" = ~0.13,

(%) = (08)" = (0.7)* =0.17,

S(&;) = (0.6)" = (0.9)° = —0.51,

S(84) = (09)" = (04)” = 0.67.

Since S(F,) > S(&,) > S(F,) > S(&;), therefore
Eo) = 84 = (0.9,0.4),

To) = & = (0.8,0.7),

F o = 1 = (0.6,0.7),

Bua) = B = (0.6,0.9).

By ¢-ROFEOWG operator, we get
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q — ROFEOWG(F,, &, & &)
_ < V211 1y
\q/l_[?:l(2 = Hy)) "+ H?:l(ﬂz(i))q)i |
o T (195" =TT, (1 = VZ(1>)W>
Hl 1(1+V )q)["‘Hl (1 3))%
B < V2x072 s 1.32—0.61>
V1.55+0.37 V 1.32 4 0.61
=(0.73,0.72).

Now,

q— ROFOWG(&]) gza %3; &4)

=<ﬁ(u1) ]ﬁl—v >

i=1

= (0.72,0.73).
= q_ROFEOWG(g'] ) C(‘s'za 8‘3a C&4) > q-
ROFOWG(%]; 827 8‘37 84)
Proposition 2 Let ; = {14, vi) € g-ROFNs and @; is the
WV of &, such that ¢; € [0,1] and 377, ¢; = 1.

(i) Idempotency: If §; = &, = (Up, Vo), Vi, then

¢ — ROFEOWG(E,, %y &) = &,
(i)  Boundedness:  Let &
& = (maxi(y;), min;(v;)), then
& <q— ROFEOWG(%,,&,,--

= (mini(;), max;(v;)),

ST <T
(iii) Monotonicity: When {",‘1 <P;,Vi, then

q — ROFEOWG(&,, &, -, &) <q — ROFEOWG(P, P3,..., P.).

(iv) Shift invariance: If n = (w,, vy) is a g-ROFN, then

g — ROFEOWG (1 ®. &, @c Fyy - - 1 D &)
=N q-— ROFEOWG(%U 8'2’ M) g.s)

6 Generalized g-rung orthopair fuzzy
Einstein weighted geometric operators

Definition 9 Let &; = (1, vj) € ¢-ROFNs and ¢; is the
WV of & with ¢; >0 and Y7, ¢ =1, then Gg-
ROFEWG operator is a mapping Q° — Q such that

Gq — ROFEWG(§,, &y, .., &) = .E(®f:1(y.£gi)<”i),

1
b

where y > 0.

Particularly,

If y = 1, then Gg-ROFEWG becomes g-ROFEWG.

- If o =(1/s,1/s,...,1/s), then
Gg¢-ROFEWG
1 (e .
(1 B8 = (@ 05)'").

Theorem 8 Let §; = {14, v;) € g-ROFNs and ¢; is the WV
of & with ¢; >0 and >3 ¢; = 1, then Gg-ROFEWG

operator is a g-ROFN and

Gq - ROFEWG(TS‘]’C&% ey 8‘5) =

(H, AC+gd) +30, ) 1+3H] Aa) =,

< ‘- (H{(1+u§’)’+3m,}% L, st+at—o, }h)
(1_.[1 A0+afy +30 }/‘|+2H (Y o, }gl)
+(Hi:|{(]+Il;/)"'+3w?)“| )

{IT @ =) +36)7H ~ T {2 - ¥

(H]l{z\ 743 (v }“’|+3H {(2-v)
(Hll{z‘ T43(v7) 30— H..“‘

i 3{ ]+}A -,

where o, = (1 — ).

