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Abstract
This paper proposes an analysis of and a reflection on interval arithmetic (IA) and its extension to gradual interval

arithmetic (GIA). Through this reflection, an overview of a part of IA that is directly related to fuzzy interval arithmetic

(FIA) is analyzed, compared, and categorized according to two main families of IA: standard interval arithmetic (SIA) and

instantiated interval arithmetic (IIA). Furthermore, SIA and IIA visions represent two viewpoints of computation that are

different and they will cause modifications in interval interpretation and manipulation. This vision is essential in under-

standing the philosophy of IA and GIA computational mechanisms. The contribution of this paper is twofold. First,

according to SIA and IIA visions, an analysis and a classification of a part of IAs are given. Equivalences and links between

these IAs are analyzed and established. Second, an extension of IA to the gradual context is proposed. The GIA extension

provides a new interpretation of FIA according to the gradual representation.

Keywords Standard interval arithmetic (SIA) � Instantiated interval arithmetic (IIA) � Gradual intervals � Gradual interval
arithmetic (GIA) � Fuzzy interval arithmetic (FIA)

1 Introduction

Interval arithmetic (IA) represents an important tool for

granular computing and more specifically for fuzzy arith-

metic (FA) (Pedrycz et al. 2008). Dubois and Prade initi-

ated the formalization of analytical fuzzy operations

(Dubois and Prade 1980). They introduced the LR repre-

sentation to allow for a better expression of arithmetic

operations using fuzzy numbers (Dubois and Prade 1988).

In the fuzzy literature, arithmetic operations are extended

to the fuzzy context according to the extension principle.

However, it is known that the computation based on

Zadeh’s extension principle is expensive, because of the

necessity to solve a non-linear programming problem

(Dong and Wong 1987; Oussalah and DeSchutter 2003).

To overcome this difficulty, FA is often treated as IA using

the a-cuts principle (Kaufmann and Gupta 1991; Giachetti

and Young 1997; Bodjanova 2003; Moore and Lodwick

2003; Guerra and Stefanini 2005; Stefanini 2010).

Based on the fuzzy interval (FI) concept, several fuzzy

interval arithmetic (FIA) approaches have been proposed

(see Kaufmann and Gupta 1991; Giachetti and Young

1997; Bodjanova 2003; Guerra and Stefanini 2005; Ste-

fanini 2010; Chalco-Cano et al. 2014; Lodwick and Dubois

2015). See (Dubois et al. 2000) for a survey on FIs.

IA distinguishes between syntax and semantics. While

syntax focuses on variable expressions, semantics explores

the meaning and sense given to the intervals used to rep-

resent these variables. When considering an interval

expression, the computational result may sometimes be

different depending on the meaning given to the intervals

used. Generally, two main categories of IA methodologies

are considered in the literature:

• Standard interval arithmetic (SIA), which was devel-

oped by Sunaga, Warmus, and Moore (S–W–M)

(Warmus 1956; Sunaga 1958; Moore and Yang 1959;

Moore 1962, 1966). SIA has several advantages and it

allows rigorous enclosures for the ranges of operations

and functions. Furthermore, SIA makes a qualitative

difference in scientific computations, since the results

are intervals in which the exact result must lie.
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Mont Blanc USMB, Annecy-le-Vieux, 74944 Annecy Cedex,

France

123

Granular Computing (2021) 6:451–471
https://doi.org/10.1007/s41066-019-00208-z(0123456789().,-volV)(0123456789().,-volV)

http://orcid.org/0000-0002-0451-8945
http://crossmark.crossref.org/dialog/?doi=10.1007/s41066-019-00208-z&amp;domain=pdf
https://doi.org/10.1007/s41066-019-00208-z


However, the literature is unanimous about the problem

of overestimation in SIA (Neumaier 1990; Markov

2001; Hanss 2005; Chalco-Cano et al. 2014). Moreover,

it is well known that algebraic properties of SIA are

often insufficient, if one wants to address inverse

problems and solve interval equations: intervals do not

have inverses with respect to the addition and multi-

plication operations (Markov 1995, 2001). Various IA

extensions and hybridizations, which can be classified

within the SIA category, have been proposed to make

progress in SIA computing and allow, if they exist,

exact resolutions of interval equations. For instance, we

can mention the extended (generalized) IA of Kaucher

(EIA) (Kaucher 1973, 1980), the inner IA of Markov

(NIA) (Dimitrova et al. 2010; Markov 1977, 1979;

Popova and Markov 1997), the generalized Hukuhara

IA (GHIA) (Stefanini 2010) and the optimistic IA

(OIA) (Boukezzoula and Galichet 2010; Boukezzoula

et al. 2012, 2014).

• Instantiated interval arithmetic (IIA), which was pro-

posed by Lodwick and Dubois (2015) for making the

exact solving of interval equations possible. From a

methodological point of view, IIA is different from SIA

in the sense that IIA uses an instantiation of values

inside the interval. In this context, the computation with

these single instantiated values makes solving interval

equations possible. Moreover, since the computations

are based on instantiated single values, IIA possesses

additive and multiplicative inverses. Furthermore, sev-

eral promising arithmetics, such as constrained interval

arithmetic (CIA) (Lodwick 1999, 2007; Lodwick and

Jenkins 2013; Lodwick and Dubois 2015) and single

constrained interval arithmetic (SCIA) (Chalco-Cano

et al. 2014), can be classified in this IA category.

Although we use the same notation and basic operations

on intervals both for SIA and IIA, the two visions are

philosophically different and will cause modifications in

the interpretation and manipulation of the interval. They do

not give the same result, especially in the context of

dependent variables and/or in the presence of multiple

copies of the same variable. However, if the intervals

involved are independent, the two visions produce equiv-

alent results.

A conventional interval can be considered as a particular

FI whose membership function takes the value 1, when a is

in the interval and 0 elsewhere. When the bounds of an

interval are flexible and represent a gradual transition over

the interval, they can be represented by gradual numbers

(GN) (Dubois and Prade 2008; Fortin et al. 2008;

Boukezzoula et al. 2012, 2014). A GN is modeled by a

function from (0, 1] to <. It is a real-valued number

parameterized by a degree of relevance and/or likelihood k

[ (0, 1]. An interval [a-, a?] becomes a gradual interval

(GI) [a-(k), a?(k)], when its boundaries are GN (Dubois

and Prade 2008; Fortin et al. 2008; Boukezzoula et al.

2012, 2014). Analogous to a conventional interval, a GI is

represented by the ordered pair of its two boundaries a-(k)
and a?(k), called left and right profiles, respectively. The

GI concept provides a new interpretation of FIA, called

gradual interval arithmetic (GIA), based on the assignment

function used to represent the gradualness of numbers.

Conversely, the GI [a-(k), a?(k)] can be interpreted as an

FI, if its profiles a-(k) and a?(k) are injective and,

respectively, non-decreasing and non-increasing. While an

FI may be a particular GI, the opposite is false in so far as

no monotonicity constraint is associated with the GI

bounds (Fortin et al. 2008; Untiedt and Lodwick 2008;

Boukezzoula et al. 2014). The concept of GI is much more

general than that of FI. More details on GIs and their

relationships with FIs are given in (Dubois and Prade 2008;

Fortin et al. 2008; Boukezzoula et al. 2012). However,

some FIAs can lead to non-monotonic GIs that are not

fuzzy subsets and cannot be represented by FIs, since the

interval boundaries are not monotonic (Fortin et al. 2008;

Untiedt and Lodwick 2008; Boukezzoula et al. 2012). This

finding is consistent with the criticisms detailed in notes

published recently (see Allahviranloo et al. 2011; Gomes

and Barros 2015). While based on GIA, these results are

not controversial although they may be counterintuitive in

FIA. Indeed, in the gradual context, no monotonicity

constraint is imposed on the interval profiles. Furthermore,

the gradual philosophy gives a new breath to these works

and their scientific validity.

In our opinion, a thorough analysis and positioning of

FIA and GIA in relation to SIA and IIA visions is benefi-

cial. This analysis will improve the relevance and meaning

of these arithmetic aspects, and thus avoid misinterpreta-

tions leading to impracticable considerations in practical

applications. To provide an overview of the work that is

presented here and to explain the reasoning behind our

approach, we will begin by detailing the motivation for the

proposed approach. The developments that are inherent to

our method will be detailed in the next sections. This paper

has two main motivations. The first one is to survey, ana-

lyze, and classify according to SIA and IIA visions, a part

of IA that is directly related to FIA. Currently, it is not easy

to choose an appropriate version of IA, because its

numerous versions have been proposed. In this context,

comparisons, equivalences, and links between these ver-

sions of IA are analyzed and established. The second

motivation is to propose an extension of IA to the gradual

context. To achieve this objective, a new alternative of FIA

is developed. This representation is based on the use of

GIs. Through the notion of GIs, a revision and new inter-

pretation of FIA named GIA is made.
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In this paper, we focus only on the elementary arith-

metic operations {?, -, 9, 7}. These operations are of

course a basis for more complicated problems of IA.

Therefore, they are very important. If the elementary

operations are formulated incorrectly, then using them for

solving problems can sometimes lead to controversial

results (Piegat and Landowski 2017). Moreover, special

attention is paid to the inverse operators of addition and

multiplication, i.e., subtraction and division. The paper is

organized as follows. In Sect. 2, preliminaries about

interval representation and notations are given. A quick

overview of some SIA and IIA approaches is discussed in

Sect. 3. Sections 4 and 5 are devoted to SIA and IIA

methodologies and their extensions, respectively. The

extension of IA to the gradual framework is detailed in

Sect. 6. Illustrative examples are provided in Sect. 7.

Concluding remarks are given in Sect. 8.

2 Preliminaries: interval representation
and notations

A real interval, denoted [a], is defined as a closed, compact,

and bounded subset of <, such that:

a½ � ¼ a�; aþ½ � ¼ fa 2 <ja� � a� aþg; where a� � aþ:

ð1Þ

The real numbers a- = inf([a]) and a? = sup([a]) are

considered as the endpoints (the lower and upper bounds)

of the interval [a]. In this notation, a refers to any element

in the interval [a].

The real interval [a] can be characterized by its end-

points (EP) a- and a?, or by its midpoint M and radius R,

i.e., M([a]) = (a- ? a?)/2 and R([a]) = (a? - a-)/2. The

EP notation is the most used in the literature. Furthermore,

the interval [a] can also be represented by the pair (M([a]),

R([a])) in the MR space. Compared to the EP representa-

tion, the MR one highlights the central position of the

interval and its width (radius). The MR and EP notations

are strictly equivalent. The relation between them is

obvious, i.e., a- = M([a]) - R([a]) and a? = M([a]) ?

R([a]).

