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Abstract
This paper aims to design a method for solving a two person zero-sum matrix game with I-fuzzy goals and I-fuzzy pay-

offs, where the symmetric triangular I-fuzzy numbers prescribe the entries of the pay-offs matrix. The most common

approaches in the literature to solve matrix games with fuzzy goals and fuzzy pay-offs employ ranking function or

defuzzification technique, like in Bector and Chandra (Fuzzy mathematical programming and fuzzy matrix games, vol 169.

Springer, Berlin, 2005) and Vijay et al. (Fuzzy Optim Decis Making 6:299–314, 2007). Our proposed approach in this work

differs from the existing approaches in the sense that it is devoid of ranking or defuzzification function. It also provides

precise degrees of belief and disbelief in achieving the goals set by each player. An essential concept of ‘almost positive

I-fuzzy number’ introduced by Aggarwal et al. (Notes Intuit Fuzzy Sets 23:85–101, 2017) is employed to study matrix

games in I-fuzzy setting. Solving such a game is shown to be equivalent to solving a pair of crisp non-linear programming

problem. In this way, our approach is unique for solving such a game. Some numerical examples are included to illustrate

the proposed approach.

Keywords I-fuzzy set � Two person zero-sum game � I-fuzzy pay-offs � Almost positive symmetric triangular I-fuzzy

number

1 Introduction

Atanassov (1986, 1989, 1994) integrated the notion of

hesitancy degree in the definition of fuzzy set by adding a

new component which describes the degree of

nonmembership in a given fuzzy set and called such a set

an intuitionistic fuzzy set. While the definition of the fuzzy

set provides the degree of membership of an element in a

given set and its nonmembership degree is understood as

one minus its membership degree, the definition of an

intuitionistic fuzzy set provides a more-or-less independent

degree of membership and degree of nonmembership of an

element in a given set. The only requirement in latter is that

the sum of the two degrees is not greater than one. As a

result, an intuitionistic fuzzy set exhibits characteristics of

affirmation and negation, as well as hesitation. For

instance, in any confronting situation in decision making,

besides support or positive response and objection or

negative response, there could also be an abstention which

indicates hesitation and indeterminacy in response to the

situation. Intuitionistic fuzzy set, very naturally, a model

such cases in decision-making problems. These sets are

widely applied in real-life decision-making problems, one

may refer to Xu et al. (2008) for clustering, medical

diagnosis De et al. (2001), multi-criteria decision making

(Li 2010a, b; Liu and Wang 2007; Wang et al. 2009),
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pattern recognition (Li and Chuntian 2002; Vlachos and

Sergiadis 2007), transportation problem (Atanassov 1999),

for other applications (Szmidt and Kacprzyk 1996), to

name a few.

There had been some controversies (see Dubois et al.

2005 and Grzegorzewski and Mrówka 2005) surrounding

the nomenclature of Atanassov’s intuitionistic fuzzy set

because similar nomenclature had also been used for

intuitionistic logic, and the two concepts differ in their

mathematical structure and treatment. It makes sense to

avoid using the same terminology for two different con-

cepts. Hence, as suggested in Dubois et al. (2005) and

Grzegorzewski and Mrówka (2005), Atanassov intuition-

istic fuzzy set is called Atanassov’s I-fuzzy set or simply I-

fuzzy set. Henceforth, in this paper, we shall be using

I-fuzzy set only.

In the earlier study on fuzzy linear programming, two

approaches have contributed significantly. These are due to

Zimmermann (1978) and, Tanaka and Asai (1984). While

Zimmermann’s approach is applied to linear programming

with fuzzy goals (also called flexible linear programming

problems), the approach of Tanaka and Asai (1984) is

useful for solving linear programming with fuzzy param-

eters (also called fuzzy number linear programming

problems).

The work on linear programming with fuzzy parameters

followed a somewhat different direction. This has been

mainly because there is no unique method of comparing

fuzzy numbers. Therefore, depending on the choice of

order, we have the similar solution concept for the given

fuzzy linear programming problem. Most of the early work

in this direction is based on the ranking function approach

of Yager (1981). This leads to several variants of the

original work of Yager (1981), e.g., Bector et al. (2004b),

Li (2005) and Li and Nan (2009). Different from these

ranking function approaches, Clemente et al. (2011) have

recently defined fuzzy ordering via a finite set of a-cuts
(say r). This approach results in solving an appropriate

multi-objective linear programming problem for the given

fuzzy linear programming problem.

Compared to the ordering methodologies discussed

above, the conceptual framework of Tanaka and Asai

(1984) for comparing fuzzy numbers is different and seems

to be very natural. Moreover, Tanaka and Asai introduced a

fundamental notion of ‘almost positive triangular fuzzy

number (TFN)’ and used the same to transform a fuzzy

number linear programming problem to an appropriate

crisp optimization problem.

1.1 Motivation behind the proposed work

In recent years, attempts have been made to extend the

results of the crisp game theory to the fuzzy games. The

motivating force behind these extensions is the advance-

ment in the duality theory for fuzzy linear programming.

