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Abstract
The main objective of Fuzzy C-means (FCM) algorithm is to group data into some clusters based on their similarities and

dissimilarities. However, noise and outliers affect the performance of the algorithm that results in misplaced cluster

centers. Although several corrections are made in the algorithm to tackle this problem but the algorithm is not improved

effectively and still suffers from the same problem. Noise-resistant FCM (nrFCM) algorithm is proposed in this work to

improve the performance of the FCM algorithm when dealing with noise and outliers. The nrFCM algorithm eliminates the

effects of noise and outliers on the cluster centers by introducing a function of distance instead of the distance itself into the

objective function of the FCM algorithm. It is shown that the nrFCM algorithm is significantly more accurate than the FCM

algorithm and noise and outliers cannot impair its accuracy. However, its runtime is higher than that of the FCM algorithm

because of nonlinear update equation for cluster centers.

Keywords Fuzzy C-means (FCM) � Fuzzy clustering � Outlier � Noise � Possibilistic C-means (PCM) � Possibilistic fuzzy

C-means (PFCM)

1 Introduction

Granular computing is a framework for data and informa-

tion processing that includes several methods of soft

computing, machine learning, and artificial intelligence

(Dubois and Prade 2016; Wang et al. 2017; Livi and

Sadeghian 2016; Ciucci 2016). Granular computing is

applied to various problems such as fuzzy systems (Apol-

loni et al. 2016; Liu and Zhang 2018), classification

(Amezcua and Melin 2019; Liu and Cocea 2017; Aydav

and Minz 2020; Antonelli et al. 2016; Liu and Cocea

2019), traffic scene recognition (Wu et al. 2019), situation

awareness (Loia et al. 2016), and clustering (Chen et al.

2019b; Zhang et al. 2019a; Martino and Sessa 2020; Lin-

gras et al. 2016; Peters and Weber 2016). Fuzzy clustering

algorithms are designed to identify compact groups of data

points within the data. In recent years, these algorithms

have been applied to various research areas. For instance,

color image can be segmented by fuzzy clustering (Ozde-

mir and Akarun 2011; Tolias and Panas 1998), where the

objects are presented by clusters with different character-

istics to preserve details of the image. It is shown that fuzzy

clustering effectively determines spatial organization and

compactness of pixel clusters (Beliakov et al. 2015). Type-

II Fuzzy C-Means (FCM) algorithm is utilized to extract

different features of scene images for a humanoid robot

that shows the superior performance of this approach over

other methods (Liu et al. 2014). A segmentation approach

is presented based on fuzzy clustering and it is shown that

the method is useable in object recognition, image retrie-

val, and human vision simulation (Makrogiannis et al.

2005). Fuzzy time series is employed for simulating

behavior of imprecise data with a small number of samples

and unclear trend (Li and Cheng 2010; Wong et al. 2010).

Although some of the forecasting algorithms presented for

such time series are based on intervals of the universe of

discourse of the input variables (Chen and Jian 2017; Chen

and Phuong 2017; Chen et al. 2012, 2013, 2019a; Chen and

Chen 2015; Chen and Wang 2010), but it is shown that

fuzzy clustering provides more accurate predictions for

fuzzy time series (Zeng et al. 2019; Chen and Chang 2010;

Chen and Tanuwijaya 2011a, b; Askari and Montazerin

2015; Cheng et al. 2008; Egrioglu et al. 2011; Aladag et al.
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2012; Chen and Chen 2014; Duru and Bulut 2014; Askari

et al. 2015a, b). It is shown that oil reservoir with noisy

data is efficiently classified by fuzzy clustering algorithms

(Askari 2017a). Because of high complexity, network type

problems such as gas and water distribution networks and

electrical grids require fast forecasting systems to predict

their behavioral. (Askari et al. 2016a, b). It is shown that

fuzzy systems based on fuzzy clustering are suit-

able choices for such problems (Askari et al. 2020). Fuzzy

clustering is also used for system identification (Montaz-

erin et al. 2015) and structure identification of fuzzy sys-

tems (Tung and Quek 2004; Zhang et al. 2002; Askari

2017b).

The FCM algorithm is the basic fuzzy clustering tech-

nique (Bezdek et al. 1984; Hathaway and Bezdek 2001)

and its convergence proof is presented in (Groll and Jakel

2005). So far, many developments are made on the algo-

rithm to overcome its deficiencies. The algorithm is

developed to handle very large or big data that cannot be

loaded in the working memory of a computer (Havens et al.