Throughout this paper, the set Iþ ¼
a�; aþ½ � a� � aþ; a�; aþ 2 <jf g denotes the set of proper

intervals and I� ¼ a�; aþ½ � a� [ aþ; a�; aþ 2 <jf g
denotes the set of improper intervals. Proper intervals have

a positive radius, whereas improper ones have a negative

one.

In the sequel, two basic functions largely exploited in

the literature are used to perform IA operations:

• The Chi (v) function, initially introduced by Ratschek

(Ratschek and Rokne 1995; Kulpa 2001), and defined

by:

vð½a�Þ ¼
� 1 : if a� ¼ aþ

aþ � a� : if ja�j� jaþj
a� � aþ : if ja�j� jaþj

8
><

>:
: ð2Þ

If a- = 0 or a? = 0, then v([a]) = 0. The Chi (v)
function is always defined, i.e., - 1 B v([a]) B 1.

• The relative-extent function (rex) (Kulpa 2001), defined

by:

rexð½a�Þ ¼ Rð½a�Þ=Mð½a�Þ: ð3Þ

If M([a]) = 0, it is assumed that the value of rex

equals ± !.

When considering two intervals [a] = [a-, a?] and

[b] = [b-, b?], the four standard arithmetic operations both

for SIA and IIA are defined by the following expression

(Warmus 1956; Sunaga 1958; Moore and Yang 1959;

Moore 1962, 1966; Lodwick 1999; Lodwick and Jenkins

2013; Lodwick and Dubois 2015; Piegat and Landowski

2017):

½a� � ½b� ¼ min
a2½a�; b2½b�

a� b; max
a2½a�; b2½b�

a� b

� �

; for �

2 fþ;�;	;�g: ð4Þ

Furthermore, and as discussed in the paper introduction,

if the handled intervals are considered to be strictly inde-

pendent, SIA and IIA produce exactly the same results.

3 Quick overview of some SIA and IIA
approaches

In the literature, many IA approaches exist. These are listed

below with a brief analysis of their belonging and classi-

fication within SIA and IIA frameworks. Our aim here is

not to compare the performance of these IA approaches,

but to extract their most suitable essence and philosophy.

We believe that each IA approach has its own interest,

strength, and weakness. The essential question is not to

know, in absolute terms, the best approach, but rather to

determine which IA best suits a particular situation.

Historically, the first modern drafts of interval repre-

sentation appeared in the 1920s and 1930s in England

through works published by Burkill (1924) and Young

(1931), in the 1950s in Japan through Sunaga’s publica-

tions (Sunaga 1958), and in Poland thanks to the work of

Warmus (1956). Furthermore, IA has been experiencing a

real expansion of development following Moore’s thesis in

the USA (Moore and Yang 1959; Moore 1962) and the

publication of his book, Interval analysis (Moore 1966).
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As reported by Moore (1966), the initial philosophy

behind SIA was to bind rounding errors (controlling errors)

in mathematical computations, in which most real numbers

cannot be represented by a finite precision floating-point

number. Furthermore, SIA is an arithmetic defined on sets

of real intervals, rather than sets of real numbers. SIA

specifies a precise method for performing arithmetic

operations on closed intervals (interval numbers). In SIA,

each interval number represents some fixed real number

between endpoints of the closed interval. Thus, an SIA

operation produces two endpoints for each result. In this

context, the true result certainly lies within these endpoints.

According to this vision, SIA does not instantiate a single

value in the interval, but considers all of its possible values.

In fact, the SIA computations are only based on the

intervals’ endpoints, where the independence property

between intervals is assumed. For instance, when consid-

ering a real interval, such as [a] = [1, 2], then the basic

operation [a] - [a] = [- 1, ?1], which is not zero . The

reason behind this assumption is that the two occurrences

of the interval [1, 2] are not necessarily dependent, e.g.,

[a] = [1, 2] and [b] = [1, 2]. Indeed, [a] and [b] can be two

independent variables that just happen to have the same

interval endpoints. Thus, in this case, SIA does not dis-

tinguish [a] - [a] from [a] - [b]. Because SIA guarantees

containing the set of all possible results, the pessimistic

independence property between the intervals is implicitly

assumed (Lodwick and Dubois 2015). More generally,

while being based on SIA, some results such as

[a] - [a] = 0 and [a] 7 [a] = 1 are not controversial

although counterintuitive. Furthermore, the [x] ‘‘exact’’

solution of the linear interval equation [a] ? [x] = [b] is

not, as we would expect, [x] = [b] - [a]. The same

drawback appears when solving the interval equation

[a] 9 [x] = [b], whose exact solution is not given by

[x] = [b] 7 [a] as expected. Indeed, using SIA, it can be

easily stated that substituting the solution [x] gives a more

imprecise result than the original [b]. At best, [x] ( [b],

which means that the desired equality is generally not

achieved. This problem is related to the lack of inverses in

the calculus of interval quantities. In this context, it is well

known that algebraic properties of SIA are not sufficient

for addressing inverse problems, where the inverses of the

addition and the multiplication operations do not exist

(Markov 1995, 2001).

Since the pioneering works of S–W–M, research on IA

has expanded considerably. Various IA extensions and

hybridizations have been proposed for overcoming the SIA

deficiencies, more particularly the absence of inverses,

which is directly correlated to the interval equation solving

problem. In this framework, SIA has been extended in the

following two main directions:

• Extension of the set of proper intervals by improper

intervals, which involves an extension of the definition

of IA for extended (generalized) intervals (proper and

improper intervals) (Kaucher 1973, 1980; Markov

1995, 1997; Costa et al. 2015). The corresponding

extended interval arithmetic (EIA) structure was ini-

tially proposed by Ortolf (1969) and Kaucher (Kaucher

1973, 1980), and further investigated by Gardenes

(Gardenes and Trepat 1980; Gardenes et al. 1986),

Markov (1995, 1997) and others (Popova 2001). A

rigorous and complete EIA algebraic study was made in

Kaucher’s work (1973, 1980). EIA coincides with SIA

when only proper intervals are considered. Moreover,

extended intervals based on EIA form a group, whereas

SIA using proper intervals form a semigroup without

invertibility (Markov 1995, 2001).

• Extension of the set of operations in IA on proper

intervals by non-standard (inner) operations. The cor-

responding non-standard interval arithmetic (NIA)

structure was initially proposed by Markov and inves-

tigated later by Markov, Dimitrova, Popova, and others

(Markov 1977, 1979; Popova and Markov 1997;

Dimitrova et al. 2010). Markov’s first idea was to

propose an alternative to IA in which addition and

multiplication have inverse elements, while remaining

in the set of proper intervals. The inner (non-standard)

denomination is used as opposed to SIAs, considered as

outer operations due to their overestimation property.

In the literature, other SIA alternatives have been pro-

posed. They are often based on one or both of the above-

mentioned directions. For instance, generalized Hukuhara

IA (GHIA) (Stefanini 2010) and optimistic IA (OIA)

(Boukezzoula and Galichet 2010; Boukezzoula et al.

2012, 2014) can be mentioned.

Recently, to make the exact resolution of interval

equations possible, an alternative vision of SIA has been

proposed (Lodwick and Dubois 2015). This new vision is

based on the instantiation concept and gave birth to the

instantiated IA (IIA) philosophy. From a conceptual point

of view, IIA uses an instantiation of values inside the

interval. In this context, the computation with these single

instantiated values makes solving interval equations pos-

sible. Moreover, knowing that the computations are based

on instantiated single values, IIA possesses additive and

multiplicative inverses. Unlike SIA, IIA can capture the

difference between dependent intervals (for example,

multiple copies of the same intervals) and independent

ones. Generally, IIA is an optimization problem, some-

times difficult to solve. One of the most pertinent

methodologies that facilitates the implementation of IIA is

undoubtedly the CIA proposed in the pioneering work of

Lodwick et al. (Lodwick 1999; Lodwick and Jenkins 2013;
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Lodwick and Dubois 2015). The set of constrained inter-

vals belongs to a mathematical space that is richer in

properties than the algebraic space of the intervals used in

SIA.

The philosophy of CIA is to redefine an interval in such

way that dependencies between variables are kept (Lod-

wick 1999; Lodwick and Jenkins 2013). This principle

consists of transforming an interval [a] into a constrained

interval, which is viewed as a mapping from [0, 1] to

polynomials of degree one (linear functions) with non-

negative slopes. That is, a constrained interval merely

transforms a [ [a] into a = f (xa) = a- ? xa (a
? - a-) for

some xa [ [0, 1]. In other words, the constrained interval is

represented by the function f (xa) with 0 B xa B 1. If

strong constraints are imposed on the intervals, i.e., the

values are constrained by identical positions in their

intervals, then CIA is transformed into single-level con-

strained interval arithmetic (SCIA), proposed by Chalco-

Cano et al. (2014). The SCIA presupposes strong depen-

dence between the manipulated variables; this condition is

sometimes difficult to meet in real applications.

In a different register, Piegat and Landowski (2017)

have developed another interesting vision of IIA, named

multidimensional RDM-IA. However, while CIA and

RDM-IA use similar instantiated notation, their philoso-

phies and final results are different. The main difference

resides in the fact that RDM-IA is based not on intervals,

but on models of precise variable values (Piegat and

Landowski 2017). In this case, the result obtained is also a

model of precise variable values and not an interval. This

approach, although very interesting, departs from the

conventional IA context and is not considered in this paper.

Another vision of IIA was developed by Klir (Klir 1997;

Klir and Pan 1998). His idea consists of taking into account

relevant constraints among the operands involved. In this

framework, the IA integrates not only the information

contained in the operands, but also the additional infor-

mation that may emanate from their meaning or from some

external information about them. This additional informa-

tion is considered to be a set of constraints. For instance, if

an equality relation between two operands exists, it is

viewed as an equality constraint. This arithmetic, defined

for fuzzy intervals according to the a-cut principle, is

known as requisite constraints interval arithmetic (RCIA)

(Klir 1997; Klir and Pan 1998). To avoid overestimation

due to the occurrence of interactive variables, the equality

constraint is the most frequently applied constraint in

RCIA. In addition, various inequality constraints can be

used (Klir 1997; Klir and Pan 1998). Furthermore, if the

equality constraint is used, RCIA and CIA are equivalent,

although their formalisms are different.

Klir’s arithmetic is generally insufficient since it

depends on rules and does not encode correlation and/or

interactivity between FIs into the representation. Another

way to remedy this problem and to obtain arithmetic is

from the ‘‘distributions’’ of membership functions of the

FIs involved (similar to what is done for arithmetic of

random variables) (Cabral and Barros 2015; Barros and

Pedro 2017). This philosophy leads to interactive fuzzy

arithmetic. In this framework, the notion of interactivity

between FIs is described by a joint possibility distribution

(according to chosen t-norms) (Fuller and Majlender 2004;

Carlsson and Fuller 2005; Esmi et al. 2019). In interactive

arithmetic, the operations are defined such that the inter-

activity relation between FIs (fuzzy numbers) is given by

their joint possibility distribution (Esmi et al. 2019). For

instance, based on interactive operations, differentiability

and integrability are investigated and compared to Huku-

hara differentiability and generalized Hukuhara differen-

tiability (Barros and Pedro 2017; Cabral and Barros 2015).

