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Abstract
The knowledge measure can be considered as a dual measure of entropy for fuzzy sets. In the present work, a new entropy-

based knowledge measure is proposed for FSs, which complies with the extended idea of De Luca and Termini axioms.

Besides this, some of its major properties are also discussed. Comparison of the proposed measure with various existing

fuzzy measures indicates that the proposed knowledge measure has a greater ability in discrimination of various FSs.

Moreover, a fuzzy inaccuracy measure is introduced based on the proposed measure and investigated some properties.

Considering the significance of integrated weights, a new multiple attribute decision-making (MADM) model is introduced

under fuzzy set environment. The proposed knowledge measure is utilized to calculate the weights vector, when weights

are partially known and other when weights are completely unknown. Finally, an example is employed to illustrate the

effectiveness and consistency of the new MADM method.

Keywords Entropy � Knowledge measure � Accuracy measure � MADM

1 Introduction

Fuzzy set (FS) theory introduced by Zadeh (1965) is an

important topic to measure the fuzziness degree. Fuzzy set

contains only membership degree to elements of a set in the

interval [0,1]. The fuzzy set can describe in terms of

‘‘belong to’’ and ‘‘not belong to’’. Xuecheng (1992) pre-

sented an axiomatic definition of entropy, distance and

similarity measures of FS and also systematically consid-

ered the basic relations between these measures. Entropy

defined as a measure of uncertain information or fuzziness

in the FSs theory has been widely applied in finance,

information technology, communication and decision-

making. Afterwards, De Luca and Termini (1972) sug-

gested the fuzzy entropy of FSs on the basis of Shannon

entropy function and defined a set of axioms. Yager (1979)

obtained an entropy measure of an FS from a distance

between fuzzy set and its complement. Later on, Higashi

and Klir (1982) extended this concept to a general class of

fuzzy complements. Various authors applied the applica-

tions of FSs in distinct fields like pattern recognition,

decision-making problems, image processing, etc. (Chen

and Chen 2001; Chen et al. 2013; Chen and Chen 2014;

Fahmi et al. 2019). Knowledge measure is usually regarded

as the dual measure of fuzzy entropy or uncertainty. An

entropy measure cannot capture all uncertainties in FSs.

knowledge measure represents difference of a fuzzy set

from the most FS. It may be noted that the definition of

knowledge and entropy measures satisfies the following

condition: If M � N, then knowledge(M)� knowl-

edge(N) or entropy(M) � entropy(N). The notion of the

order � plays a vital role in the theory of entropy and

knowledge measure, as in the definition of the classical

ordering set theory.

The intuitionistic fuzzy set (IFS) proposed by Atanassov

(1986), as an extension of the fuzzy set, is characterized by

introducing a hesitancy degree to evaluate the gap between

1 and the sum of membership grade and non-membership

grade. Some models have been developed by various

researchers in the intuitionistic fuzzy set environment

(Chen et al. 2016a, b; Fahmi et al. 2019; Mahmood et al.
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2018; Jamkhaneh and Garg 2018; Rani et al. 2019; Zeng

et al. 2019). Some functional forms in which l2 metric

seems to be a particular case have been studied by Lubbe

(1981). Lad et al. (2015) introduced a long-standing

inquiry in the theory of information, to check whether there

is a duality work for the entropy (1948). Szmidt et al.

(2014) introduced a standard axiom system of knowledge

measure in an IFS theory as a dual axiom system of intu-

itionistic fuzzy entropy. Guo (2016) defined a dual axio-

matic system of knowledge measure under IFSs theory and

developed a generalized knowledge measure. Zhang et al.

(2019) presented some necessary and equivalent conditions

of the classical order property on the basis of Szmidt and

Kacprzyk’s (2007) axioms. However, Nguyen’s (2015) and

Guo’s (2016) knowledge measure may bring contradictory

results due to the use of the distance measure. Therefore,

Wang et al. (2018) introduced a new knowledge measure

for IFSs to fill up the gap in Nguyen’s (2015) and Guo’s

(2016) knowledge measure.

Based on the given information, the attribute weights in

MADM are usually named as subjective and objective

weights. In subjective information, decision expert offers

weights to the attributes. Analytic hierarchy process (AHP)

method (Satty 1980) and Delphi method (Hwang and Lin

1987) are examples to determine subjective attribute

weights. On the other hand, the objective attribute weights

are evaluated by solving mathematical programming

models and one in all the foremost vital approach is the

entropy method (Shannon 1948). Although Chen and Li

(2010) presented a model to assess the attribute weights by

utilizing intuitionistic fuzzy (IF) entropy within the IFS

system. Within the literature, various authors have self-

addressed the MADM problems (Seikh and Mandal 2019;

Joshi and Kumar 2017, 2018; Wang et al. 2017; Liu and

You 2017a; Liu et al. 2017b; Zafar and Akram 2018; Wang

et al. 2019).

In this paper, our aim is to investigate the duality con-

cept among fuzzy information measures and present a new

axiomatic definition of the knowledge measure. The main

contribution of this study is summarized as follows: (i) A

new knowledge measure for FSs is proposed and proved its

validity with the help of examples. (ii) An accuracy mea-

sure is introduced which is a generalization of the proposed

knowledge measure. This may be considered as a dual of

inaccuracy of fuzzy sets. (iii) A score function is developed

which is based on the combination of subjective and

objective weights. (iv) The proposed knowledge measure is

applied to MADM problems under the fuzzy condition.

The remainder of this article is structured as follows:

Sect. 2 recalls some basic concept of fuzzy sets. In Sect. 3,

we propose a fuzzy knowledge measure and prove some

major properties of this measure. Section 4 carries out

comparative analysis with the help of numerical examples.

In Sect. 5, we introduce an accuracy measure for fuzzy set

and its properties are investigated. In Sect. 6, the new

knowledge measure is applied to MADM problems in

fuzzy environment and an example is employed to check

the applicability of the proposed approach. Finally, the

conclusion and future scope are made in Sect. 7.

2 Preliminaries

Some notions are used in the following section. Let Z ¼
fz1; z2; . . .; zng be a fixed set, and FSs represent the class of

all fuzzy sets of Z.

Definition 2.1 (Zadeh 1965) A fuzzy set M on Z is

described as:

M ¼ fðz; lMðzÞÞjz 2 Zg;

where lM : Z ! ½0; 1� denotes the membership function.

The value lMðzÞ 2 ½0; 1� is the membership degree of z 2 Z

in M.

Definition 2.2 (Zadeh 1965) LetM;N 2 FSsðZÞ. Then, we
have

(a) Complement: �M ¼ fðz; 1� lMðzÞÞjz 2 Zg:
(b) Union:M [ N ¼ fðz;maxðlMðzÞ; lNðzÞÞjz 2 Zg.
(c) Intersection:

M \ N ¼ fðz;minðlMðzÞ; lNðzÞÞjz 2 Zg.