2012). A multiple-kernel FCM algorithm is proposed for

image segmentation by linear combination of various ker-

nels (Chen et al. 2011). The algorithm fuses different pixel

information captured by different kernels in the image

segmentation (Chen et al. 2011). Applying the algorithm to

synthetic and medical images proves its advantages.

Degree of fuzziness is typically set to 2.0 in fuzzy clus-

tering algorithms, however, changing this parameter may

seriously affect results of clustering. Large value of this

parameter increases fuzziness and overlap of the clusters

but when it tends to 1.0, the clusters become crisp. A

generalized form of the FCM algorithm is proposed and its

robustness and convergence are analyzed (Zhu et al. 2009).

The algorithm shows some advantages over the FCM

algorithm when applied to noisy images (Zhu et al. 2009).

Fuzzy sets and rough sets are combined to utilize advan-

tages of both concepts in fuzzy clustering (Maji and Pal

2007). Qualitative and quantitative examinations of this

hybrid algorithm demonstrate its effectiveness when it is

applied to real-life data.

The main objective of the present work is to formulate a

fuzzy clustering algorithm to cancel impacts of noise and

outliers on the cluster centers. To this purpose, the distance

in the objective function of the FCM algorithm is replaced

with an exponential function. As a result, an exponential

function of distance appears in the update equation of the

cluster centers. Since noise and outliers are mostly far

away from the clusters centers, their impacts on the clus-

tering results become negligible. Effectiveness of this idea

is proved by several experiments carried out on the noisy

data.

Rest of the paper is organized as follows. Research

works closely related to the present study are briefly

discussed in Sect. 2. Several algorithms are discussed in

Sect. 3 along with the proposed algorithm. Performances of

these algorithms on noisy data are compared in Sect. 4 and

summary of the paper and its findings are provided in

Sect. 5.

2 Related works

Sensitivity to noise and outliers is one of the main draw-

backs of the FCM algorithm. The problem is addressed in

many research works. The Credibilistic fuzzy C-means

(CFCM) algorithm takes the credibility of data points to the

whole data into account to reduce the sensitivity of the

FCM algorithm to outliers (Chintalapudi and Kam 1998).

Performance of this algorithm proves its superiority over

the FCM algorithm. A noise-tolerant FCM algorithm is

proposed for data stream regression (Song et al. 2019). It is

shown that this algorithm provides more accurate regres-

sions as compared to several well-known methods. The

Density Oriented Fuzzy C-Means (DOFCM) algorithm is

presented to identify outliers in the data (Kaur and Gosain

2010). Location of the cluster centers calculated by the

DOFCM algorithm is not affected by noise and outliers. A

robust fuzzy clustering algorithm is proposed based on

membership linking and filtering for segmentation of noise

images (Lei et al. 2018; Wang et al. 2020). These algo-

rithms incorporate pixels labels into the clustering algo-

rithm to apply to the supervised process of image

segmentation. Performance of these algorithms is com-

pared to that of several methods and it is shown that they

are significantly more accurate than the other algorithms.

Type-2 FCM algorithm is proposed to capture uncertainty

and fuzziness of the data more efficiently (Gosain and

Dahiya 2016). Since data points with higher membership

grades determine the cluster centers calculated by this

algorithm, it is supposed to be capable of removing noise

and outliers impacts on the clustering results. The algo-

rithm is further extended by replacing the distance in the

objective function of the original algorithm with Gaussian

kernels. This modification significantly improves perfor-

mance of the algorithm when dealing with noise and

outliers.

Possibilistic C-Means (PCM) algorithm is proposed to

handle noise and outliers (Krishnapuram and Keller

1993, 1996; Koutroumbas et al. 2018; Anderson et al.

2010; Zhang et al. 2017a, b; Zhang and Leung 2004; Pal

et al. 2005). Although it is applied to several problems such

as boundary detection and surface approximation (Krisna-

puram et al. 1995a, b), image segmentation (Kalist et al.

2015; Zhang et al. 2011; Xie et al. 2007), big data clus-

tering (Zhang et al. 2019a, b), sensor big data (Zhang and

Chen 2014), cloud computing (Srinivasan and Palanisamy
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2015), system identification (Ahmed et al. 2015; Bouzbida

et al. 2017), and outlier detection (Filippone et al. 2010),

but the algorithm severely suffers from sensitivity to ini-

tialization and coincident clusters (Koutroumbas et al.

2018; Askari et al. 2017a, b.). To overcome these prob-

lems, the FCM and PCM algorithms are combined to make

the hybrid Possibilistic Fuzzy C-Means (PFCM) algorithm

to take advantages of both algorithms and avoid their

deficiencies (Pal et al. 2005).