The earliest study of a two person zero-sum matrix game

with fuzzy pay-offs is due to Campos (1989). Also, Bector

and Chandra (2005) and Bector et al. (2004a) interpreted

the model of Campos (1989) in context of the fuzzy linear

programming duality and showed that solving a two person

zero-sum matrix game with fuzzy goals and, or, fuzzy pay-

offs are equivalent to solving an appropriate pair of primal-

dual fuzzy linear programming problems. On the lines of

Bector and Chandra (2005), Bector et al. (2004a, b) and

Aggarwal et al. (2012) studied duality for I-fuzzy linear

programming problems and discussed its application in

I-fuzzy matrix games. Based on fuzzy ‘max’ order, Maeda

(2003) defines three types of min-max equilibrium strate-

gies and utilizes its properties to design a solution proce-

dure for the fuzzy matrix games. Li (1999) presents a

multi-objective linear programming model to solve fuzzy

matrix games when entries in the pay-offs matrix are fuzzy

triangular numbers. Further Li (2012) develops a method

for solving matrix games with triangular fuzzy numbers

which assure triangular fuzzy values for such games. Using

the fuzzy relational approach, Vijay et al. (2007) extended

the duality results of Inuiguchi et al. (2003) and Ramı́k

(2005, 2006) to study a generalized model of fuzzy matrix

games with fuzzy goals or fuzzy pay-offs. Xu et al. (2017)

introduce the possibility and the necessity measures for

matrix game with fuzzy pay-offs and define a ða;bÞ-PN
equilibrium strategy for two players playing the game.

Recently, Ammar and Brikaa (2018) studied matrix game

under rough fuzzy sets and Khan and Mehra (2019) studied

the same in possibility and the necessity measures scenario.

In recent work, Aggarwal et al. (2017) presented a new

approach for solving I-fuzzy linear programming problem

with I-fuzzy parameters via Tanaka and Asai (1984)

approach.

The primary advantage of our approach is that it neither

requires any preassigned tolerance levels (as in Zimmer-

mann’s approach) nor pre-chosen ranking function (as in

Bector and Chandra 2005). Our approach is based on the

definition of ‘almost positive’ fuzzy number, which is only

membership function based and is very natural the way we

understand a positive real number. Since no tolerance level

is needed and no ranking function is required, so in this

way, our approach is more universal. Also, our approach

also provides a precise degree of belief and disbelief in

achieving goals set by each player.

The rest of the paper unfolds as follows. Section 2

revisits the basic definitions and preliminaries on I-fuzzy

numbers. Section 3 demonstrates the proposed solution

approach. Section 4 displays numerical examples from

marketing strategy and voting share problem. Section 5

presents a comparative study with the existing models in
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the literature. Section 6 concludes some observations and

an outlook on future research.

2 Preliminaries

This section presents basic definitions regarding I-fuzzy set

and I-fuzzy numbers. Further, it presents an important

concept of ‘almost positive symmetric triangular I-fuzzy

number’ introduced by Aggarwal et al. (2017).

Definition 1 (I-fuzzy set) (Atanassov 1986, 1994) An I-

fuzzy set ~a in X is described by

~a ¼ fhx; l ~aðxÞ; m ~aðxÞi j x 2 X; l ~aðxÞ þ m ~aðxÞ� 1g;

where l ~a : X ! ½0; 1� and m ~a : X ! ½0; 1� define, respec-

tively, the membership function and the non-membership

function.

If l ~aðxÞ þ m ~aðxÞ ¼ 1; for all x 2 X, then ~a degenerates to

the standard fuzzy set.

We now take X ¼ R, the real Euclidean space, and

recall an I-fuzzy number.

Definition 2 (I-fuzzy number) (Li 1999; Nehi 2010) An I-

fuzzy number ~a is an I-fuzzy set over R whose membership

function l ~a : R ! ½0; 1� and non-membership function m ~a :

R ! ½0; 1� satisfy the following conditions:

(i) there are real numbers c and d such that l ~aðcÞ ¼ 1

and m ~aðdÞ ¼ 1;

(ii) l ~a is quasi-concave and m ~a is quasi-convex on R;

(iii) l ~a is upper semi-continuous and m ~a is lower semi-

continuous;

(iv) the support sets fx 2 R j l ~aðxÞ[ 0g and fx 2
R j m ~aðxÞ\1g are bounded.

We denote the set of I-fuzzy numbers by IFNðRÞ. From
above definition, we get at once that for any I-fuzzy

number ~a there exist eight numbers

a1; a2; a3; a4; c1; c2; c3; c4 2 R such that

c1 5 a1 5 c2 5 a2 5 a3 5 c3 5 a4 5 c4 and four functions

f1; f2; f3; f4 : R ! ½0; 1�; called the sides of a I-fuzzy num-

ber, where f1 and f4 are non-decreasing and f2 and f3 are

non-increasing functions. The membership function l ~a of

an I-fuzzy number ~a can be specified as

l ~aðxÞ ¼

0; x\a1;

f1ðxÞ; a1 � x\a2;

1; a2 � x� a3;

f2ðxÞ; a3\x� a4;

0; x[ a4;

8
>>>>>><

>>>>>>:

while the non-membership function m ~a has the following

form:

m ~aðxÞ ¼

1; x\c1;

f3ðxÞ; c1 � x\c2;

0; c2 � x� c3;

f4ðxÞ; c3\x� c4;

1; x[ c4:

8
>>>>>><

>>>>>>:

It is worth noting that each I-fuzzy number ~a is the con-

junction of two fuzzy numbers, the membership function of

one is l ~a and that of the other is 1� m ~a.