Definition 2.3 (Kosko 1986) Let FSs(Z) be a collection of

all FSs in Z. Then, for all Pnear;Pfar 2 FSsðZÞ are defined as
follows:

lPnear
ðzÞ ¼

1 : lPðzÞ�
1

2
;

0 : lPðzÞ\
1

2
;

8
><

>:

and

lPfar
ðzÞ ¼

1 : lPðzÞ\
1

2
;

0 : lPðzÞ�
1

2
:

8
><

>:

In FS theory, the difficulty of imprecision with respect

to a FS is measured by fuzzy entropy. De Luca and Termini

(1972) gave the following axiomatic definition of a fuzzy

entropy measure of FSs.

Definition 2.4 (De Luca and Termini 1972) Let M 2
FSsðZÞ; then H(M) (measure of fuzziness) should have at

least following four properties:
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A-1

(Sharpness):

H(M) is minimum if and only if M is

crisp set.

A-2

(Maximality):

H(M)is maximum if and only if M is the

most fuzzy set.

A-3

(Resolution):

HðMÞ�HðM�Þ,if M� is crisper than M.

A-4

(Symmetry):
HðMÞ ¼ Hð �MÞ; where �M is the

complement set of

M,i.e.l �MðziÞ ¼ 1� lMðziÞ:

3 A new knowledge measure for FSs

The function of entropy and knowledge measure are both

important tools in the study of fuzzy set. The fuzzy entropy

is to estimate the degree of uncertainty, disorder and

irregularity between FSs, whereas fuzzy knowledge mea-

sure is to measure the degree of certainty, order and reg-

ularity between FSs. The entropy of FS provides the

average amount of ambiguity present in a FS. In a similar

way, we can think about the average amount of knowledge

present in a FS. This kind of knowledge measure is called

dual measure of fuzzy entropy.

According to Definition 2.4, an axiomatic definition for

the fuzzy knowledge measure can be defined as follows:

Definition 3.1 A real function S: FSs(Z)! Rþ is called a

knowledge measure if it satisfies the following four

properties:

S1. For all M 2 FSsðZÞ, S(M)is maximum if and only if

M is a crisp set.

S2. S(M)is minimum if and only if M is most fuzzy set.

S3. SðM�Þ� SðMÞ, where M�is crisper than M.

S4. SðMÞ ¼ Sð �MÞ, where �M denotes complement of M.

Now, we introduced the following knowledge measure

for a FS as:

SðMÞ ¼ log2
2

n

Xn

i¼1

l2MðziÞ þ ð1� lMðziÞ
� �2Þ

" #

: ð1Þ

Remark 1 For comparative investigation all through in this

study, we considered fuzzy entropy and knowledge mea-

sure as a normalized form. In the next theorem,

Theorem 3.1 To prove that, S(M) defined in Equation 1 is

a valid knowledge measure for FSs.

Proof For validity, the proposed knowledge measure

defined in Eq. 1 should fulfilled axiomatic requirements

given in Definition 3.1.

(S1.) First, suppose that SðMÞ ¼ 1,

) log2
2

n

Xn

i¼1

l2MðziÞ
� �

þ 1� lMðziÞð Þ2
" #

¼ 1:

which is possible only when lMðziÞ ¼ 0 or 1.

Conversely, suppose that set M is crisp, i.e. lMðziÞ ¼ 0

or 1 for all zi 2 Z:

Then, for lMðziÞ ¼ 0 or 1, we have

log2
2

n

Xn

i¼1

l2MðziÞ
� �

þ 1� lMðziÞð Þ2
" #

¼ 1:

Therefore, SðMÞ ¼ 1, when lMðziÞ ¼ 0 or 1 for all zi:

Therefore, SðMÞ ¼ 1 iff M is crisp, i.e, lMðziÞ ¼ 0 or 1

for all zi:

(S2.) Let S(M) be minimum. Then, SðMÞ ¼ 0:

) log2
2

n

Xn

i¼1

l2MðziÞ
� �

þ 1� lMðziÞð Þ2
" #

¼ 0;

which holds if lMðziÞ ¼ 0:5 for all 1� i� n.
Conversely, assume that M is the most fuzzy set. Then,

log2
2

n

Xn

i¼1

l2MðziÞ
� �

þ 1� lMðziÞð Þ2
" #

¼ 0:

) SðMÞ ¼ 0:

Therefore, S(M)is minimum iff M is the most fuzzy i.e.

lMðziÞ ¼ 0:5; for all zi 2 Z.

(S3.) Let M� be crisper than M,

i.e. (1) lMðziÞ� lM� ðziÞ, if lMðziÞ� 0:5 and

(2) lMðziÞ� lM� ðziÞ, if lMðziÞ\0:5. Differentiating (1)

with respect to lMðziÞ, we have

oSðMÞ
olMðziÞ

¼ 1

1
n

Pn
i¼1 2 l2MðziÞ þ ð1� lMðziÞð Þ2

ð8lMðziÞ � 4Þ:

since S(M) is increasing function of lMðziÞ in (0.5,1] and

decreasing function of lMðziÞ in [0,0.5).

This implies lMðziÞ� lM� ðziÞ
) SðM�Þ� SðMÞ in ð0:5; 1�; ð2Þ

and lMðziÞ� lM� ðziÞ

) SðM�Þ� SðMÞ in ð0:5; 1�: ð3Þ

From Eqs. (2) and (3), we get SðM�Þ� SðMÞ, where M� is
crisper than M.

(S4.) We have

Sð �MÞ ¼ log2
2

n

Xn

i¼1

l2�MðziÞ
� �

þ ð1� l �MðziÞÞ
2

" #

¼ log2
1

n

Xn

i¼1

2 1� l �MðziÞð Þ2þl2MðziÞ
" #

¼ SðMÞ:

Therefore,
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SðMÞ ¼ Sð �MÞ:

Hence, the validity of proposed knowledge measure

S(M) for FSs is established.

Now, we investigated some major properties of pro-

posed measure (1).

Theorem 3.2 For any M;N 2 FSsðZÞ;
SðM [ NÞ þ SðM \ NÞ ¼ SðMÞ þ SðNÞ.

Proof Let

Z1 ¼ fz 2 Z j lMðzÞ� lNðzÞg; ð4Þ

Z2 ¼ fz 2 Z j lMðzÞ\lNðzÞg; ð5Þ

where lMðzÞ and lNðzÞ represent the membership degrees

of M and N, respectively.

