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Abstract
In our daily life, we encounter many problems with uncertainty and vagueness in nature. Mathematical formulations and

solutions of these problems are not easy and appear to be a challenging task to the researchers. Crisp sets and fuzzy sets

suffer to deal with these. Hesitant fuzzy set—a protracted version of fuzzy set—comes into the fore to bridge over the gap.

The set of all possible values of membership of hesitant fuzzy set might be considered as a set of possible intervals. Non-

membership functions are also added therein to get intuitionistic interval-valued hesitant fuzzy numbered sets. In the

literature, several aggregation operators exist, and here we consider a new one which is easy to apply in our formulated

problems. Here, a matrix game whose payoffs are intuitionistic interval-valued hesitant fuzzy numbers is solved using our

proposed aggregation operator. A tangible management problem with numerical values is demonstrated here to verify the

applicability of the new aggregation operator over the matrix game.

Keywords Game theory � Fuzzy set � Hesitant fuzzy set � Aggregation operator � Management problem

1 Introduction

Decision-making problems associated with game theories

have wide applications in sciences, engineering, manage-

ment science and social sciences. Fuzzy set (FS) (Zadeh

1965) serves an excellent and marvelous role to explore the

inner phenomena of problems related to everyday’s life.

But it has some limitations to deal with imprecise data and

hazy information when different types of vagueness and

uncertainty crop up simultaneously. Researchers have

nurtured fuzzy sets and extended fuzzy sets to intuitionistic

fuzzy set (IFS) (Atanassov 1986), hesitant fuzzy set (HFS)

(Torra 2010), interval-valued fuzzy set (IVFS) (Turksen

1986) and their inter-collaborations have been established.

Hesitant fuzzy set is more applicable to the discussion over

vagueness and fuzziness of the characters of the variables

connected to the problems on real-life situations.

In the fuzzy set, members are characterized by mem-

bership degrees and in intuitionistic fuzzy set, members

have membership degrees as well as non-membership

degrees and the hesitancy degrees. Several articles (cf.

Chen 2016; Chen et al. 2012a, b; Gabroveanu et al. 2016)

are devoted in the intuitionistic fuzzy set, interval-valued

intuitionistic fuzzy set theories since their appearances into

different fields. But, all are limited in case of flexibility of

choices of membership and non-membership degrees of the

elements to the considered set. HFS has been successfully

implemented into the cases of decision-making where FS

or IFS fails to describe the problems about the vagueness

and the uncertainty. HFS depicts a set of membership

values in [0, 1] rather than a single one against each

member of the set. In many decision-making problems of

various fields with a variety of vagueness, HFS is used

when decision-makers feel a hesitant environment like

disaccord, discrepancy situations (cf. Farhadinia 2013; Yu

et al. 2013). Basic set theoretic operations and the exten-

sion principle on HFS were proposed by Torra (2010). Xia

and Xu (2011) defined some new operations on HFS. Xu

and Xia (2011) proposed some distance measures on HFS.
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Chen et al. (2013) proposed the concept of interval-valued

hesitant fuzzy set (IVHFS) which represents the member-

ship values of an element to a set with several possible

interval values and then presented some interval-valued

hesitant fuzzy aggregation operators. Several articles have

been published in different hesitant fuzzy environments (cf.

Rodriguez et al. 2012; Zhu 2012) in different distance

measures (Peng et al. 2013) and aggregation operators

(Peng and Wang 2014). In decision-making, the aggrega-

tion operators are frequently used and successfully applied

to get performances among all alternatives to aggregate

information. Xia and Xu (2011) developed a series of

aggregation operators for hesitant fuzzy information and

applied to multi-criteria decision-making. Zhou (2014)

introduced and developed several types of hesitant fuzzy

aggregation operators which are the extended version of

weighted geometric (WG) and ordered weighted geometric

(OWG) operators having hesitancy environments. Yager

(1988) and Xu and Yager (2006) presented some intu-

itionistic fuzzy aggregation operators. Wei et al. (2014)

