
ORIGINAL PAPER

Decision-making approach based on Pythagorean Dombi fuzzy soft
graphs

Muhammad Akram1
• Gulfam Shahzadi1

Received: 3 February 2020 / Accepted: 26 March 2020 / Published online: 22 April 2020
� Springer Nature Switzerland AG 2020

Abstract
A Pythagorean fuzzy set model is more useful than intuitionistic fuzzy set model to handle the imprecise information

involving both membership and nonmembership degrees, and a soft set is an other parameterized point of view for handling

the vagueness. A Pythagorean fuzzy soft graph is considered more capable than intuitionistic fuzzy soft graph for

representing the parametric relationships between objects, and the Dombi operators with operational parameters have

creditable extensibility. Based on these two notions, we propose the concept of Pythagorean Dombi fuzzy soft graph

(PDFSG). We describe certain concepts of graph theory under Pythagorean Dombi fuzzy soft environment. Further, we

define the degree sequence and degree set in PDFSG, and the concept of edge regular PDFSG with consequential

properties. Moreover, we illustrate the examples in decision making including selection of suitable ETL software for a

business intelligence project and evaluation of electronics companies. Finally, we present the comparison analysis of our

proposed model to show the superiority than existing model.

Keywords PDFSG � Regularity of PDFSG � Strongly regular PDFSG � Bipartite and biregular PDFSG

1 Introduction

Several operators were interpolated and most important

among them are min–max, Einstein, Hamacher, Frank,

product, Lukasiewicz, Azcel-Alsina and Dombi operators

that appeared in different graphs with fuzzy logic. The

product and minimum operators were used by Zadeh

(1965) to characterize fuzzy set. The rational format of

disjunctive and conjunctive operators in accordance with

Kuwagaki’s results (1952) was obtained by Hamacher

(1978). Then, many researchers studied more generic form,

i.e., triangular norms (t-norms) and triangular conorms (t-

conorms). Menger (1942) revived t-norms and t-conorms

within probabilistic metric framework. Many postulates

and results relevant to t-norms and t-conorms were made

by Schweizer and Sklar (1983). Klement et al. (2013)

introduced a lot of extensions and summarizations of

beneficial outcomes of T-operators for the similar cause. In

many decision-making applications, Zadeh’s min and max

operators have been broadly adapted. Especially in deci-

sion-making problems, other T-operators may work better

in some cases such as product operator may tend to choose

over min operator (Dubois et al. 2000).

To delineate the imprecision and obscureness in differ-

ent fields, Zadeh (1965) introduced fuzzy set (FS) theory.

But sometimes the membership function of the FS is not

sufficient to declare the complexity of data. To overcome

this difficulty, Atanassov (1986) extended FS to an intu-

itionistic fuzzy set (IFS) by adding a nonmembership

function and a hesitancy function. As a development of

IFS, Yager (2013) recommended the notion of Pythagorean

fuzzy set (PFS) satisfying the condition l2 þ m2 � 1. The

space of PFSs membership degree is greater than the space

of IFSs membership degree. For instance, when a decision

maker gives the evaluation information whose membership

degree is 0.5 and nonmembership degree is 0.7, then the

IFN fails to evaluate this situation because 0:5þ 0:7[ 1:

However, ð0:5Þ2 þ ð0:7Þ2 � 1. To handle fuzziness, Akram
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et al. (2019, 2020) proved that PFS has much stronger

ability in multi-criteria group decision-making problems.

For the parameterized point of view, Molodtsov

(1999) proposed soft set (SS) for uncertainty modeling

and soft computing. For the hybrid models, Feng et al.

(2011a, b) joined the SSs with rough sets (RSs) and FSs.

Ali et al. (2009) studied many new operations in SS

theory. Som (2006) popularized the idea of soft relation

and fuzzy soft relation. Fuzzy soft sets (FSSs) were

defined by Maji et al. (2001a) and using this concept in

decision-making problems, Roy and Maji (2007) estab-

lished many applications. The idea of FSs and FSSs

induced by SSs was handled by Ali (2011). Maji et al.

(2001b) elaborated the theory of intuitionistic fuzzy soft

set (IFSS). A graph is a pictorial representation that

bonds the items together. To handle the haziness

occurring in these bonding, graph can be considered as

fuzzy graph (FG). The formation of FGs was introduced

by Rosenfeld (1975) using min and max operators. Par-

vathi and Karunambigai (2006) imported the view of

intuitionistic fuzzy graphs (IFGs). Akram and Davvaz

(2012) described IFGs. Naz et al. (2018) presented the

notion of Pythagorean fuzzy graphs (PFGs). Thumbakara

and George (2014) studied the soft graphs. The idea of

fuzzy soft graphs (FSGs) was established by Akram and

Nawaz (2016). Shahzadi and Akram (2017) illustrated

the concept of IFSGs.

In 1982, Dombi (1982) initiated Dombi operator with

flexible operational parameter. For different values of

operational parameters, different results can be made in

decision-making problems, depending upon the require-

ment. Chen and Ye (2017), Jana et al. (2019), Shi and Ye

(2018) used Dombi operations and presented MCDM

problem in single-valued neutrosophic, neutrosophic cubic

and bipolar fuzzy environments, respectively. Liu et al.

(2018) presented MCGDM problem using Dombi Bonfer-

roni mean operator on IFSs. In graph theory, use of Dombi

operator is rare. Ashraf et al. (2018) introduced the idea of

Dombi fuzzy graphs (DFGs). Akram et al. (2019) intro-

duced the PDFGs. For other terminologies not discussed in

the paper, the readers are suggested to Liu and Wang

(2020), Liu et al. (2017), Mishra et al. (2020), Chen

(1996), Bai and Chen (2008a, b), Chen et al.

(2013, 2016a, b), Chen and Cheng (2016), Zhang and Xu

(2014) and Akram and Ali (2019, 2020).

The motivations of this article are outlined as follows:

1. The judgment of a perfect alternative in a Pythagorean

fuzzy environment corresponding to various parame-

ters is a laborious problem. In existing techniques,

assessment information is characterized by IF and PF

environments which promote to do work in

Pythagorean fuzzy soft environment to discuss pair-

wise relationship.

2. PDFSGs expose extraordinary decapitation in giving

vague and imprecise assessment information.

3. With the help of Dombi operators and score function,

we get actual and correct decision.

4. The proposed work overcomes the restrictions of

existing work.

The main contributions of this article are:

1. The concept of Dombi operators under Pythagorean

fuzzy soft environment describes the relationship

between objects and investigates its properties.

2. To handle complex realistic problems, an algorithm is

developed when data are given in Pythagorean fuzzy

environment corresponding to different parameters.

3. At the end, the benefits and characteristics of proposed

approach are discussed by comparison analysis.

The organization of this research article is as follows:

In Sect. 2, we propose various terms including PDFSG,

complement of PDFSG, the concept of homomorphism

between two PDFSGs, regular, totally regular and strongly

regular PDFSG, bipartite PDFSG, biregular PDFSG, edge

regular and totally edge regular PDFSG. We propose the

results related to these terms. In Sect. 3, we provide the

decision-making problems and discuss the comparison

analysis to show the importance of proposed model. In

Sect. 4, we have concluded our results.

Definition 1.1 (Peng et al. 2015) Let X be a universe of

discourse and W be the set of all parameters, U � W.

PðXÞ denotes the set of all Pythagorean fuzzy subsets.

ð ~M;UÞ is called an PFSS over X , where PF approximation

function is given by ~M ¼ ð ~Ml; ~MmÞ : U ! PðXÞ.

• The Dombi’s t-norm 1

1þ½ð1�a
a Þcþð1�b

b Þc�
1
c
; c[ 0:

• The Dombi’s t-conorm 1

1þ½ð1�a
a Þ�cþð1�b

b Þ�c�
1�c
; c[ 0:

One more set of T-operators is Tða; bÞ ¼ ab
aþb�ab and

T�ða; bÞ ¼ aþb�ab
1�ab , which can be obtained by substituting

c ¼ 1 in Dombi’s t-norm and t-conorm. Also,

Pða; bÞ� ab
aþb�ab �Mða; bÞ and M�ða; bÞ� aþb�ab

1�ab

�P�ða; bÞ.

Definition 1.2 (2018) A Pythagorean fuzzy preference

relation (PFPR) on the set X ¼ fa1; a2; . . .; ang is denoted

by a matrix O ¼ ðoilÞn�n, where ojl ¼
ðajal; lðajalÞ; mðajalÞÞ for all j; l ¼ 1; 2; . . .; n: For easiness,

let ojl ¼ ðljl; mjlÞ where ljl indicates the degree to which the
object aj is preferred to the object al, mjl denotes the degree
to which the object aj is not preferred to the object al and
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pjl ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� l2jl � m2jl

q

is interpreted as a hesitancy degree,

with the following condition:

ljl; mjl 2 ½0; 1�; l2jl þ m2jl � 1; ljl ¼ mlj; ljj ¼ mjj
¼ 0:5; for allj; l ¼ 1; 2; . . .; :n

2 Pythagorean Dombi fuzzy soft graphs

Definition 2.1 A PDFSG on X is a tuple PD ¼ ð ~M; ~N ;UÞ
such that

1. U is a nonempty set of parameters,

2. ð ~M;UÞ is a PFSS subset over X ,

3. ð ~N ;UÞ is a PFSS subset over E � X � X ,

4. ð ~MðuiÞ; ~NðuiÞÞ is a PDF subgraph for all

ui 2 U; i ¼ 1; 2; . . .;m, that is,

~N lðuiÞðabÞ

� ð ~MlðuiÞðaÞÞð ~MlðuiÞðbÞÞ
~MlðuiÞðaÞ þ ~MlðuiÞðbÞ � ð ~MlðuiÞðaÞÞð ~MlðuiÞðbÞÞ

;

~N mðuiÞðabÞ

�
~MmðuiÞðaÞ þ ~MmðuiÞðbÞ � 2ð ~MmðuiÞðaÞÞð ~MmðuiÞðbÞÞ

1� ð ~MmðuiÞðaÞÞð ~MmðuiÞðbÞÞ
;

and 0� ~N 2
lðuiÞðabÞ þ ~N 2

mðuiÞðabÞ � 1; 8 ui 2 U;
a; b 2 X :

The PDF subgraph ð ~MðuiÞ; ~NðuiÞÞ is denoted by
~HðuiÞ ¼ ð ~HlðuiÞ; ~HmðuiÞÞ.

Remark ð ~M;UÞ is the Pythagorean Dombi fuzzy soft

(PDFS) vertex set of PD and ð ~N ;UÞ the PDFS edge set of

PD.