The motivation of this paper is to approach operations

for FIs and/or GIs from operations on CIs (extension of IA

to FIA and/or GIA). The interactive arithmetic, which

represents a very interesting and promising approach, is not

based on this principle and explores another vision based

on the extension principle with the use of joint possibility

distributions of the manipulated FIs. This joint possibility

distribution is often regarded as a measure of interactivity

between the FIs. This difference of principles compared to

the majority of the IA methods presented in this paper led

us to exclude this approach in this work. In the paper

sequel, IA methodologies are analyzed and classified. The

IA alternatives relating to the SIA and IIA categories are

thereby detailed in the two different forthcoming sections.

4 Standard interval arithmetic (SIA):
extensions and hybridizations

In this section, an analysis of SIA and its extensions

mentioned previously is given. To facilitate reading, the

notations given in Table 1 are used for an operator

� 2 fþ;�;	;�g:

4.1 Standard interval arithmetic (SIA)

The four elementary SIA operations between two intervals

[a] and [b] are defined by Eq. (4). More specifically,

Markov et al. (Markov 1995; Popova and Markov 1997)

proposed the following elegant algebraic formulations of

SIA:

• Standard addition: 8½a�; ½b� 2 Iþ; ½a� þ ½b� ¼
½a� þ b�; aþ þ bþ�:

• Standard subtraction: 8½a�; ½b� 2 Iþ; ½a� � ½b� ¼ ½a�
�bþ; aþ � b��:
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• Standard multiplication: 8½a�; ½b� 2 Iþ :

½a� 	 ½b�

¼

½a�rð½b�Þ 	 b�rð½a�Þ; arð½b�Þ 	 brð½a�Þ� ; for ½a�; ½b� 2 IþnZþ

½arð½a�Þ 	 b�rð½a�Þ; arð½a�Þ 	 brð½a�Þ� ; for ½a� 2 IþnZþ; ½b� 2 Zþ

½a�rð½b�Þ 	 brð½b�Þ; arð½b�Þ 	 brð½b�Þ� ; for ½a� 2 Zþ; ½b� 2 IþnZþ

½minfa� 	 b�; aþ 	 b�g;maxða� 	 b�; aþ 	 bþÞ�; for ½a�; ½b� 2 Zþ

8
>>>>>><

>>>>>>:

ð5Þ

In Eq. (5), Zþ represents the subset of intervals (in Iþ)
containing zero in their interior and rð½a�Þ is the sign

function defined by:

rð½a�Þ ¼ þ ; if a� � 0 and rð½a�Þ ¼ �; if aþ\0:

• Standard division: 8½a� 2 Iþ; 8½b� 2 IþnZþ :

½a� � ½b� ¼ ½a� 	 ð1� ½b�Þ

¼
½a�rð½b�Þ � brð½a�Þ; arð½b�Þ � b�rð½a�Þ� ; ½a�; ½b� 2 IþnZþ

½a�rð½b�Þ � b�rð½b�Þ; arð½b�Þ � b�rð½b�Þ� ; ½a� 2 Zþ; ½b� 2 IþnZþ

8
<

:
:

ð6Þ

According to SIA, it can be stated that

[a] ? ([a] - [b]) = [a] and [b] 9([a] 7 [b]) =[a]. Fur-

thermore, and as discussed previously, [a] - [a] =0 and

[a] 7 [a] =1. Moreover, SIA cannot distinguish between

the quantities [a] - [b] (resp. [a] 7 [b]) even when the

intervals [a] and [b] are the same. This phenomenon is

because when using SIA, all intervals are viewed as inde-

pendent. Furthermore, algebraic properties of SIA in ? are

often insufficient for solving inverse problems (Markov

1995, 2001; Lodwick and Dubois 2015). The incomplete-

ness of that algebraic structure stimulated attempts to

create a more convenient IA extension based on ?.

4.2 Extended (generalized) interval arithmetic
(EIA)

One of the most successful extensions of SIA is EIA. The

latter is based on the concept of extended intervals (Kau-

cher 1973, 1980; Popova 2001). Extended intervals are

intervals whose bounds are not constrained to be ordered.

The main idea of EIA is to complete the set Iþ of proper

intervals by the set I� of improper intervals, and the SIA is

extended correspondingly. Indeed, knowing that the sub-

systems ðIþ;þÞ and ðIþ;	Þ are only monoids (Markov

2001), the reciprocal operations for ? and 9 do not exist

and the equation [a] ? [x] = [b] or [a] 9 [x] = [b] does

not always have an ‘‘exact’’ solution in Iþ. The same

problem appears when solving the equation a ? x = b in

<?, i.e., there is no solution in <? for a[ b. To make

a ? x = b always solvable for real numbers, it is primor-

dial to extend the set <? by adding the set <-. It amounts

to solving the equation a ? x = b in < = <? [ <-. Con-

sidering the algebraic construction, the group (<, ?) is

built by embedding the monoid (<?, ?). By analogy,

similar to <? being completed with <- to form <, the set

of proper intervals Iþ is completed with the set of improper

intervals I� to form the set of extended intervals I;, i.e.,

I ¼ I� [ Iþ = {[a-, a?] | a-, a? [ <}.
In the context of EIA, the operator pro (proper projec-

tion), which returns a proper interval, is defined by: Va[,
pro (a) = pro ([a-, a?]) = [min{a-, a?}, max{a-, a?}].

The relationship between proper and improper interval is

established by an operator dual defined by:

8 a½ � 2 I; dual a½ �ð Þ ¼ dual a�; aþ½ �ð Þ ¼ aþ; a�½ �

EIA provides richer semantics than SIA, because it is

possible to define the inverse operations of addition and

multiplication (Markov 1995). However, though EIA is

useful for solving inverse problems, the results can some-

times be improper intervals, which are not usable in

practical applications. In such applications, it is important

to find conditions that guarantee that the result belongs to

Iþ. The SIA is extended to I in (Kaucher 1973, 1980;

Markov 1995; Popova 2001); only extended subtraction

and division operators are presented in this section (see

Markov 1977, 1979; Popova and Markov 1997 for more

details).

• Extended subtraction: this operator is defined as

follows:

8 a½ � 2 I; 8 b½ � 2 I; a½ � �E b½ � ¼ a� � b�; aþ � bþ½ �: ð7Þ

From Eq. (7), we have [a] -E [a] = 0 and [a] -E-

[b] ( [a] - [b]. It can also be proven (Markov

1979, 1997; Popova and Markov 1997) that:

½a� �E ½b� 2
Iþ : if Rð½a�Þ �Rð½b�Þ
I� : if Rð½a�Þ

(

:

Table 1 Notations for SIA and

its extensions
SIA and its extensions denotations Acronym Index of the operator �

Standard interval arithmetic SIA No index

Extended (generalized) interval arithmetic EIA E

Non-standard (inner) interval arithmetic NIA N

Generalized Hukuhara interval arithmetic GHIA G

Optimistic interval arithmetic OIA O
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• Extended division: the division of [a] by [b] is defined

as follows:

8½a� 2 I; 8½b� 2 InZ :

½a� �E ½b�

¼
½a�rð½b�Þ � b�rð½a�Þ; arð½b�Þ � brð½a�Þ� ; for ½a�; ½b� 2 InZ

½a�rð½b�Þ � brð½b�Þ; arð½b�Þ � brð½b�Þ� ; for ½a� 2 Z; ½b� 2 InZ

8
<

:

ð8Þ

In Eq. (8), Z represents the subset of intervals (in I)

containing zero in their interior. It can be seen from Eq. (8)

that [a] 7E [a] = 1. Furthermore, [a]7E [b] ( [a]7 [b].

The quantity [c]= [a] 7E [b] [ Iþ if R([c]) C 0. It can be

proved that R([c]) C 0, when v([b]) C v([a]) (Markov

1995); otherwise, [a] 7E [b] [I�, i.e.,

½a� �E�; ½b�2
Iþ : if vð½b�Þ � vð½a�Þ
I� : if vð½b�Þ\vð½a�Þ

(

;

where v is the Chi function defined by Eq. (2). More

properties of extended the subtraction and division opera-

tors are given in (Markov 1995).

4.3 Non-standard (inner) interval arithmetic
(NIA)

Markov’s work, initially proposed in (Markov 1977), is one

of the pertinent responses to the problem of the absence of

inverses in SIA. He proposed an extension of SIA by

introducing the so-called NIA. In this section, subtraction

and division operators are discussed. Addition and multi-

plication operations are those used in SIA. More details

concerning inner operations can be found in (Markov

1977, 1979; Dimitrova et al. 2010; Popova and Markov

1997).

• Non-standard subtraction: the subtraction operator of

Markov, denoted -N, is defined by:

8 a½ �; b½ � 2 Iþ : ½a� �N ½b�

¼
½a� � b�; aþ � bþ� ; if Rð½a�Þ �Rð½b�Þ

½aþ � bþ; a� � b�� ; if Rð½a�Þ \Rð½b�Þ

(
: ð9Þ

The operator -N can be rewritten as follows:

½a� �N ½b� ¼ ½minfa� � b�; aþ � bþg; maxfa� � b�; aþ

� bþg�:

In general, [a] -N [b] =[a] - [b]. Indeed, [a] -N

[b] =[a] - [b] iff R([a]).R([b]) = 0. By analyzing Eq. (9),

it leads to:

½a� �N ½b�

¼
½a� � b�; aþ � bþ� ¼ ½a� �E ½b�; if Rð½a�Þ �Rð½b�Þ

½aþ � bþ; a� � b�� ¼ dualð½a� �E ½b�Þ ; if Rð½a�Þ\Rð½b�Þ

(

ð10Þ

According to Eq. (10), if R([a]) C R([b]) then -E

and -N are equivalent and the resulting intervals in Iþ: In
contrast, when R([a])\R([b]), the operator -E gives an

improper interval. To remedy this situation, the dual of this

improper interval is taken in the definition of the opera-

tor -N. Furthermore, the operator -N is a proper projec-

tion of -E, i.e.,

8 a½ �; b½ � 2 Iþ : ½a� �N ½b� ¼ proð½a� �E ½b�Þ 
 ½a� � ½b�:
ð11Þ

According to Eq. (11), [a] -N [a] = 0 and [a] -N

[b] = -N ([b] -N [a]). Generally, [a] ?[b]= [c] implies

that [a]= [c] -N [b] and [b]= [c] -N [a]. Moreover,

([a] -N [b]) ? [b] = [a] only if R([a]) C R([b]). Other-

wise, ([a] -N [b]) ? [b] = [a]. Furthermore, [a] -N

[b] ( [a] - [b].