However, the PFCM algorithm does not provide the

expected results and the cluster centers calculated by this

algorithm are highly influenced by noise and outliers. For

example, consider the data shown in Fig. 1 that are used in

(Pal et al. 2005) (where the PFCM algorithm is introduced

for the first time) to show the effectiveness of the PFCM

algorithm in handling outliers. The data point 0 0½ �T is

inlier and 0 10½ �T is outlier. These data are clustered

using the PCM, FCM, and PFCM algorithms and the

cluster centers computed by these algorithms are indicated

by e, ?, and 9 , respectively. The PFCM algorithm

obviously fails to find the accurate cluster centers because

of these two points added to the original data that contains

two diamond-shaped clusters. Similarly, the PCM and

FCM algorithms calculate misplaced cluster centers. The

cluster centers indicated by * are calculated by the noise-

resistant FCM (nrFCM) algorithm presented in this paper

that is discussed later. The nrFCM algorithm initializes by

the FCM algorithm such that the initial cluster centers are

calculated by the FCM algorithm and then the nrFCM

algorithm updates these prototypes to find the final cluster

centers.

3 Theoretical background

Three algorithms are discussed prior to nrFCM formulation

including the FCM algorithm, Type-2 Fuzzy C-Means

(T2FCM), and Kernelized Type-2 Fuzzy C-Means

(KT2FCM)and. These algorithms are later used to evaluate

the performance of the nrFCM algorithm.

3.1 Fuzzy C-means (FCM) algorithm

Objective function of the FCM algorithm is as follows (Pal

et al. 2005) where c is the number of clusters, n is the

number of data points, x~j is the jth data point, and v~i is the

ith cluster center. Moreover, m is degree of fuzziness and

uij is membership grade of x~j in v~i.

J ¼
Xn

j¼1

Xc

i¼1

umij d
2
ij;
Xc

k¼1

ukj ¼ 1 ð1Þ

where d2ij ¼ x~j � v~i

� �T
A x~j � v~i

� �
is distance of x~j from v~i

and Ar�r is a norm matrix where r is dimension of the data.

Type of the norm matrix determines shape of the clusters.

Identity norm matrix Ir�r generates spherical clusters and

the following covariance norm matrix provides elliptic

clusters.

A ¼ 1

n

Xn

j¼1

x~j � �v~
� �

x~j � �v~
� �T

 !�1

; �v~¼ 1

n

Xn

j¼1

x~j ð2Þ

The membership grades and cluster centers are calcu-

lated by minimizing (1) that results in the following update

equations for the FCM algorithm (Pal et al. 2005).

uij ¼
Xc

k¼1

d2ij
d2kj

 ! 1
m�1

2
4

3
5
�1

; v~i ¼
Pn

j¼1 u
m
ij x~jPn

j¼1 u
m
ij

ð3Þ

3.2 Type-2 fuzzy C-means (T2FCM)

The T2FCM algorithm is based on Type-2 fuzzy sets. This

algorithm calculates cluster centers differently as compared

to the FCM algorithm such that data points with higher

membership grades are more determinative of the final

position of the cluster centers. Since membership grades of

noise and outliers are less than those of actual data points,

the T2FCM algorithm is supposed to show good perfor-

mance on noisy data (Gosain and Dahiya 2016). Type-1

membership grades of this algorithm are calculated from

(3) as follows.

uij ¼
Xc

k¼1

d2ij
d2kj

 ! 1
m�1

2

4

3

5
�1

ð4Þ
Fig. 1 Cluster centers of the data with two clusters calculated by the

PCM, FCM, PFCM, and nrFCM algorithms
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The Type-2 membership grades lij are then calculated

from the Type-1 membership grades by the following

equation (Gosain and Dahiya 2016).

lij ¼ uij �
1� uij

2
ð5Þ

Finally, cluster centers are calculated as follows (Gosain

and Dahiya 2016).

v~i ¼
Pn

j¼1 l
m
ij x~jPn

j¼1 l
m
ij

ð6Þ

3.3 Kernelized type-2 fuzzy C-means (KT2FCM)

The KT2FCM algorithm is proposed by further general-

ization of the T2FCM algorithm by replacing the distance

in (1) with hyper tangent kernel, which leads to the fol-

lowing objective function (Gosain and Dahiya 2016).

J ¼ 2
Xn

j¼1

Xc

i¼1

lmij 1� K x~j; v~i

� �� �
;
Xc

k¼1

ukj ¼ 1 ð7Þ

where K x~j; v~i

� �
is the kernel, which is defined as follows

(Gosain and Dahiya 2016).