Example 2.2 Consider nonempty sets X ¼ fa1; a2; a3; a4g
and E ¼ fa1a2; a1a3g � X � X . Let U ¼ fu1; u2g be a

parameter set and ð ~M;UÞ be a PDFS vertex set over X
given by

~Mðu1Þ ¼ fða1; 0:3; 0:8Þ; ða2; 0:9; 0:2Þ; ða3; 0:8; 0:5Þg;
~Mðu2Þ ¼ fða1; 0:6; 0:6Þ; ða2; 0:7; 0:5Þ; ða3; 0:6; 0:7Þg:

Let ð ~N ;UÞ be a PDFS edge set over E with PDF approx-

imation function ~N : U ! PðXÞ given by

~Nðu1Þ ¼ fða1a2; 0:28; 0:80Þ; ða1a3; 0:25; 0:82Þg;
~Nðu2Þ ¼ fða1a2; 0:47; 0:70Þ; ða1a3; 0:42; 0:70Þg:

Clearly, ~Hðu1Þ ¼ ð ~Mðu1Þ; ~Nðu1ÞÞ, ~Hðu2Þ ¼
ð ~Mðu2Þ; ~Nðu2ÞÞ are PDFGs to the attributes u1 and u2,

respectively, as shown in Fig. 1.

Hence PD ¼ f ~Hðu1Þ; ~Hðu2Þg is a PDFSG.

Definition 2.3 The complement of a PDFSG PD ¼
ð ~M; ~N ;UÞ is a PDFSG PD ¼ ð ~M; ~N ;UÞ which is defined

by

1. U ¼ U.
2. ~MlðuiÞðaÞ ¼ ~MlðuiÞðaÞ and ~MmðuiÞðaÞ ¼

~MmðuiÞðaÞ:
3.

~N lðuiÞðabÞ

¼

ð ~MlðuiÞðaÞÞð ~MlðuiÞðbÞÞ
~MlðuiÞðaÞ þ ~MlðuiÞðbÞ � ð ~MlðuiÞðaÞÞð ~MlðuiÞðbÞÞ

; if ~N lðuiÞðabÞ ¼ 0

ð ~MlðuiÞðaÞÞð ~MlðuiÞðbÞÞ
~MlðuiÞðaÞ þ ~MlðuiÞðbÞ � ð ~MlðuiÞðaÞÞð ~MlðuiÞðbÞÞ

� ~N lðuiÞðabÞ; if 0� ~N lðuiÞðabÞ � 1:

8

>

>

>

>

<

>

>

>

>

:

~N mðuiÞðabÞ

¼

~MmðuiÞðaÞ þ ~MmðuiÞðbÞ � 2ð ~MmðuiÞðaÞÞð ~MmðuiÞðbÞÞ
1� ð ~MmðuiÞðaÞÞð ~MmðuiÞðbÞÞ

; if ~N mðuiÞðabÞ ¼ 0

~MmðuiÞðaÞ þ ~MmðuiÞðbÞ � 2ð ~MmðuiÞðaÞÞð ~MmðuiÞðbÞÞ
1� ð ~MmðuiÞðaÞÞð ~MmðuiÞðbÞÞ

� ~N mðuiÞðabÞ; if 0� ~N mðuiÞðabÞ � 1:

8

>

>

>

>

<

>

>

>

>

:

Example 2.4 Consider nonempty sets X ¼
fa1; a2; a3; a4; a5g and E ¼ fa1a2; a1a3; a1a4; a1a5; a2
a3g � X � X . Let U ¼ fu1g be a parameter set and

ð ~M;UÞ be a PDFS vertex set over X given by

~Mðu1Þ ¼ fða1; 0:6; 0:6Þ; ða2; 0:5; 0:7Þ; ða3; 0:7; 0:6Þ;
ða4; 0:8; 0:4Þ; ða5; 0:7; 0:7Þg:

Let ð ~N ;UÞ be a PDFS edge set over E with PDF approx-

imation function ~N : U ! PðXÞ given by

~Nðu1Þ ¼ fða1a2; 0:30; 0:75Þ; ða1a3; 0:40; 0:70Þ;
ða1a4; 0:50; 0:60Þ; ða1a5; 0:45; 0:72Þ; ða2a3; 0:40; 0:70Þg:

~Hðu1Þ is the PDFG as shown in Fig. 2. Hence, PD is a

PDFSG. Now the complement of PDFSG is the comple-

ment of PFSG ~Hðu1Þ, which is shown in Fig. 3.

Theorem 2.5 If PD ¼ ð ~M; ~N ;UÞ is a PDFSG, then

PD ¼ PD.

Proof Suppose that PD is a PDFSG. Then by complement

of PDFSG,
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U ¼ U ¼ U; ~MlðuiÞðaÞ ¼ ~MlðuiÞðaÞ ¼ ~MlðuiÞðaÞ

and ~MmðuiÞðaÞ ¼ ~MmðuiÞðaÞ ¼ ~MmðuiÞðaÞ,
8 ui 2 U; a 2 X .

If ~N lðuiÞðabÞ ¼ 0 and ~N mðuiÞðabÞ ¼ 0, then

~N lðuiÞðabÞ

¼ ð ~MlðuiÞðaÞÞð ~MlðuiÞðbÞÞ
~MlðuiÞðaÞ þ ~MlðuiÞðbÞ � ð ~MlðuiÞðaÞÞð ~MlðuiÞðbÞÞ

¼ ð ~MlðuiÞðaÞÞð ~MlðuiÞðbÞÞ
~MlðuiÞðaÞ þ ~MlðuiÞðbÞ � ð ~MlðuiÞðaÞÞð ~MlðuiÞðbÞÞ

¼ ~N lðuiÞðabÞ;

~N mðuiÞðabÞ ¼
~MmðuiÞðaÞ þ ~MmðuiÞðbÞ � 2ð ~MmðuiÞðaÞÞð ~MmðuiÞðbÞÞ

1� ð ~MmðuiÞðaÞÞð ~MmðuiÞðbÞÞ

¼
~MmðuiÞðaÞ þ ~MmðuiÞðbÞ � 2ð ~MmðuiÞðaÞÞð ~MmðuiÞðbÞÞ

1� ð ~MmðuiÞðaÞÞð ~MmðuiÞðbÞÞ
¼ ~N mðuiÞðabÞ:

If 0� ~N lðuiÞðabÞ; ~N mðuiÞðabÞ� 1, then

~N lðuiÞðabÞ ¼
ð ~MlðuiÞðaÞÞð ~MlðuiÞðbÞÞ

~MlðuiÞðaÞ þ ~MlðuiÞðbÞ � ð ~MlðuiÞðaÞÞð ~MlðuiÞðbÞÞ

� ~N lðuiÞðabÞ

¼ ð ~MlðuiÞðaÞÞð ~MlðuiÞðbÞÞ
~MlðuiÞðaÞ þ ~MlðuiÞðbÞ � ð ~MlðuiÞðaÞÞð ~MlðuiÞðbÞÞ

� ð ~MlðuiÞðaÞÞð ~MlðuiÞðbÞÞ
~MlðuiÞðaÞ þ ~MlðuiÞðbÞ � ð ~MlðuiÞðaÞÞð ~MlðuiÞðbÞÞ

 

� ~N lðuiÞðabÞ
�

¼ ~N lðuiÞðabÞ;

~N mðuiÞðabÞ ¼
~MmðuiÞðaÞ þ ~MmðuiÞðbÞ � 2ð ~MmðuiÞðaÞÞð ~MmðuiÞðbÞÞ

1� ð ~MmðuiÞðaÞÞð ~MmðuiÞðbÞÞ

� ~N mðuiÞðabÞ

¼
~MmðuiÞðaÞ þ ~MmðuiÞðbÞ � 2ð ~MmðuiÞðaÞÞð ~MmðuiÞðbÞÞ

1� ð ~MmðuiÞðaÞÞð ~MmðuiÞðbÞÞ

�
~MmðuiÞðaÞ þ ~MmðuiÞðbÞ � 2ð ~MmðuiÞðaÞÞð ~MmðuiÞðbÞÞ

1� ð ~MmðuiÞðaÞÞð ~MmðuiÞðbÞÞ

 

� ~N mðuiÞðabÞ
�

¼ ~N mðuiÞðabÞ:

8 ui 2 U; a; b 2 X . Hence, PD ¼ PD. h

Definition 2.6 A homomorphism Q : PD1
! PD2

of two

PDFSGs PD1
¼ ð ~M1; ~N 1;UÞ and PD2

¼ ð ~M2; ~N 2;UÞ is a
mapping Q : X1 ! X 2 satisfying

(a1, 0.3, 0.8)

(a2, 0.9, 0.2) (a3, 0.8, 0.5)

(0
.28
, 0
.80
)

(0.25, 0.82)

(a1, 0.6, 0.6)

(a2, 0.7, 0.5) (a3, 0.6, 0.7)

(0
.4
7,
0.
70
) (0.42, 0.70)

H̃(u1) corresponding to the parameter u1 H̃(u2) corresponding to the parameter u2

Fig. 1 PDFSG

PD ¼ f ~Hðu1Þ; ~Hðu2Þg

(a1, 0.6, 0.6)

(a2 , 0.5, 0.7)(a 3
, 0
.7
, 0
.6
)

(a4, 0.8, 0.4)(a5, 0.7, 0.7)

(0
.3
0,
0.
75
)

(0.40, 0.70)

(0.50, 0.60)(0
.45
, 0
.72
)

(0.40, 0.70)

H̃(u1) corresponding to parameter u1

Fig. 2 PDFG ~Hðu1Þ

(a1
, 0.

6, 0
.6) (a

2 , 0.5, 0.7)

(a3, 0.7, 0.6)

(a4, 0.8, 0.4)

(a
5
, 0
.7
, 0
.7
)

(0.01, 0.09)

(0.60, 0.75)

(0
.5
4,
0.
79
)

(0
.4
4,
0.
75
)

0(
.
80
,0
.

)50

(0.08, 0.04)

0(
.
20
,0
.

)6
0

(0.03, 0.07)

H̃(u1) = M̃(u1)(a), Ñ (u1)(a)

Fig. 3 Complement ~Hðu1Þ
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1. ~M1lðuiÞðaÞ� ~M2lðuiÞðQðaÞÞ; ~M1mðuiÞðaÞ�
~M2mðuiÞðQðaÞÞ:

2. ~N 1lðuiÞðabÞ� ~N 2lðuiÞðQðaÞQðbÞÞ,
~N 1mðuiÞðabÞ� ~N 2mðuiÞðQðaÞQðbÞÞ; 8 a; b 2 X ; ab 2

E1; ui 2 U; i ¼ 1; 2; . . .;m:

Definition 2.7 An isomorphism Q : PD1
! PD2

of two

PDFSGs PD1
¼ ð ~M1; ~N 1;UÞ and PD2

¼ ð ~M2; ~N 2;UÞ is a
bijective mapping Q : X 1 ! X2 satisfying

1. ~M1lðuiÞðaÞ ¼ ~M2lðuiÞðQðaÞÞ; ~M1mðuiÞðaÞ ¼
~M2mðuiÞðQðaÞÞ:

2. ~N 1lðuiÞðabÞ ¼ ~N 2lðuiÞðQðaÞQðbÞÞ, ~N 1mðuiÞðabÞ ¼
~N 2mðuiÞðQðaÞQðbÞÞ; 8 a; b 2 X ; ab 2 E1; ui 2 U:

Definition 2.8 A weak isomorphism Q : PD1
! PD2

of two

PDFSGs PD1
¼ ð ~M1; ~N 1;UÞ and PD2

¼ ð ~M2; ~N 2;UÞ is a
bijective mapping Q : X 1 ! X2 satisfying

1. Q is a homomorphism.

2. ~M1lðuiÞðaÞ ¼ ~M2lðuiÞðQðaÞÞ, ~M1mðuiÞðaÞ ¼
~M2mðuiÞðQðaÞÞ; 8 a; b 2 X ; ui 2 U:

Definition 2.9 A co-weak isomorphism Q : PD1
! PD2

of

two PDFSGs PD1
¼ ð ~M1; ~N 1;UÞ and PD2

¼ ð ~M2; ~N 2;UÞ
is a bijective mapping Q : X 1 ! X 2 satisfying

1. Q is a homomorphism.

2. ~N 1lðuiÞðabÞ ¼ ~N 2lðuiÞðQðaÞQðbÞÞ, ~N 1mðuiÞðabÞ ¼
~N 2mðuiÞðQðaÞQðbÞÞ; 8 ab 2 E1; ui 2 U:

Definition 2.10 A PDFSG PD ¼ ð ~M; ~N ;UÞ is called self-

complementary if PD ffi PD.