• Non-standard division: the inner division operator 7N

is defined by:

½a� �N ½b�

¼
for ½a�; ½b� 2 IþnZþ :

½a�rð½b�Þ � b�rð½a�Þ; arð½b�Þ � brð½a�Þ� ; if vð½b�Þ� vð½a�Þ

½arð½b�Þ � brð½a�Þ; a�rð½b�Þ � b�rð½a�Þ� ; if vð½b�Þ\vð½a�Þ

8
<

:
:

for ½a� 2 Zþ; ½b� 2 IþnZþ : ½a�rð½b�Þ � brð½b�Þ; arð½b�Þ � brð½b�Þ�

8
>>><

>>>:

ð12Þ

If v([b]) C v([a]), then the operators 7E and 7N are

equivalent and the interval obtained is in Iþ. In contrast, if

v([b])\ v([a]), 7E gives an improper interval. In this

case, the operator 7N transforms this improper interval

into a proper one using the dual. Thus, 7N is a proper

projection of 7E, i.e.,

½a��N ½b� = proð½a��E½b�Þ

¼
for ½a�; ½b� 2 IþnZþ :

½a��E½b�; if vð½b�Þ � vð½a�Þ

dualð½a��E½b�Þ; if vð½b�Þ \vð½a�Þ

8
<

:

for ½a� 2 Zþ; ½b� 2 IþnZþ : ½a� �E ½b� ;

8
>>><

>>>:

:

ð13Þ

According to Eq. (13), if 0 62 [a], then ([a] 7N [a]) = 1.

In general, [a] 9 [b]= [c] implies that [a]= [c] 7N [b] and

[b] = [c] 7N [a]. However, the equation ([a] 9 [b]) 7N

[b] = [a] is valid only if v([b]) C v([a]). Otherwise,

([a] 9 [b]) 7N [b] = [a]. Furthermore, in all circum-

stances [a] 7N [b] ( [a] 7 [b].
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4.4 Generalized Hukuhara interval arithmetic:
GHIA

Hukuhara proposed a difference between convex sets

(Hukuhara 1967), known as the Hukuhara difference (HD)

and denoted -H. It can be translated into intervals and

leads to the following expression (Dimitrova et al. 2010;

Stefanini 2010):

8 a½ �; b½ � 2 Iþ : ½a� �H ½b�

¼
½a� � b�; aþ � bþ�; if Rð½a�Þ �Rð½b�Þ

Not defined ; if Rð½a�Þ\Rð½b�Þ

(
ð14Þ

The existence condition of -H is imposed by the fact

that [a] -H [b] must be proper ð2 IþÞ; i.e., R([a]) C R([b])

(Dimitrova et al. 2010). If this condition is not satisfied,

then [a] -H [b] is not defined. This problem has found a

solution thanks to Stefanini’s works, in which a generalized

HD is proposed (Stefanini 2010).

• Generalized Hukuhara subtraction: the generalized HD

(Stefanini 2010), denoted -G, is defined by:

8 a½ �; b½ � 2 Iþ : ½a� �G ½b�

¼ ½c�; with :
a� ¼ b� þ c�

aþ ¼ bþ þ cþ

(

ðiÞ or
b� ¼ a� � cþ

bþ ¼ aþ � c�

(

ðiiÞ:

ð15Þ

The difference [a] -G [b] in Eq. (15) can be rewritten

as:

½a� �G ½b� ¼
½a� � b�; aþ � bþ� ; if Rð½a�Þ �Rð½b�Þ : situation (i)

½aþ � bþ; a� � b�� ; if Rð½a�Þ\Rð½b�Þ : situation ðiiÞ

(

:

ð16Þ

According to Eqs. (9) and (16), the equivalence between

GHIA and NIA subtraction is established, i.e.,

½a� �G ½b� ¼ ½a� �N ½b� ¼ proð½a� �E ½b�Þ 
 ½a� � ½b�:
ð17Þ

• Generalized Hukuhara division: using the same phi-

losophy as in the generalized HD, the following gen-

eralized division operator 7G is defined by Stefanini

(2010):

8 ½a� 2 Iþ; 8 ½b� 2 IþnZþ : ½a� �G ½b�

¼ ½c�; with:
(i) : ½a� ¼ ½b� 	 ½c� or
(ii) : ½b� ¼ ½a� 	 ½c��1

(

: ð18Þ

Six cases were analyzed by Stefanini (2010) with

respect to Eq. (18) and the sign of the intervals [a] and [b].

A new formulation is given here using the Chi function

(see Table 2). It can be observed that situation (ii) consists

of taking the dual of the interval in situation (i) when that

interval is improper. The aggregation of the six cases in

Table 2 gives the non-standard division operator.

In this case, the operator 7G is equivalent to the oper-

ator 7N, i.e.,

½a� �G ½b� ¼ ½a� �N ½b� ¼ proð½a� �E ½b�Þ 
 ½a� � ½b�:
ð19Þ

The remarks given for NIA remain valid here for GHIA.

4.5 Optimistic interval arithmetic (OIA)

The philosophy of OIA (Boukezzoula and Galichet 2010;

Boukezzoula et al. 2012, 2014) is based on the restriction of

EIA to Iþ. EIA is exploitedwhen it provides proper intervals;

otherwise, OIA uses SIA. In this context, instead of using a

proper projection as in theGHIA andNIAmethodologies, an

SIA vision is exploited to override the presence of improper

intervals. OIA is developed in the midpoint-radius space

(Kulpa 2001), but can be used naturally in the EP one. More

details concerning SIA andOIA in theMR space are given in

(Kulpa 2001; Boukezzoula and Galichet 2010; Boukezzoula

et al. 2012, 2014). The optimistic subtraction and division

operations are defined as follows:

• Optimistic subtraction: this operator is defined by:

8 a½ �; b½ � 2 Iþ

: ½a� �O ½b� =
½a� �E ½b� ; if Rð½a�Þ �Rð½b�Þ
½a� � ½b� ; if Rð½a�Þ\Rð½b�Þ

(

ð20Þ

As with EIA, the quantity [a] -O [b] [ Iþ iff R([a])

C R([b]). In this situation, the properties of EIA are pre-

served. In the optimistic vision, this condition is interpreted

as follows: one cannot subtract from an imprecise quantity

another more imprecise quantity without the risk of

increasing the imprecision of the operation’s result. If this

principle is violated, the operation leads to an improper

interval (in I�). In this situation, to avoid improper inter-

vals, we must turn to SIA.

• Optimistic division: the division operator is defined as

follows:

8 a½ � 2 Iþ; 8 b½ � 2 IþnZþ :

½a� �O ½b� ¼

for ½a�; ½b� 2 IþnZþ :
½a� �E ½b�; if jrexð½b�Þj � jrexð½a�Þj

½a� � ½b�; if jrexð½b�Þj\ jrexð½a�Þj

8
<

:
;

for ½a� 2 Zþ; ½b� 2 IþnZþ : ½a� �E ½b� ;

8
>>><

>>>:

ð21Þ

In Eq. (21), rex denotes the relative-extent function

defined by Eq. (3).
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It was proven in (Boukezzoula and Galichet 2010;

Boukezzoula et al. 2012, 2014) that [a] 7O [b] [ Iþ if

|rex([b])| C |rex([a])| and the EIA properties remain vali-

dated. This condition is strictly equivalent to the condition

v([b]) C v([a]) used in EIA and NIA. In an optimistic

context, this condition can be interpreted as follows: one

cannot divide an imprecise quantity by another more

imprecise one (in the sense of relative extent) without the

risk of increasing the imprecision of the operation’s result.

If this principle is not respected, the operation leads to an

improper interval (in I�). In this case, to avoid improper

intervals, SIA division is used.

5 Instantiated interval arithmetic (IIA):
extensions and hybridizations

An analysis of the IIA methodologies mentioned previ-

ously is detailed below. For ease of reading, the notations

given in Table 3 are used for an operator

� 2 fþ;�;	;�g.

5.1 Instantiated interval arithmetic (IIA)

As explained by Lodwick and Dubois (2015), the IIA

approach is the initial vision proposed by the pioneers of

IA (S–W–M) before its translation to the well-known SIA,

where the independence property was assumed. IIA is

defined on and restricted to Iþ. In this context, the four

standard arithmetic operations for two intervals are the

same as those given as follows, i.e.,

½a� �I ½b� ¼ min
a2½a�; b2½b�

a� b; max
a2½a�; b2½b�

a� b

� �

; for �

2 fþ;�;	;�g: ð22Þ

However, IIA uses the instantiated concept and does not

impose independence. Unlike SIA, when the intervals are

assumed to be dependent (copy of the same variable), IIA

provides the following result:

8 a½ � 2 Iþ; ½a� �I ½a� ¼ ½a� a� ¼ ½0; 0� ¼ 0 6¼ ½a� � ½a� and
8 a½ � 2 IþnZþ; ½a� �I ½a� ¼ ½a� a� ¼ ½1; 1� ¼ 1 6¼ ½a� � ½a�

In contrast, where the handled intervals are assumed to

be independent, it yields:

a½ � �I b½ � ¼ a½ � � b½ �; for � 2 þ;�;	;�f g:

In other words, when the intervals [a] and [b] are con-

sidered to be independent, IIA is strictly equivalent to SIA

(Lodwick and Dubois 2015). Contrasting to SIA, when the

intervals [a] and [b] are the same, IIA provides different

results [a] -I [b] (resp. [a] 7I [b]) regardless of whether

the intervals are associated with dependent (for example,

multiple copies of the same interval) or independent vari-

ables. It can be seen that in IIA, [b] ? I ([a] –I [b]) =

[a] and [b] 9 I ([a] 7I [b]) = [a]. Moreover, [a]–I [a] = 0

and [a] 7I [a] = 1. Furthermore, unlike in SIA, IIA has

Table 2 Analysis of the generalized division operator

Case Sign of [a] Sign of [b] Conditions [c] = [c-, c?] Situation

1 ? - a- 9 b- C a? 9 b? ) v([b]) C v([a])

a- 9 b- B a? 9 b? ) v([b])\ v([a])

[a? 7 b-, a- 7 b?]

[a- 7 b?, a? 7 b-]

(i)

(ii)

2 ? ? a- 9 b? B a? 9 b- ) v([b]) C v([a])

a- 9 b? C a? 9 b- ) v([b])\ v([a])

[a- 7 b-, a? 7 b?]

[a? 7 b?, a- 7 b-]

(i)

(ii)

3 - - a? 9 b- B a- 9 b? ) v([b]) C v([a])

a? 9 b- C a- 9 b? ) v([b])\ v([a])

[a? 7 b?, a- 7 b-]

[a- 7 b-, a?/b?]