Proof Since

% <\q/(1 + ) = (1 =) V2v! >
V-edy; = 7 7 - =
! A+ ) + A=) o[ — 8y 4 vy

1

VATT, (:/(1 Ty - w,)“”'

{'/His:1 {1+ N?)V + 3(07}% + 11 {(1+ ”;1):»' - wv}wi

Il
/\

J ISR RS S  CR F T
[T {2- ) I +1T {2- (V?)V}‘/’i
Therefore, % . (@;”:1 (V-e?yi)‘”i) _

@ Springer



790

Granular Computing (2021) 6:779-795

(, oI Lot}
IT; {ossro } T {(m
Q oL, {oosr- )
<“ IT;., {ossprose )" Hll{w— "
RN TS T

I (e L {uﬂ o

( 2g{(1+L = >
H;l {(lu‘;’w?»‘wu‘}w] HI ‘{ ﬂ } |

<2H:{/Hw& HH{‘H

|\ IL {eproopr ) H,l{ r-of

+Gﬁ&zww& T ey
IT o} T {o

Ne—

(H; {(4ud) 430, } 1143 ]‘[;1 {4+ =, )
7(HL{(1+ug)7‘+3w;}"’i7HHx{(lwgf)?ew,.}‘"i) Y

(HL{<1+u;'>*+3w,>“”f+z H{(1+ui“>"—<u»,»}“’i>

+ (H; (1) 430, } -Hs{(lwf)?‘—(u,}“’i>
i=1
2T A - +

(H {2\ +3(\ l+3H {2\ x })
77
(H,JZ‘ 7430)7) - H{zt '>}>

30§)H = {2 = of

When y = 1, then
Gq — ROFEWG(F,, &y, - - - 8-5)
:< V2l
VHLA2—¢WL+H;xﬁWV

H D7 T (L= )"
+v

T 7
6.1 Generalized g-rung orthopair fuzzy Einstein
ordered weighted geometric operators

Definition 10 Let &; = (4, vj) € ¢-ROFNs and ¢; is the
WV of & with ¢;>0 and Y7, ¢; =1, then Gg-
ROFEOWG operator is a mapping Q° — Q such that

1 s 0
Gg ~ ROFEOWG(,, &, B) = (@], (5)")

where y > 0.

@ Springer

Theorem 9 Let §; = (;,vj) € ¢-ROFNs and ¢ is the WV
of & with @; >0 and 215:1 ¢; = 1, then Gg-ROFEOWG

operator is a g-ROFN and

Gq — ROFEOWG(E,, &y, - &) =

1/
(H {p}+3p, ;Ms]‘[ {1l p.,}“’u>
77
< ‘ —(HH{(]wi,)'+3m‘!—Hi:,«lmm)’—n,}“’i)
/7 ?
(IT 071 st 007
77
(H| 1{(1+,u“ +3ﬂ H] |( lJr‘L(ul) ”} )
PR b g e M
{2 = i) + 3081 = TH 2 = i) = (047} >

175
J <H’ A=) 30 m 'JJH; @ “:, un);}w‘)

7
+(H]:|{(27‘YMI]>‘+3 "mn ’}‘]71—11:!{ 27“Z(n '7("1{“))’)0’)

where p, = (1 — = (1+u;)"

Proof Using the similar arguments as used in Theorem 8,
we can prove it. O

Hy)" and p;

When y = 1, then
Gq — ROFEOWG(F,, &, - - -, &.)
_ < V2T 1y
</H15:1 (2 — 1) + T ()"
o i (U4 v)" =TT (1 = VZ(>)¢>
T (U v )7+ T (=)™ /7

7 MADM problems using g-ROF information

We discuss the MADM problems with g-ROF information
using ¢-ROF Einstein geometric operators proposed in the
preceding sections. The following suppositions or notations
are used to handle the MADM problem for the competent
selection of alternative affected by human decision making
with ¢-ROF information. let £ = {£, L, ..., L,,} be a set
of possible alternatives and J = {J1,J2,...,Js} be a set of
possible attributes chosen by the decision maker. Let ¢ =
{®1, 025, 0.} is the WV with ¢; >0 and >0, ¢; = 1.

Suppose that &=
(DM), where p; and vy are the satisfaction and dissatis-

(45> Vi) s 18 the g-ROF decision matrix

faction degrees of the alternative for the attribute, where
0<pji+vi<l.