Proposition 2.11 If PD ¼ ð ~M; ~N ;UÞ is a self-comple-

mentary PDFSG, then
X

a 6¼b

~N lðuiÞðabÞ

¼ 1

2

X

a6¼b

ð ~MlðuiÞðaÞÞð ~MlðuiÞðbÞÞ
~MlðuiÞðaÞ þ ~MlðuiÞðbÞ � ~MlðuiÞðaÞ ~MlðuiÞðbÞ

;

ð1Þ
X

a 6¼b

~N mðuiÞðabÞ

¼ 1

2

X

a6¼b

~MmðuiÞðaÞ þ ~MmðuiÞðbÞ � 2 ~MmðuiÞðaÞ ~MmðuiÞðbÞ
1� ~MmðuiÞðaÞ ~MmðuiÞðbÞ

:

ð2Þ

Proof Suppose that PD is a self-complementary PDFSG;

then there occurs an isomorphism Q : X ! X such

that ~MlðuiÞðQðaÞÞ ¼ ~MlðuiÞðaÞ, ~MmðuiÞðQðaÞÞ ¼
~MmðuiÞðaÞ; 8 ui 2 U; a; b 2 X :

~N lðuiÞðQðaÞQðbÞÞ ¼ ~N lðuiÞðabÞ; ~N mðuiÞðQðaÞQðbÞÞ
¼ ~N mðuiÞðabÞ; 8 ui 2 U; ab 2 E:

By complement of PD, we have

~N lðuiÞðQðaÞQðbÞÞ

¼ ð ~MlðuiÞðQðaÞÞÞð ~MlðuiÞðQðbÞÞÞ
~MlðuiÞðQðaÞÞ þ ~MlðuiÞðQðbÞÞ � ð ~MlðuiÞðQðaÞÞÞð ~MlðuiÞðQðbÞÞÞ

� ~N lðuiÞðQðaÞQðbÞÞ
~N lðuiÞðabÞ

¼ ð ~MlðuiÞðaÞÞð ~MlðuiÞðbÞÞ
~MlðuiÞðaÞ þ ~MlðuiÞðbÞ � ð ~MlðuiÞðaÞÞð ~MlðuiÞðbÞÞ

� ~N lðuiÞðQðaÞQðbÞÞ
X

a6¼b

~N lðuiÞðabÞ þ
X

a 6¼b

~N lðuiÞðQðaÞQðbÞÞ

¼
X

a 6¼b

ð ~MlðuiÞðaÞÞð ~MlðuiÞðbÞÞ
~MlðuiÞðaÞ þ ~MlðuiÞðbÞ � ð ~MlðuiÞðaÞÞð ~MlðuiÞðbÞÞ

2
X

a6¼b

~N lðuiÞðabÞ

¼
X

a 6¼b

ð ~MlðuiÞðaÞÞð ~MlðuiÞðbÞÞ
~MlðuiÞðaÞ þ ~MlðuiÞðbÞ � ð ~MlðuiÞðaÞÞð ~MlðuiÞðbÞÞ

X

a6¼b

~N lðuiÞðabÞ

¼ 1

2

X

a 6¼b

ð ~MlðuiÞðaÞÞð ~MlðuiÞðbÞÞ
~MlðuiÞðaÞ þ ~MlðuiÞðbÞ � ð ~MlðuiÞðaÞÞð ~MlðuiÞðbÞÞ

:

Similarly,

~N mðuiÞðQðaÞQðbÞÞ

¼
~MmðuiÞðQðaÞÞ þ ~MmðuiÞðQðbÞÞ � 2ð ~MmðuiÞðQðaÞÞÞð ~MmðuiÞðQðbÞÞÞ

1� ð ~MmðuiÞðQðaÞÞÞð ~MmðuiÞðQðbÞÞÞ
� ~N mðuiÞðQðaÞQðbÞÞ

~N mðuiÞðabÞ

¼
~MmðuiÞðaÞ þ ~MmðuiÞðbÞ � 2ð ~MmðuiÞðaÞÞð ~MmðuiÞðbÞÞ

1� ð ~MmðuiÞðaÞÞð ~MmðuiÞðbÞÞ
� ~N mðuiÞðQðaÞQðbÞÞ

X

a6¼b

~N mðuiÞðabÞ þ
X

a6¼b

~N mðuiÞðQðaÞQðbÞÞ

¼
X

a 6¼b

~MmðuiÞðaÞ þ ~MmðuiÞðbÞ � 2ð ~MmðuiÞðaÞÞð ~MmðuiÞðbÞÞ
1� ð ~MmðuiÞðaÞÞð ~MmðuiÞðbÞÞ

2
X

a6¼b

~N mðuiÞðabÞ

¼
X

a 6¼b

~MmðuiÞðaÞ þ ~MmðuiÞðbÞ � 2ð ~MmðuiÞðaÞÞð ~MmðuiÞðbÞÞ
1� ð ~MmðuiÞðaÞÞð ~MmðuiÞðbÞÞ

X

a6¼b

~N mðuiÞðabÞ

¼ 1

2

X

a 6¼b

~MmðuiÞðaÞ þ ~MmðuiÞðbÞ � 2ð ~MmðuiÞðaÞÞð ~MmðuiÞðbÞÞ
1� ð ~MmðuiÞðaÞÞð ~MmðuiÞðbÞÞ

:

h
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Proposition 2.12 Let PD ¼ ð ~M; ~N ;UÞ be the PDFSG. If

~N lðuiÞðabÞ

¼ 1

2

ð ~MlðuiÞðaÞÞð ~MlðuiÞðbÞÞ
~MlðuiÞðaÞ þ ~MlðuiÞðbÞ � ð ~MlðuiÞðaÞÞð ~MlðuiÞðbÞÞ

 !

ð3Þ
~N mðuiÞðabÞ

¼ 1

2

~MmðuiÞðaÞ þ ~MmðuiÞðbÞ � 2ð ~MmðuiÞðaÞÞð ~MmðuiÞðbÞÞ
1� ð ~MmðuiÞðaÞÞð ~MmðuiÞðbÞÞ

 !

ð4Þ

8 a; b 2 X , then PD is self-complementary.

Proof Suppose that PD ¼ ð ~M; ~N ;UÞ is the PDFSG that

satisfies

~N lðuiÞðabÞ

¼ 1

2

ð ~MlðuiÞðaÞÞð ~MlðuiÞðbÞÞ
~MlðuiÞðaÞ þ ~MlðuiÞðbÞ � ð ~MlðuiÞðaÞÞð ~MlðuiÞðbÞÞ

 !

~N mðuiÞðabÞ

¼ 1

2

~MmðuiÞðaÞ þ ~MmðuiÞðbÞ � 2ð ~MmðuiÞðaÞÞð ~MmðuiÞðbÞÞ
1� ð ~MmðuiÞðaÞÞð ~MmðuiÞðbÞÞ

 !

8 a; b 2 X , then the identity mapping I : X ! X is an

isomorphism from PD to PD that fulfilled the following

conditions :

~MlðuiÞðaÞ ¼ ~MlðuiÞðIðaÞÞ, ~MmðuiÞðaÞ ¼
~MmðuiÞðIðaÞÞ; 8 a 2 X : Since

~N lðuiÞðabÞ

¼ 1

2

ð ~MlðuiÞðaÞÞð ~MlðuiÞðbÞÞ
~MlðuiÞðaÞ þ ~MlðuiÞðbÞ � ð ~MlðuiÞðaÞÞð ~MlðuiÞðbÞÞ

 !

;8 a; b 2 X :

we have; ~N lðuiÞðIðaÞIðbÞÞ

¼ ~N lðuiÞðabÞ

¼ ð ~MlðuiÞðaÞÞð ~MlðuiÞðbÞÞ
~MlðuiÞðaÞ þ ~MlðuiÞðbÞ � ð ~MlðuiÞðaÞÞð ~MlðuiÞðbÞÞ

� ~N lðuiÞðabÞ

¼ ð ~MlðuiÞðaÞÞð ~MlðuiÞðbÞÞ
~MlðuiÞðaÞ þ ~MlðuiÞðbÞ � ð ~MlðuiÞðaÞÞð ~MlðuiÞðbÞÞ

� 1

2

ð ~MlðuiÞðaÞÞð ~MlðuiÞðbÞÞ
~MlðuiÞðaÞ þ ~MlðuiÞðbÞ � ð ~MlðuiÞðaÞÞð ~MlðuiÞðbÞÞ

 !

¼ 1

2

ð ~MlðuiÞðaÞÞð ~MlðuiÞðbÞÞ
~MlðuiÞðaÞ þ ~MlðuiÞðbÞ � ð ~MlðuiÞðaÞÞð ~MlðuiÞðbÞÞ

 !

¼ ~N lðuiÞðabÞ:

Similarly ; ~N mðuiÞðIðaÞIðbÞÞ

¼ ~N mðuiÞðabÞ

¼
~MmðuiÞðaÞ þ ~MmðuiÞðbÞ � 2ð ~MmðuiÞðaÞÞð ~MmðuiÞðbÞÞ

1� ð ~MmðuiÞðaÞÞð ~MmðuiÞðbÞÞ
� ~N mðuiÞðabÞ

¼
~MmðuiÞðaÞ þ ~MmðuiÞðbÞ � 2ð ~MmðuiÞðaÞÞð ~MmðuiÞðbÞÞ

1� ð ~MmðuiÞðaÞÞð ~MmðuiÞðbÞÞ

� 1

2

~MmðuiÞðaÞ þ ~MmðuiÞðbÞ � 2ð ~MmðuiÞðaÞÞð ~MmðuiÞðbÞÞ
1� ð ~MmðuiÞðaÞÞð ~MmðuiÞðbÞÞ

 !

¼ 1

2

~MmðuiÞðaÞ þ ~MmðuiÞðbÞ � 2ð ~MmðuiÞðaÞÞð ~MmðuiÞðbÞÞ
1� ð ~MmðuiÞðaÞÞð ~MmðuiÞðbÞÞ

 !