K x~j; v~i

� �
¼ 1� tanh �

d2ij
x2

 !
; d2ij ¼ x~j � v~i

� �T
A x~j � v~i

� �

ð8Þ

where x is the kernel width and is calculated by the fol-

lowing equations (Gosain and Dahiya 2016).

�v~¼ 1

n

Xn

j¼1

x~j

�d ¼ 1

n

Xn

j¼1

x~j � �v~
�� ��2

A

x2 ¼ 1

n� 1

Xn

j¼1

x~j � �v~
�� ��2

A
� �d

� �2

ð9Þ

It is shown that the following cluster centers and Type-2

membership functions minimize (7) (Gosain and Dahiya

2016).

lij ¼
Xc

k¼1

1� K x~j; v~i

� �

1� K x~j; v~k

� �
 ! 1

m�1

2
4

3
5
�1

; v~i

¼
Pn

j¼1 l
m
ij K x~j; v~i

� �
2� K x~j; v~i

� �� �
x~jPn

j¼1 l
m
ij K x~j; v~i

� �
2� K x~j; v~i

� �� � ð10Þ

3.4 Possibilistic C-means (PCM)

The possibilistic C-means (PCM) algorithm is proposed for

data with noise and outliers. Objective function of this

algorithm is as follows (Askari 2017b).

J ¼
Xn

j¼1

Xc

i¼1

tgijd
2
ij þ

Xc

i¼1

ci
Xn

j¼1

1� tij
� �g ð11Þ

where tij is typicality of x~j in the ith cluster and g is the

possibilistic exponent. Update equations of the PCM

algorithm are as follows (Askari 2017b).

v~i ¼
Pn

j¼1 t
g
ijx~jPn

j¼1 t
g
ij

; tij ¼ 1þ
d2ij
ci

 ! 1
g�1

0
@

1
A

�1

; ci ¼
Pn

j¼1 u
m
ij d

2
ijPn

j¼1 d
2
ij

ð12Þ

where uij in ci are calculated from (3) by applying the FCM

algorithm to the data.

3.5 Possibilistic fuzzy C-means (PFCM) algorithm

The PCM algorithm designed for noisy data suffers from

two serious drawbacks including coincident clusters and

sensitivity to initialization. The FCM and PCM algorithms

are combined to provide the hybrid possibilistic fuzzy C-

means (PFCM) algorithm to overcome these shortcomings

(Askari 2017b). Objective function of this algorithm is as

follows.

J ¼
Xn

j¼1

Xc

i¼1

umij þ tgij

� �
d2ij þ

Xc

i¼1

ci
Xn

j¼1

1� tij
� �g

;
Xc

i¼1

uij

¼ 1

ð13Þ

It is shown that update equations of this algorithm are as

follows.

v~i ¼
Pn

j¼1 umij þ tgij

� �
x~j

Pn
j¼1 umij þ tgij

� � ; uij ¼
Xc

k¼1

d2ij
d2kj

 ! 1
m�1

2
4

3
5
�1

; tij

¼ 1þ
d2ij
ci

 ! 1
g�1

0
@

1
A

�1

; ci ¼
Pn

j¼1 u
m
ij d

2
ijPn

j¼1 u
m
ij

ð14Þ

3.6 The noise-resistant FCM (nrFCM) algorithm

The present work proposes the noise-resistant FCM

(nrFCM) algorithm by replacing the distance d2ij in (3) with

f d2ij

� �
where f is a differentiable function whose derivative

is uniform descending. This function reduces the impacts
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of noise and outliers on the cluster centers. Therefore, the

following objective function is devised for the nrFCM

algorithm.

J ¼
Xn

j¼1

Xc

i¼1

umij f d2ij

� �
;
Xc

k¼1

ukj ¼ 1 ð15Þ

Incorporating the constraint
Pc

k¼1 ukj ¼ 1 in the objec-

tive function (15) using the Lagrange multipliers results in

the following function.

J ¼
Xn

j¼1

Xc

i¼1

umij f d2ij

� �
þ
Xn

j¼1

kj
Xc

k¼1

ukj � 1

 !