introduced hesitant triangular fuzzy aggregation operators

such as hesitant triangular fuzzy weighted averaging

(HTFWA) operator, hesitant triangular fuzzy weighted

geometric (HTFWG) operator, hesitant triangular fuzzy

ordered weighted averaging (HTFOWA) operator, hesitant

triangular fuzzy ordered weighted geometric (HTFOWG)

operator, hesitant triangular fuzzy hybrid geometric oper-

ator (HTFHG) and averaging operator (HTFHA). Wei

(2013) presented interval-valued hesitant fuzzy Choquet

ordered averaging (IVHFCOA) operator, interval-valued

hesitant fuzzy prioritized aggregation (IVHFPrA) operator,

and interval-valued hesitant fuzzy power aggregation

(IVHFPoA) operator. In this work, we introduce a new

aggregation operator simply to apply in intuitionistic

interval-valued hesitant fuzzy environment.

Neumann and Morgenstern (1944) invented Game

Theory as a mathematical way to discover the situation

related to the turns done by decision-makers. A game

involves a variety of players, a set of strategies plus a

payoff that shows quantitatively the outcome of each play

of the game in terms of the amounts that each player gains

or loses. A player who chooses a pure strategy randomly

selects a row or a column according to the probability

process that specifies the chance with each pure strategy.

These probability orient strategies are known as mixed

strategies for players. In probability expected sense, the

calculated payoffs suggest each player’s expectation to

receive and the player will actually receive on average

provided that the game is played a number of times. Matrix

game and duality theory in linear programming problem

(LPP) possess a bondage in crisp nature of complexities of

problems but reality prefers to different uncertain natures.

Due to the uncertainty and imprecision characteristics

involved and occurred in the system and the anomaly of the

judgment of players or decision-makers, the reflection of

hesitance characters are marked in our problem. Campos

(1989) first used fuzzy linear programming models to solve

fuzzy matrix games. Jana and Roy (2018) formulated and

solved dual hesitant fuzzy matrix games based on new

similarity measure. Li (2014), in his classic, solved matrix

games with different uncertainties using Atanassov’s IF

environments. Bhaumik et al. (2017), Roy and Bhaumik

(2018), Roy and Mula (2014), Roy and Mula (2016) and

Roy and Mondal (2016) solved matrix games, bi-matrix

games and successfully applied them in real-life situations.

Several articles have been published in game theory (cf.

Ammar 2019; Cheng et al. 2016; Das and Roy 2010; Jana

and Roy 2018; Khan 2019; Roy and Mula 2013; Roy and

Das 2009; Xia 2018).

Here, we develop a matrix game model with uncertain

payoff elements. Sometimes Atanassov’s IFS fails under

limitations with respect to the hesitancy involved in the

problem. Generally, we use IVHFS whose members are

usually hesitant interval elements. Hesitant numbers

emphasize liberty on the hesitancy of the choice of ele-

ments. Intuitionistic interval-valued hesitant fuzzy number

facilitates more close choice of membership values and

non-membership values based upon decision-makers’

intuition, assumption, judgement, behavior, evaluation,

decision, etc. In this paper, matrix game with payoffs

represented by intuitionistic interval-valued hesitant fuzzy

numbers (IIVHFNs) is formulated. A methodology is

developed mathematically to solve matrix game with

payoffs IIVHFNs by considering a pair of LPPs.

Main contributions of this paper are:

• Intuitionistic interval-valued hesitant fuzzy matrix

game model is designed.

• A fast-objective game model is achieved using a new

aggregation operator.

• Our proposed game is solved considering a pair of

linear programming problems.

• Management problem is exercised involving the matrix

game in proposed environment.

In Sect. 2, the basic preliminaries related to fuzzy set,

intuitionistic fuzzy set, intuitionistic fuzzy number, interval

number and interval-valued intuitionistic fuzzy set are

briefly discussed. Section 3 describes hesitant fuzzy set,

interval-valued hesitant fuzzy set and their properties. In

Sect. 4, we discuss on intuitionistic interval-valued hesitant

fuzzy set. In Sect. 5, we define a new aggregating operator,

say, generalized intuitionistic enveloped interval-valued

hesitant fuzzy weighted aggregation operator. Matrix

games with intuitionistic interval-valued hesitant fuzzy

environment are described in Sect. 6. A management

problem, having roots in society and economy, is discussed
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in Sect. 7. Section 8 considers the results of the corre-

sponding problem and Sect. 9 concludes this paper with

future research works.