¼ ~N mðuiÞðabÞ

Since the conditions of isomorphism ~N lðuiÞðIðaÞIðbÞÞ ¼
~N lðuiÞðabÞ and ~N mðuiÞðIðaÞIðbÞÞ ¼ ~N mðuiÞðabÞ are satis-

fied by I, PD ¼ ð ~M; ~N ;UÞ is self-complementary. h

Proposition 2.13 If PD1
¼ ð ~M1; ~N 1;UÞ and PD2

¼
ð ~M2; ~N 2;UÞ are two isomorphic PDFSGs, then PD1

ffi PD2

and conversely.

Proof Suppose that PD1
¼ ð ~M1; ~N 1;UÞ and PD2

¼
ð ~M2; ~N 2;UÞ are two isomorphic PDFSGs. Then, there

exists a bijective mapping Q : X 1 ! X 2 that satisfies

~M1lðuiÞðaÞ ¼ ~M2lðuiÞðQðaÞÞ; ~M1mðuiÞðaÞ ¼
~M2mðuiÞðQðaÞÞ; 8 a 2 X 1; ui 2 U:

~N 1lðuiÞðabÞ ¼ ~N 2lðuiÞðQðaÞQðbÞÞ; ~N 1mðuiÞðabÞ
¼ ~N 2mðuiÞðQðaÞQðbÞÞ; 8 ab 2 E1; ui 2 U:

By the complement of PDFSG, the membership value of

an edge ab is

~N 1lðuiÞðabÞ

¼
ð ~M1lðuiÞðaÞÞð ~M1lðuiÞðbÞÞ

~M1lðuiÞðaÞ þ ~M1lðuiÞðbÞ � ð ~M1lðuiÞðaÞÞð ~M1lðuiÞðbÞÞ
� ~N 1lðuiÞðabÞ

¼ ð ~M2lðuiÞðQðaÞÞÞð ~M2lðuiÞðQðbÞÞÞ
~M2lðuiÞðQðaÞÞ þ ~M2lðuiÞðQðbÞÞ � ð ~M2lðuiÞðQðaÞÞÞð ~M2lðuiÞðQðbÞÞÞ

� ~N 2lðuiÞðQðaÞQðbÞÞ

¼ ~N 2lðuiÞðQðaÞQðbÞÞ

The nonmembership value of an edge ab is
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~N 1mðuiÞðabÞ

¼
~M1mðuiÞðaÞ þ ~M1mðuiÞðbÞ � 2ð ~M1mðuiÞðaÞÞð ~M1mðuiÞðbÞÞ

1� ð ~M1mðuiÞðaÞÞð ~M1mðuiÞðbÞÞ
� ~N 1mðuiÞðabÞ

¼
~M2mðuiÞðQðaÞÞ þ ~M2mðuiÞðQðbÞÞ � 2ð ~M2mðuiÞðQðaÞÞÞð ~M2mðuiÞðQðbÞÞÞ

1� ð ~M2mðuiÞðQðaÞÞÞð ~M2mðuiÞðQðbÞÞÞ
� ~N 2mðuiÞðQðaÞQðbÞÞ

¼ ~N 2mðuiÞðQðaÞQðbÞÞ

Hence, PD1
ffi PD2

. Similarly, the converse part can be

proved. h

Proposition 2.14 If PD1
¼ ð ~M1; ~N 1;UÞ and PD2

¼
ð ~M2; ~N 2;UÞ are two weak isomorphic PDFSGs, then the

complements of PD1
and PD2

are also weak isomorphic.

Proof Suppose that PD1
¼ ð ~M1; ~N 1;UÞ and PD2

¼
ð ~M2; ~N 2;UÞ are two weak isomorphic PDFSGs. Then by

definition of weak isomorphism, there exists a bijective

mapping Q : X1 ! X 2 that satisfies

~M1lðuiÞðaÞ ¼ ~M2lðuiÞðQðaÞÞ; ~M1mðuiÞðaÞ ¼
~M2mðuiÞðQðaÞÞ; 8 a 2 X 1; ui 2 U:

~N 1lðuiÞðabÞ� ~N 2lðuiÞðQðaÞQðbÞÞ; ~N 1mðuiÞðabÞ�
~N 2mðuiÞðQðaÞQðbÞÞ; 8 ab 2 E1; ui 2 U:

As

~N 1lðuiÞðabÞ� ~N 2lðuiÞðQðaÞQðbÞÞ
� ~N 1lðuiÞðabÞ
 � ~N 2lðuiÞðQðaÞQðbÞÞ

Tð ~M1lðuiÞðaÞ; ~M1lðuiÞðbÞÞ � ~N 1lðuiÞðabÞ

 Tð ~M1lðuiÞðaÞ; ~M1lðuiÞðbÞÞ � ~N 2lðuiÞðQðaÞQðbÞÞ

Tð ~M1lðuiÞðaÞ; ~M1lðuiÞðbÞÞ � ~N 1lðuiÞðabÞ

 Tð ~M2lðuiÞðQðaÞÞ; ~M2lðuiÞðQðbÞÞÞ

� ~N 2lðuiÞðQðaÞQðbÞÞ
~N 1lðuiÞðabÞ
 ~N 2lðuiÞðQðaÞQðbÞÞ

Similarly, as

~N 1mðuiÞðabÞ� ~N 2mðuiÞðQðaÞQðbÞÞ
� ~N 1mðuiÞðabÞ
 � ~N 2mðuiÞðQðaÞQðbÞÞ
Tð ~M1mðuiÞðaÞ; ~M1mðuiÞðbÞÞ � ~N 1mðuiÞðabÞ


 Tð ~M1mðuiÞðaÞ; ~M1mðuiÞðbÞÞ � ~N 2mðuiÞðQðaÞQðbÞÞ
Tð ~M1mðuiÞðaÞ; ~M1mðuiÞðbÞÞ � ~N 1mðuiÞðabÞ


 Tð ~M2mðuiÞðQðaÞÞ; ~M2mðuiÞðQðbÞÞÞ
� ~N 2mðuiÞðQðaÞQðbÞÞ

~N 1mðuiÞðabÞ
 ~N 2mðuiÞðQðaÞQðbÞÞ

Hence, PD1
and PD2

are weak isomorphic. h

Definition 2.15 Let PD be a PDFSG on X . Then PD is

regular PDFSG if ~HðuiÞ is a regular PDFG,

8 ui 2 U; i ¼ 1; 2; . . .;m:

Definition 2.16 Let PD be a PDFSG on X . Then PD is

totally regular PDFSG if ~HðuiÞ is a totally regular PDFG,

8 ui 2 U:

Theorem 2.17 Let PD ¼ ð ~M; ~N ;UÞ be a regular PDFSG.

Then the size of PDFGs Sð ~HðuiÞÞ ¼ ðnRi

2
;
nR0

i

2
Þ, where jXj ¼

n and ðRi;R
0
iÞ is the degree of a vertex in ~HðuiÞ; 8 ui 2 U:

Theorem 2.18 Let PD ¼ ð ~M; ~N ;UÞ be a totally regular

PDFSG. Then 2Sð ~HðuiÞÞ þ Oð ~HðuiÞÞ ¼ ðnfi; nf 0i Þ, where

jXj ¼ n and ðfi; f 0i Þ is the total degree of a vertex in
~HðuiÞ; 8 ui 2 U:

Proof Suppose that PD is a PDFSG, i.e., ~HðuiÞ is PDFG;
the total degree of a vertex is

ððT DÞlðaÞ; ðT DÞmðaÞÞ ¼
X

a;b6¼a2X

~N lðuiÞðabÞ
 

þ ~MlðuiÞðaÞ;
X

a;b 6¼a2X

~N mðuiÞðabÞ

þ ~MmðuiÞðaÞ
�

; 8 ui 2 U:

Since PD is totally regular PDFSG, i.e., ~HðuiÞ is ðfi; f 0i Þ
totally regular PDFG, so

ðfi; f 0i Þ ¼
X

a;b6¼a2X

~N lðuiÞðabÞ
 

þ ~MlðuiÞðaÞ;
X

a;b6¼a2X

~N mðuiÞðabÞ

þ ~MmðuiÞðaÞ
�

ð
X

a2X
fi;
X

a2X
f 0i Þ ¼

X

a2X

X

a;b 6¼a2X

~N lðuiÞðabÞ
 

þ
X

a2X

~MlðuiÞðaÞ;
X

a2X

X

a;b 6¼a2X

~N mðuiÞðabÞ

þ
X

a2X

~MmðuiÞðaÞ
!

Since each edge is double time counted, one time for vertex

a and one time for vertex b, so
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ðnfi; nf 0i Þ ¼ 2
X

a;b 6¼a2X

~N lðuiÞðabÞ
 

þ
X

a2X

~MlðuiÞðaÞ; 2
X

a;b 6¼a2X

~N mðuiÞðabÞ

þ
X

a2X

~MmðuiÞðaÞ
!

ðnfi; nf 0i Þ ¼ 2
X

a;b 6¼a2X

~N lðuiÞðabÞ;
X

a;b 6¼a2X

~N mðuiÞðabÞ
 !

þ
X

a2X

~MlðuiÞðaÞ;
X

a2X

~MmðuiÞðaÞ
 !

ðnfi; nf 0i Þ ¼ 2Sð ~HðuiÞÞ þ Oð ~HðuiÞÞ
) 2S ~HðuiÞÞ þ Oð ~HðuiÞ

� �

h

Theorem 2.19 Let PD ¼ ð ~M; ~N ;UÞ be a regular and

totally regular PDFSG. Then Oð ~HðuiÞÞ ¼ nfðfi � RiÞ;
ðf 0i � R0

iÞg, where jXj ¼ n and ðRi;R
0
iÞ is the degree and

ðfi; f 0i Þ is the total degree of a vertex in ~HðuiÞ; 8 ui 2 U:

Proof Suppose that PD is a regular PDFSG, i.e., ~HðuiÞ is a
regular PDFG. Then size of ~HðuiÞ is

Sð ~HðuiÞÞ ¼ ðnRi

2
;
nR0

i

2
Þ

2Sð ~HðuiÞÞ ¼ ðnRi; nR
0
iÞ

Also, PD is a totally regular PDFSG, i.e., ~HðeiÞ is a totally
regular PDFG, from Theorem 2.18

2Sð ~HðuiÞÞ þ Oð ~HðuiÞÞ ¼ ðnfi; nf 0i Þ
Oð ~HðuiÞÞ ¼ ðnfi; nf 0i Þ � 2Sð ~HðuiÞÞ
Oð ~HðuiÞÞ ¼ ðnfi; nf 0i Þ � ðnRi; nR

0
iÞ

Oð ~HðuiÞÞ ¼ nfðfi; f 0i Þ � ðRi;R
0
iÞg

Oð ~HðuiÞÞ ¼ nfðfi � RiÞ; ðf 0i � R0
iÞg:

h

Theorem 2.20 Consider PD1
¼ ð ~M1; ~N 1;UÞ is isomor-

phic to PD2
¼ ð ~M2; ~N 2;UÞ:

1. If PD1
is regular PDFSG, then PD2

is also regular

PDFSG.