In particular, if the non-decreasing functions f1 and f4
and non-increasing functions f2 and f3 are linear and

a2 ¼ c2; a3 ¼ c3, then the given I-fuzzy number is a

trapezoidal I-fuzzy number. The membership function and

non-membership function for the trapezoidal I-fuzzy

number are as follows:

l ~aðxÞ ¼

0; x\a1;
x� a1
a2 � a1

; a1 � x\a2;

1; a2 � x� a3;
a4 � x

a4 � a3
; a3\x� a4;

0; x[ a4;

8
>>>>>>>><

>>>>>>>>:

and

m ~aðxÞ ¼

1; x\c1;
x� c2
c1 � c2

; c1 � x\c2;

0; c2 � x� c3;
x� c3
c4 � c3

; c3\x� c4;

1; x[ c4:

8
>>>>>>>><

>>>>>>>>:

We can represent a trapezoidal I-fuzzy number (TrIFN) by

~a ¼ h½a1; a2; a3; a4�; ½c1; c2; c3; c4�i

with a2 ¼ c2; a3 ¼ c3. Now if, a2 ¼ a3 ¼ c2 ¼ c3 ¼
a ðsayÞ then the a above given trapezoidal I-fuzzy number

is the triangular I-fuzzy number. Similarly, a triangular I-

fuzzy number (TIFN) is represented by

~a ¼ h½a1; a2; a3�; ½c1; c2; c3�i with a2 ¼ c2. Again if ða2 �
a1Þ ¼ ða3 � a2Þ ¼ p ðsayÞ and ðc2 � c1Þ ¼ ðc3 � c2Þ ¼
q ðsayÞ, then the given (TIFN) will be a symmetric trian-

gular I-fuzzy number. We note that a symmetric triangular

I-fuzzy number ~a may be denoted by

~a ¼ h½a� p; a; aþ p�; ½a� q; a; aþ q�i.

Definition 3 (I-fuzzy arithmetic) (Li 1999; Nehi 2010)

Let ~a ¼ h½a1; a2; a3�; ½c1; c2; c3�i and ~b ¼ h½b1; b2; b3�; ½d1;
d2; d3�i be two triangular I-fuzzy number and k be a real

number. Then, the standard addition ~aþ ~b and subtraction

~a� ~b are, respectively, the I-fuzzy numbers defined as
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~aþ ~b ¼ h½a1 þ b1; a2 þ b2; a3 þ b3�;
½c1 þ d1; c2 þ d2; c3 þ d3�i;

and

~a� ~b ¼ h½a1 � b3; a2 � b2; a3 � b1�;
½c1 � d3; c2 � d2; c3 � d1�i:

Further, multiplication with any real number k, k ~a, is an

another I-fuzzy number defined as

k ~a ¼ h½ka1; ka2; ka3�; ½kc1; kc2; kc3�i; if k[ 0;

k ~a ¼ h½ka3; ka2; ka1�; ½kc3; kc2; kc1�i; if k\0:

Let ‘JIF’ and ‘.IF’ be the I-fuzzy versions of the

symbols ‘� ’ and ‘� ’, respectively, and interpretation of

‘greater than or equal to’ and ‘less than or equal to’ in

I-fuzzy sense.

Definition 4 (Almost positive symmetric triangular I-fuzzy

number) (Aggarwal et al. 2017) Let ~a ¼ h½a� p; a; aþ
p�½a� q; a; aþ q�i be a symmetric triangular I-fuzzy

number. Let 0� h1 � 1 and 0� h2 � 1. Then, ~a is said to be

‘almost positive I-fuzzy number’, denoted by ~aJIF
h1;h2

0, if

a[ 0 and

1. l ~að0Þ� ð1� h1Þ, and
2. m ~að0Þ� h2,

where h1 and ð1� h2Þ, respectively, are interpreted as the

‘degree of belief’ and ‘degree of disbelief’ in making the

statement ’~a almost positive’. Figure 1 depicts the meaning

of ~aJIF
h1;h2

0.

Definition 5 (Belief Score) (Aggarwal et al. 2017) Let ~a

be almost positive with degree of belief h1 and degree of

disbelief ð1� h2Þ. Then, the difference h1 � ð1� h2Þ, i.e.,
ðh1 þ h2 � 1Þ is called the belief score of the I-fuzzy

statement ~aJIF
h1;h2

0.

Remark 1 As ~a is a I-fuzzy number, l ~að0Þ þ m ~að0Þ� 1.

This gives h1 � h2.

Remark 2 Also, for a meaningful decision, we expect that

the degree of belief is greater than or equal to the degree of

disbelief. Thus, h1 �ð1� h2Þ, i.e., h1 þ h2 � 1, which

means that the belief score is always expected to be non-

negative.

Remark 3 An I-fuzzy number ~a is ‘more than or equal to’

another I-fuzzy number ~b, denoted by ~aJIF
h1;h2

~b if the tri-

angular I-fuzzy number ð~a� ~bÞ is almost positive, i.e.,

ð~a� ~bÞJIF
h1;h2

0.

Remark 4 An I-fuzzy number ~a is ‘less than or equal to’

another I-fuzzy number ~b, denoted by ~a.IF
h1;h2

~b if the tri-

angular I-fuzzy number ð ~b� ~aÞ is almost positive, i.e.,

ð ~b� ~aÞJIF
h1;h2

0.

3 I-fuzzy matrix games with I-fuzzy goals
and I-fuzzy pay-offs: proposed approach

We begin this section by describing a crisp game. For this,

we shall need some notations.

Let Rn be the n-dimensional Euclidean space and Rn
þ be

its non-negative orthant. A 2 Rm�n be m� n matrix and

eT ¼ ð1; . . .; 1Þ be a vector of ones whose dimension is

specified as per the specific context, and Sm ¼ fx 2
Rm

þ j eTx ¼ 1g and Sn ¼ fy 2 Rn
þ j eTy ¼ 1g:

Mathematically, the two person zero-sum matrix game

is represented by the triplet G ¼ ðSm; Sn;AÞ; where Sm and

Sn are the strategy spaces for player I and player II,

respectively, and A is the pay-off matrix. Also, it is a

convention to assume that player I is a maximizing player

and player II is a minimizing player. Therefore, for x 2 Sm,

y 2 Sn, the scalar xTAy is the expected pay-offs to player I,

and since the game is zero-sum, the pay-offs to player II is

�xTAy.