If z 2 Z1, then lM[NðqÞ ¼ maxflMðzÞ; lNðzÞg ¼ lMðzÞ
and lM\NðzÞ ¼ minflMðzÞ; lNðzÞg ¼ lNðzÞ.

If z 2 Z2, then lM[NðzÞ ¼ maxflMðzÞ; lNðzÞg ¼ lNðzÞ
and lM\NðzÞ ¼ minflMz; lNðzÞg ¼ lMðzÞ.

Now, using Eq. (1) for all zi 2 Z, we have

SðM [ NÞ þ SðM \ NÞ

¼ log2
2

n

Xn

i¼1

l2M[NðziÞ þ 1� lM[NðziÞð Þ2
� �

" #

þ log2
2

n

Xn

i¼1

l2M\NðziÞ þ 1� lM\NðziÞð Þ2
� �

" #

:

¼ log2
2

n

Xn

i¼1

l2MðziÞ þ ð1� lMðziÞÞ
� �2

" #

þ log2
2

n

Xn

i¼1

l2NðziÞ
� �

þ ð1� lNðziÞÞ2
" #

:

¼ SðMÞ þ SðNÞ:

On simplifying, we get

SðM [ NÞ þ SðM \ NÞ ¼ SðMÞ þ SðNÞ:

4 Comparative study

To demonstrate the performance and effectiveness of the

proposed knowledge measure for FSs, some previously

developed measures for FSs will be borrowed for

comparison.

The fuzzy measure proposed by Yager (1979) is shown

below.

HY1ðMÞ ¼ 1� dpðM;McÞ
n

1
p

The fuzzy measure proposed by Kosko (1986) is shown

below.

HKðMÞ ¼ dpðM;MnearÞ
dpðM;MfarÞ

:

The fuzzy measure proposed by Pal and Pal (1992) is

shown below.

HPalðMÞ ¼ 1

n

Xn

i¼1

lMðziÞe1�lMðziÞ þ ð1� lMðziÞÞelMðziÞ
h i

:

The fuzzy measure proposed by Li and Liu (2008) is shown

below.

HLLðMÞ ¼
Xn

i¼1

SðcrðnM ¼ ziÞÞ:

The fuzzy measure proposed by Hwang and Yang (2008) is

shown below.

HHYðMÞ ¼ 1

1� e
�1
2

Xn

i¼1

1� e�lMc ðziÞ
� �

I lMðziÞ� 1
2½ �

h

þ 1� e�lMðziÞ
� �

I lMðziÞ\1
2½ �
i
:

The fuzzy measure proposed by Joshi and Kumar (2018) is

shown below.

Hb0

a0 ðMÞ

¼ a0 � b0

nða0 � b0Þ
Xn

i¼1

lMðziÞb
0
þ 1� lMðziÞð Þb

0� � 1
b0

�"

� lMðziÞa
0
þ 1� lMðziÞð Þa

0
� � 1

a0
��

:

SðMÞ ¼ log2
2

n

Xn

i¼1

l2MðziÞ þ ð1� lMðziÞ
� �2

" #

(our proposed one).

Example 1 Let us consider four FSs defined in Z ¼ fzg are
given by: M1 ¼ hz; 0:5i;M2 ¼ hz; 0:25i;M3 ¼ hz; 0:13i;
M4 ¼ hz; 0:2i: These FSs are utilized for comparing values

of the recalled fuzzy measures together with the proposed

measure S(M). Table 1 shows the comparative results of

specific measures.

It is clear from the outcomes depicted in Table 1 that the

recalled fuzzy measures have some cases, which are

unreasonable (shown in bold type). For example, the

measures HY ;HPal cannot discriminate two different FSs

M1 ¼ hz; 0:5i, and M4 ¼ hz; 1i, i.e. HYðM1Þ ¼ HYðM4Þ ¼
1;HPalðM1Þ ¼ HPalðM4Þ ¼ 0:74, and H

b0ð¼15Þ
a0ð¼0:5ÞðM1Þ ¼

H
b0ð¼15Þ
a0ð¼0:5ÞðM3Þ ¼ 0:421: The measure HPal gives the same

value 0.65 of fuzzy measure for two different FSs
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M1 ¼ hz; 0:5i, and M3 ¼ hz; 0:25i. This example indicates

that only proposed fuzzy measure does not have any

contradictory/unreasonable case. Based on the result of

new fuzzy measure, we can rank the FSs in accordance

with the decreasing fuzzy measure as follows: M3 	 M2 	
M4 	 M1: The fuzzy measures HLL;HHY give the result of

ranking order, which resembles but not exactly same order.

Thus, the proposed fuzzy measure is effective and more

reasonable to distinguish entropy of FSs in comparison

with other fuzzy measures.

Example 2 Let M 2 FSðZÞ. Then, the modifier for the FS

M is given by

Mn ¼ fðz; ðlMðzÞÞnÞ=z 2 Zg:

Let us consider a FS M1 of Z ¼ f3; 4; 5; 6; 7g is defined as

M1 ¼ fð3; 0:1Þ; ð4; 0:3Þ; ð5; 0:4Þ; ð6; 0:9Þ; ð7; 1Þg:

Considering the features of linguistics hedges, we take A1

as ‘‘good’’ on Z. We can compute the following FSs:

M
1
2

1 ¼fð3; 0:316Þ; ð4; 0:548Þ; ð5; 0:632Þ; ð6; 0:949Þ; ð7; 1Þg;
M2

1 ¼fð3; 0:01Þ; ð4; 0:09Þ; ð5; 0:16Þ; ð6; 0:81Þ; ð7; 1Þg;
M3

1 ¼fð3; 0:001Þ; ð4; 0:027Þ; ð5; 0:064Þ; ð6; 0:729Þ; ð7; 1Þg;
M4

1 ¼fð3; 0Þ; ð4; 0:008Þ; ð5; 0:026Þ; ð6; 0:656Þ; ð7; 1Þg:

The hedges described by the above FSs are considered as:

M
1
2

1 may be described as ‘‘very bad’’, M2
1 may be described

as ‘‘extreme’’, M3
1 may be described as ‘‘common’’, M4

1

may be described as ‘‘perfect’’.

Intuitively, from M
1
2

1 to M4
1, the loss of information

hidden in them becomes less. The entropy conveyed by

them is increasing. So the following relation holds:

HðM
1
2

1Þ[HðM1Þ[HðM2
1Þ[HðM3

1Þ[HðM4
1Þ: ð6Þ

SðM
1
2

1Þ\SðM1Þ\SðM2
1Þ\SðM3

1Þ\SðM4
1Þ: ð7Þ

To make a comparison, entropy measures

HY1ðM1Þ;HKðM1Þ;HPalðM1Þ;HLLðM1Þ, HHYðM1Þ;Hb0

a0 ðM1Þ
and knowledge measure SðM1Þ are employed to promote

analysis. In Table 2, we present the outcomes based on

diverse measures to promote comparative analysis.