2. If PD1
is totally regular PDFSG, then PD2

is also totally

regular PDFSG.

Proof Suppose that PD1
is isomorphic to PD2

, i.e., each

~H1ðuiÞ is isomorphic to ~H2ðuiÞ and PD1
is regular PDFSG;

then the degree of each vertex in ~H1ðuiÞ is given by

D1lðaÞ;D1mðaÞ
� �

¼
X

ab2E

~N 1lðuiÞðabÞ;
X

ab2E

~N 1mðuiÞðabÞ
 !

;8 ui 2 U:

¼ ðRi;R
0
iÞ:

Since PD1
ffi PD2

, i.e., ~H1ðuiÞ ffi ~H2ðuiÞ, we have

ðRi;R
0
iÞ ¼ D1lðaÞ;D1mðaÞ

� �

¼
X

ab2E

~N 1lðuiÞðabÞ;
X

ab2E

~N 1mðuiÞðabÞ
 !

¼
X

ab2E

~N 2lðuiÞðQðaÞQðbÞÞ;
X

ab2E

~N 2mðuiÞðQðaÞQðbÞÞ
 !

¼ D2lðQðaÞÞ;D2mðQðaÞÞ
� �

:

Therefore, ~H2ðuiÞ is ðRi;R
0
iÞ-regular PDFG. Hence, PD2

is

regular PDFSG.

Assume that PD1
is totally regular PDFSG; then the total

degree of each vertex in ~H1ðuiÞ is

ðT DÞ1lðaÞ; ðT DÞ1mðaÞ
� �

¼
X

ab2E

~N 1lðuiÞðabÞ
 

þ ~M1lðuiÞðaÞ;
X

ab2E

~N 1mðuiÞðabÞ þ ~M1mðuiÞðaÞ
!

; 8 ui 2 U:

¼ ðfi; f 0i Þ

Since PD1
ffi PD2

, i.e., ~H1ðuiÞ ffi ~H2ðuiÞ, we have

ðfi; f 0i Þ ¼ ðT DÞ1lðaÞ; ðT DÞ1mðaÞ
� �

¼
X

ab2E

~N 1lðuiÞðabÞ
 

þ ~M1lðuiÞðaÞ;
X

ab2E

~N 1mðuiÞðabÞ þ ~M1mðuiÞðaÞ
!

¼
X

ab2E

~N 2lðuiÞðQðaÞQðbÞÞ
 

þ ~M2lðuiÞðQðaÞÞ;
X

ab2E

~N 2mðuiÞðQðaÞQðbÞÞ

þ ~M2mðuiÞðQðaÞÞ
�

¼ ðT DÞ2lðQðaÞÞ; ðT DÞ2mðQðaÞÞ
� �

:

Therefore, ~H2ðuiÞ is ðfi; f 0i Þ-totally regular PDFG. Hence,

PD2
is totally regular PDFSG. h

Theorem 2.21 Let PD ¼ ð ~M; ~N ;UÞ be a PDFSG. If ~M is

a constant function in ~HðuiÞ; 8 ui 2 U, then following

statements are equivalent:
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1. PD is regular PDFSG.

2. PD is totally regular PDFSG.

Proof Suppose that ~M is a constant function in ~HðuiÞ, i.e.,
~MlðuiÞðaÞ ¼ ci and ~MmðuiÞðaÞ ¼ c0i. Also, suppose that

PD is regular PDFSG, i.e., ~HðuiÞ is ðRi;R
0
iÞ-regular PDFG,

then

DðaÞ ¼
X

a;b6¼a2X

~N lðuiÞðabÞ;
X

a;b6¼a2X

~N mðuiÞðabÞ
 !

¼ ðRi;R
0
iÞ:

The total degree of a vertex is

T DðaÞ ¼
X

a;b6¼a2X

~N lðuiÞðabÞ
 

þ ~MlðuiÞðaÞ;
X

a;b 6¼a2X

~N mðuiÞðabÞ þ ~MmðuiÞðaÞ
!

¼ ðRi þ ci;R
0
i þ c0iÞ

¼ ðfi; f 0i Þ:

Therefore, ~HðuiÞ is ðfi; f 0i Þ-totally regular PDFG. Hence, PD

is totally regular PDFSG. Therefore, ð1Þ ) ð2Þ is proved.
Now suppose that PD is totally regular PDFSG, i.e.,

~HðuiÞ is ðfi; f 0i Þ-totally regular PDFG, then

T DðaÞ
¼ ðT DÞlðaÞ; ðT DÞmðaÞ
� �

ðfi; f 0i Þ

¼
X

a;b 6¼a2X

~N lðuiÞðabÞ
 

þ ~MlðuiÞðaÞ;
X

a;b6¼a2X

~N mðuiÞðabÞ

þ ~MmðuiÞðaÞ
�

ðfi; f 0i Þ

¼
X

a;b 6¼a2X

~N lðuiÞðabÞ
 

þ ~MlðuiÞðaÞ;
X

a;b6¼a2X

~N mðuiÞðabÞ þ ~MmðuiÞðaÞ
!

ðfi; f 0i Þ

¼
X

a;b 6¼a2X

~N lðuiÞðabÞ
 

þci;
X

a;b6¼a2X

~N mðuiÞðabÞ þ c0i

!

ðfi � ci; f
0
i � c0iÞ

¼
X

a;b 6¼a2X

~N lðuiÞðabÞ;
 

X

a;b6¼a2X

~N mðuiÞðabÞ
!

DlðaÞ;DmðaÞ
� �

¼ ðfi � ci; f
0
i � c0iÞ

¼ ðRi;R
0
iÞ:

Therefore, ~HðuiÞ is ðRi;R
0
iÞ-regular PDFG. Hence, PD is

regular PDFSG. Therefore, ð2Þ ) ð1Þ is proved. h

Theorem 2.22 Let PD be a PDFSG. If PD is regular and

totally regular PDFSG, then ~M is a constant function,

8 ui 2 U:

Proof Suppose that PD is regular and totally regular

PDFSG, i.e., ~HðuiÞ is regular and totally regular PDFG.

Then the degree of vertex is

DlðaÞ;DmðaÞ
� �

¼
X

a;b 6¼a2X

~N lðuiÞðabÞ;
X

a;b 6¼a2X

~N mðuiÞðabÞ
 !

¼ ðRi;R
0
iÞ

and the total degree of vertex is

ðT DÞlðaÞ; ðT DÞmðaÞ
� �

¼
X

a;b 6¼a2X

~N lðuiÞðabÞ
 

þ ~MlðuiÞðaÞ;
X

a;b6¼a2X

~N mðuiÞðabÞ þ ~MmðuiÞðaÞ
!

¼ ðfi; f 0i Þ:

Now; ðT DÞlðaÞ; ðT DÞmðaÞ
� �

¼ ðfi; f 0i Þ
Ri þ ~MlðuiÞðaÞ;R0

i þ ~MmðuiÞðaÞ
� �

¼ ðfi; f 0i Þ
~MlðuiÞðaÞ; ~MmðuiÞðaÞ

� �

¼ ðfi � Ri; f
0
i � R0

iÞ
¼ ðci; c0iÞ

) ~M is a constant function, 8 ui 2 U. h

Remark Converse of Theorem 2.22 may not be true in

general:
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Consider a PDFSG PG ¼ f ~Hðu1Þg as shown in Fig. 4.

Since Dða1Þ ¼ ð1:6; 1:8Þ 6¼ Dða3Þ ¼ ð1:4; 1:8Þ. Also,

T Dða1Þ ¼ ð2:2; 2:5Þ 6¼ T Dða3Þ ¼ ð2:0; 2:5Þ. Therefore,
~Hðu1Þ is neither regular nor totally regular PDFG. Hence,

PD is neither regular nor totally regular PDFSG.

Definition 2.23 A PDFSG PD on n vertices is said to be

strongly regular if the following properties hold:

1. PD is regular PDFSG, i.e., ~HðeiÞ is regular PDFG of

degree ðRi;R
0
iÞ,

2. the sum of the membership and nonmembership values

of the common neighboring vertices of any pair of

adjoining vertices of ~HðuiÞ is equal and represented by

M�
i ¼ ðMi;M

0
iÞ,

3. the sum of the membership and nonmembership values

of the common neighboring vertices of any pair of

nonadjoining vertices of ~HðuiÞ is equal and represented

by N�
i ¼ ðNi;N

0
iÞ; 8 ui 2 U.

Example 2.24 Consider a PDFSG PD ¼ f ~Hðu1Þg as shown

in Fig. 5.

Clearly, in ~Hðu1Þ, Dða1Þ ¼ ð1:4; 2:4Þ ¼ Dða2Þ ¼
Dða3Þ ¼ Dða4Þ ¼ Dða5Þ ¼ Dða6Þ and M�

1 ¼ ð1:2; 1:1Þ and
N�
1 ¼ ð2:4; 2:2Þ. This implies that ~Hðu1Þ is a strongly regular

PDFG. So, PD ¼ f ~Hðu1Þg is a strongly regular PDFSG.

Definition 2.25 A PDFSG PD is known as bipartite if X ¼
fa1; a2; . . .; ang can be partitioned into two nonempty disjoint

sets X 1 and X 2 such that ~N lðuiÞðajakÞ ¼ 0 and

~N mðuiÞðajakÞ ¼ 0 if aj; ak 2 X 1 or aj; ak 2 X 2. Furthermore,

if

~N lðuiÞðajakÞ

¼ ð ~MlðuiÞðajÞÞð ~MlðuiÞðakÞÞ
~MlðuiÞðajÞ þ ~MlðuiÞðakÞ � ð ~MlðuiÞðajÞÞð ~MlðuiÞðakÞÞ

;

ð5Þ
~N mðuiÞðajakÞ

¼
~MmðuiÞðajÞ þ ~MmðuiÞðakÞ � 2ð ~MmðuiÞðajÞÞð ~MmðuiÞðakÞÞ

1� ð ~MmðuiÞðajÞÞð ~MmðuiÞðakÞÞ
;

ð6Þ

8 aj 2 X 1 and ak 2 X 2; ui 2 U; then PD is complete

bipartite PDFSG.

Definition 2.26 A bipartite PDFSG PD ¼ f ~M; ~N ;Ug is

known as biregular if each vertex in X1 and X 2 has equal

degree a�i ¼ ðai; a0iÞ and b�i ¼ ðbi; b0iÞ, respectively, where
a�i ; b

�
i are constants, 8 ui 2 U:

Example 2.27 Consider a nonempty set X which is parti-

tioned into two nonempty sets X 1 ¼ fa1; a2; a3g and X 2 ¼
fa4; a5; a6g such that E ¼ fa1a5; a1a6; a2a4; a2a5; a3a4;
a3a6g. In X1 and X2, each vertex has equal degree. So,
~Hðu1Þ is biregular PDFG. Hence, PD is a biregular PDFSG

as shown in Fig. 6.
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Theorem 2.28 Let PD ¼ ð ~M; ~N ;UÞ be a PDFSG. If PD is

complete and ~M, ~N are constant functions, then PD ¼
ð ~M; ~N ;UÞ is strongly regular PDFSG.