Herein, we introduce the I-fuzzy matrix game with I-

fuzzy goals and I-fuzzy pay-offs. Let eA be the pay-offs

matrix with entries as symmetric triangular I-fuzzy num-

bers. Since the entries in the pay-offs matrix are symmetric

triangular I-fuzzy numbers, it is natural to assume that the

pay-offs of both players be symmetric triangular I-fuzzy

number. Suppose player I and player II prescribe their

aspiration levels as symmetric triangular I-fuzzy numbers

eU0 and eV0, respectively. Let 0� h1 � 1 and 0� h2 � 1. Let

h1 and 1� h2 be the degree of belief and degree of disbelief

of player I, that his/her expected pay-offs are more than or

equal to the aspiration level ~U0. Similarly, let h01 and 1� h02
be the degree of belief and degree of disbelief of player II,

that his/her expected pay-offs value is less than or equal to

the aspiration level ~V0. Then, a generalized model for a

matrix game with I-fuzzy goals and I-fuzzy pay-offs is

ν

(a + p)(a − p)

μ

ã

0 xa

μ
(x
),

ν
(x
)

(a − q) (a + q)

B

1A

C

h1

h2

Fig. 1 Almost positive symmetric triangular I-fuzzy number
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(IFG) ¼ ðSm; Sn; eA; eU0;JIF
h1;h2

; eV0; .
IF
h0
1
;h0

2
Þ:

Here, eU0 ¼ h½u0 � p00; u0; u0 þ p00�; ½u0 � q00; u0; u0 þ
q00�i, eV0 ¼ h½v0 � r00; v0; v0 þ r00�; ½v0 � t00; v0; v0 þ t00�i
and eA ¼ ½~aij� are an m� n matrix with ~aij; i ¼
1; 2; . . .;m; j ¼ 1; 2; . . .; n as symmetric triangular I-fuzzy

numbers. Thus, ~aij ¼ h½aij � pij; aij; aij þ pij�; ½aij � qij; aij;

aij þ qij�i i ¼ 1; 2; . . .;m; j ¼ 1; 2; . . .; n. Now the solution

of the I-fuzzy matrix game (IFG) can be defined as follows:

Definition 6 (Solution of Game) An element ðx; yÞ 2
Sm � Sn is called the solution of the I-fuzzy matrix game

(IFG) if

xT eAy JIF
h1;h2

eU0; 8 y 2 Sn;

xT eAy .
IF
h0
1
;h0

2

eV0; 8 x 2 Sm:

As Sm and Sn are convex polytopes, it is sufficient to

consider only the extreme points of Sm and Sn. Therefore,

solving the game (IFG) is equivalent to solve the following

two I-fuzzy linear programming problems, (IFP-I) and

(IFP-II) for player I and player II, respectively

(IFP-I) Find x 2 Sm such that,

xT eAj JIF
h1;h2

eU0; j ¼ 1; 2; . . .; n;

nd

(IFP-II) Find y 2 Sn such that,

eAiy .
IF
h0
1
;h0

2

eV0; i ¼ 1; 2; . . .;m:

Without loss of generality, the above system of I-fuzzy

inequalities in (IFP-I) and (IFP-II) is equivalent to (EIFP-I)

and (EIFP-II), respectively, and is as follows:

(EIFP-I)

Find x 2 Rm such that,

eXj ¼ � eU0x0 þ
Xm

i¼1
~aijxi JIF

h1;h2
; j ¼ 1; 2; . . .; n;

Xm

i¼1
xi ¼ 1; x0 ¼ 1;

xi � 0; i ¼ 1; 2; . . .;m;

and

(EIFP-II)

Find y 2 Rn such that

eYi ¼ eV0y0 �
Xn

j¼1
~aijyjJIF

h0
1
;h0

2
0; i ¼ 1; 2; . . .;m;

Xn

j¼1
yj ¼ 1; y0 ¼ 1

yj � 0; j ¼ 1; 2; . . .; n:

Here, it may be noted that the inequalities eXj JIF
h1;h2

0,

j ¼ 1; 2; . . .; n and ~Yi JIF
h0
1
;h0

2
0, i ¼ 1; 2; . . .;m are to be

understood in the sense of ‘almost positive’ in I-fuzzy

environment (Definition 4).

The membership and non-membership functions for eXj ;

j ¼ 1; 2; . . .; n, where Xj ¼ �u0x0 þ
Pm

i¼1 aijxi; j ¼ 1; 2;

. . .; n, are

leXj

ðXÞ ¼

1þ X � Xj
Pm

i¼0 pijxi
; Xj �

Pm
i¼0 pijxi �X�Xj;

1; X ¼ Xj;

1� X � Xj
Pm

i¼0 pijxi
; Xj �X�Xj þ

Pm
i¼0 pijxi;

0; otherwise:

8
>>>>>>><

>>>>>>>:

and

meXj

ðXÞ ¼

�X þ Xj
Pm

i¼0 qijxi
; Xj �

Pm
i¼0 qijxi �X�Xj;

0; X ¼ Xj;

X � Xj
Pm

i¼0 qijxi
; Xj �X�Xj þ

Pm
i¼0 qijxi;

1; otherwise:

8
>>>>>>><

>>>>>>>:

respectively, where p0j ¼ p00 and q0j ¼ q00; j ¼ 1; 2; . . .; n:
Similarly, the membership and non-membership func-

tions for eYi; i ¼ 1; 2; . . .;m; where eYi ¼ ~V0y0 �
Pn

j¼1 ~aijyj

i ¼ 1; 2; . . .;m; are

leYi

ðYÞ ¼

1þ Y � Yi
Pn

j¼0 pijyj
; Yi �

Pn
j¼0 pijyj � Y � Yi;

1; Y ¼ Yi;

1� Y � Yi
Pn

j¼0 pijyj
; Yi � Y � Yi þ

Pn
j¼0 pijyj;

0; otherwise:

8
>>>>>>><

>>>>>>>:

and

meYi

ðYÞ ¼

�Y þ Yi
Pn

j¼0 qijyj
; Yi �

Pn
j¼0 qijyj � Y � Yi;

0; Y ¼ Yi;
Y � Yi

Pn
j¼0 qijyj

; Yi � Y � Yi þ
Pn

j¼0 qijyj;

1; otherwise:

8
>>>>>>><

>>>>>>>:

respectively, and pi0 ¼ r00 and qi0 ¼ t00; i ¼ 1; 2; . . .;m

and Yi ¼ v0y0 �
Pn

j¼1 aijyj; i ¼ 1; 2; . . .;m.

Since with any I-fuzzy inequality, there is a degree of

belief and also degree of disbelief associated with it. Thus,

the two players would like to choose the solution for which

the belief score is maximum. Therefore, to solve the two

problems (EIFP-I) and (EIFP-II), it is equivalent to solve

the following problems for player I and player II,

respectively
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(EPP-I)

max ðh1 þ h2 � 1Þ
subject to,

leXj

ð0Þ� 1� h1; j ¼ 1; 2; . . .; n;

meXj

ð0Þ� h2; j ¼ 1; 2; . . .; n;

Xm

i¼1

xi ¼ 1;

h1 þ h2 � 1;

h1 � h2;

x0 ¼ 1; xi � 0; i ¼ 1; 2; . . .;m:

and

(EPP-II)

max ðh01 þ h02 � 1Þ
subject to,

leYj

ð0Þ� ð1� h01Þ; i ¼ 1; 2; . . .;m;

meYi

ð0Þ� h02; i ¼ 1; 2; . . .;m;

Xn

j¼1

yj ¼ 1;

h01 þ h02 � 1;

h01 � h02;

y0 ¼ 1; yj � 0; j ¼ 1; 2; . . .; n:

Substituting the values of leXj

ð0Þ and meXj

ð0Þ, j ¼ 1; 2; . . .; n
in (EPP-I) and (EPP-II) respectively, we get the following

non-linear programming optimization problem:

(EPP-I)

max ðh1 þ h2 � 1Þ
subject to,

� u0x0 þ
Xm

i¼1
aijxi �ð1� h1Þ

Xm

i¼0
pijxi; j ¼ 1; 2; . . .; n;

� u0x0 þ
Xm

i¼1
aijxi � h2

Xm

i¼0
qijxi

� �
; j ¼ 1; 2; . . .; n;

Xm

i¼1
xi ¼ 1;

h1 þ h2 � 1;

h1 � h2;

x0 ¼ 1; xi � 0; i ¼ 1; 2; . . .;m;

p0j ¼ p00 and q0j ¼ q00; j ¼ 1; 2; . . .; n:

and problem for player II is

(EPP-II)

max ðh01 þ h02 � 1Þ
subject to,

v0y0 �
Xn

j¼1
aijyj �ð1� h01Þ

Xn

j¼0
pijyj; j ¼ 1; 2; . . .; n;

v0y0 �
Xn

j¼1
aijyj � h02

Xn

j¼0
qijyj

� �
; i ¼ 1; 2; . . .;m;

Xn

j¼1
yj ¼ 1;

h01 þ h02 � 1;

h01 � h02;

y0 ¼ 1; yj � 0; j ¼ 1; 2; . . .; n;

pi0 ¼ r00 and qi0 ¼ t00; i ¼ 1; 2; . . .;m:

Let ðx�; h�1; h�2Þ and ðy�; h0�
1 ; h

0�
2 Þ be the optimal solutions of

(EPP-I) and (EPP-II) of player I and player II, respectively.

Then, we say that x� is called the solution of I-fuzzy matrix

games problem (EIFP-I) with degree of belief h�1 and

degree of disbelief ð1� h�2Þ and the quantity (h�1 þ h�2 � 1)

is called the belief score of the player I. This elucidates that

player I achieves its aspired level of goals with degree of

belief h�1 and degree of disbelief (1� h�2) when he employs

strategy set x�. Analogous explanations follows for player
II.

Remark 5 At origin, the value of membership function

and non-membership function takes the value 1� h1 and

h2, respectively. As this I-fuzzy scenario subsumes to fuzzy

environment, the sum of membership and non-membership

function should be equal to 1. Hence, 1� h1 þ h2 ¼ 1;

therefore, h1 ¼ h2. Now, for h1 ¼ h2 ¼ h, the I-fuzzy game

problem (EPP-I) reduces to the player I’s problem in fuzzy

environment (EFPP-I), i.e.,

(EFPP-I)

max ð2h� 1Þ
subject to,

leXj

ð0Þ� 1� h; j ¼ 1; 2; . . .; n;
Xm

i¼1
xi ¼ 1;

h� 1

2
;

xi � 0; i ¼ 1; 2; . . .;m:

Similarly, for player II, when h01 ¼ h02 ¼ h0, the I-fuzzy

problem reduces to (EFPP-II) in fuzzy environment, i.e.,

(EFPP-II)
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max ð2h0 � 1Þ
subject to,

leYi

ð0Þ� 1� h0; i ¼ 1; 2; . . .;m;
Xn

j¼1
yj ¼ 1;

h0 � 1

2
;

yj � 0; j ¼ 1; 2; . . .; n:

Remark 6 It is to be noted that the problems (EFPP-I) and

(EFPP-II) cannot be compared to any of the approaches

discussed by Bector and Chandra (2005). All these

approaches are based on defuzzification number, while the

approach defined in this paper to solve the matrix game is

independent of any transformation or ranking function.