We can notice that FS M1 will be obtained more entropy

than the FS M
1
2

1, if entropy measures HY1ðM1Þ, HKðM1Þ and
HLLðM1Þ are implemented and the ranking outcomes are

listed below.

HY1ðM
1
2

1Þ[HY1ðM1Þ[HY1ðM2
1Þ[HY1ðM4

1Þ\HY1ðM3
1Þ;

HKðM1Þ[HKðM
1
2

1Þ[HKðM2
1Þ[HKðM4

1Þ\HKðM3
1Þ;

HLLðM3
1Þ[HLLðM

1
2

1Þ[HLLðM1Þ\HLLðM4
1Þ[HLLðM2

1Þ:

It is clear that these ranking outcomes do not satisfy the

sequence given in Eq. 6, whereas the entropy measures

HPalðM1Þ, HHYðM1Þ, Hb0

a0 ðM1Þ and SðM1Þ perform well.

These results indicate that these entropy measures are not

suitable to discriminate the uncertainty information of FSs

with linguistic terms. Also, the proposed knowledge mea-

sure performs much better by satisfying Eq. 7.

Table 1 Comparison of the

fuzzy measures
IFSs HY HK HPal HLL HHY H

b0ð¼15Þ
a0ð¼0:5Þ

S(M)

M1 ¼ hz; 0:5i 1 0.65 0.74 0.8145 0.7636 0.421 0

M2 ¼ hz; 0:25i 0.6 0.20 0.58 0.7000 0.7211 0.5051 0.3219

M3 ¼ hz; 0:13i 0.1 0.65 0.40 0.6928 0.4151 0.421 0.6300

M4 ¼ hz; 1i 1 0 0.74 0.40 0.5429 0.5172 0.4436

Table 2 Fuzziness values using

various fuzzy measures
Fuzzy sets HY1 ðM1Þ HKðM1Þ HPal ðM1Þ HLL ðM1Þ HHY ðM1Þ H

b0ð¼15Þ
a0ð¼0:5Þ ðM1Þ S ðM1Þ

M
1
2

1
0.397 0.220 1.389 0.810 0.505 0.4672 0.4896

M1 0.360 0.311 1.331 0.723 0.397 0.4134 0.5811

M2
1

0.167 0.099 1.202 0.378 0.212 0.2834 0.7621

M3
1

0.145 0.078 1.151 0.870 0.167 0.2202 0.8255

M4
1

0.151 0.082 1.136 0.692 0.165 0.1906 0.8423

Granular Computing (2021) 6:631–643 635

123



Example 3 Let us consider another FS M2 defines in Z.

The FS is defined as:

M2 ¼ fð3; 0:2Þ; ð4; 0:3Þ; ð5; 0:4Þ; ð6; 0:7Þ; ð7; 0:8Þg:

We calculate M
1
2

2, M
2
2,M

3
2 and M4

2 : Now we compare only

HPalðM2Þ,HHYðM2Þ,Hb0

a0 ðM2Þ and SðM2Þ (Table 3).

Moreover, the results produced by entropy measures

HPalðM2Þ;Hb
a are also not reasonable, which are shown as

the equations below.

HPalðM2Þ[HPalðM
1
2

2Þ[HPalðM2
2Þ[HPalðM4

2Þ[HPalðM3
2Þ;

Hb0

a0 ðM2Þ[Hb0

a0 ðM
1
2

2Þ[Hb0

a0 ðM2
2Þ[Hb0

a0 ðM3
2Þ[Hb0

a0 ðM4
2Þ:

Therefore, the entropy measures HPalðM2Þ;Hb0

a0 ðM2Þ are not
suitable for differentiating the information conveyed by

FSs. But HHYðM2Þ and SðM2Þ are also satisfy the ranking

order. The effectiveness of proposed fuzzy measure

HHYðM2Þ and SðM2Þ is indicated by this example once

again. Also, SðM2Þ satisfy the ranking order in Eq. 7. From

the above analysis, we can conclude that the performance

of the proposed measure is much better than others.

In the subsequent section, generalization of knowledge

measure is done.

5 Fuzzy accuracy measure

5.1 Background

The thought of inaccuracy was introduced by Kerridge

(1961), which may be thought of as a generalization based

on Shannon (1948) entropy. It has been extensively used as

a great model for measuring of error in experimental

results. Suppose that an expert states the probabilities of

the numerous possible outcomes of an experiment. His

statement will lack exactness in two approaches: either, he

may not have sufficient information, and so his statement is

imprecise, or he may have some information, yet he has is

also incorrect. All statistical inference related problems are

involved with creating statements which can be inaccurate

in either or each of those ways. Kerridge (1961) proposed

the inaccuracy measure that may take accounts for these

two types of errors. Suppose that the expert assumes that

the probability of the ith event is qi once the truth proba-

bility is pi. Then, the inaccuracy of the observer, as

developed by Kerridge (1961) can be measured as:

IKerridgeðP0;Q0Þ ¼ �
X

ðpiÞ logðqiÞ; ð8Þ

where P0 ¼ ðp1; p2; . . .; pnÞ and Q0 ¼ ðq1; q2; . . .; qnÞ are the
discrete probability distributions with

Xn

i¼1
pi ¼

1 ¼
Pn

i¼1 qi:

If pi ¼ qi, then Eq. 8 recovers Shannon entropy as:

HShannonðP0Þ ¼ �
X

pi log pi:

For the probability distributions P0 and Q0, Kullback and

Leibler (1951) divergence measure is defined as:

DKLðP0;N 0Þ ¼
Xn

i¼1

pi log
pi
qi
: ð9Þ

We have

DKLðP0;N 0Þ ¼ �HShannonðP0Þ þ IKerridgeðP0;N 0Þ

which implies

IKerridgeðP0;Q0Þ ¼ DKLðP0;Q0Þ þ HShannonðP0Þ:
For all M;N 2 FSsðZÞ, Verma and Sharma (2011) cor-

responding to Eq. 9 defined fuzzy inaccuracy measure as:

IðM;NÞ ¼ � 1

n

Xn

i¼1

lMðziÞ logðlNðziÞÞ½

þð1� lMðziÞÞ logð1� lNðziÞÞ�
IðM;NÞ ¼DðM;NÞ þ HðMÞ;

where D(M, N) is Verma and Sharma (2011) fuzzy diver-

gence and H(M) is De Luca and Termini (1972) fuzzy

entropy.