Proof Suppose that PD is a complete PDFSG with

X ¼ fa1; a2; . . .; ang. As ~M and ~N are constant functions,
~MlðuiÞðaÞ ¼ ci; ~MmðuiÞðajÞ ¼ c0i; 8 ui 2 U; aj 2 X and

~N lðuiÞðajakÞ ¼ di; ~N mðuiÞðajakÞ ¼ d0i; 8 ui 2 U; ajak 2 E.
To prove that PD ¼ ð ~M; ~N ;UÞ is a strongly regular

PDFSG, we show that PD is regular PDFSG, i.e., ~HðuiÞ is
ðRi;R

0
iÞ-regular PDFG, 8 ui 2 U: Furthermore, the

adjoining and nonadjoining vertices have equal common

neighborhood M�
i ¼ ðMi;M

0
iÞ and N�

i ¼ ðNi;N
0
iÞ,

respectively.

As PD is complete PDFSG, i.e., ~HðuiÞ is complete

PDFG, 8 ui 2 U: So

ðT DÞlðajÞ; ðT DÞmðajÞ
� �

¼
X

aj;ak 6¼aj2X

~N lðuiÞðajakÞ

0

@

þ ~MlðuiÞðajÞ;
X

aj;ak 6¼aj2X

~N mðuiÞðajakÞ

þ ~MmðuiÞðajÞ
�

¼ ðn� 1Þdi; ðn� 1Þd0i
�

!

) ~HðuiÞ is ðn� 1Þdi; ðn� 1Þd0i
� �

-regular PDFG. Hence,

PD is regular PDFSG. Furthermore, the sum of the mem-

bership and nonmembership values of common neighbor-

ing vertices of any pair of adjoining vertices of any pair of

adjoining vertices M�
i ¼ ðMi;M

0
iÞ ¼ ðn� 1Þci; ðn� 1Þc0i

� �

is equal. As ~HðuiÞ is complete, the sum of the membership

and nonmembership values of common neighboring ver-

tices of any pair of nonadjoining vertices of any pair of

adjoining vertices N�
i ¼ ðNi;N

0
iÞ ¼ ð0; 0Þ is equal. As all

conditions are fulfilled, so ~HðuiÞ is strongly regular PDFG,

8 ui 2 U: Hence, PD is a strongly PDFSG. h

Theorem 2.29 Let PD ¼ ð ~M; ~N ;UÞ be a PDFSG. If PD

is strongly regular and strong, then PD is a regular

PDFSG.

Proof Suppose that PD is strongly regular PDFSG;

then by definition PD is regular, i.e., ~HðuiÞ is regular,

8 ui 2 U: Also, PD is strong, and then PD is also strong.

Therefore,

~N lðuiÞðabÞ

¼
ð ~MlðuiÞðaÞÞð ~MlðuiÞðbÞÞ

~MlðuiÞðaÞ þ ~MlðuiÞðbÞ � ð ~MlðuiÞðaÞÞð ~MlðuiÞðbÞÞ
; if ~N lðuiÞðabÞ ¼ 0

0; if 0� ~N lðuiÞðabÞ� 1:

8

>

<

>

:

~N mðuiÞðabÞ

¼
~MmðuiÞðaÞ þ ~MmðuiÞðbÞ � 2ð ~MmðuiÞðaÞÞð ~MmðuiÞðbÞÞ

1� ð ~MmðuiÞðaÞÞð ~MmðuiÞðbÞÞ
; if ~N mðuiÞðabÞ ¼ 0

0; if 0� ~N mðuiÞðabÞ � 1:

8

>

<

>

:

In ~HðuiÞ, the degree of vertex a is

DlðaÞ;DmðaÞ
� �

¼
X

a;b 6¼a2X

~N lðuiÞðabÞ;
X

a;b 6¼a2X

~N mðuiÞðabÞ
 !

¼
X

a;b 6¼a2X

ð ~MlðuiÞðaÞÞð ~MlðuiÞðbÞÞ
~MlðuiÞðaÞ þ ~MlðuiÞðbÞ � ð ~MlðuiÞðaÞÞð ~MlðuiÞðbÞÞ

;

 

X

a;b 6¼a2X

~MmðuiÞðaÞ þ ~MmðuiÞðbÞ � 2ð ~MmðuiÞðaÞÞð ~MmðuiÞðbÞÞ
1� ð ~MmðuiÞðaÞÞð ~MmðuiÞðbÞÞ

!

¼ Ri;R
0
i

� �

:

) ~HðuiÞ is ðRi;R
0
iÞ-regular PDFG. Hence, PD is regular

PDFSG. h

Corollary 2.30 Let PD ¼ ð ~M; ~N ;UÞ be a PDFSG. If PD is

strongly regular and strong, then PD is a regular PDFSG.

Theorem 2.31 Consider PD ¼ ð ~M; ~N ;UÞ be a PDFSG;

then PD is strongly regular PDFSG if and only if PD is a

strongly regular PDFSG.

Proof Suppose that PD is strongly regular PDFSG; then,

PD is regular PDFSG. Also, the adjoining and nonadjoining

vertices of ~HðuiÞ have equal common neighborhood M�
i ¼

ðMi;M
0
iÞ and N�

i ¼ ðNi;N
0
iÞ;, respectively. To prove that PD

is a strongly regular PDFSG, we show that PD is regular

PDFSG. Since PD is strongly regular and strong PDFSG,

then by Theorem 2.29, PD is regular PDFSG. Moreover,

suppose that Si ¼ fðaj; akÞ j ðaj; akÞ 2 Eg and S0i ¼
fðaj; akÞ j ðaj; akÞ 62 Eg be the sets of all adjoining and

nonadjoining vertices of ~HðuiÞ, where aj and ak have equal

common neighborhood M�
i ¼ ðMi;M

0
iÞ and N�

i ¼ ðNi;N
0
iÞ,

respectively. Then Si ¼ fðaj; akÞ j ðaj; akÞ 2 Eg and S0i ¼
fðaj; akÞ j ðaj; akÞ 62 Eg be the sets of all adjoining and

nonadjoining vertices of ~HðuiÞ, where aj and ak have equal

common neighborhood N�
i ¼ ðNi;N

0
iÞ and M�

i ¼ ðMi;M
0
iÞ,

respectively. Hence, PD is strongly regular PDFSG.

Conversely, PD is strongly regular PDFSG; then, PD is

regular PDFSG. Also, the adjoining and nonadjoining

vertices of ~HðuiÞ have equal common neighborhood N�
i ¼

ðNi;N
0
iÞ and M�

i ¼ ðMi;M
0
iÞ, respectively. To prove that PD
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is a strongly regular PDFSG, we must show that PD is

regular PDFSG. Since PD is strongly regular and strong

PDFSG, then by Corollary 2.30, PD is regular PDFSG.

Moreover, suppose that Si ¼ fðaj; akÞ j ðaj; akÞ 2 Eg and

S0i ¼ fðaj; akÞ j ðaj; akÞ 62 Eg be the sets of all adjoining and

nonadjoining vertices of ~HðuiÞ, where aj and ak have equal

common neighborhood N�
i ¼ ðNi;N

0
iÞ and M�

i ¼ ðMi;M
0
iÞ,

respectively. Then Si ¼ fðaj; akÞ j ðaj; akÞ 2 Eg and S0i ¼
fðaj; akÞ j ðaj; akÞ 62 Eg be the sets of all adjoining and

nonadjoining vertices of vertices of ~HðuiÞ, where aj and ak
have equal common neighborhood M�

i ¼ ðMi;M
0
iÞ and

N�
i ¼ ðNi;N

0
iÞ, respectively. Hence, PD is strongly regular

PDFSG. h

Definition 2.32 Let PD ¼ ð ~M; ~N ;UÞ be a PDFSG and

ðDÞi1; ðDÞi2; . . .; ðDÞir be the degree of vertices in ~HðeiÞ
of PD. Then the degree sequence is expressed

by ððDÞi1; ðDÞi2; . . .; ðDÞirÞ ¼ ððDÞli1 ; ðDÞli2 ; . . .; ðDÞlir ;
ðDÞmi1 ; ðDÞmi2 ; . . .; ðDÞmir Þ, where ðDÞli1 
ðDÞli2 

ðDÞli3 
 � � � 
 ðDÞlir and ðDÞmi1 
ðDÞmi2 
 ðDÞmi3

 � � � 
 ðDÞmir :

Definition 2.33 The set of different positive real values

arising in the degree sequence of ~HðuiÞ of a PDFSG PD is

known as the degree set of ~HðuiÞ.

Example 2.34 Consider a PDFSG PD ¼ f ~Hðu1Þg as shown

in Fig. 7.

In ~Hðu1Þ, the degree of vertices is Dða1Þ ¼ ð1:4; 2:0Þ;
Dða2Þ ¼ ð1; 1:1Þ;Dða3Þ ¼ ð2:1; 1:5Þ; Dða4Þ ¼ ð1:6; 1:9Þ;
Dða5Þ ¼ ð0:85; 1:4Þ;Dða6Þ ¼ ð1:75; 1:9Þ: Hence, the

degree sequence of the membership values and nonmem-

bership values in Fig. 7 is (2.1, 1.75, 1.6, 1.4, 1, 0.85) and

(2.0, 1.9, 1.9, 1.5, 1.4, 1.1), whereas the corresponding

degree sets are f2:1; 1:75; 1:6; 1:4; 1; 0:85g and

f2:0; 1:9; 1:5; 1:4; 1:1g:

Theorem 2.35 Let PD be a strongly regular PDFSG; then

the degree sequence of n elements of ~HðuiÞ is a constant

sequence ðRi;Ri; . . .;Ri;R
0
i;R

0
i; . . .;R

0
iÞ:

Proof Suppose that PD is a strongly regular PDFSG; then,

PD is a regular PDFSG, i.e., ~HðuiÞ is a ðRi;R
0
iÞ-regular

PDFG. Thus the degree of all vertices in ~HðuiÞ is DðaÞ ¼
ðRi;R

0
iÞ; 8 a 2 X : Hence, the degree sequence of ~HðuiÞ is a

constant sequence ðRi;Ri; . . .;Ri;R
0
i;R

0
i; . . .;R

0
iÞ: h

Theorem 2.36 Let PD be a strongly regular PDFSG; then

the degree set of the membership and nonmembership

values of ~HðuiÞ is a singleton set fRig and fR0
ig,

respectively.

Proof Suppose that PD is a strongly regular PDFSG; then

by definition, PD is a regular PDFSG, i.e., ~HðuiÞ is a

ðRi;R
0
iÞ-regular PDFG. Thus the degree of all vertices in

~HðuiÞ is DðaÞ ¼ ðRi;R
0
iÞ; 8 a 2 X : As the degree sequence

of ~HðuiÞ is a constant sequence ðRi;Ri; . . .;
Ri;R

0
i;R

0
i; . . .;R

0
iÞ; then the corresponding membership and

nonmembership degree set is fRig and fR0
ig,

respectively. h

Remark Converse of Theorems 2.35 and 2.36 may not be

true in general.