(i)

(ii)

4 - ? a- 9 b- B a? 9 b? ) v([b]) C v([a])

a- 9 b- C a? 9 b? ) v([b])\ v([a])

[a- 7 b?, a? 7 b-]

[a?/b-, a- 7 b?]

(i)

(ii)

5 0 [ [a] - Does not depend on b?: always true [a? 7 b-, a- 7 b-] (i)

6 0 [ [a] ? Does not depend on b-: always true [a- 7 b?, a? 7 b?] (i)

Table 3 Notations of IIA and

its extensions
IIA and its extensions denotations Acronym Operator index

Instantiated interval arithmetic IIA I

Constrained interval arithmetic CIA C

Single-level constrained interval arithmetic SCIA S

Requisite constrained interval arithmetic RCIA R
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additive and multiplicative inverses and enables the reso-

lution of interval equations (Lodwick and Dubois 2015). It

is clear that IIA implementation is a global optimization

problem. In fact, a powerful and elegant implementation of

IIA is undoubtedly CIA proposed by (Lodwick 1999;

Lodwick and Jenkins 2013).

5.2 Constrained interval arithmetic (CIA)

CIA is based on the concept of a constrained interval. The

interval [a] is represented by a continuous and monotonic

function f(xa): [0, 1] ? [a-, a?] such that f(0) = a-,

f(1) = a? and f is non-decreasing. For simplicity, f(xa) is

required to be linear and increasing, i.e.

f ðxaÞ ¼ a� þ Laxa; La ¼ ðaþ � a�Þ ; with: 0�xa � 1 :

The concept of a constrained interval is used to express

an ill-known value a [ [a] as a = f(xa) for xa [ [0, 1].

Thus, the choice of a unique value a [ [a] is interpreted as

the choice of a unique value of xa. For two intervals [a]

and [b], the CIA operations are given by:

for � 2 fþ;�;	;�g :

½a� �C ½b� ¼

min
0 �xa � 1; 0�xb � 1

ff ðxaÞ � f ðxbÞg; max
0 �xa � 1; 0�xb � 1

ff ðxaÞ � f ðxbÞg
�

:

ð23Þ

From Eq. (23), it can be seen that for independent

variables, CIA is equivalent to IIA and SIA, i.e.,

½a� �I ½b� ¼ ½a� �C ½b� ¼ ½a� � ½b� ; for � 2 fþ;�;	;�g:

In the opposite case, the manipulation of the same

variable leads to the following expressions for the sub-

traction and division operators:

• Subtraction operator: 8 a½ � 2 Iþ:

½a� �C ½a�

¼ min
0 �xa � 1

ff ðxaÞ � f ðxaÞg; max
0 �xa � 1

ff ðxaÞ � f ðxaÞg
� �

¼ 0:

• Division operator: 8 a½ � 2 IþnZþ:

½a� �C ½a�

¼ min
0�xa � 1

ff ðxaÞ � f ðxaÞg; max
0�xa � 1

ff ðxaÞ � f ðxaÞg
� �

¼ 1:

The same analysis carried out for IIA remains valid here

for CIA.

5.3 Single-level constrained interval arithmetic
(SCIA)

The single-level constrained interval arithmetic (SCIA) is a

special case of CIA proposed by Chalco-Cano et al. (2014).

As in CIA, when considering an interval [a], a function

fa(x): [0, 1] ? < is associated with [a]: faðxÞ ¼
a� þ Lax ; 0�x� 1. In SCIA, even when the intervals

are independent, the instantiated variables are constrained

by identical positions in their intervals, i.e., the same value

of x is fixed. For two intervals [a] and [b], the four stan-

dard SCIA operations are defined by:

a½ ��S b½ �

¼ min
0�x� 1

ffaðxÞ�fbðxÞg; max
0�x� 1

ffaðxÞ�fbðxÞg;
�

for� 2 fþ;�;	;�g:
ð24Þ

For instance, this expression leads to the following

subtraction and division operations:

• Subtraction operator:

8 a½ �; b½ � 2 Iþ :

½a� �S ½b� ¼ min
0�x� 1

ðfaðxÞ � fbðxÞÞ; max
0�x� 1

ðfaðxÞ � fbðxÞÞ
� �

¼ minfa� � b�; aþ � bþg;maxfa� � b�; aþ � bþg½ �

8
><

>:

:

It can be stated that [a]�S [b] = [a]�G [b] = [a]�N

[b] = pro([a]�E [b]). This equivalence between the SCIA

and GHIA subtraction operators was demonstrated in

(Chalco-Cano et al. 2014). Although this equivalence

deserves to be mentioned, the two representations are dif-

ferent, i.e., GHIA is an SIA extension and SCIA is inherent

to IIA vision.

• Division operator:

8 a½ � 2 Iþ; 8 b½ � 2 IþnZþ : ½a� �S ½b�

¼ min
0�x� 1

�

faðxÞ � fbðxÞ; max
0�x� 1

faðxÞ � fbðxÞ�:

It can be shown that this expression can be written as

(Chalco-Cano et al. 2014):

8 a½ � 2 Iþ; 8 b½ � 2 IþnZþ :

½a� �S ½b� ¼ ½minða� � b�; aþ � bþÞ;maxða� � b�; aþ � bþÞ�:
ð25Þ

As detailed in (Chalco-Cano et al. 2014), it can be

proven that ½a� � ½b� � ½a� �S ½b� � ½a� �G ½b�. Moreover,

the equality ½a� �S ½b� ¼ ½a� �G ½b� is verified only for cases
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2 and 3 in Table 2. Generally, the following property is

verified (Chalco-Cano et al. 2014):

½a� � ½b� � ½a� �S ½b� � ½a� �G ½b�
¼ ½a� �N ½b� = pro(½a� �E ½b�Þ: ð26Þ

5.4 Requisite constrained interval arithmetic
(RCIA)

To avoid counterintuitive results in the presence of multi-

ple copies of the same variable, Klir proposes RCIA in

which constraint relations on the quantities involved are

introduced (Klir 1997; Klir and Pan 1998). Klir’s idea

consists of performing arithmetic operations with con-

straints dictated by the context of the problem. The con-

straints can be of various types: equality constraints,

inequality constraints, and so on. However, the equality

constraint is by far the most frequently used.

Let us consider a constraint relation C between the

intervals [a] and [b]. Each constraint C on ½a� � ½b� is a

relation on the Cartesian product [a] � [b].1 In this con-

text, RCIA is defined by (Klir 1997; Klir and Pan 1998):

ð½a� �R ½b�ÞC ¼ f½a� � ½b�jða; bÞ 2 ½a� � ½b� \ Cg ; for �
2 fþ;�;	;�g:

ð27Þ

When the constraint relation C is removed, definition in

Eq. (27) turns into Eq. (4), i.e.,

½a� �R ½b� ¼ f½a� � ½b�jða; bÞ 2 ½a� � ½b�g
¼ ½a� � ½b�; for � 2 fþ;�;	;�g; ð28Þ

which is equivalent to the definitions in SIA. For instance,

if the equality constraint (i.e., C = EQ) is imposed (see Klir

1997; Klir and Pan 1998), then the following properties are

obtained for subtraction and division:

• Subtraction operator:

8 a½ � 2 Iþ : a½ � �R a½ �ð ÞEQ¼ a� aja 2 a½ �f g ¼ 0.

• Division operator:

8 a½ � 2 IþnZþ : a½ � �R a½ �ð ÞEQ¼ a� aja 2 a½ �f g ¼ 1.

More details on the addition and multiplication opera-

tions are given in (Klir 1997; Klir and Pan 1998). In RCIA,

the dependence between the manipulated variables can be

captured by the equality constraint. This approach is effi-

cient for avoiding overestimation due to the occurrence of

interactive variables. However, the generalization of this

approach to other types of constraints remains a difficult

problem. When the equality constraint is used, the RCIA

and CIA results are equivalent.

6 Gradual interval representation
and arithmetic

6.1 Gradual interval arithmetic

From a theoretical point of view, all the SIA and IIA

varieties of IA developed above are directly transposable to

GI. However, from a practical point of view, there are

some differences. Unlike a conventional interval, for which

only a single horizontal dimension is considered, a GI is

represented using two dimensions. In this context, partic-

ular attention will be paid to the GI profiles.

In this paper, we propose the use of the concept of

gradual intervals (Dubois and Prade 2008; Fortin et al.

2008; Boukezzoula et al. 2012), which generalize con-

ventional intervals, thereby making it possible to represent

imprecision and uncertainty via the notion of gradualness

(Dubois and Prade 2008; Fortin et al. 2008). A conven-

tional interval [a] = [a-, a?] simply becomes a GI:

[a(k)] = [a-(k), a?(k)], when its boundaries are GN

(Dubois and Prade 2008; Fortin et al. 2008). This GI can be

interpreted as a conventional interval in a space of func-

tions (i.e., the interval bounds are GNs) and it inherits the

same algebraic properties as the CIs. In the gradual interval

representation, two dimensions are considered. The first

(the horizontal dimension) is similar to the one used in the

representation of conventional intervals. The second (the

vertical dimension) is related to the likelihood degrees or

uncertainty/certainty and is limited to the unit interval [0,

1].

A fuzzy interval A is a normalized fuzzy subset of real

numbers with a membership function lA. This fuzzy

interval is a convex fuzzy set (its a-cuts are intervals). The
upper semi-continuity of lA is equivalent to a-cuts being

closed intervals. In this context, a fuzzy interval can be

viewed as a stack of nested intervals that is defined by its a-
cuts. However, in certain practical situations, gradual

intervals may occur. They are generally characterized by

ill-nested intervals in the vertical dimension. Conversely, a

GI can be interpreted as an FI, if its profiles a-(k) and

a?(k) are injective and, respectively, non-decreasing and

non-increasing (Dubois and Prade 2008; Fortin et al. 2008;

Boukezzoula et al. 2012, 2014). While an FI may be a

particular GI, the opposite is false insofar as no mono-

tonicity constraint is associated with GI. In the context of

equivalence with FI, a-(k) and a?(k) are assumed to be

continuous and their domains are extended to [0, 1], i.e.,

a-(0) and a?(0) are defined. For the remainder of this

paper, a GI in which the profiles a-(k) and a?(k) are,

respectively, non-decreasing and non-increasing is called a

monotone (consonant) GI (or FI), while a non-monotone

(non-consonant) GI that cannot be represented by FI is

1 Let us note that � is used to represent the cartesian product in place

of the conventional symbol 9, which is used in this paper for the

multiplication operator.
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called a ‘‘pure GI’’. If a-(k) B a?(k), the GI is proper;

otherwise, it is improper. The sets of proper and improper

GIs are, respectively, denoted GIþ and GI�, and GI ¼
GI� [GIþ represents the set of generalized GIs.