When M ¼ N, we get

IðM;NÞ ¼ HðMÞ:

Thus, I(M; N) is a generalization of Luca and Termini

fuzzy entropy H(M).

Now, we shall introduce a new dual of inaccuracy which

we called fuzzy accuracy for a FS N relative to M as

follows:

IAccðM;NÞ ¼ 1

2
log2

2

n

Xn

i¼1

l2MðziÞ þ ð1� lMðziÞÞ2
n o

" #

þ 1

2
log2

2

n

Xn

i¼1

lMðziÞlNðziÞf
"

þð1� lMðziÞÞð1� lNðziÞÞg�:
ð10Þ

Table 3 Fuzziness values with HPalðM1Þ, HHY ðM1Þ, Hb0ð¼15Þ
a0ð¼0:5ÞðM2Þ and

SðM2Þ

Fuzzy sets HPalðM2Þ HHYðM2Þ H
b0ð¼15Þ
a0ð¼0:5ÞðM2Þ SðM2Þ

M
1
2

2
1.501 0.653 0.6042 0.3884

M2 1.513 0.616 0.6013 0.4265

M2
2

1.386 0.577 0.4947 0.6747

M3
2

1.094 0.393 0.3990 0.8027

M4
2

1.241 0.298 0.3205 0.8686

636 Granular Computing (2021) 6:631–643

123



Also, for M ¼ N, we have

IAccðM;NÞ ¼ SðMÞ:

Therefore, IAccðM;NÞ can be considered as a generalized

measure of the proposed fuzzy knowledge measure

S(M) and is called fuzzy accuracy measure.

Keeping above said concepts in mind, we discussed

some properties of the proposed fuzzy accuracy measure

from a mathematical viewpoint in the next section.

5.2 Properties of the Proposed Accuracy
Measure

Theorem 5.1 IAccðM;NÞ is maximum if M and N are crisp

set and M ¼ N 8 M;N 2 FSsðZÞ:

Proof Since we are computing the fuzzy accuracy of

N relative to M, the maximum accuracy in N that it may

obtain is equally to the amount of knowledge that lies inM,

that is, S(M). Furthermore, S(M) may obtain the largest

value 1 according to our definition.

Suppose lMðziÞ ¼ lNðziÞ ¼ 1 or 0, then we have

IAccðM;NÞ ¼ 1

2
log2

2

n

Xn

i¼1

l2MðziÞ þ 1� lMðziÞð Þ2
" #

þ 1

2
log2

2

n

Xn

i¼1

lMðziÞlNðziÞ
"

þ 1� lMðziÞð Þ 1� lNðziÞð Þ� ¼ 1:

Hence, IAccðM;NÞ ¼ 1 if lMðziÞ ¼ lNðziÞ ¼ 0 or 1. We

have

IAccðM;NÞ ¼ 1

2
log2

2

n

Xn

i¼1

l2MðziÞ þ 1� lMðziÞð Þ2
" #

þ 1

2
log2

2

n

Xn

i¼1

lMðziÞlNðziÞ
"

þ 1� lMðziÞð Þ 1� lNðziÞð Þ�:

Now, for lMðziÞ ¼ lNðziÞ

IAccðM;NÞ ¼ 1

2
log2

2

n

Xn

i¼1

l2MðziÞ þ 1� lMðziÞð Þ2
" #

þ 1

2
log2

2

n

Xn

i¼1

lMðziÞlMðziÞ
"

þ 1� lMðziÞð Þ 1� lMðziÞð Þ�:

¼ log2
2

n

Xn

i¼1

l2MðziÞ þ 1� lMðziÞð Þ2
" #

¼ SðMÞ:

Therefore, IAccðM;NÞ ¼ SðMÞ if lMðziÞ ¼ lNðziÞ: This

proves the theorem.

Theorem 5.2 Let M;N;C 2 FSsðZÞ be such that

M 
 N 
 C; then,

1. IAccðM;NÞ� IAccðM;CÞ for lMðziÞ� 1
2
;

2. IAccðM;NÞ� IAccðM;CÞ for lMðziÞ� 1
2
:

Proof

IAccðM;NÞ ¼ 1

2
log2

2

n

Xn

i¼1

l2MðziÞ þ 1� lMðziÞð Þ2
� �

" #

þ 1

2
log2

2

n

Xn

i¼1

lMðziÞlNðziÞð Þ þ 1� lMðziÞð Þ 1� lNðziÞð Þ
" #

:

Taking, lMðziÞ ¼ ai and lNðziÞ ¼ bi

¼ 1

2
log2

2

n

Xn

i¼1

a2i þ 1� aið Þ2
� �

" #

þ 1

2
log2

2

n

Xn

i¼1

aibi þ ð1� aiÞð1� biÞð Þ
" #

:

Therefore,

oIAcc
oai

¼ n

4
Pn

i¼1 a2i þ 1� aið Þ2
� � ð4ai � 1Þ

þ n

4
Pn

i¼1 aibi þ ð1� aiÞð1� biÞð Þ ð2bi � 1Þ

and

oIAcc
obi

¼ n

4
Pn

i¼1 aibi þ ð1� aiÞð1� biÞð Þ ð2ai � 1Þ:

) oIAcc
oai

� 0 for ai � 0:5 and bi � 0:5;

and oIAcc
obi

� 0 for ai � 0:5:
Hence, in the initial and second argument IAcc is

increasing, if 0:5� ai � bi and IAcc is decreasing, if

ai � bi � 0:5: in the initial and second argument. h

Theorem 5.3 Let M,N and C be any three FSs; then,

1. IAccðM : NÞ ¼ IAccð �M : �NÞ
2. IAccðM : �MÞ ¼ IAccð �M;MÞ
3. IAccðM : �NÞ ¼ IAccð �M;NÞ
4. IAccð �M;NÞ þ IAccð �M;NÞ ¼ IAccð �M; �NÞ þ IAccðM; �NÞ:

Proof The proof of these properties is state forward and

easy calculation.

Next, we obtained a knowledge measure with the help of

accuracy measure.

Theorem 5.4 SðMÞ ¼ IAccðM;MnearÞ
IAccðM;MfarÞ is a valid knowledge

measure.
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Proof We prove that S(M) holds the axiomatic require-

ments given in Definition 3.1.