Consider a PDFSG PD ¼ f ~Hðu1Þg as shown in Fig. 8.

It can be seen from Fig. 8 that ~Hðu1Þ has constant mem-

bership and nonmembership degree sequence

(1.2, 1.2, 1.2, 1.2, 1.2, 1.2) and (1.5, 1.5, 1.5, 1.5, 1.5,

1.5), respectively, whereas the corresponding membership

and nonmembership degree set is f1:2g and f1:5g, respec-
tively. But the sum of membership and nonmembership

values of the common neighboring vertices of any pair of

adjoining vertices of ~Hðu1Þ is not equal. Hence, PD is not

strongly regular PDFSG.
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Definition 2.37 Let ~N ¼ fðab; ~N lðuiÞðabÞ; ~N mðuiÞðabÞÞ j
ab 2 Eg be a PDFS edge set in PDSFG PD; then

• The degree of edge ab 2 E is denoted by DðabÞ and

defined by DðabÞ ¼ ððDÞlðabÞ; ðDÞmðabÞÞ, where

ðDÞlðabÞ ¼ DlðaÞ þ DlðbÞ � 2 ~N lðabÞ; 8 ui 2 U
ð7Þ

ðDÞmðabÞ ¼ DmðaÞ þ DmðbÞ � 2 ~N mðabÞ; 8 ui 2 U:
ð8Þ

• The total degree of edge ab 2 E is denoted by T DðabÞ
and defined by T DðabÞ ¼ ððT DÞlðabÞ; ðT DÞmðabÞÞ,
where

ðT DÞlðabÞ ¼ DlðaÞ þ DlðbÞ � ~N lðabÞ; 8 ui 2 U:
ð9Þ

ðT DÞmðabÞ ¼ DmðaÞ þ DmðbÞ � ~N mðabÞ; 8 ui 2 U:
ð10Þ

Example 2.38 Consider a PDFSG PD ¼ f ~Hðu1Þg as shown

in Fig. 9.

In ~Hðu1Þ, the degree of an edge a1a2 is ðDÞða1a2Þ ¼
ðDlða1Þ þ Dlða2Þ � 2 ~N lða1a2ÞÞ;
�

ðDmða1Þ þ Dmða2Þ �

2 ~N mða1a2ÞÞ
�

¼ ð0:8; 1:45Þ and the total degree of an edge

a1a2 is ðT DÞða1a2Þ ¼ ððDÞlða1Þ þ ðDÞlða2Þ�
�

~N lða1a2ÞÞ; ððDÞmða1Þ þ ðDÞmða2Þ � ~N mða1a2ÞÞ
�

¼
ð1:4; 2:15Þ:

Remark If PD is a strongly regular PDFSG, then the

membership and nonmembership degree sequence of edge

in ~HðuiÞ need not to be constant sequence.

Consider a PDFSG PD ¼ f ~HðuiÞg as shown in Fig. 10.

It can be seen from Fig. 10 that PD is strongly regular

PDFSG because ~Hðu1Þ is strongly regular PDFG with

R1 ¼ ð2:3; 1:4Þ, M1 ¼ ð1:8; 0:8Þ and N1 ¼ ð0; 0Þ. The edge
degree sequence of the membership values and nonmem-

bership values is (3.2, 3.2, 3, 3, 3, 3) and

(2, 2, 1.8, 1.8, 1.8, 1.8), respectively, whereas the corre-

sponding edge degree sets f3:2; 3g and f2; 1:8g are not

constant sequence.

Theorem 2.39 Let PD be a strongly regular PDFSG with
~N is a constant function; then the edge degree sequence

and edge degree set are constant sequence and singleton

set, respectively.

Proof Suppose that ~N lðuiÞðabÞ ¼ ci; ~N mðuiÞðabÞ ¼
c0i; 8 ui 2 U; ab 2 E and PD is a strongly regular PDFSG;

then PD is regular PDFSG, i.e., ~HðuiÞ is ðRi;R
0
iÞ-regular

PDFG such that

DlðaÞ ¼
X

a;b 6¼a2X

~N lðuiÞðabÞ ¼ Ri;

DmðaÞ ¼
X

a;b 6¼a2X

~N mðuiÞðabÞ ¼ R0
i; 8 ui 2 U; a 2 X :

Therefore, the degree of an edge is

(a1,
0.8,

0.6)

(a2
, 0
.7,
0.5
)

(a3, 0
.6, 0.

5)

(a 4
, 0
.9
, 0
.5
)

(a5
, 0
.7,
0.5

)

(a6
, 0
.6,
0.6
)

(a7
, 0.
6, 0

.7)

(a8
, 0
.7,
0.5
)

(a9 , 0.5, 0.6)

(0.30, 0.70)

(0
.4
0,

0.
70

)
(0
.3
0,
0.
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)

(0
.4
0,
0.
70
)

(0
.3
0,
0.
70
)(0.4

2, 0
.70

)

(0
.55

, 0
.60

)

(0.40, 0.70)

(0.4
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.75
)

(0
.60
, 0
.70
)

H̃(u1)

Fig. 9 PDFSG PD ¼ f ~Hðu1Þg

(a1,
0.9,

0.4)

(a
2 , 0.9, 0.4)

(a
3
, 0
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Fig. 10 PD ¼ f ~Hðu1Þg
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ðDÞlðabÞ ¼ DlðaÞ þ DlðbÞ � 2 ~N lðuiÞðabÞ
¼ Ri þ Ri � 2ci

¼ 2ðRi � ciÞ:
ðDÞmðabÞ ¼ DmðaÞ þ DmðbÞ � 2 ~N mðuiÞðabÞ

¼ R0
i þ R0

i � 2c0i
¼ 2ðR0

i � c0iÞ; 8 ui 2 U; ab 2 E:

Hence, the edge degree sequence of membership and

nonmembership values is constant sequence and its corre-

sponding edge degree sets f2ðRi � ciÞg; f2ðR0
i � c0iÞg are

singleton sets. h

Definition 2.40 A PDFSG PD is edge regular PDFSG if
~HðuiÞ is edge regular PDFG of degree ðqi; q0iÞ; 8 ui 2 U:

Example 2.41 Consider a PDFSG PD ¼ f ~Hðu1Þg as shown

in Fig. 11.

The degree of each edge in ~Hðu1Þ is (1.4, 1.2). So, PD is

a edge regular PDFSG.

Definition 2.42 A PDFSG PD is totally edge regular

PDFSG if ~HðuiÞ is totally edge regular PDFG of degree

ðwi;w
0
iÞ; 8 ui 2 U:

Example 2.43 Consider a PDFSG PD as shown in Fig. 12.

The total degree of each edge is (1.05, 1.8) in ~Hðu1Þ.
Hence, PD ¼ f ~Hðu1Þg is a totally edge regular PDFSG.

Theorem 2.44 Let PD be a regular PDFSG such that ~N is

a constant function; then PD is edge regular PDFSG.

Proof Suppose that PD is a regular PDFSG, i.e., ~HðuiÞ is
ðRi;R

0
iÞ regular PDFG such that

DlðaÞ ¼ Ri;

DmðaÞ ¼ R0
i; 8 ui 2 U; a 2 X :

Let ~N lðuiÞðabÞ ¼ ci and ~N mðuiÞðabÞ ¼ c0i; 8 ui 2 U; ab 2
E: The degree of edge is

ðDÞlðabÞ ¼ DlðaÞ þ DlðbÞ � 2 ~N lðuiÞðabÞ
¼ Ri þ Ri � 2ci

¼ 2ðRi � ciÞ
¼ qi:

ðDÞmðabÞ ¼ DmðaÞ þ DmðbÞ � 2 ~N mðuiÞðabÞ
¼ R0

i þ R0
i � 2c0i

¼ 2ðR0
i � c0iÞ

¼ q0i; 8 ui 2 U; ab 2 E:

Hence, PD is an edge regular PDFSG. v

Theorem 2.45 Let PD be both edge regular and totally

edge regular PDFSG; then ~N is a constant function.

Proof Suppose that PD is an edge regular and totally edge

regular PDFSG. Then the degree of an edge in ~HðuiÞ is

ðDÞlðabÞ ¼ DlðaÞ þ DlðbÞ � 2 ~N lðuiÞðabÞ
¼ qi:

ðDÞmðabÞ ¼ DmðaÞ þ DmðbÞ � 2 ~N mðuiÞðabÞ
¼ q0i; 8 ui 2 U; ab 2 E:

The total degree of an edge is

ðT DÞlðabÞ ¼ ðDÞlðaÞ þ ðDÞlðbÞ � ~N lðuiÞðabÞ
¼ wi:

ðT DÞmðabÞ ¼ ðDÞmðaÞ þ ðDÞmðbÞ � ~N mðuiÞðabÞ
¼ w0

i; 8 ui 2 U; ab 2 E:

Further, it follows that
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3
,0
.9
,0
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)
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.7
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0.
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)
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0,
0.
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)

H̃(u1)

Fig. 11 Edge regular PDFSG PD ¼ f ~Hðu1Þg
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Fig. 12 Totally edge regular PDFSG PD ¼ f ~Hðu1Þg
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ðT DÞlðabÞ ¼ wi

ðDÞlðaÞ þ ðDÞlðbÞ � ~N lðuiÞðabÞ ¼ wi

ðDÞlðabÞ þ ~N lðuiÞðabÞ ¼ wi

) ~N lðuiÞðabÞ ¼ wi � Ri

ðT DÞmðabÞ ¼ w0
i

ðDÞmðaÞ þ ðDÞmðbÞ � ~N mðuiÞðabÞ ¼ w0
i

ðDÞmðabÞ þ ~N mðuiÞðabÞ ¼ w0
i

) ~N mðuiÞðabÞ ¼ w0
i � R0

i:

Hence, ~N is a constant function. h

3 Application to decision-making problem

In this section, we propose the decision-making problems

using PDFSG environment. To handle the decision-making

problems, we adopt some steps given in the following

algorithm.

Algorithm

1. Input:

Possible alternatives,

Possible parameters.

2. Construction of the PFPR O ¼ ðoilÞ corresponding to

given parameters.

3. Use PDFAA operator to calculate the combined PFE

corresponding to each parameter

oj ¼ PDFAAðojl; oj2; . . .; ojnÞ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 1

1þ
Pn

k¼1
1
n ð

l2
jk

1�l2
jk

Þ
c

� 	1
c

v

u

u

u

t

;

0

B

B

B

@

1

1þ
�

Pn
k¼1

1
n ð

1�mjk
mjk

Þc
	

1
c

1

C

C

C

A

; j ¼ 1; 2; . . .; n:

ð11Þ

4. To find the combined overall preference value

ojðj ¼ 1; 2; . . .; 4Þ, compute the score functions sðojÞ
given by (Zhang and Xu 2014).

sðojÞ ¼ ðljÞ2 � ðmjÞ2 ð12Þ

5. Output: The decision is maxfminsðokÞðuiÞ;
i ¼ 1; 2; . . .;m; k ¼ 1; 2; . . .; ng:

3.1 Selection of suitable ETL software
for a business intelligence project

Business intelligence (BI) helps to convert raw data into

meaningful information for informed business decisions.