4 Numerical illustrations

To demonstrate the applicability and validity of the pro-

posed work, we present two real-world problems. First of

all, we consider the famous example of Campos (1989)

which has also been examined by Bector and Chandra

(2005) under fuzzy environment.

Example 1 Suppose that there are two companies P1 and

P2 aiming to enhance the market share of a product in a

targeted market under the circumstance that the amount of

demand of the product in the targeted market is fixed. In

other words, the market share of one company increases

while the one of another company decreases.

The two companies are considering two strategies to

increase the market share: d1 strategy (advertisement) and

d2 (reduce the price). The above problem may be regarded

as a matrix game. Namely, the companies P1 and P2 be

regarded as a player I and player II, respectively. They may

use strategies d1 and d2. Due to a lack of information or the

imprecision of the available information, the managers of

the two companies usually are not able to exactly forecast

the sales amount of the companies. They can estimate the

sales amount with a certain confidence degree, but it is

possible that they are not so sure about it. Thus, there may

be hesitation about the estimation of the sales amount. To

handle the uncertain situation, symmetric triangular I-fuzzy

numbers are used to express the sales amount of the

product. The pay-offs matrix ~A for P1 is given as follows:

eA ¼
g180 g156

f90 g180

" #

where g180 ¼ h½175; 180; 185�; ½170; 180; 190�i; in the

matrix eA is a symmetric triangular I-fuzzy number, which

is a special case of triangular I-fuzzy number which

indicates that the sales amount of the company is about 180

when the companies P1 and P2 use the strategy d1 (ad-

vertisement) simultaneously. The aspiration level is also

described by symmetric triangular I-fuzzy number and is

defined as fU0 ¼ g152 and fV0 ¼ g172 for player I and player

II, respectively. Let

g180 ¼h½175; 180; 185�; ½170; 180; 190�i;
g156 ¼h½150; 156; 162�; ½148; 156; 164�i;
f90 ¼h½80; 90; 100�; ½75; 90; 105�i;
g152 ¼h½147; 152; 157�; ½144; 152; 160�i;

and g172 ¼\½162; 172; 182�; ½157; 172; 187�i:

Solution by the proposed method

To solve the game IFG, we need to solve the following

problem for player I:

(IFP-I) Find x 2 R2 such that,

g180x1 þ f90x2 JIF
h1;h2

g152;

g156x1 þ g180x2 JIF
h1;h2

g152;
P2

i¼1 xi ¼ 1;

x1; x2 � 0:

The above inequalities can be written as

(EIFP-I) Find x 2 R2 such that,

fX1 ¼ �g152x0 þ g180x1 þ f90x2 JIF
h1;h2

0;

fX2 ¼ �g152x0 þ g156x1 þ g180x2 JIF
h1;h2

0;
P2

i¼1 xi ¼ 1;

x0 ¼ 1; x1; x2 � 0:

Thus, fX1 ¼ �g152x0 þ g180x1 þ f90x2, fX2 ¼ �g152x0 þ
g156x1 þ g180x2 and hence the membership and non-mem-

bership functions for each I-fuzzy inequality are as follows:

leX1

ðXÞ ¼

1þ X�X1

5þ 5x1 þ 10x2
; X1 � ð5þ 5x1 þ 10x2Þ�X�X1;

1; X ¼ X1;

1� X�X1

5þ 5x1 þ 10x2
; X1�X�X1 þ 5þ 5x1 þ 10x2;

0; otherwise:

8
>>>>>><

>>>>>>:

and
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meX1

ðXÞ ¼
�X þ X1

5þ 5x1 þ 10x2
; X1 � ð5þ 5x1 þ 10x2Þ�X�X1;

0; X ¼ X1;
X � X1

5þ 5x1 þ 10x2
; X1 �X�X1 þ 5þ 5x1 þ 10x2;

1; otherwise:

8
>>>>>><

>>>>>>:

leX2

ðXÞ ¼

1þ X � X2

5þ 6x1 þ 5x2
; X2 � ð5þ 5x1 þ 10x2Þ�X�X2;

1; X ¼ X2;

1� X � X2

5þ 6x1 þ 5x2
; X2 �X�X2 þ 5þ 6x1 þ 5x2;

0; otherwise

8
>>>>>><

>>>>>>:

meX2

ðXÞ ¼
�X þ X2

8þ 8x1 þ 10x2
; X2 � ð8þ 8x1 þ 10x2Þ�X�X2;

0; X ¼ X2;
X � X2

8þ 8x1 þ 10x2
; X2 �X�X2 þ 8þ 8x1 þ 10x2;

1; otherwise

8
>>>>>><

>>>>>>:

The equivalent problem for player I is

(EPP-I)

max ðh1 þ h2 � 1Þ
subject to,

� 152� 5h1 þ ð180� 5h1Þx1 þ ð90� 10h1Þx2 � 0;

� 152� 5h1 þ ð156� 6h1Þx1 þ ð180� 5h1Þx2 � 0;

� 152� 5h2 þ ð180� 10h2Þx1 þ ð90� 15h2Þx2 � 0;

� 152� 5h2 þ ð156� 8h2Þx1 þ ð180� 10h2Þx2 � 0;
X2

i¼1
xi ¼ 1;

h1 þ h2 � 1;

h1 � h2;

x1 � 0; x2 � 0:

Thus, the optimal solution for player I is (x�1 ¼ 0:8107452,

x�2 ¼ 0:1892548, h�1 ¼ 0:7901506, h�2 ¼ 0:5788483).