For s01V1ng a MADM problem, we give the following
Algorithm 1.
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Algorithm 1: Steps to solve MADM problem by using
Gg-ROFEWG operator

1. Input:
Possible alternatives,
Probable attributes,
WYV for attributes.

2. Use the Gg-ROFEWG operator to evaluate the in-
formation in ¢-ROFDM, find preference values B;, [ =
1,2, ...,m of the alternatives L;.

By = Gq — ROFEWG(Ly1, Ly, - » £15)

(,1511{s7 436,19 +3 ‘ISII{E’Y — ey
nL 1
B R LR L R ICEP e
1= 1=

1/v

< (ﬁl“” + 3¢y} +3f{1{sw —¢y3%3)
1= 1=

+(MAQ+ )Y +364395 — T {ey — (1 — uf)7393)1 /7
j=1 ) j=1 )

%{jl{m +30 )35 — i{l{m — wiymyei e

i{(ﬁl{m +30 )10+ 3 ﬁl{rm — i)t/
1= 1=

£ . 3 )1
+ (1t 43057120 = 11ty = ) 73%1) ”
j= j=
Where £y = (1+ 1), ¢y = A —pnf)Y ny = @—vi)Y ey = A +uf)?,
and wy = (1 — ,L?)"/.

3. Calculate the score values.

4. Rank the alternatives £;, [ = 1,2, ..., m according
to their score values S(B;),l = 1,2, ...,m. For equal
score, use the accuracy function for ranking of al-
ternatives.

Output: The alternative with greatest score will be the

decision

7.1 Suitable location for thermal power station

A Thermal Power Station (TPS) uses heat energy generated
from burning coal to produce electrical energy. Such power
stations are broadly used in the world. Certain TPSs are
made to produce heat for industrial purposes, for district
heating, or desalination of water and for generating elec-
trical power. Therefore, it is necessary to select a location
for a TPS, as it needs a massive capacity of land and
position to bear the static and dynamic pressure during the
whole process. Suppose that the government wants to plant
a TPS to fulfill the requirements of electric power. Let £y,
Ly, L3 and L4 be possible locations for TPSs. Let
KC1="Availability of coal”, K,=“Availability of water”,
KCs="“Transportation facilities” be the three criteria for the
judgement of a location.

The framework for selection of location for a TPS is
given in Fig. 2.

1. The g-ROFDM is shown in Table 1.

2. The weights assigned by decision maker are

3
91 = 04,0, = 03,0, =03,and )¢ = 1.
i=1

We use the Gg-ROFEWG operator for the selection of TPS
location.

Step 1. For performance values B; of locations, use the
Gg-ROFEWG operator for g =3,y = 1.

By =(0.65,0.34),

B, =(0.51,0.46),
B; =(0.55,0.40),
B, =(0.49,0.45).

Step 2. Compute the scores S(3;) of g-ROFNs B; and rank
the locations.

S(By) =0.24,
S(B,) =0.04,
S(Bs) =0.10,
S(Bs) =0.03.

The ranking of locations is
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Fig. 2 The framework for
location-selection of a TPS

Availability of

Table 1 ¢-ROFDM

L L, L3 Ly
K (0.6, 0.4) (0.4, 0.6) (0.5, 0.4) 04, 0.5)
K (0.7, 0.3) 0.7, 0.2) (0.8, 0.1) (0.9, 0.1)
K3 0.8, 0.2) 0.5, 0.4) 0.4, 0.5) (0.3, 0.5)

£1>£3>£2>£4.

Step 3. Therefore, £, is the suitable location for TPS.
7.2 Selection of cardiothoracic surgeon

A Cardiothoracic Surgeon (CS) is a medical doctor, who is
trained in surgical procedures of heart, lungs and other
organs in the chest. Surgery of the heart and chest are
performed by CSs. Cardiologists work with surgeons to
handle patients and determine whether the patient needs
surgery. They also work together to treat irregular heart
beat problems. Suppose that a heart patient wants to select
a best CS for heart surgery. Let £, L5, £3 and L4 be
possible surgeons for heart surgery. Let K;=“Cardiac
Surgeon’s  Experience”,  K,="“Hospital  Quality”,
KCs="“Communication Style” be the three criteria for the
judgement of a surgeon.