BI helps to gain insights into consumer behavior. It is

necessary for a business to understand the demands of

customers so that resources can be invested into beneficial

products. The central part of BI is established on data

warehouses powered by ETL (Extract, Transform and

Load). With the continuous development of BI usage, ETL,

the initial point of the project, has become a key factor that

affects the failure or success of the BI project. The main

work of BI project is the selection of most suitable ETL

software which maximizes the profits, limits the costs and

is flexible to accommodate future advancements in the

project. Mr. X wants to select a ETL software for BI

(adopted from Akram et al. 2019, 2020). Let X ¼
fa1; a2; a3; a4; a5g be the set of five ETL software as the

universal set. Mr. X compares the five ETL software aiði ¼
1; 2; . . .; 5Þ pairwise for the selection and provides its

preference information in the form of PFPR O ¼ ðoilÞ5�5,

where oil ¼ ðlil; milÞ is the Pythagorean fuzzy element

assigned by the Mr. X (an expert) with lil as the degree to
which the ETL software ai is preferred over the other ETL

software al and mil as the degree to which the ETL software

ai is not preferred over the other ETL software al. The

PFPR O ¼ ðoilÞ5�5 is expressed in the following tabular

form in Table 1.

The PF directed network corresponding to PFPR O is

given in Table 1, presented in Fig. 13.

In order to compute the combined PFE oil ¼
ðlil; milÞ; ði; l ¼ 1; 2; . . .; 5Þ of the ETL software a1, over all

the other ETL software, we use Pythagorean Dombi fuzzy

arithmetic averaging (PDFAA) operator given by (Akram

et al. 2019, 2020) given in Eq. 13.

oj¼PDFAAðojl;oj2; . . .;ojnÞ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 1

1þ
Pn

k¼1
1
nð

l2
jk

1�l2
jk

Þ
c

� 	1
c

v

u

u

u

t

;
1

1þ
Pn

k¼1
1
nð

1�mjk
mjk

Þc
h i1

c

0

B

B

B

@

1

C

C

C

A

:

ð13Þ

Take c¼1 in Eq. 13 to obtain the combined overall pref-

erence value ojðj¼1;2; . . .;4Þ.
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o1 ¼ ð0:5264; 0:4878Þ;
o2 ¼ ð0:5770; 0:6032Þ;
o3 ¼ ð0:7401; 0:3798Þ;
o4 ¼ ð0:6377; 0:5166Þ;
o5 ¼ ð0:6341; 0:2752Þ:

The score functions sðojÞ of the combined overall pref-

erence value ojðj ¼ 1; 2; . . .; 5Þ are calculated by using

score function given by Zhang and Xu (2014).

sðojÞ ¼ ðljÞ2 � ðmjÞ2

sðo1Þ ¼ 0:0386;sðo2Þ ¼ �0:0262;sðo3Þ ¼ 0:3603;

sðo4Þ ¼ 0:1211;sðo5Þ ¼ 0:3589:

ð14Þ

On the basis of score functions, ranking is

a3 [ a5 [ a4 [ a1 [ a2

Hence, a3 is the most suitable ETL software.

3.2 Evaluation of electronics companies

In this modern area of life, electronics has too much

importance in different aspects of our life. It is difficult to

find an electrical item in our home that does not have

electronics partnered with it, in some way. Electronics or

electronic components can be found everywhere from

music to cooking in some way. There are many electronic

devices which have made our daily life too much easy, for

example, television, camera, laptop, fridge, oven, etc.

Mr. X wants to purchase some electronic devices for his

home like oven, fridge and television. There are different

electronics companies which supply these things. But he

wants to select that company for purchasing of things

which is most ‘‘affordable’’ and having ‘‘best quality.’’ Let

X ¼ fa1; a2; a3; a4g be the set of four electronics compa-

nies as the universal set and U ¼ fu1; u2g be the set of

parameters that particularize the electronics companies, the

parameters u1 and u2 stand for ‘‘affordable,’’ ‘‘best qual-

ity,’’ respectively. Mr. X compares the four companies

aiði ¼ 1; 2; . . .; 4Þ pairwise for the selection on the basis of

the parameters ‘‘affordable’’ and ‘‘best quality’’ and pro-

vides its preference information in the form of PFPR

O ¼ ðoilÞ4�4, where oil ¼ ðlil; milÞ is the Pythagorean fuzzy

element assigned by the Mr. X expert with lil as the degree
to which the company ai is preferred over the company al
with respect to the given parameter and mil as the degree to
which the company ai is not preferred over the company al
with respect to the given parameter. The PFPR O ¼
ðoilÞ4�4 for the given parameters is expressed in the fol-

lowing tabular form in Tables 2 and 3, respectively.

The PF directed network corresponding to PFPR O is

given in Tables 2 and 3, presented in Figs. 14 and 15.

In order to compute the combined PFE oil ¼
ðlil; milÞ; ði; l ¼ 1; 2; . . .; 4Þ of the company a1, over all the

other companies, we use Pythagorean Dombi fuzzy arith-

metic averaging (PDFAA) operator given by Akram et al.

(2019, 2020) given in Eq. 13. Take c ¼ 1 in Eq. 13 to

obtain the combined overall preference value

ojðj ¼ 1; 2; . . .; 4Þ.
For parameter u1,

Table 1 PFPR

O a1 a2 a3 a4 a5

a1 (0.5, 0.5) (0.7, 0.5) (0.5, 0.6) (0.3, 0.8) (0.4, 0.3)

a2 (0.5, 0.7) (0.5, 0.5) (0.2, 0.9) (0.8, 0.4) (0.1, 0.8)

a3 (0.6, 0.5) (0.9, 0.2) (0.5, 0.5) (0.6, 0.6) (0.5, 0.4)

a4 (0.8, 0.3) (0.4, 0.8) (0.6, 0.6) (0.5, 0.5) (0.6, 0.7)

a5 (0.3, 0.4) (0.8, 0.1) (0.4, 0.5) (0.7, 0.6) (0.5, 0.5)

a1

a2

a3

a4

a5
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Fig. 13 Directed network of PFPR
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o1ðu1Þ ¼ ð0:710; 0:461Þ;
o2ðu1Þ ¼ ð0:512; 0:691Þ;
o3ðu1Þ ¼ ð0:765; 0:485Þ;
o4ðu1Þ ¼ ð0:582; 0:505Þ:

For parameter u2,

o1ðu2Þ ¼ ð0:710; 0:461Þ;
o2ðu2Þ ¼ ð0:512; 0:691Þ;
o3ðu2Þ ¼ ð0:765; 0:485Þ;
o4ðu2Þ ¼ ð0:582; 0:505Þ:

The score functions sðojÞ of the combined overall pref-

erence value ojðj ¼ 1; 2; . . .; 4Þ are calculated by using

score function given in Eq. 14.

For parameter u1,

sðo1Þðu1Þ ¼ 0:290;

sðo2Þðu1Þ ¼ � 0:215;

sðo3Þðu1Þ ¼ 0:350;

sðo4Þðu1Þ ¼ 0:084:

For parameter u2,

sðo1Þðu2Þ ¼ 0:208;

sðo2Þðu2Þ ¼ 0:412;

sðo3Þðu2Þ ¼ 0:279;

sðo4Þðu2Þ ¼ � 0:082:

The decision is maxfminsðokÞðuiÞ; i ¼ 1; 2; k ¼
1; 2; 3; 4g ¼ maxf0:208;�0:215; 0:279;�0:082g ¼ 0:279:

So, Mr. X will select the a3 company to purchase the

electronics.

3.3 Comparison analysis

In this section, we discuss the importance and logic behind

the development of our proposed model. The example

shown in Sect. 3.1 taken from the existing model (Akram

et al. 2019, 2020) shows that we can get a best alternative

by comparing pairwise these alternatives using preference

values and after ranking by score function, we get the best

alternative. But this model does not handle the situations

when we have a list of parameters for the selection of any

alternative. It is clear from application Sect. 3.1, we cannot

take a set of attributes for the judgment of any alternative.

Then we need our proposed model. The logics behind this

model are:

Table 2 PFPR for parameter u1

O a1 a2 a3 a4

a1 (0.5, 0.5) (0.8, 0.6) (0.8, 0.3) (0.4, 0.6)

a2 (0.6, 0.8) (0.5, 0.5) (0.4, 0.9) (0.5, 0.7)

a3 (0.3, 0.8) (0.9, 0.4) (0.5, 0.5) (0.7, 0.4)

a4 (0.6, 0.4) (0.7, 0.5) (0.4, 0.7) (0.5, 0.5)

Table 3 PFPR for parameter u2

O a1 a2 a3 a4

a1 (0.5, 0.5) (0.2, 0.9) (0.4, 0.8) (0.9, 0.4)

a2 (0.9, 0.2) (0.5, 0.5) (0.5, 0.6) (0.5, 0.7)

a3 (0.8, 0.4) (0.6, 0.5) (0.5, 0.5) (0.7, 0.4)

a4 (0.4, 0.9) (0.7, 0.5) (0.4, 0.7) (0.5, 0.5)

a1

a2
a3

a4
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Fig. 14 Directed network of PFPR corresponding to parameter u1
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Fig. 15 Directed network of PFPR corresponding to parameter u2
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1. A Pythagorean fuzzy soft graph, as an extension of

intuitionistic fuzzy soft graph, is useful in representing

the parametric relationships between objects where

relationship is ambiguous, while Dombi operators with

operational parameters have creditable flexibility.

2. PDFSG model provides us information, about various

parameters for the selection of any attribute.

3. Proposed model reduces to PDFG model, when we

consider only one parameter.

4. The application in Sect. 3.2, describes the importance

of proposed model.

4 Conclusion

Soft set is considered useful tool for the parameterized

point of view, whereas the Pythagorean fuzzy set is taken

as the more general concept as compared to the intuition-

istic fuzzy set, because the space of Pythagorean fuzzy

values is greater than the space of intuitionistic fuzzy

values. A Pythagorean fuzzy soft graph, an extension of

intuitionistic fuzzy soft graph, is a powerful tool to handle

the pairwise relationships between objects corresponding to

different parameters, while Dombi operators are more

helpful to handle decision-making problems. Using these

two concepts, we have introduced the idea of Pythagorean

Dombi fuzzy soft graph (PDFSG) in this paper. We have

described certain properties of PDFSGs. Further, we have

studied the idea of edge regular PDFSG with consequential

properties. We have also solved the decision-making

problems using the Pythagorean Dombi fuzzy arithmetic

averaging (PDFAA) operators. We aim to extend our

studies to: (1) complex Pythagorean Dombi fuzzy soft

graphs; (2) complex Pythagorean Dombi fuzzy soft

hypergraphs; (3) a study on Dijkstra algorithm for a net-

work with complex picture trapezoidal fuzzy numbers.
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