Hence, the degree of belief and degree of disbelief in

making the statement that the system of non-linear

inequalities almost positive are 0.7901506 and 0.4211517,

respectively. On the similar lines, the problem for player II

is as follows (IFP-II):

Find y 2 R2 such that,

g180y1 þ g156y2 .
IF
h0
1
;h0

2

g172;

f90y1 þ g180y2 .
IF
h0
1
;h0

2

g172:

P2

j¼0

yj ¼ 1;

y1; y2 � 0:

The equivalent problem is

(EIFP-II)

Find y 2 R2 such that

fY1 ¼ g172y0 � g180y1 � g156y2.
IF
h0
1
;h0

2
0;

fY2 ¼ g172y0 � f90y1 � g180y2 .
IF
h0
1
;h0

2
0;

P2
j¼1 yj ¼ 1;

y0 ¼ 1; y1; y2 � 0:

Now, Y1 ¼ 172x0 � 180x1 � 156x2, Y2 ¼ 172x0 � 90x1�
180x2. Hence, the membership and non-membership

functions, for each I-fuzzy inequality, are as follows:

leY1

ðYÞ

¼

1þ Y � Y1
10þ 5y1 þ 6y2

; Y1 � ð10þ 5y1 þ 6y2Þ� Y � Y1;

1; Y ¼ Y1;

1� Y � Y1
10þ 5y1 þ 6y2

; Y1 � Y � Y1 þ 10þ 5y1 þ 6y2;

0; otherwise

8
>>>>>><

>>>>>>:

and

meY1

ðYÞ

¼

�Y þ Y1
15þ 10y1 þ 8y2

; Y1 � ð15þ 10y1 þ 8y2Þ� Y � Y1;

0; Y ¼ Y1;
Y � Y1

15þ 10y1 þ 8y2
; Y1 � Y � Y1 þ 15þ 10y1 þ 8y2;

1; otherwise

8
>>>>>><

>>>>>>:

leY2

ðYÞ

¼

1þ Y � Y2
10þ 10y1 þ 5y2

; Y1 � ð10þ 10y1 þ 5y2Þ� Y � Y2;

1; Y ¼ Y2;

1� Y � Y2
10þ 10y1 þ 5y2

; Y2 � Y � Y2 þ 10þ 10y1 þ 5y2;

0; otherwise

8
>>>>>><

>>>>>>:

and
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meY2

ðYÞ

¼

�Y þ Y2
15þ 15y1 þ 10y2

; Y2 � ð15þ 15y1 þ 10y2Þ� Y � Y2;

0; Y ¼ Y2;
Y � Y2

15þ 15y1 þ 10y2
; Y2 �Y � Y2 þ 15þ 15y1 þ 10y2;

1; otherwise

8
>>>>>><

>>>>>>:

Thus, problem of player II becomes

(EPP-II)

maxðh01 þ h02 � 1Þ
subject to,

� 172þ 10h01 þ ð180þ 5h01Þy1 þ ð156þ 10h01Þy2 � 0;

� 172þ 10h01 þ ð90þ 10h01Þy1 þ ð180þ 15h01Þy2 � 0;

172� 15h02 � ð180þ 10h02Þy1 � ð156þ 8h02Þy2 � 0;

172� 15h02 � ð90þ 15h02Þy1 � ð180þ 10h02Þy2 � 0;
X2

j¼1
yj ¼ 1;

h1 þ h2 � 1;

h1 � h2;

y1 � 0; y2 � 0:

The optimal solution of player II is (y�1 ¼ 0:2211824; y�2 ¼
0:7788176; h

0�
1 ¼ 0:6775934; h

0�
2 ¼ 0:4560812). Here, the

degree of belief and degree of disbelief in making a

statement that the system is almost positive are 0.6775934

and 0.54391880, respectively.

Next, we present another important real-world problem

of voting, which one also was discussed by Bandyopad-

hyay et al. (2013). It is suitably modified to explain the

proposed technique.

Example 2 Suppose that there is an election where two

major political parties A and B take part, and a total

number of voters in that region is constant. It means that

the increase in the percentage of voters for one political

party results in the same for the other political party.

Suppose A has two strategies as

1. A1: Giving importance in the door to door campaign-

ing and carrying their ideology and issues to people.

2. A2: Co-operating with other small political parties to

reduce secured votes of the opposition.