Zeroing derivative of this function with respect to

cluster centers yields the update equation for v~i.

oJ

ov~i
¼
Xn

j¼1

umij f
0 d2ij

� � od2ij
ov~i

¼
Xn

j¼1

umij f
0 d2ij

� �
Aþ AT
� �

x~j � v~i

� �

¼ 0 )

v~i ¼
Pn

j¼1 u
m
ij f

0 d2ij

� �
x~j

Pn
j¼1 u

m
ij f

0 d2ij

� � ð16Þ

Similarly, zeroing derivative of this function with

respect to uij results the update equation for the member-

ship grades.

oJ

ouij
¼ mum�1

ij f d2ij

� �
þ kj ¼ 0 )

uij ¼
�kj

mf d2ij

� �

0
@

1
A

1
m�1

;
Xc

k¼1

ukj ¼ 1 )

uij ¼
Xc

k¼1

f d2ij

� �

f d2kj

� �

0

@

1

A

1
m�1

2

64

3

75

�1

ð17Þ

The nrFCM algorithm converts to the FCM algorithm by

choosing f xð Þ ¼ x. Since the cluster centers calculated

from (16) depend on f 0, if the function f is chosen such that

f 0 be uniform descending, the effect of noise and outliers

considerably reduces because these points are mostly far

away from the cluster centers. Therefore, the following

exponential function is used for this purpose.

f d2ij

� �
¼ 1� exp �

d2ij
r2i

 !
; f 0 d2ij

� �
¼ 1

r2i
exp �

d2ij
r2i

 !

ð18Þ

r2i ¼
k
Pn

j¼1

lmij d
2
ij

Pn

j¼1

lmij

; lij ¼
Xc

k¼1

d2ij
d2kj

 ! 1
m�1

2

4

3

5
�1

ð19Þ

where ri is width of the exponential function and k is a

constant (typically k ¼ 1=9).

Flowchart of the algorithm is shown in Fig. 2. Degree of

fuzziness m, adjusting parameter of clusters width k, con-
vergence criterion e, number of clusters c, and the data

matrix X are inputs of the algorithm. Since the cluster

centers change when the equations are updated, r2i is

Fig. 2 Flowchart of the nrFCM algorithm
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updated in every iteration. When the data are inputted to

the algorithm, c data points are randomly chosen from the

data matrix X as the initial cluster centers to compute initial

cluster centers matrix V 1ð Þ. Alternatively, a random parti-

tion matrix U ¼ uij
� �

may be generated from which initial

cluster centers are calculated using (3). The FCM algorithm

starts with these cluster centers and converges when the

criterion V tþ1ð Þ � V tð Þ�� ��\e is met that results in the matrix

V by which the nrFCM algorithm initializes. Then, the

nrFCM algorithm iterates until convergence that results the

final cluster centers.

The algorithm is applied through the following step by

step procedure.

1. User defined parameters including k, fuzzy exponent

m, termination threshold e, type of norm matrix A, and

number of clusters c are specified. A random partition

matrix Uc�n is used to initialize the algorithm where n

is number of data points. For example, it can be

generated by the command U ¼ rand c; nð Þ in

MATLAB.

2. The FCM algorithm is then applied to the data. For this

purpose, with the initial partition matrix of step 2,

initial cluster centers v~i are calculated from (3).

Membership grades uij and cluster centers v~i are then

repeatedly updated using (3) and at each iteration t, the

termination criterion V tþ1ð Þ � V tð Þ�� ��\e is examined.

When the termination criterion is met, the FCM

algorithm stops.

3. The cluster centers calculated by the FCM algorithm

are used to initialize the nrFCM algorithm. At each

iteration t, lij and ri are calculated from (19) and then

v~i and uij are calculated from (16) and (17), respec-

tively. These values are repeatedly updated until the

termination criterion V tþ1ð Þ � V tð Þ�� ��\e is again met.

4 Performance analysis

The main objectives of the fuzzy clustering algorithm are

identifying dense regions (clusters) in the data and finding

centers of these clusters. Regarding these objectives, the

performance of the nrFCM algorithms is compared with

those of the FCM, PCM, PFCM, T2FCM, and KT2FCM

algorithms in this section. Throughout the article, param-

eters of the nrFCM algorithm are considered as

k ¼ 1=9; m ¼ 2; e ¼ 0:00001; Ar�r ¼ Ir. For the rest of

the algorithms the same values are used for m, e, and Ar�r.

4.1 Calculating actual cluster centers

Actual cluster centers of real data are not known. There-

fore, it is not possible to compare the clustering algorithms

based on the accuracy of computed cluster centers of real

data and instead synthetic data with known cluster centers

are used. Three synthetic data sets are used to compare the

performance of the FCM, PCM, PFCM, T2FCM,

KT2FCM, and nrFCM algorithms. The first data set with

three clusters is studied using these algorithms as shown in

Fig. 3. The FCM algorithms cannot find actual cluster

centers due to noise impacts on the clustering results. As

discussed above, the PCM algorithm provides coincident

cluster centers especially when the data are highly noisy,

which is clearly apparent in Fig. 3.