The IA methodologies presented in sections IV and V

can be directly extended to FIA. However, some FIAs,

especially in the SIA context can lead to pure GIs, which

cannot be represented by FI (Allahviranloo et al. 2011;

Boukezzoula et al. 2012, 2014; Gomes and Barros 2015).

These results are not controversial in the gradual context,

because no constraint of monotonicity is imposed on the

profiles of the GI. The gradual vision can provide a new

interpretation for reinforcing the essence of FIA. GIA is

elaborated upon by extending the IA expressions to the

gradual case, where GIs replace the intervals in the equa-

tions. Furthermore, all the remarks and analysis given in

sections IV and V remain valid, where the conventional

intervals are replaced by GIs. For more details on basic

GIA operations, see (Boukezzoula and Galichet 2010;

Boukezzoula et al. 2012, 2014). For instance, the gradual

SIA, EIA, and CIA subtraction operators between two

intervals are defined by:

• Gradual SIA subtraction:

8 ½aðkÞ�; ½bðkÞ� 2 GIþ; ½aðkÞ� � ½bðkÞ�
¼ ½a�ðkÞ � bþðkÞ; aþðkÞ � b�ðkÞ�:

• Gradual EIA subtraction:

8½aðkÞ�; ½bðkÞ� 2 GI; ½aðkÞ� �E ½bðkÞ�
¼ ½a�ðkÞ�

b�ðkÞ; aþðkÞ � bþðkÞ�. Thus, ½aðkÞ� �E ½bðkÞ� 2
GIþ : if Rð½aðkÞ�Þ �Rð½bðkÞ�Þ
GI� : if Rð½aðkÞ�Þ\Rð½bðkÞ�Þ

(

:

• Gradual CIA subtraction:

8½aðkÞ�, [bðkÞ� 2 GIþ:½aðkÞ� �C ½bðkÞ�

¼ min
0�xa � 1; 0�xb � 1

ffkðxaÞ � fkðxbÞg; max
0�xa � 1; 0�xb � 1

ffkðxaÞ � fkðxbÞg
� �

:

As mentioned previously, for simplicity and without loss

of generality, the function fk(xa) is required to be linear

and increasing. For instance:

fkðxaÞ ¼ a�ðkÞ þ LaðkÞ:xa; LaðkÞ
¼ ðaþðkÞ � a�ðkÞÞ ; with: 0�xa � 1 :

6.2 Remarks and discussions

• It is important to be able to compare different arith-

metics. For instance, we provide a comparison here of

the different SIA alternatives. Of course, this compar-

ison can be applied in the IIA context or between SIA

and IIA approaches. Since SIA is defined only in GIþ;
the comparison can only be carried out in this context.

The first comparison is related to the inclusion property.

The computations based on EIA, NIA, GHIA, and OIA

are always at least as precise as those based on SIA,

i.e.,8� 2 fE;N;G;Og:
8 ½aðkÞ�; ½bðkÞ� 2 GIþ; ½aðkÞ� �� ½bðkÞ� 
 ½aðkÞ� � ½bðkÞ�
8½aðkÞ� 2 GIþ;8½bðkÞ� 2 GIþnZþ; ½aðkÞ� �� ½bðkÞ� 
 ½aðkÞ� � ½bðkÞ�

(

:

ð29Þ

• The second comparison consists of evaluating the gain

in precision. To evaluate the precision gain between

gradual SIA and the other gradual IA, the following

indicator is proposed:

N�

�ðkÞ ¼
Rð½aðkÞ� �� ½bðkÞ�Þ
Rð½aðkÞ� � ½bðkÞ�Þ ; for: � 2 f�;�g ; and �

2 fE;N;G;Og:
ð30Þ

This precision indicator is not limited to basic operators,

but can be applied to more complicated mathematical

expressions. In Eq. (30), the special case of 0/0 is inter-

preted as 1. According to the inclusion property of

Eq. (29), it can be deduced that the precision gain indicator

is B 1. More specifically, this indicator is interpreted as

follows (see Table 4).

• In a fuzzy framework, when considering independent

consonant GI (or FI), the results produced by SIA are

equivalent to the one given by Zadeh’s extension

principle. In this context, IIA and SIA approaches are

generally equivalent. However, in the presence of

multiple copies of the same variable (dependent vari-

ables), the extension principle implements an IIA view.

• GIA is useful for solving interval equations. Since

addition and subtraction (resp. multiplication and

division) are not inverse operations in SIA, it is not

possible to accurately solve the interval equations

[a(k)] = [b(k)] ? [x(k)] and [a(k)] = [b(k)] 9 [x(k)].
Furthermore, the gradual interval equation [a(k)] = [

b(k)] ? [x(k)] has an exact solution in GIþ according

to EIA, NIA, GHIA, and OIA, iff R([a(k)]) C
R([b(k)]). This solution is unique and is given by

[x(k)]= [a(k)] -r [b(k)], for r [ {E, N, G, O}. In the

same way, [b(k)] 9 [x(k)] = [a(k)] has an exact solu-

tion in GIþ using EIA, NIA, GIA, and OIA if

v([b(k)]) C v([a(k)]). Moreover, the solution is unique

and given by: [x(k)] =[a(k)] 7r [b(k)]. In an IIA

context, the inverse operators always exist and it is

possible to solve these equations accurately.
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7 Illustrative examples

In this section, simulation results using the different

gradual IAs are presented and five examples are consid-

ered. Moreover, to be able to compare the results, the

proposed method is implemented using examples extracted

from (Stefanini 2010; Liu et al. 2012; Chalco-Cano et al.

2014; Lodwick and Dubois 2015). The first example

illustrates the behavior of SIA and IIA operators in the

situation of independent variables. The second example

shows gradual computing in evaluating an analytic

expression with dependent variables. The third example

clarifies the possible passage through improper intermedi-

ate GI during gradual computing. The fourth example

shows the potential of IA alternatives in solving fuzzy

linear equations. The fifth example is a three-term fuzzy

weighted average in which the variables are dependent. For

reasons of conciseness, only the subtraction and division

operators are illustrated.

7.1 Example 1

This example is taken from the paper of Stefanini (2010),

in which the two triangular consonant GIs (FIs) [a(k)] =
[1 ? 0.5k, 5 - 3.5k] and [b(k)] = [- 4 ? 2k, - 1 - k]
are considered.

A. SIA vision and its extensions:

The SIA results are given by:

½aðkÞ� � ½bðkÞ� ¼ ½2þ 1:5k; 9� 5:5k�and½aðkÞ� � ½bðkÞ�
¼ ½ð5� 3:5kÞ � ð�1� kÞ; ð1þ 0:5kÞ � ð�4þ 2kÞ�:

Since V k[[0, 1], Ra(k) = 2 - 2k C Rb(-

k) = 1.5 - 1.5k, we have:

½aðkÞ� �E ½bðkÞ� ¼ ½aðkÞ� �N ½bðkÞ� ¼ ½aðkÞ� �G ½bðkÞ�
¼ ½aðkÞ� �O ½bðkÞ�

¼ ½5� 1:5k; 6� 2:5k� 2 GIþ:

In the same way, since Vk[[0, 1]: v([b(k)]) = (- 1 -

k)7( - 4 ? 2k) C v([a(k)]) = (1 ? 0.5k) 7 (5 - 3.5

k), we have:

½aðkÞ� �E ½bðkÞ� ¼ ½aðkÞ� �N ½bðkÞ� ¼ ½aðkÞ� �G ½bðkÞ�
¼ ½aðkÞ� �O ½bðkÞ�

¼ ½ð5� 3:5kÞ � ð�4þ 2kÞ; ð1þ 0:5kÞ � ð�1� kÞ� 2 GIþ:

It can be seen that the GHIA of Stefanini (2010) is

strictly equivalent to EIA, NIA, and OIA and leads to the

same proper GI (see Figs. 1, 2). According to these arith-

metics, although the operands [a(k)]and [b(k)] are FIs, the

subtraction and division results are purely GIs and cannot

be represented by FIs. This result is in accordance with the

criticisms given in (Allahviranloo et al. 2011; Gomes and

Barros 2015). For instance and as stated in (Gomes and

Barros 2015), the assertion that the generalized difference

between two fuzzy numbers is always a fuzzy number is

incorrect. If these results are controversial in an FIA con-

text, they are accepted in a gradual framework, where no

constraint of monotonicity is imposed on the interval pro-

files, thereby giving the gradual concept its full meaning.

Moreover, the EIA, NIA, GHIA, and OIA results are less

imprecise than the SIA ones, i.e., ½aðkÞ� �� ½bðkÞ� 

½aðkÞ� � ½bðkÞ�; for � 2 f�;�g and r [ {E, N, G, O}.

Compared to methods published in the literature and

cited above, the proposed approach allows the quantifica-

tion of the gain in precision between the different IAs

through the overestimation indicator. For instance, the

overestimation indicator (see (30)) between NIA and SIA is

given by:

NN
�ðkÞ ¼

Rð½aðkÞ� �N ½bðkÞ�Þ
Rð½aðkÞ� � ½bðkÞ�Þ ¼ 0:5� 0:5k

3:5� 3:5k
and

NN
�ðkÞ ¼

Rð½aðkÞ� �N ½bðkÞ�Þ
Rð½aðkÞ� � ½bðkÞ�Þ ¼ 2þ 3k� 5k2

38� 51kþ 13k2
:

In this case, for k = 0, the NIA subtraction reduces the

imprecision of the SIA subtraction by a factor of 7. For

k = 1, the two arithmetics give the same result, i.e.,

NN
�ðkÞ ¼ 0=0 ¼ 1: The same remarks can be made about

the division operator. Indeed, for k = 0, the NIA division

reduces the imprecision of the SIA division by a factor of

19. The same remarks can be made on the other arith-

metics, which lead to the same results.