(S1.) Let M be a crisp set or non-fuzzy. So, M ¼ Mnear:

Now,

IAccðM;MnearÞ ¼ 1

2
log2

2

n

Xn

i¼1

l2MðziÞ þ 1� lMðziÞð Þ2
� �

" #

þ 1

2
log2

2

n

Xn

i¼1

lMðziÞlMnearðziÞð Þ
"

þ 1� lMðziÞð Þ 1� lMnearðziÞð Þ�:
ð11Þ

IAccðMnear;MnearÞ ¼ 1

2
log2

2

n

Xn

i¼1

l2MnearðziÞ þ 1� lMnearðziÞð Þ2
� �

" #

þ 1

2
log2

2

n

Xn

i¼1

lMnearðziÞlMnearðziÞð Þ
"

þ 1� lMnearðziÞð Þ 1� lMnearðziÞð Þ�:
ð12Þ

Case 1: When lMðziÞ� 0:5, then in view of Eq. 12 and

Definition 2.3, we have IAccðMnear;MnearÞ ¼ 1:

Case 2: When lMðziÞ\0:5, then in view of Eq. 12 and

Definition 2.3, we have IAccðMnear;MnearÞ ¼ 1:

For both cases, similarly, we prove that

IAccðM;MfarÞ ¼ 1. Therefore,

SðMÞ ¼ IAccðM;MnearÞ
IAccðM;MfarÞ ¼ 1:

Conversely, suppose that SðMÞ ¼ 1: So,

IAccðM;MnearÞ ¼ 1:

That is, M ¼ Mnear:

Hence, M is a non-fuzzy or crisp set.

(S2.) Let M is the most fuzzy set, that is,

lMðziÞ ¼ 0:5 8 zi 2 Z:

Then, lMnearðziÞ ¼ 1. So, IAccðM;MnearÞ ¼ 0:

Therefore, SðMÞ ¼ IAccðM;MnearÞ
IAccðM;MfarÞ ¼ 0:

Conversely, suppose SðMÞ ¼ 0; then, we have

M ¼ MF= most fuzzy set.

(S3.) Let M� is a sharpened version of M. Then,

SðM�Þ� SðMÞ:

It is evident that

Mnear ¼ M�nearand Mfar ¼ M�far;

, and hence, IAccðM�;MnearÞ ¼ IAccðM�;M�nearÞ;
and IAccðM�;MfarÞ ¼ IAccðM�;M�farÞ:
We have M 
 M� 
 Mnear: for lMðziÞ� 0:5.

From Theorem 5.2, we have IAccðM�;M�nearÞ�
IAccðM;MnearÞ:

Similarly, we can prove that

IAccðM�;M�farÞ� IAccðM;MfarÞ:

) IAccðM;MnearÞ
IAccðM;MfarÞ � IAccðM�;M�nearÞ

IAccðM�;M�farÞ :

) SðM�Þ� SðMÞ:

(S4.) Using Theorem 5.3, we have

IAccðM;NÞ ¼ IAccð �M; �NÞ:

Also, notice that �M
near ¼ �Mnear and �M

far ¼ �Mfar:

Since IAccðM;MnearÞ ¼ IAccð �M; �MnearÞ and IAcc

ðM;MfarÞ ¼ IAccð �M; �MfarÞ.
Therefore,

SðMÞ ¼ IAccðM;MnearÞ
IAccðM;MfarÞ ¼ IAccð �M; �MnearÞ

IAccð �M; �MfarÞ
¼ IAccð �M; �M

nearÞ
IAccð �M; �M

farÞ
¼ Sð �MÞ:

Hence, S(M) is a valid knowledge measure.

The developed accuracy measure can be employed to

measure the errors in pattern recognition, computer vision

and in memory. In real world, accuracy/similarity/dissim-

ilarity data are found in many forms such as rating of pairs,

errors of substitution, correlation between occurrences and

sorting of objects. Applications of the proposed accuracy

measure can be further implemented for decision-making

in real-world problems.

6 Application of the proposed knowledge
measure in solving MADM model

In this section, a new model, based on the proposed

knowledge measure, for solving the decision-making

problems, has been demonstrated under the FSs environ-

ment. The improved score function is used to make the

ranking results more accurate and flexible. Moreover, a

numerical example has been considered to validate the

approach.

6.1 Proposed approach

The set of all alternatives defined as G0 ¼ fG0
i : 1� i�mg

and the finite set of all attributes are defined as A0 ¼ fA0
i :

1� i� ng in a decision-making problem. The weight vec-

tor of attribute is considered as w ¼ ðw1;w2; . . .;wnÞT such

that
Pn

i¼1 wi ¼ 1. Due to the limitation of the DM’s

knowledge, paucity of time and experience, a fuzzy form

represents the preference or evaluation information pro-

vided for each attribute. The fuzzy decision matrix pro-

vided by DM’s is defined as :
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1. If the attribute weight ages are partially/completely

known, then MADM techniques play an important role

in solving the problems based on the fuzzy information

under multiple attributes. But in practical situation, the

attribute weights are found partially known or com-

pletely unidentified (Wei 2008). Therefore, the attri-

bute weights are determined before solving the MADM

problems and the attribute weights given by decision

makers. However, this technique is subjective and the

partial information about attribute weights can not be

implemented sufficiently. Following on, we may

propose a new method to compute the weights vector

based on the proposed measure. We can set the whole

information as the objective function of optimization.

By minimizing the sum of all information under all

attributes, we can construct the following model.

Min T ¼
Xm

i¼1

SðmijÞ
Xn

j¼1

wj

s.t.

Pn
j¼1 wj ¼ 1

wj � 0; j ¼ 1; 2; . . .; n

w 2 H

8
><

>:

ð13Þ

where H denotes the set of unidentified/incomplete

information for attribute weights and SðmijÞ is the

information measure calculated by our proposed mea-

sure. If the attribute weights are completely unidenti-

fied, then we will determine the criteria A0
j; 1� j� r,

using Formula (14).

SðMÞ ¼ log2
2

n

Xn

i¼1

l2MðziÞ þ ð1� lMðziÞ
� �2Þ

" #

:

ð14Þ

2. Calculate the weights wj for each criterion A0
j as given

in (15),

wj ¼
Pm

i¼1 SðmijÞPn
j¼1

Pm
i¼1 SðmijÞ

: ð15Þ

3. Now, we develop a score function SðG0
iÞ as follows:

SðG0
iÞ ¼

Xm

j¼1

mij½nws
j þ wo

j ð1� nÞ�T ; ð16Þ

where ½nws
j þ wo

j ð1� nÞ�T in Eq. 16 is the mechanism

of subjective (ws
j ) and objective weights (wo

j ). The

parameter n 2 ð0; 1Þ denotes the relative importance

between subjective and objective weights and can

choose any arbitrary value.

4. Alternative with highest score is the best desirable

choice.

6.2 Numerical example and discussion

Suppose a company wishes to invest a sum of money into a

project. Based on the complexities of economic develop-

ment, there are five companies (alternatives) as candidates

and the companies are considered as: ( G0
1): A washing

machine company, ( G0
2): A software company, (G0

3 ): A

chemical company, (G0
4): A computer company and (G0

5):

A LCD company.