The FCM and PCM algorithms are combined to derive

the hybrid PFCM algorithm for noisy data by utilizing the

advantages of both algorithms and avoiding their draw-

backs. Although this algorithm performs better than the

FCM algorithm for data with few noise and outliers,

however, its performance is inferior to that of the FCM

algorithm for highly noisy data as shown in Fig. 3.

Although cluster centers calculated by the T2FCM algo-

rithm are more accurate than those of the PCM algorithm,

but they are too close to each other and far away from the

actual cluster centers. However, the KT2FCM algorithm

that adds Gaussian kernels to the objective function of the

T2FCM algorithm, outperforms the above algorithms. The

nrFCM algorithm calculates the most accurate cluster

centers by canceling noise impacts by the exponential

function as shown in Fig. 3. The actual cluster centers and

those calculated by these algorithms are as follows.

VActual ¼
�1:0000 0:0000 1:0000
0:0000 1:0000 0:0000

	 

;

VFCM ¼ �0:9550 �0:0004 0:9279
0:3203 0:9618 0:3104

	 

;

VPCM ¼ 0:0509 0:0559 0:0525
0:6007 0:6085 0:6032

	 

;

VPFCM ¼ �0:8781 0:0155 0:8575
0:3443 0:8875 0:3303

	 

;

VT2FCM ¼ �0:0348 0:0401 0:1341
0:6367 0:7789 0:6409

	 

;

VKT2FCM ¼ �0:9598 0:0105 0:9359
0:1124 0:9429 0:1270

	 

;

VnrFCM ¼ �1:0019 �0:0005 0:9971
0:0029 1:0005 0:0056

	 


To measure the accuracy of different algorithms, the

average deviation between the actual and computed cluster
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centers are calculated by the following equation (Askari

et al. 2017b). This metric calculates the average distance

between the actual and computed cluster centers.

E ¼ 1

c

Xc

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v~�
i � v~i

� �T
A v~�

i � v~i

� �q
ð20Þ

where v~�
i and v~i are the ith actual and computed cluster

centers, respectively, and A is the norm matrix defined in

(2). The following values are calculated for each of the

above algorithms.

EFCM ¼ 0:2266; EPCM ¼ 0:9097; EPFCM

¼ 0:2795; ET2FCM ¼ 0:8194; EKT2FCM

¼ 0:1066; EnrFCM ¼ 0:0035

It is observed that the cluster centers calculated by the

nrFCM algorithm are the most accurate ones with least

deviation from the actual cluster centers.

FCM PCM

PFCM T2FCM

KT2FCM nrFCM

Fig. 3 Clustering the data with three clusters by different algorithms
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The second data set with four clusters is studied by these

algorithms as shown in Fig. 4. The PFCM algorithm out-

performs the FCM algorithm but the PCM and T2FCM

algorithms compute coincident clusters. The KT2FCM

algorithm is more accurate than the PFCM algorithm.

However, the nrFCM algorithm provides the most accurate

cluster centers.

The actual cluster centers and those calculated by the

algorithms are as follows.

VActual ¼
�3:0000 0:0000 0:0000 3:0000
0:0000 7:0000 3:0000 0:0000

	 

;

VFCM ¼ �2:6821 �0:1260 0:0829 2:7489
0:7771 7:1040 3:5675 0:6646

	 

;

VPCM ¼ 0:0249 �0:0468 0:0169 0:0198
3:1654 6:0873 3:1079 3:1260

	 

;

VPFCM ¼ �2:5035 �0:0842 0:0502 2:6660
0:8423 6:8650 3:3904 0:6494

	 

;

VT2FCM ¼ �0:1242 �0:1242 0:2067 0:2067
6:2008 6:2008 2:0681 2:0682

	 


VKT2FCM ¼ �2:6956 �0:1185 0:0751 2:7619
0:7310 7:0838 3:5140 0:6286

	 

;

VnrFCM ¼ �2:9990 �0:0134 �0:0023 2:9992
�0:0022 7:0117 3:0055 0:0053

	 


Average deviations of the cluster centers computed by

different algorithms from the actual cluster centers are as

follows that proves the superiority of the proposed algo-

rithm over the others.