B. IIA vision and its extensions:

IIA is implemented in the same way as CIA. The

intervals [a(k)] and [b(k)] are expressed as follows:

Table 4 Interpretation of the

indicator N�

�ðkÞ
Indicator value Indicator value interpretation

N�

�ðkÞ\ 0 The operation �� gives an improper gradual interval

N�

�ðkÞ = 0 The operation �� gives a crisp gradual number

0\N�

�ðkÞ\ 1 The imprecision between �� and � is reduced by 1/ N�

�ðkÞ
N�

�ðkÞ = 1 The operators �� and � give the same result
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fkðxaÞ ¼ a�ðkÞ þ LaðkÞxa

¼ 1þ 0:5kþ ð4� 4kÞxa; 0�xa � 1

fkðxbÞ ¼ b�ðkÞ þ LbðkÞxbjj

The CIA subtraction and division are given by:

½aðkÞ� �C ½bðkÞ� ¼

min
0 � xa � 1; 0�xb � 1

ffkðxaÞ � fkðxbÞg; max
0 � xa � 1; 0�xb � 1

crffkðxaÞ � fkðxbÞg
� �

;

¼ ½2þ 1:5k; 9� 5:5k�

½aðkÞ� �C ½bðkÞ�
¼ ½ min

0�xa � 1; 0�xb � 1
ffkðxaÞ � fkðxbÞg; max

0� xa � 1; 0�xb � 1
ffkðxaÞ � fkðxbÞg�

¼ ½ð5� 3:5kÞ � ð�1� kÞ; ð1þ 0:5kÞ � ð�4þ 2kÞ�:

As discussed in Sect. 5, since the operands [a(k)] and
[b(k)] are assumed to be independent, SIA and CIA give

the same result. In the same way, it can be verified that CIA

and RCIA (under the equality constraint) are equivalent,

i.e.,

½aðkÞ� � ½bðkÞ� ¼ ½aðkÞ� �C ½bðkÞ�
¼ ð½aðkÞ� �R ½bðkÞ�ÞEQ ; for � 2 f�;�g:

In SCIA, the GI [a(k)] and [b(k)] are transformed into

the following functions:

f ak ðxÞ ¼ a�ðkÞ þ LaðkÞx ¼ 1þ 0:5kþ ð4� 4kÞx; 0�x� 1

f bk ðxÞ ¼ b�ðkÞ þ LbðkÞx ¼ �4þ 2kþ ð3� 3kÞx; 0�x� 1 :

The SCIA subtraction and division are given by:

½aðkÞ� �S ½bðkÞ�

¼ min
0 �x� 1

ff ak ðxÞ � f bk ðxÞg; max
0 �x� 1

ff ak ðxÞ � f bk ðxÞg
� �

¼ ½5� 1:5k; 6� 2:5k�

and

½aðkÞ� �S ½bðkÞ�

¼ min
0 �x� 1

ff ak ðxÞ � f bk ðxÞg; max
0 �x� 1

ff ak ðxÞ � f bk ðxÞg
� �

¼ ½ð5� 3:5kÞ � ð�1� kÞ; ð1þ 0:5kÞ � ð�4þ 2kÞ�:

These results lead to:

½aðkÞ� �S ½bðkÞ� ¼ ½aðkÞ� �E ½bðkÞ� ; and [aðkÞ� �S ½bðkÞ�
¼ ½aðkÞ� � ½bðkÞ�:

As discussed previously, although their philosophy and

context of application are different, the SCIA subtraction is

always equivalent to the EIA one. The SCIA division, in

this special case, is equivalent to the SIA one. This

observation is not always true, as will be illustrated in the

following example. However, in all cases , property of

Eq. (29) holds.

7.2 Example 2

This example is taken from the paper of Chalco-Cano et al.

(2014). The objective is to compute the expression E(a,

b) = (a - b)/b when the variables a and b are viewed as

Fig. 2 Zoom-in view of the division operator

Fig. 1 SIA vision of division and subtraction operators: a subtraction operators, b division operators
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triangular FIs (consonant GIs) given by [a(k)] = [k, 2-k]
and [b(k)] = [2 ? k, 5-2k]. The SIA and IIA approaches

are considered below. To simplify the mathematical nota-

tion, the expression E(a, b) will be denoted as E.

According to SIA, the evaluation of the expression E

leads to:

½EðkÞ�SIA ¼ ð½aðkÞ� � ½bðkÞ�Þ � ½bðkÞ�
¼ ½ð�5þ 3kÞ � ð2þ kÞ; ð�2kÞ � ð2þ kÞ�
2 GIþ:

The computation of the expression E according to EIA is

given by:

Since V k[[0, 1], R([a(k)])\R([b(k)]), which leads to:

½aðkÞ� �E ½bðkÞ� ¼ ½�2; �3þ k� 2 GI�:

At the same time, since v([b(k)])\ v([a(k)] -E [b(k)]),
it follows that:

½EðkÞ�EIA ¼ ð½aðkÞ� �E ½bðkÞ�Þ �E ½bðkÞ�
¼ ½ð�3þ kÞ � ð5� 2kÞ; ð�2Þ � ð2þ kÞ�
2 GI�:

It can be observed from these results that EIA results in

improper GIs (see Fig. 3b), i.e., the left and right profiles

are permuted. In this situation, to obtain proper intervals,

NIA and GHIA use a proper projection of the EIA results

(see Fig. 3a):

½aðkÞ� �N ½bðkÞ� ¼ ½aðkÞ� �G ½bðkÞ� ¼ proð½aðkÞ� �E ½bðkÞ�Þ
¼ ½�3þ k; �2� 2 GIþ and

½EðkÞ�NIA ¼ ½EðkÞ�GHIA ¼ pro(½EðkÞ�EIAÞ
¼ ½ð�2Þ � ð2þ kÞ; ð�3þ kÞ � ð5� 2kÞ� 2 GIþ;

where

½EðkÞ]NIA = (½aðkÞ� �N ½bðkÞ�Þ
�N ½bðkÞ�; and: [EðkÞ�GHIA = ð½aðkÞ� �G ½bðkÞ�Þ
�G ½bðkÞ�;

Since the EIA results are improper, to keep an inter-

pretable and realistic result, OIA uses SIA. In this case, we

have:

½aðkÞ� �O ½bðkÞ� ¼ ½aðkÞ�
� ½bðkÞ�; and: ½EðkÞ�OIA = [EðkÞ�SIA:

In this application, SIA, EIA, NIA, GHIA, and OIA are

not equivalent. As the condition for obtaining proper

intervals is not guaranteed, the EIA produces improper

results. However, the subtraction and division operators are

exact inverse operations of addition and multiplication. In

this context, NIA and GHIA operate an interval proper

projection of the EIA results. NIA and GHIA are equiva-

lent, but their subtraction and division are not exact inverse

operations of the addition and multiplication operations.

Furthermore, OIA turns to SIA and they are equivalent.

• IIA vision and its extension

In the implementation of CIA, the intervals are trans-

formed as follows:

fkðxaÞ ¼ kþ ð2� 2kÞxa; 0�xa � 1 and

fkðxbÞ ¼ 2þ kþ ð3� 3kÞxb; 0�xb � 1 :

The expression of E in CIA is given by:

½EðkÞ�CIA ¼

min
0�xa � 1; 0�xb � 1

ðfkðxaÞ � fkðxbÞÞ�fkðxbÞ;
�

max
0�xa � 1; 0�xb � 1

ðfkðxaÞ � fkðxbÞÞ�fkðxbÞ

�:

¼ ½ð�5þ 3kÞ�ð5� 2kÞ; ð�2kÞ�ð2þ kÞ�

For SCIA, the intervals are expressed as follows:

f ak ðxÞ ¼ kþ ð2� 2kÞx; f bk ðxÞ ¼ 2þ kþ ð3� 3kÞx;
0�x� 1 and

Fig. 3 The expression E(k) according to SIA, EIA, and NIA: a SIA and NIA results, b EIA result
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½EðkÞ�SCIA

¼ min
0�x� 1

ðf ak ðxÞ � f bk ðxÞÞ � f bk ðxÞ; max
0�x� 1

ðf ak ðxÞ
�

�f bk ðxÞÞ � f bk ðxÞ
�

¼ ½ð�2Þ � ðkþ 2Þ; ð�3þ kÞ � ð5� 2kÞ�:

The expression of E according to CIA and SCIA and its

comparison with SIA are given in Fig. 4. In this situation, it

can be seen that CIA and SCIA give different results (see

Fig. 4b) and they are not equivalent.

From a methodological perspective, SIA and CIA are

different. The differentiation between them is based on the

meaning and interpretation attributed to the considered

intervals. Furthermore, if the handled intervals [a] and [b] are

considered to be strictly independent, the SIA and CIA

produce exactly the same results. In the opposite case, when

the intervals are dependent (for example, multiple copies of

the same interval as in the case of the expression E), the

results provided by SIA and CIA may be different. In this

case, CIA is always less imprecise than SIA. Moreover, the

following inclusion is obtained [E(k)]SCIA ( [E(k)]CIA-
( [E(k)]SIA. As illustrated in Fig. 4a, the right profiles of

the CIA and SIA results coincide. In addition, as detailed in

Sect. 7.1, the indicator of Eq. (30) can be implemented to

specify the gain in precision between the IA.

7.3 Example 3

The possible passage through improper intermediate GIs dur-

ing gradual computing is illustrated in this example. Let us

consider the interval expression [f(k)] = [f1(k)] - [f2(k)]; [f1-
(k)] = [b(k)] 7 [a(k)] and [f2(k)] = [b(k)] -[a(k)], where

[a(k)] and [b(k)] are trapezoidal GIs given by [a(k)] = [1 ?

2k, 9 - 4k] and [b(k)] = [1 ? k, 5 - 2k]. The computation

of [f(k)] using EIA gives the following result:

½f1ðkÞ�EIA ¼ ½bðkÞ� �E ½aðkÞ� ¼ ½ð1þ kÞ � ð1þ 2kÞ;
ð5� 2kÞ � ð9� 4kÞ� 2 GI�;

½f2ðkÞ�EIA ¼ ½bðkÞ� �E ½aðkÞ� ¼ ½�k;�4þ 2k� 2 GI�; and

½f ðkÞ�EIA ¼ ½f1ðkÞ�EIA �E ½f2ðkÞ�EIA
¼ ½ð1þ 2kþ 2k2Þ � ð1þ 2kÞ; ð41� 36kþ 8k2Þ
� ð9� 4kÞ� 2 GIþ:

Although the two quantities [f1(k)]EIA and [f2(k)]EIA are

improper, the result of the expression [f(k)]EIA is proper

(see Fig. 5).

For comparison purposes, the computation of [f(k)]
using SIA and EIA is illustrated in Fig. 6, where

½f ðkÞ]SIA = ½ð35� 53kþ 16k2Þ � ð�9þ 4kÞ; ð13þ 9k
� 10k2Þ � ð1þ 2kÞ�:

Unlike the FIA approach, the originality of the proposed

GIA method lies in its ability to compute with pure and/or

improper GIs. A philosophical debate can be made on the

meaning of improper gradual intervals. We believe that this

concept does not conflict with a viable mathematical rea-

soning. These improper intervals (issued from EIA) have

no physical meaning, but they can be used in intermediate

computing. An analogy can be made with complex num-

bers when they are used for computation, but real numbers

are required for the result. For instance, this example is

used for highlighting the possible passage through impro-

per intermediate GIs during gradual computing.