The investment company evaluates these five companies

using the following four attributes, which are: (A0
1): Capital

gain, (A0
2): Investment risk, (A0

3): Social and political

impact, (A0
4): Environmental impact.

F =

A′
1 A′

2 A′
3 A′

4

G′
1 0.7 0.5 0.3 0.4

G′
2 0.2 0.6 0.4 0.9

G′
3 0.4 0.7 0.5 0.8

G′
4 0.6 0.4 0.9 0.3

G′
5 0.4 0.8 0.3 0.6

To find the desirable alternative, based on their knowledge

and experience in problem domain, the weights are

assigned to the experts as follows:

wo
1 ¼ 0:2;wo

2 ¼ 0:4;wo
3 ¼ 0:3;wo

4 ¼ 0:1:

Case 1 The information regarding attribute weights is

unidentified. The partially information about attribute

weights is denoted by the set H,

H ¼ f0:10�w1 � 0:13; 0:13�w2 � 0:19; 0:24�w3

� 0:30; 0:40�w4 � 0:60g:

The overall information of each attribute can be determined

as follows:

K1 ¼
X5

i¼1

SðmijÞ ¼ 1:152; K2 ¼
X5

i¼1

SðmijÞ ¼ 1:016;

K3 ¼
X5

i¼1

SðmijÞ ¼ 1:104; K4 ¼
X5

i¼1

SðmijÞ ¼ 1:032:

The programming model to find the attribute weights using

Eq. 13 can be constructed as: Min

T ¼ 0:102w1 þ 0:055w2 þ 0:013w3 þ 0:013w4

F=(rij) =

A′
1 A′

2 A′
n

G′
1 ν11 ν12 · · · ν1n

G′
2 ν21 ν22 · · · ν2n
. . . .

. . .
. . . .

. . . .
G′

m νn1 νn2 · · · νmn
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such that

w 2 H
P4

j¼1 wj ¼ 1

wj � 0; j ¼ 1; 2; 3; 4:

8
><

>:

Then, the weights vector can be obtained as:

w ¼ ð0:31; 0:30; 0:13; 0:26ÞT :

Determining the score using
P4

j¼1 mðG0
i;AjÞ½nws

j þ wo
j ð1�

nÞ�T ; i ¼ 1; 2; . . .; 5; we may compute the SðG0
iÞ; i ¼

1; 2; . . .; 5 for various values of n and it is given briefly in

Table 4 and Fig. 1.

Using the above results, we have obtained the following

order ranking of the alternatives.

For n ¼ 0:1:SðG0
3Þ 	 SðG0

4Þ 	 SðG0
5Þ 	 SðG0

2Þ 	 SðG0
1Þ:

For n ¼ 0:2:SðG0
3Þ 	 SðG0

4Þ 	 SðG0
5Þ 	 SðG0

2Þ 	 SðG0
1Þ:

For n ¼ 0:3:SðG0
3Þ 	 SðG0

4Þ 	 SðG0
5Þ 	 SðG0

2Þ 	 SðG0
1Þ:

For n ¼ 0:4:SðG0
3Þ 	 SðG0

5Þ 	 SðG0
4Þ 	 SðG0

2Þ 	 SðG0
1Þ:

For n ¼ 0:5:SðG0
3Þ 	 SðG0

5Þ 	 SðG0
4Þ 	 SðG0

2Þ 	 SðG0
1Þ:

For n ¼ 0:6:SðG0
3Þ 	 SðG0

5Þ 	 SðG0
4Þ 	 SðG0

2Þ 	 SðG0
1Þ:

For n ¼ 0:7:SðG0
3Þ 	 SðG0

5Þ 	 SðG0
4Þ 	 SðG0

2Þ 	 SðG0
1Þ:

For n ¼ 0:8:SðG0
3Þ 	 SðG0

5Þ 	 SðG0
4Þ 	 SðG0

2Þ 	 SðG0
1Þ:

For n ¼ 0:9:SðG0
3Þ 	 SðG0

5Þ 	 SðG0
4Þ 	 SðG0

2Þ 	 SðG0
1Þ:

From the above ranking results, it is clear that SðG0
3Þ is the

most suitable alternative. The sequence of alternatives so

obtained is given by: SðG0
3Þ 	 SðG0

4Þ 	 SðG0
5Þ 	

SðG0
2Þ 	 SðG0

1Þ. The same problem was computed by using

the method proposed by Xia and Xu (2012) based on E1:5
M

and CE1:5
M . The attributes weight vector is obtained as

w ¼ ð0:29; 0:27; 0:15; 0:29ÞT .
The ranking results of alternatives are

SðG0
3Þ 	 SðG0

4Þ 	 SðG0
5Þ 	 SðG0

2Þ 	 SðG0
1Þ, which is same

as obtained by the proposed method. Clearly, the output of

proposed method is more reliable and effective.

Case 2 When there is no information about the attribute

weights, then the weights can be obtained based on the

proposed approach, and total knowledge amount of all

fuzzy information so obtained is listed below:

K1 ¼
X5

i¼1

SðmijÞ ¼ 1:152; K2 ¼
X5

i¼1

SðmijÞ ¼ 1:016;

K3 ¼
X5

i¼1

SðmijÞ ¼ 1:104; K4 ¼
X5

i¼1

HSðmijÞ ¼ 1:032:

The attribute weights can be obtained as: w1 ¼
K1=

P4
i¼1 Ki ¼ 0:2677 ;w2 ¼ K2=

P4
i¼1 Ki ¼ 0:2361 ¼;w3

¼ K3=
P4

i¼1 Ki ¼ 0:2565;w4 ¼ K4=
P4

i¼1 Ki ¼ 0:2397.

Therefore, the weighted vector is w ¼
ð0:268; 0:236; 0:257; 0:24ÞT : Computing the score using
P4

j¼1 mðG0
i;AjÞ½nws

j þ wo
j ð1� nÞ�T ; i ¼ 1; 2; . . .; 5; we may

compute SðG0
iÞ; i ¼ 1; 2; . . .; 5, for diverse values of n, and

it is summarized briefly in Table 5 and Fig. 2.

Using the above results, we obtain the following order

of ranks of the alternatives G0
i; ði ¼ 1; 2; 3; 4; 5Þ.