2 Preliminaries

We first look back on the definitions of fuzzy set, intu-

itionistic fuzzy set, intuitionistic fuzzy number, interval

number and interval-valued intuitionistic fuzzy set with the

corresponding examples and their respective properties in

this part.

Definition 2.1 (Zadeh 1965) Let X be a universe of dis-

course. A fuzzy set �A in X is characterized by a member-

ship function l �A : X ! [0, 1]. A fuzzy set �A in X can be

expressed as follows: �A ¼ fðx; l �AðxÞÞ : l �AðxÞ 2 ½0; 1�;
x 2 Xg. And the membership degrees l �AðxÞ of �A are crisp

numbers.

Definition 2.2 (Atanassov 1986) Let X denote a universe

of discourse, then an intuitionistic fuzzy set (IFS), Â in X is

given by a set of ordered triplet described as: Â ¼
fhx; lÂðxÞ; cÂðxÞi : x 2 Xg; where both lÂ and cÂ, map-

ping of the elements of X to [0, 1], are functions such that

0� lÂðxÞ þ cÂðxÞ� 1; 8x 2 X. For each x, lÂðxÞ and cÂðxÞ
represent the degree of membership and degree of non-

membership respectively. Again, the value pÂðxÞ ¼ 1 �
lÂðxÞ � cÂðxÞ is called ‘‘degree of hesitation’’ of the ele-

ment x in the set Â. If pÂðxÞ ¼ 0; 8x 2 X; then the IFS

becomes a fuzzy set.

Definition 2.3 (Atanassov 1986) An IFN, Â is an intu-

itionistic fuzzy subset of real numbers R if:

(i) Â is normal, i.e., 9�x 2 X such that

lÂð�xÞ ¼ 1,

(ii) Â is convex for the membership function lÂðxÞ,
i.e., lÂðkx1 þ ð1 � kÞx2Þ� minflÂðx1Þ; lÂðx2Þg
for x1; x2 2 R, k 2 ½0; 1�,

(iii) Â is concave for the non-membership function

cÂðxÞ, i.e., cÂðkx1 þ ð1 � kÞx2Þ� maxfcÂðx1Þ; cÂ

ðx2Þg for x1; x2 2 R, k 2 ½0; 1�,
(iv) Â is piecewise continuous.

Definition 2.4 (Moore 1979) Let a ¼ ½al; au� ¼ fx : al �
x� aug, then a is called an interval number. If al � 0, then

a is called positive interval number.

For any two positive interval numbers a ¼ ½al; au� and

b ¼ ½bl; bu� and k 2 ½0; 1�, the following operations are

defined.

(i) a þ b ¼ ½al þ bl; au þ bu�;
(ii) ak ¼ ð½al; au�Þk ¼ ½ðalÞk; ðauÞk�;

(iii) ka ¼ k½al; au� ¼ ½kal; kau�;
(iv) a � b ¼ ½al; au� � ½bl; bu� ¼ ½al � bl; au:bu�;
(v) a [ b ¼ ½maxfal; blg;maxfau; bug�;

(vi) a \ b ¼ ½minfal; blg;minfau; bug�:

Definition 2.5 (Atanassov and Gargov 1989) Let X ¼
fx1; x2; . . .; xng be a finite universal set. An IVIFS A in X

may be expressed mathematically as: A ¼ fhxk; ½ll
AðxkÞ;

lu
AðxkÞ�; ½ml

AðxkÞ; mu
AðxkÞ�i : xk 2 X; k ¼ 1; 2; . . .; ng, where,

½ll
AðxkÞ; lu

AðxkÞ� � ½0; 1� and ½ml
AðxkÞ; mu

AðxkÞ� � ½0; 1�; ðk ¼
1; 2; . . .; nÞ are membership and non-membership degrees

of xk, expressed in interval form to A. If ll
AðxkÞ ¼ lu

AðxkÞ
and ml

AðxkÞ ¼ mu
AðxkÞ for every xk 2 Xðk ¼ 1; 2; . . .; nÞ, then

the IVIFS set A is converted into Atanassov’s intuitionistic

fuzzy set.