The framework for selection of best CS is given in
Fig. 3.

1. The ¢-ROFDM is shown in Table 2.

2. The weights assigned by decision maker are

3
@1 =03,0,=04,0;=03,and Y ¢ = 1.
i=1

We use the Gg-ROFEWG operator for the selection of best
CS.

@ Springer

Availability of
water

Transportation
facilities

Step 1. For performance values B; of CSs, use the Gg-
ROFEWG operator for g =3,y = 1.

Bi =(0.58,0.55),
B, =(0.70,0.61),
B; =(0.82,0.41),
By =(0.71,0.59).

Step 2. Calculate the scores S(B;) of g-ROFNs B; and rank
CS:s.

S(By) = 0.03,
S(By) = 0.12,
S(B3) = 0.48,
S(Bs) = 0.15.

The ranking is
£3>£4>£2>£1.
Step 3. Therefore, L3 is the best CS.

8 Comparison analysis

This section provides a comparison analysis of proposed
operators with others operators such as GPFEWG (Garg
2017), IFEWG (Wang and Liu 2011), ¢-ROFGMSM (Liu
and Wang (2020) operators to show the efficacy of our
model.

1. For Application 7.1, it is clear from Table 3 that the
final rankings by applying the Gg-ROFEWG,
GPFEWG, IFEWG, ¢-ROFGMSM operators are
Ly > L3 > Ly > L4, respectively. However, the final
score values are not same. So, the optimal decision,
using all these operators are same. This shows that our
model is applicable to resolve real life problems.
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Fig. 3 The framework for
selection of best CS

Cardiac surgeon’s
experience

Table 2 ¢-ROFDM

Ly Ly L3 Ly
Ve (0.9, 0.6) 0.8, 0.4) 0.7, 03) 0.7, 0.8)
I» (0.4, 0.6) (0.8, 0.7) (0.9, 0.5) (0.8, 0.2)
Ts (0.5, 0.4) (0.5, 0.6) 0.8, 0.3) 0.6, 0.5)

2. The reason behind our proposed model is that IFNs and
PFNs can deal only those situations where u+v<1
and p?> +v> <1, respectively but many problems
where data exceed by u? +1?> <1, then we need g-
ROFS. To show feasibility and attractiveness, we have
proposed another application.

3. As the ranking lists obtained from proposed approach
and ¢-ROFGMSM operator are The g¢-
ROFGMSM operator is a good approach to solve
DM problems but proposed Einstein AOs are more
flexible and easy approach.

same.

9 Conclusions and future directions

The notion of g-rung orthopair fuzzy model generalizes the
PF model to describe complicated uncertain information
more effectively. In this article, we have worked to the
progress of MADM with the study of problems in g-ROF

HOS])itlll quil]ity Communication

environment. For the utilization in decision making, the
logical basis of AOs need to be carefully considered. The
shortcomings of existing methods and beneficial charac-
teristics of Einstein AOs motivate us to consider their
ability to produce suitable combinations of ¢g-ROFNs.
Therefore, we have introduced geometric operators to
construct g-ROF AOs that closely follow the motivation of
Einstein operations. They include the ¢g-ROFEWG, g¢-
ROFEOWG, Gg-ROFEWG and Gg-ROFEOWG operators.
The elementary characteristics of these operators are
explained so that the experts can select the version that
better fits their needs. We have utilized these operators to
expand a number of strategies to address MADM prob-
lems. The comparison analysis of proposed operators with
existing operators is done. Finally, practical examples for
the selection of location for TPS and the selection of best
cardiac surgeon are given. In these problems, we have
applied the concept of Gg-ROFEWG operator to summa-
rize the information corresponding to each alternative.
Then, we have derived appropriate results with the help of
score functions. These operators allow us to assess the
value of each alternative in a comparable fashion. Alto-
gether they build up a procedure and make a case for the
pertinence and adequacy of the proposed approach. In the
future, we plan to extend our study to (i). g-rung picture
fuzzy Einstein hybrid weighted operators. (ii). g-rung
orthopair fuzzy soft Einstein hybrid weighted operators.