EFCM ¼ 0:5717; EPCM ¼ 2:4301; EPFCM

¼ 0:5652; ET2FCM ¼ 3:0185; EKT2FCM

¼ 0:5322;EnrFCM ¼ 0:0079

When sizes or densities of the clusters are different, cluster

centers are misplaced even in noise-free data sets since

larger or denser clusters pull cluster centers toward them-

selves. A noise-free data set of two clusters with different

sizes is studied by the above algorithms as shown in Fig. 5.

The FCM algorithm identifies center of the larger cluster

accurately but center of the smaller one is displaced

towards the large cluster. The PCM algorithm does not find

the small cluster and computes coincident cluster centers.

The PFCM algorithm places both cluster centers within the

larger cluster due to the possibilistic term of the algorithm

inherited from the PCM algorithm. The T2FCM algorithm

performs better than PCM and PFCM algorithms but it is

less accurate than FCM algorithm. The KT2FCM algo-

rithm does not realize the presence of the small cluster and

places both cluster centers within the large cluster. The

nrFCM algorithm that is initialized by the cluster centers

calculated by the FCM algorithm, cancels mutual

interactions of the clusters by its exponential function and

moves these cluster centers to their actual locations.

4.2 Finding dense regions of data

Quality of clustering is indicated by density. High density

shows that the cluster centers calculated by the algorithm

are located in dense regions of the data. When there are

many data points around each cluster center, a larger

density q results from the following equation (Askari et al.

2017b).

q ¼
Pn

j¼1

Pc
i¼1 u

m
ij d

2
ijPn

j¼1

Pc
i¼1 u

m
ij

ð21Þ

Equation (3) shows that the FCM algorithm updates

cluster centers by a linear equation. However, the nrFCM

algorithm employs the nonlinear update Eq. (16) because

of the exponential function used in the objective function

(15). The nonlinear update equation takes more time per

iteration and consequently the FCM algorithm is faster than

the nrFCM algorithm. These algorithms are applied to 23

synthetic and real data sets and are compared in terms of

density of clusters, runtime, and number of iterations as

provided in Table 1. Data sets 1 to 4 are the four synthetic

noisy data sets studied above and shown in Figs. 1, 3, 4,

and 5. Data sets 5 to 17 are real data taken from the UCI

Machine Learning Repository. The synthetic noise-free

data sets 18 to 23 shown in Fig. 6 contain different num-

bers of clusters to study performance of the algorithms

when there are large numbers of clusters in the data. Since

the nrFCM algorithm initializes by the cluster centers

calculated by the FCM algorithm and starts when the FCM

algorithm converges, this algorithm demands higher num-

ber of iterations and runtime. For example, for DATA2 in

Table 1, the FCM algorithm converges after 25 iterations

with runtime of 7.835 s. Then the nrFCM algorithm starts

and terminates after 20 iterations (45–25) and runtime of

15.23 s (23.065–7.835). On average, each iteration of the

FCM algorithm takes 0.392 s (7.835/20) and each iteration

of the nrFCM algorithm takes 0.761 s (15.23/20). For data

sets 1 to 3 (shown in Figs. 1, 3, and 4) that contain noise

and outliers, density of clustering results of the nrFCM

algorithm is higher than that of the FCM algorithm because

the nrFCM algorithm finds actual cluster centers where a

large number of data points are concentrated. There is no

noise or outliers in data set 4 (shown in Fig. 5) but the

FCM algorithm cannot find actual cluster centers because

of different sizes and densities of the clusters. Displace-

ment of the cluster centers from their actual locations

decreases density of clustering results. There are sporadic

observations and probably outliers in the real data sets 5 to

17 and consequently the FCM algorithm cannot find dense
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FCM PCM

PFCM T2FCM

KT2FCM nrFCM

Fig. 4 Clustering the data with four clusters by different algorithms
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FCM PCM

PFCM T2FCM

KT2FCM nrFCM

Fig. 5 Clustering the data with

different cluster sizes and

densities by various algorithms
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Table 1 Number of iterations