Clearly, the set of generalized intervals (proper and

improper) is useful for solving inverse problems. However,

the final computational results can sometimes be unrealistic

for real applications, i.e., when improper intervals are

obtained. An important issue is to be able to find conditions

that guarantee that the result belongs to the set of proper

intervals. In this paper, these conditions are given for the

subtraction and division operators, but can be obtained for

any given mathematical interval expression. More gener-

ally, in the situation when the final computational result is

Fig. 4 The expression of E according to SIA, CIA, and SCIA: a SIA, CIA, and SCIA results, b CIA and SCIA results
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improper, one must turn to another IA. This is clearly the

philosophy of NIA, GHIA, and OIA

7.4 Example 4

This example gives an illustration of the potential appli-

cability of the SIA alternatives in solving fuzzy linear

equations. Consider the resolution of the fuzzy equation

½aðkÞ� 	 x 
 ½bðkÞ� given in (Lodwick and Dubois 2015),

where [a(k)] and [b(k)] are triangular fuzzy intervals,

[a(k)] with a support [1, 3] and a core {2}; [b(k)] with a

support [3, 5] and a core {4}. If the set of solutions of this

equation is denoted [x(k)], it can be expressed as follows:

½aðkÞ� 	 ½xðkÞ� ¼ ½bðkÞ�:

The solution [x(k)] of this equation can be obtained

through the EIA, i.e.,

½xðkÞ� ¼ ½x�ðkÞ; xþðkÞ� ¼ ½bðkÞ� �E ½aðkÞ�
¼ ½ðkþ 3Þ � ðkþ 1Þ; ðk� 3Þ � ðk� 1Þ�:

The result of this operation is an improper gradual

interval, because v([b(k)])\ v([a(k)]). Moreover, it can be

seen that R([x(k)])\ 0 and the bounds of the gradual

interval are reversed (see Fig. 7a, situation 1). In this case,

the solution set X89, such that x�ðkÞ� x� xþðkÞ is reduced
to x = [x(1)]. This result is in concordance with the solu-

tion given in (Lodwick and Dubois 2015). Moreover, the

proposed approach allows us to determine a priori whether

the result will be a proper or improper GI. In the same way,

we consider the previous equation in the case, where [a(k)]
and [b(k)] are triangular and trapezoidal fuzzy intervals

given by [a(k)] = [2 ? 5k, 12 - 5k] and [b(k)] = [2 ? 3

k, 12 - 3k]. The set of solutions is given by:

½xðkÞ� ¼ ½x�ðkÞ; xþðkÞ� ¼ ½bðkÞ� �E ½aðkÞ�
¼ ½ð3kþ 2Þ � ð5kþ 2Þ; ð3k� 12Þ � ð5k� 12Þ�:

The solution of this equation is a proper gradual interval,

because v([b(k)]) C v([a(k)]). The set of solutions that is

equivalent to that obtained in (Lodwick and Dubois 2015),

is expressed as follows:

X89 ¼ fxjð3kþ 2Þ � ð5kþ 2Þ� x�ð3k� 12Þ � ð5k
� 12Þg:

However, it can be seen that [x(k)] is a pure gradual

interval (see Fig. 7b, situation 2). In this case and as dis-

cussed in (Lodwick and Dubois 2015), the only plausible

solution of this equation is the singleton x = [x(0)] = 1.

This example shows that GIA can be used to accurately

solve fuzzy equations. The results obtained are equivalent

to those obtained in (Lodwick and Dubois 2015). However,

the proposed approach makes it possible to verify a priori

whether the desired results are acceptable or not (proper or

improper GIs).

7.5 Example 5

In this example, the three-term FWA example given in (Liu

et al. 2012) is used. The scores and weights are summa-

rized in Table 5. These fuzzy intervals are special cases of

consonant gradual intervals.

According to the meaning given to the GI, SIA, and IIA

weighted average versions can be considered. This vision

Fig. 5 Illustration of possible passages through improper gradual intervals

Fig. 6 [f(k)] results using SIA and EIA
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provides a new interpretation of FWA through the notion

of GI.

A. SIA vision of gradual weighted average (GWA)

The computation of GWA using SIA leads to the fol-

lowing expression:

½GWAðkÞ�SIA
¼ ½numðkÞ� � ½denðkÞ� ¼ ð½x1ðkÞ� 	 ½w1ðkÞ� þ � � � þ ½x5ðkÞ� 	 ½w5ðkÞ�Þ
� ð½w1ðkÞ� þ � � � þ ½w5ðkÞ�Þ

¼ ½ð8k2 þ 24kþ 32Þ � ð29� 11kÞ; ð5:5k2 � 32:5kþ 59Þ � ð5þ 4kÞ�:

Since v([den(k)]) C v([num(k)]), computing the GWA

using EIA, NIA, GHIA, and OIA gives the same results,

interpreted by the following expression:

½GWAðkÞ�EIA ¼ ½GWAðkÞ�INIA ¼ ½GWAðkÞ�GHIA
¼ ½GWAðkÞ�OIA
¼ ½ð4k2 þ 12kþ 16Þ � ð5þ 4kÞ; ð11k2 � 65kþ 118Þ
� ð29� 11kÞ� 2 GIþ:

The GWA results are illustrated in Fig. 8.

It can be observed from Fig. 8 that the GWA computed

using EIA, NIA, GHIA, and OIA is a purely gradual

interval and cannot be represented by an FI.

B. IIA vision of gradual weighted average (GWA)

The computation of GWA using CIA leads to the fol-

lowing expression:

½GWAðkÞ�CIA ¼ ½numðkÞ� �C ½denðkÞ�
¼ ð½x1ðkÞ� 	 ½w1ðkÞ� þ � � � þ ½x5ðkÞ� 	 ½w5ðkÞ�Þ
� ð½w1ðkÞ� þ � � � þ ½w5ðkÞ�Þ; thus

Fig. 7 Solutions of the fuzzy equation a kð Þ½ � 	 x 
 b kð Þ½ � : a situation 1, b situation 2

Table 5 Scores and weights for gradual intervals

Scores ½xi� ¼ ½x�i ðkÞ; xþi ðkÞ� Weights wi ¼ ½w�
i ðkÞ;wþ

i ðkÞ�

½x1� = [k, 2 - k] ½w1� = [0.3k, 0.9 - 0.6k]

½x2� = [2 ? k, 4 - k] ½w2� = [0.4 ? 0.3k, 1 - 0.3k]

½x3� = [4 ? k, 6 - k] ½w3� = [0.6 ? 0.2k, 1 - 0.2k]

Fig. 8 GWA using SIA and EIA: a GWA using SIA and EIA, b GWA using EIA
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For comparison, Fig. 9 regroups the results of GWA

using SIA, EIA, and CIA.

When k = 1, all approaches give the same result, i.e.,

the weighted average for precise weights and numbers. At

the other levels, the following inclusion is obtained:

[GWA]EIA ( [GWA]CIA ( [GWA]SIA. In this case,

[GWA]EIA gives the less imprecise result. Furthermore,

CIA is less imprecise than SIA. Moreover, the precision

gain indicator can be implemented. For instance, the

indicator Eq. (30) for three values of k is given in Table 6.

It can be seen from these results that a value of 0.508

between the [GWA]EIA and [EGWA]CIA means that the

latter reduces the imprecision by a factor of 2. More gen-

erally, the indicator is a non-linear function with regard to

k and can be evaluated for any given value of k. The result
obtained by [EGWA]CIA is equivalent to the one obtained

using the fuzzy weighted average according to Zadeh’s

extension principle by applying the Karnik–Mendel algo-

rithm (Liu et al. 2012). By analyzing the behavior of the

KM, it is easy to show that the latter implements a direct

extension of the weighted average operator to fuzzy

intervals according to IIA. It is important to emphasize

here that the given comparisons in this example are for

illustrative purposes only. In reality, a comparison between

SIA and IIA approaches is not relevant here, because these

two visions have two different philosophies.

8 Conclusion

In this paper, using the concept of GIs, a contribution and a

reflection on IA and its extension to GIA through SIA and

IIA visions have been proposed. This GIA extension pro-

vides a revision and a new interpretation of FIA according

to the concept of GIs. The results obtained illustrate the

existing equivalences between the IAs and their interest.

For instance, in an SIA framework, the extensions EIA,

NIA, GHIA, and OIA are less imprecise than the original

SIA. Moreover, it has been demonstrated that under some

conditions, these IAs are equivalent. Furthermore, if EIA

results are proper intervals, they are equivalent to those

obtained by NIA, GIA, and OIA. In the opposite case,

when EIA produces improper intervals, NIA and GHIA

operate an interval proper projection, while OIA turns to

SIA. In the IIA context, improper intervals cannot occur.

Furthermore, if the variables are independent, SIA, CIA,

and RCIA are equivalent. SCIA sometimes gives different

results from CIA, but in any case, the SCIA results are

included in SIA. More generally, if the manipulated

intervals are dependent, the SIA and IIA approaches do not

give the same results. Future work will be focused on the

extension of this methodology for computing and solving

more complicated interval expressions and equations.

Fig. 9 GWA results using SIA, EIA, and CIA: a GWA using SIA and CIA, b GWA using SIA, CIA, and EIA

Table 6 Overestimation errors between GWA visions

Indicator k = 0 k = 0.5 k = 1

Between [GWA]EIA and [GWA]SIA 0.149 0.16 1

Between [GWA]EIA and [GWA]CIA 0.508 0.495 1

½GWAðkÞ�CIA ¼
½ð�k2 þ 33kþ 32Þ � ð19� kÞ; ð�2k2 � 4kþ 38Þ � ð7þ 2kÞ� ; if 0� k\0:375

½ð�7k2 þ 27kþ 44Þ � ð25� 7kÞ; ð�2k2 � 4kþ 38Þ � ð7þ 2kÞ� ; if 0:375� k\1

(

:
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In the paper, for simplicity and without loss of gener-

ality, illustrative examples are carried out using linear FIs

and GIs. However, the proposed concepts remain trans-

posable, regardless of the shape of the considered FIs and/

or GIs. Furthermore, our approach can be applied to any

analytical form of the considered FIs (Dutta and Saikia

2019; Dutta and Doley 2019; Fahmi et al. 2019). In the

near future, a methodological reflection about the extension

of FI arithmetic to interval valued intuitionistic fuzzy sets

(Atanassov and Gargov 1989; Vidhya and Irene Hepzibah

2017) and interval type-2 fuzzy sets (Mendel et al. 2006)

will be conducted. This extension could be inspired by the

concepts of thick intervals and thick gradual intervals for

its implementation (Boukezzoula et al. 2019). From prac-

tical perspectives, this extension could help in the imple-

mentation of multicriteria and multiple attribute decision

making strategies, when the handled information is repre-

sented by interval valued intuitionistic fuzzy sets (Chen

et al. 2012a, b; Wang and Chen 2017) and/or interval type-

2 fuzzy sets (Qin and Liu 2015; Qin et al. 2017; Runkler

et al. 2017). More generally, on the basis of ontic and

epistemic interpretations of intervals (Cuso and Dubois

2014; Dubois 2011, 2014; Lodwick and Dubois 2015),

another dichotomy for the categorization of IA and its

extensions will be presented in our future paper.
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