Table 3 Comparison analysis

for Application 7.1 with Methods S(By) S(B,) S(Bs) S(By) Ranking order

GPFEWG, IFEWG, ¢- G¢-ROFEWG 0.24 0.04 0.10 0.03 L1> L3> Lo > Ly

ROFGMSM operators (suppose

g=37=1 GPFEWG 0.30 0.06 0.11 0.04 Ly>L3>L)>Ly
IFEWG 0.30 0.09 0.12 0.06 Ly>L3>Ly>Ly
l]-ROFGMSM 0.23 0.04 0.9 0.03 L:] > [,x > ﬁz > ,64

@ Springer



794

Granular Computing (2021) 6:779-795

Compliance with ethical standards

Conflict of interest The authors declare no conflicts of interest.

References

Akram M, Adeel A (2018) Novel hybrid decision-making methods
based on mF rough information. Granul Comput. https://doi.org/
10.1007/s41066-018-00142-6:1-17

Akram M, Ali G (2019) Group decision making approach under multi
(Q,N)-soft multi granulation rough model. Granul Comput.
https://doi.org/10.1007/s41066-019-00190-6

Akram M, Ali G (2020) Hybrid models for decision making based on
rough Pythagorean fuzzy bipolar soft information. Granul
Comput 5(1):1-15

Akram M, Bashir A (2020) Complex fuzzy ordered weighted
quadratic averaging operators. Granul Comput. https://doi.org/
10.1007/s41066-020-00213-7:1-16

Akram M, Shahzadi G (2020) A hybrid decision making model under
g-rung orthopair fuzzy Yager aggregation operators. Granul
Comput. https://doi.org/10.1007/s41066-020-00229-z

Akram M, Shahzadi G (2020) Decision making approach based on
Pythagorean Dombi fuzzy soft graphs. Granul Comput. https://
doi.org/10.1007/s41066-020-00224-4

Akram M, Dudek WA, Dar JM (2019) Pythagorean Dombi fuzzy
aggregation operators with application in multicriteria decision-
making. Int J Intell Syst 34(11):3000-3019

Akram M, Dudek WA, Ilyas F (2019) Group decision-making based
on Pythagorean fuzzy TOPSIS method. Int J Intell Syst
34(7):1455-1475

Akram M, Ali G, Shabir M (2020a) A hybrid decision making
framework using rough m F bipolar soft environment. Granul
Comput. https://doi.org/10.1007/s41066-020-00214-6:1-17

Akram M, Garg H, Ilyas F (2020b) Multi-criteria group decision
making based on ELECTRE I method in Pythagorean fuzzy
information. Soft Comput 24(5):3425-3453

Atanassov KT (1986) Intuitionistic fuzzy sets. Fuzzy Sets Syst
20(1):87-96

Bai K, Zhu X, Wang J, Zhang R (2018) Some partitioned Maclaurin
symmetric mean based on g-rung orthopair fuzzy information for
dealing with multi-attribute group decision making. Symmetry
10(9):383

Chen SM, Chen SW (2014) Fuzzy forecasting based on two-factors
second-order fuzzy-trend logical relationship groups and the
probabilities of trends of fuzzy logical relationships. IEEE Trans
Cybern 45(3):391-403

Chen SM, Cheng SH (2016) Fuzzy multi-attribute decision making
based on transformation techniques of intuitionistic fuzzy values
and intuitionistic fuzzy geometric averaging operators. Inf Sci
352:133-149

Chen SM, Niou SJ (2011) Fuzzy multiple attributes group decision
making based on fuzzy preference relations. Expert Syst Appl
38(4):3865-3872

Chen SM, Ko YK, Chang YC, Pan JS (2009) Weighted fuzzy
interpolative reasoning based on weighted increment transfor-
mation and weighted ratio transformation techniques. IEEE
Trans Fuzzy Syst 17(6):1412-1427