and runtime (seconds) of the

FCM and nrFCM algorithms

Data set c Density No. of iterations Runtime

FCM nrFCM FCM nrFCM FCM nrFCM

1 DATA1 2 3.259 3.417 11 19 0.018 0.046

2 DATA2 3 0.068 0.078 25 45 7.835 23.065

3 DATA3 4 0.500 0.533 35 48 8.223 15.361

4 DATA4 2 0.022 0.023 55 62 6.176 8.066

5 Climate model simulation crashes 2 0.375 0.548 3 28 0.063 1.305

6 Connectionist bench 2 0.433 0.587 38 58 0.409 0.878

7 Energy efficiency 2 1599 1700 18 33 0.486 1.543

8 Fertility 2 0.572 0.709 19 55 0.103 0.592

9 Glass identification 6 0.122 0.128 25 50 1.312 4.387

10 Haberman survival 2 35.26 40.12 22 98 0.329 2.722

11 Heart disease Cleveland 4 174.35 179.29 77 112 2.978 6.008

12 Ionosphere 2 2.309 2.787 4 40 0.066 1.451

13 IRIS 3 0.134 0.143 26 38 0.358 0.715

14 Pima Indians diabetes 2 2596 3841 46 167 1.359 10.162

15 Seeds 3 0.717 0.748 24 52 0.445 1.559

16 Wine 3 3363 3672 55 149 0.902 4.244

17 Wisconsin prognostic breast cancer 2 10.874 12.479 15 47 0.421 2.608

18 DATA5 5 0.0164 0.0164 16 18 1.902 2.482

19 DATA6 6 0.0136 0.0136 14 16 2.813 3.752

20 DATA7 7 0.0109 0.0109 17 19 5.218 6.654

21 DATA8 8 0.0093 0.0093 17 19 7.833 9.910

22 DATA9 9 0.0079 0.0079 23 25 14.381 17.253

23 DATA10 10 0.0068 0.0068 21 23 17.632 23.450

Fig. 6 Six synthetic data sets with no noise and outliers
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regions of these data sets but the nrFCM algorithm iden-

tifies dense clusters with higher densities as compared to

the FCM algorithm. There is no noise and outliers in data

sets 18 to 23 and their clusters have the same sizes.

Therefore, the FCM algorithm finds actual cluster centers

of these data sets and has the same density as the nrFCM

algorithm. Since the data sets are clean, the nrFCM algo-

rithm iterates only two times to correct the insignificant

displacements of the cluster centers calculated by the FCM

algorithm due to the interactions between the clusters. For

example, consider the cluster center 1 �2½ �T of DATA5

shown in Fig. 6. The FCM algorithm calculates this cluster

center as 1:0030 �2:0034½ �T due to the interactions

between this cluster and each of the other four clusters and

then the nrFCM algorithm moves it to

1:0000 �2:0000½ �T by damping impacts of other clusters

on this cluster by the exponential function.

In summary, according to Table 1, runtime and number

of iterations of the nrFCM algorithm is higher than those of

the FCM algorithm due to nonlinear update equation for

cluster centers. Since the nrFCM algorithm finds dense

regions of the data as fuzzy clusters, the density of the

clusters calculated by this algorithm is higher than that of

the FCM algorithm. Even if there are no noise and outliers

in the data, the FCM algorithm cannot find exact cluster

centers because of the interactions between the clusters.

However, the nrFCM algorithm cancels these interactions

by the exponential function introduced in the objective

function (15) and finds precise locations of the cluster

centers.

5 Conclusions

Presence of noise and outliers in data impairs the accuracy

of clustering algorithms and results inaccurate cluster

centers. Noise-resistant FCM (nrFCM) algorithm is pre-

sented in this article for the data with noise and outliers.

The nrFCM algorithm reduces contributions of noise and

outliers by introducing an exponential function in the

objective function of the FCM algorithm. It is shown that

when the data are noisy, the FCM algorithm fails to

determine actual cluster centers but the nrFCM algorithm

works satisfactorily. Moreover, the nrFCM algorithm finds

dense regions of the data more precisely than the FCM

algorithm, which is indicated by the density of the clus-

tering results. It is also shown that even if the data are

noise-free, the FCM algorithm cannot calculate actual

cluster centers precisely because of different cluster sizes

and the interactions between clusters.

In summary, the main contribution of the present work

is to improve the performance of the well-known FCM

algorithm by proposing the nrFCM algorithm with the

following characteristics:

1. Finding accurate cluster centers in the presence of

noise and outliers.

2. Placing the cluster centers in dense regions of the data

so that they represent the actual structure of the data.

3. Finding accurate cluster centers when sizes of the

clusters are considerably different.

Despite high accuracy, the nrFCM algorithm incurs

higher runtime because of nonlinear update equation for

the cluster centers. Therefore, the runtime of the algorithm

mainly depends on the function f in Eq. (15) for which

exponential function is used in the present work. It is

possible to find a proper function capable of canceling

noise impacts with less runtime. For example, stepwise

linearization of the exponential function may be a proper

choice. Moreover, although k ¼ 1=9 works properly for the

data sets studied in the article, but it is more appropriate to

calculate this parameter according to the structure of the

data (for example dispersion of the data in different

dimensions). This makes the algorithm more robust and

efficient.
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