For n ¼ 0:1: SðG0
3Þ 	 SðG0

4Þ 	 SðG0
5Þ 	 SðG0

2Þ 	
SðG0

1Þ: For n ¼ 0:2:SðG0
3Þ 	 SðG0

4Þ 	 SðG0
5Þ 	 SðG0

2Þ 	
SðG0

1Þ: For n ¼ 0:3:SðG0
3Þ 	 SðG0

4Þ 	 SðG0
5Þ 	 SðG0

2Þ 	
SðG0

1Þ: For n ¼ 0:4:SðG0
3Þ 	 SðG0

4Þ 	 SðG0
5Þ 	 SðG0

2Þ 	

Table 4 Values of Score function for various values of n

Different values G0
1 G0

2 G0
3 G0

4 G0
5

n ¼ 0:1 0.4740 0.4938 0.5917 0.5721 0.5509

n ¼ 0:2 0.4780 0.4976 0.5934 0.5642 0.5518

n ¼ 0:3 0.4820 0.5014 0.5951 0.5563 0.5527

n ¼ 0:4 0.4860 0.5052 0.5968 0.5484 0.5536

n ¼ 0:5 0.49 0.5090 0.5985 0.5405 0.5545

n ¼ 0:6 0.4940 0.5128 0.6002 0.5326 0.5554

n ¼ 0:7 0.4980 0.5166 0.6019 0.5247 0.5563

n ¼ 0:8 0.5020 0.5204 0.6036 0.5168 0.5572

n ¼ 0:9 0.5060 0.5242 0.6053 0.5089 0.5581

Fig. 1 Analysis of the coefficient n to the outcome of the alternative

Table 5 Values of Score function for diverse values

Different values G0
1 G0

2 G0
3 G0

4 G0
5

n ¼ 0:1 0.4709 0.4924 0.5903 0.5779 0.5467

n ¼ 0:2 0.4717 0.4948 0.5906 0.5757 0.5434

n ¼ 0:3 0.4726 0.4972 0.5909 0.5736 0.5401

n ¼ 0:4 0.4735 0.4996 0.5912 0.5714 0.5368

n ¼ 0:5 0.4743 0.5020 0.5915 0.5693 0.5335

n ¼ 0:6 0.4752 0.5044 0.5917 0.5671 0.5303

n ¼ 0:7 0.4761 0.5068 0.5920 0.5650 0.5270

n ¼ 0:8 0.4770 0.5092 0.5923 0.5628 0.5237

n ¼ 0:9 0.4778 0.5116 0.5926 0.5606 0.5204
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SðG0
1Þ: For n ¼ 0:5:SðG0

3Þ 	 SðG0
4Þ 	 SðG0

5Þ 	 SðG0
2Þ 	

SðG0
1Þ: For n ¼ 0:6:SðG0

3Þ 	 SðG0
4Þ 	 SðG0

5Þ 	 SðG0
2Þ 	

SðG0
1Þ: For n ¼ 0:7:SðG0

3Þ 	 SðG0
4Þ 	 SðG0

5Þ 	 SðG0
2Þ 	

SðG0
1Þ: For n ¼ 0:8:SðG0

3Þ 	 SðG0
4Þ 	 SðG0

5Þ 	 SðG0
2Þ 	

SðG0
1Þ: For n ¼ 0:9:SðG0

3Þ 	 SðG0
4Þ 	 SðG0

5Þ 	 SðG0
2Þ 	

SðG0
1Þ:
Table 5 and Fig. 2 display the score of the alternatives

calculated by the value of the coefficient n: From the on top

of discussion, it is easy to say that SðG0
3Þ is the most

suitable choice as sequence of preferences, that is, SðG0
3Þ is

the most suitable alternative. For comparative study, we

can also solve the same problem based on method Xia and

Xu (2012). The yielding vector is

w ¼ ð0:2577; 0:2161; 0:2765; 0:2497ÞT . The ranking out-

comes of all alternatives are

SðG0
3Þ 	 SðG0

4Þ 	 SðG0
5Þ 	 SðG0

2Þ 	 SðG0
1Þ. For further

comparison, the same example has been solved by using

the same method suggested by Singh et al. (2019); we got

the preferential sequence which is given by SðG0
3Þ 	

SðG0
4Þ 	 SðG0

5Þ 	 SðG0
2Þ 	 SðG0

1Þ with SðG0
3Þ being the

best alternative. Now, this is quite natural to know as the

result of which method is more accurate and reliable. From

the above methods, we can see that SðG0
3Þ is the best choice

for investment. Even though the ranking order acquired by

the proposed method is totally different from the method

acquired by Xia and Xu (2012) method. This distinction

has no impact on selecting the most effective company to

invest. In general, the solution of a multi-attribute problem

for decision-making only provides the best alternative and

the order of other alternatives is on the far side the final

word goal of an MADM problem.

This example shows that the proposed models for

solving multi-attributes problems for decision-making are

competent to obtaining cheap results. Compared with

methods (Xia and Xu 2012; Singh et al. 2019), proposed

optimal is more concise and less complicated, which will

scale back the computation burden. Thus, the superiority of

the new knowledge measure is confirmed over existing

knowledge measures.

A discussion on value of n : If we substitute the value

of n ¼ 0:1, i.e. decrease the importance of subjective

weights (ws
j ) and correspondingly increase the importance

of objective weights (wo
j ), the outcomes so acquired are

shown in Tables 4 and 5. If we give equal importance to

both objective and subjective weights, i.e. n ¼ 0:5, the

preference sequence obtained is SðG0
3Þ 	 SðG0

4Þ 	 SðG0
5Þ 	

SðG0
2Þ 	 SðG0

1Þ and SðG0
3Þ as the best alternative. On the

other side, if n ¼ 0:9, i.e. increase the importance of ws
j

rather than wo
j , the outputs so obtained are appeared in

Tables 4 and 5. The close examination of Tables 4 and 5

demonstrates that on shifting the preferences given to both

objective and subjective weights, the best alternative

always unaltered; however, the preference sequences of

alternatives may be changed.

7 Conclusions

In this paper, we have studied and introduced a new

knowledge measure in a fuzzy environment. The mathe-

matical properties of the proposed knowledge measure are

also discussed. Comparative study was presented to prove

the usefulness and feasibility of the developed knowledge

measure over the existing ones. Besides this, a fuzzy

accuracy measure based on the proposed knowledge mea-

sure is also developed and validated. Further, a new

method of decision-making problem is proposed in which

attribute weight vector is completely known and unknown.

To calculate the attribute weights, we have constructed a

programming model based on the developed knowledge

measure. Finally, an example has been considered to

demonstrate the validity and feasibility of the proposed

decision-making process. The advantages of the proposed

approach are the computation simplicity for fuzzy sets.

In future, the developed MADM model can be further

extended to IFSs, interval-valued intuitionistic fuzzy sets

and hesitant fuzzy sets. Apart from this, we can also apply

the applications of the developed accuracy measure in the

other realistic problems like as like social network analysis,

medical diagnosis, remote sensing, speech recognition and

so on.
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