Chen SM, Cheng SH, Lan TC (2016) Multi-criteria decision making
based on the TOPSIS method and similarity measures between
intuitionistic fuzzy values. Inf Sci 367:279-295

Garg H (2016) A new generalized Pythagorean fuzzy information
aggregation using Einstein operations and its application to
decision making. Int J Intell Syst 31(9):886-920

@ Springer

Garg H (2017) Generalized Pythagorean fuzzy geometric aggregation
operators using Einstein #-norm and #-conorm for multi-criteria
decision making process. Int J Intell Syst 32(6):597-630

Garg H, Chen SM (2020) Multi-attribute group decision making
based on neutrality aggregation operators of g-rung orthopair
fuzzy sets. Inf Sci 517:427-447

Garg H, Rani D (2019) Novel aggregation operators and ranking
method for complex intuitionistic fuzzy sets and their applica-
tions to decision-making process. Artif Intell Rev :1-26

Jana C, Muhiuddin G, Pal M (2020) Some Dombi aggregation of g-
rung orthopair fuzzy numbers in multiple-attribute decision
making. Int J Intell Syst 34(12):3220-3240

Joshi BP, Gegov A (2020) Confidence levels g-rung orthopair fuzzy
aggregation operators and its applications to MCDM problems.
Int J Intell Syst 35(1):125-149

Khan AA, Ashraf S, Abdullah S, Qiyas M, Luo J, Khan SU (2019)
Pythagorean fuzzy Dombi aggregation operators and their
application in decision support system. Symmetry 11(3):383

Liu P, Liu J (2018) Some g-rung orthopair fuzzy Bonferroni mean
operators and their application to multi-attribute group decision
making. Int J Intell Syst 33(2):315-347

Liu P, Wang P (2018) Some g-rung orthopair fuzzy aggregation
operators and their applications to multiple-attribute decision
making. Int J Intell Syst 33(2):259-280

Liu P, Wang P (2020) Multiple attribute decision making based on
g-rung orthopair fuzzy generalized Maclaurin symmetic mean
operators. Inf Sci 518:181-210

Liu P, Chen SM, Wang P (2018) Multiple-attribute group decision
making based on ¢-rung orthopair fuzzy power maclaurin
symmetric mean operators. IEEE Trans Syst Man Cybern B.
https://doi.org/10.1109/TSMC.2018.2852948

Liu P, Liu J, Chen SM (2018) Some intuitionistic fuzzy Dombi
bonferroni mean operators and their application to multi-
attribute group decision making. J Operat Res Soc 69(1):1-24

Peng X, Yang Y (2016) Fundamental properties of interval-valued
Pythagorean fuzzy aggregation operators. Int J Intell Syst
31(5):444-487

Peng X, Yuan H (2016) Fundamental properties of Pythagorean fuzzy
aggregation operators. Fundam Inform 147(4):415-446

Peng X, Dai J, Garg H (2018) Exponential operation and aggregation
operator for g-rung orthopair fuzzy set and their decision-making
method with a new score function. Int J Intell Syst
33(11):2255-2282

Rahman K, Abdullah S, Ahmed R, Ullah M (2017) Pythagorean fuzzy
Einstein weighted geometric aggregation operator and their
application to multiple attribute group decision making. J Intell
Fuzzy Syst 33(1):635-647

Shahzadi G, Akram M, Al-Kenani AN (2020) Decision making
approach under Pythagorean fuzzy Yager weighted operators.
Mathematics 8(1):70

Wang W, Liu X (2011) Intuitionistic fuzzy geometric aggregation
operators based on Einstein operations. Int J Intell Syst
26(11):1049-1075

Wang W, Liu X (2012) Intuitionistic fuzzy information aggregation
using Einstein operations. IEEE Trans Fuzzy Syst 20(5):923-938

Wei G (2010) Some induced geometric aggregation operators with
intuitionistic fuzzy information and their application to group
decision making. Appl Soft Comput 10(2):423-431