At the same time, B takes two strategies:

1. B1: Campaigning by celebrities and big rallies.

2. B2: Making lots of promises to people.

Now the chief voting agents cannot say exactly about

the voting percentage, but they have a certain confidence

level. Still, there is some hesitancy in that confidence level

due to the bad weather forecast. In such a win–

win situation, we may consider the pay-offs as symmetric

triangular I-fuzzy number and the matrix is given as

eA ¼
e6 e7

e7 e5

" #

Let

e6 ¼ h½5:7; 6; 6:3�; ½5:5; 6; 6:5�i;
e7 ¼ h½6:8; 7; 7:2�; ½6:4; 7; 7:6�i;
and e5 ¼ h½4:8; 5; 5:2�; ½4:5; 5; 5:5�i:

Now e6 ¼ h½5:7; 6; 6:3�; ½5:5; 6; 6:5�i, in the pay-offs matrix

eA indicates that when party A plays the strategy A1 and

party B plays strategy B1, then the resulting expected votes

in favor of party A are approximately 6 lakhs. Let the

aspiration levels for party A and party B be eU0 ¼ e5 ¼
h½4; 5; 6�; ½3; 5; 7�i and eV0 ¼ e8 ¼ h½6:7; 8; 9:3Þ; ½6:5; 8; 9:5�i,
respectively. This indicates that approximately 5 lakhs

votes are the minimum requirement for party A to win

elections; similarly maximum requirement of votes for

party B to win the elections will be 8 lakhs. According to

present scheme, we need to solve the following crisp non-

linear programming problem for party A:

(EPP-I)

max ðh1 þ h2 � 1Þ
subject to,

6x1 þ 7x2 � 5� h1 � 0:6x1h1 � 0:2x2h1 � 0;

7x1 þ 5x2 � 5� h1 � 0:2h1x1 � 0:2x2h1 � 0;

6x1 þ 7x2 � 5� 2h2 � 0:5x1h2 � 0:6x2h2 � 0;

7x1 þ 5x2 � 5� 2h2 � 0:6x1h2 � 0:5x2h2 � 0;

X2

i¼1

xi ¼ 1;

h1 þ h2 � 1;

h1 � h2;

0� h1 � 1;

0� h2 � 1;

x1 � 0; x2 � 0:

Thus, the optimal solution for party A is (x�1 ¼ 0:5894542;

x�2 ¼ 0:4105458; h�1 ¼ 0:9824236; h�2 ¼ 0:4607009).

Hence, the degree of belief and degree of disbelief in

making a statement that the system of non-linear inequal-

ities is almost positive are 0.9824236 and 0.5392991,

respectively.

On the similar lines, the problem for party B is as

follows:

(EPP-II)
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max ðh01 þ h02 � 1Þ
subject to,

� 8þ 6y1 þ 7y2 þ 1:3h01 þ 0:6y1h
0
1 þ 0:2y2h

0
1 � 0;

� 8þ 7y1 þ 5y2 þ 1:3h01 þ 0:2y1h
0
1 þ 0:2y2h

0
1 � 0;

8� 1:5h02 � 6y1 � 0:5y1h
0
2 � 7y2 � 0:6y2h

0
2 � 0;

8� 1:5h02 � 7y1 � 0:6y1h
0
2 � 5y2 � 0:5y2h

0
2 � 0;

X2

j¼1

yj ¼ 1;

h01 þ h02 � 1;

h01 � h02;

0� h01 � 1;

0� h02 � 1;

y1 � 0; y2 � 0

The optimal solution of party B is (y�1 ¼ 0:6580763;

y�2 ¼ 0:3419237; h
0�
1 ¼ 0:9403628; h

0�
2 ¼ 0:8151033).

Here, the degree of belief and degree of disbelief in making

a statement that the system is almost positive are

0.9403628 and 0.1848967, respectively.

5 A comparative study with the existing
models in the literature

First of all it is to be noted that similar to fuzzy linear

programming problems, fuzziness in matrix games can also

appear in so many ways, but two cases of fuzziness seem to

be very natural. These being the one in which players have

fuzzy goals and the other in which the elements of the pay

off matrix are given by fuzzy parameters or both.

Here, we explain why our proposed model is not com-

parable with some other relevant work reported in the

literature.

The methods given in Aggarwal et al. (2012), Aggarwal

et al. (2014), Vijay et al. (2007), Khan et al. (2017) and

Nan et al. (2014) are to solve either fuzzy matrix games

with fuzzy goals or fuzzy matrix games with fuzzy pay-

offs. To solve these two matrix games, we have Zimmer-

mann’s approach for matrix game with fuzzy goals and

defuzzification or Yager’s ranking function approach for

matrix game with fuzzy pay-offs in the literature. The

Zimmermann (1978) approach requires pre-chosen toler-

ance levels while ranking function approach requires an

appropriate choice of such function. Since our approach

does not match with either of these two approaches, so no

such comparison is possible. Also, different tolerance

levels/ different ranking functions will, in general, give

different solutions, so it does not seem to be possible to

compare our method with that of the existing methods.

6 Conclusion

In this paper, we study a two person zero-sum matrix game

with I-fuzzy goals and I-fuzzy pay-offs. An essential con-

cept of ‘almost positive I-fuzzy number’ introduced by

Aggarwal et al. (2017) is employed here to study such a

game. Here, the comparison of two I-fuzzy numbers are

only membership function based and is very natural the

way we understand a positive real number. So without

using any ranking function here, we can get precise degree

of belief and degree of disbelief in achieving the goal set

by the decision maker.

The multi-objective I-fuzzy matrix games and I-fuzzy

bi-matrix games are other potential problems to study in

the near future. An interesting area where this model can be

explored is the group matrix game (studied by Figueroa-

Garcı́a et al. 2019), where the two groups of players play a

game using the individual knowledge of every player to

define the pay-offs.

As Ammar and Brikaa (2018) studied matrix game

under rough fuzzy sets. It will be interesting if we study the

‘almost positive fuzzy number’ in rough fuzzy set

environment.

Our proposed approach has the limitation of being

applied in that situations where the pay-offs matrix con-

tains symmetric triangular fuzzy numbers only. It will be

exciting and challenging, if the proposed approach can

work for non-symmetric fuzzy and, or I-fuzzy number in

the pay-offs matrix.
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