Wei G (2017) Pythagorean fuzzy interaction aggregation operators
and their application to multipleattribute decision making. J Intell
Fuzzy Syst 33(4):2119-2132

Wei G, Lu M (2018a) Pythagorean fuzzy Maclaurin symmetric mean
operators in multiple-attribute decision making. Int J Intell Syst
33(5):1043-1070


https://doi.org/10.1007/s41066-018-00142-6:1-17
https://doi.org/10.1007/s41066-018-00142-6:1-17
https://doi.org/10.1007/s41066-019-00190-6
https://doi.org/10.1007/s41066-020-00213-7:1-16
https://doi.org/10.1007/s41066-020-00213-7:1-16
https://doi.org/10.1007/s41066-020-00229-z
https://doi.org/10.1007/s41066-020-00224-4
https://doi.org/10.1007/s41066-020-00224-4
https://doi.org/10.1007/s41066-020-00214-6:1-17
https://doi.org/10.1109/TSMC.2018.2852948

Granular Computing (2021) 6:779-795

795

Wei G, Lu M (2018b) Pythagorean fuzzy power aggregation
operators in multiple-attribute decision making. Int J Intell Syst
33(1):169-186

Wei G, Lu M, Alsaadi FE, Hayat T, Alsaedi A (2017) Pythagorean
2-tuple linguistic aggregation operators in multiple-attribute
decision making. J Intell Fuzzy Syst 33(2):1129-1142

Xu Z (2007) Intuitionistic fuzzy aggregation operators. IEEE Trans
Fuzzy Syst 15(6):1179-1187

Xu Z, Yager RR (2006) Some geometric aggregation operators based
on intuitionistic fuzzy sets. Int J Gen Syst 35(4):417-433

Yager RR (2013) Pythagorean fuzzy subsets. In: 2013 Joint IFSA-
World Congress and NAFIPS Annual Meeting (IFSA/NAFIPS).
IEEE, pp 57-61

Yager RR (1988) On ordered weighted averaging Aggregation
operators in multi-criteria decision-making. IEEE Trans Syst
Man Cybern 18(1):183-190

Yager RR (1994) Aggregation operators and fuzzy systems modeling.
Fuzzy Set Syst 67(2):129-145

Yager RR (2013) Pythagorean membership grades in multi-criteria
decision making. IEEE Trans Fuzzy Syst 22(4):958-965

Yager RR (2016) Generalized orthopair fuzzy sets. IEEE Trans Fuzzy
Syst 25(5):1222-1230

Yager RR, Abbasov AM (2013) Pythagorean membership grades,
complex numbers, and decision making. Int J Intell Syst
28(5):436-452

Zadeh LA (1965) Fuzzy sets. Inf Control 8(3):338-353

Zeng S, Chen J, Li X (2016) A hybrid method for Pythagorean fuzzy
multiple-criteria decision making. Int J Inf Tec Decis
15(02):403-422

Zhang W, Li X, Ju Y (2014) Some aggregation operators based on
Einstein operations under interval-valued dual hesitant fuzzy
setting and their application. Math Probl Eng. https://doi.org/10.
1155/2014/958927:21

Publisher’'s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

@ Springer


https://doi.org/10.1155/2014/958927:21
https://doi.org/10.1155/2014/958927:21

	Extension of Einstein geometric operators to multi-attribute decision making under q-rung orthopair fuzzy information
	Abstract
	Introduction
	Preliminaries
	q-ROFNs under Einstein operational law
	q-Rung orthopair fuzzy Einstein weighted geometric operators
	q-Rung orthopair fuzzy Einstein ordered weighted geometric operators
	Generalized q-rung orthopair fuzzy Einstein weighted geometric operators
	Generalized q-rung orthopair fuzzy Einstein ordered weighted geometric operators

	MADM problems using q-ROF information
	Suitable location for thermal power station
	Selection of cardiothoracic surgeon

	Comparison analysis
	Conclusions and future directions
	References