Property 2.1 We consider two IVIFSs A and B and also

choose k[ 0, and we get the following relational

properties.

(i) Ac ¼ fh½ml
A; m

u
A�; ½ll

A; l
u
A�ig;

(ii) A [ B ¼ fh½ll
A; l

u
A�; ½ml

A; m
u
A�i [ h½ll

B; l
u
B�; ½ml

B; m
u
B�ig

¼ fh½ll
A _ ll

B; l
u
A _ lu

B�; ½ml
A ^ ml

B; m
u
A ^ mu

B�ig;
(iii) A \ B ¼ fh½ll

A; l
u
A�; ½ml

A; m
u
A�i \ h½ll

B; l
u
B�; ½ml

B; m
u
B�ig

¼ fh½ll
A ^ ll

B; l
u
A ^ lu

B�; ½ml
A _ ml

B; m
u
A _ mu

B�ig;
(iv) A � B ¼ fh½ll

Al
l
B; l

u
Al

u
B�; ½ml

A þ ml
B � ml

Am
l
B; m

u
Aþ

mu
B � mu

Am
u
B�ig;

(v) A 	 B ¼ fh½ll
A þ ll

B � ll
Al

l
B; l

u
A þ lu

B � lu
Al

u
B�;

½ml
Am

l
B; m

u
Am

u
B�ig;

(vi) kA¼fh½1�ð1�ll
AÞ

k;1�ð1�lu
AÞ

k�;½ðml
AÞ

k;ðmu
AÞ

k�ig;
(vii) Ak¼fh½ðll

AÞ
k;ðlu

AÞ
k�;½1�ð1�ml

AÞ
k;1�ð1�mu

AÞ
k�ig;

where the symbols ‘‘^’’ and ‘‘_’’ are min and

max operators, respectively; ‘‘	’’, ‘‘�’’ are meant

for direct sum and tensor product operators,

respectively.

Definition 2.6 Assume a ¼ ½al; au� ¼ fx : 0� al � x� aug
is defined as an interval number, then the expected value of

a is defined as EðaÞ ¼ ð1=2Þðal þ auÞ.

Definition 2.7 Assume ~a ¼ ½~al; ~au� ¼ fx : ~al � x� ~au;

~al ¼ inf ~a; ~au ¼ sup ~ag is defined as an interval fuzzy

number, then the expected value of ~a is defined as

Eð~aÞ ¼ ð1=2Þð~al þ ~auÞ.

Definition 2.8 (Chen et al. 2013) Let ~a1 ¼ ½~a1
l; ~au

1� and

~a2 ¼ ½~al
2; ~a

u
2� be two interval fuzzy numbers and let lð~a1Þ ¼

~au
1 � ~al

1 and lð~a2Þ ¼ ~au
2 � ~al

2, then the degree of possibility

of ~a1 � ~a2 is defined as follows:
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Posð~a1 � ~a2Þ ¼ max
n

1 � max
n ~au

2 � ~al
1

lð~a1Þ þ lð~a2Þ
; 0
o
; 0
o
:

Similarly, the degree of possibility of ~a2 � ~a1 is defined as:

Posð~a2 � ~a1Þ ¼ max
n

1 � max
n ~au

1 � ~al
2

lð~a1Þ þ lð~a2Þ
; 0
o
; 0
o
:

From Definition 2.8, we easily obtain the following results:

(i) 0� Posð~a1 � ~a2Þ� 1;
(ii) 0� Posð~a2 � ~a1Þ� 1;

(iii) Posð~a1 � ~a2Þ þ Posð~a2 � ~a1Þ ¼ 1; and specially,

(iv) Posð~a1 � ~a1Þ ¼ Posð~a2 � ~a2Þ ¼ 0:5:

Definition 2.9 (Ishibuchi and Tanaka 1990) Let a ¼
½al; au� ¼ fx : al � aug be an interval. The maximization

problem with the interval objective function is described as

follows:

maximize a

subject to a 2 X1;

which is equivalent to the following bi-objective mathe-

matical programming problem:

maximize al;EðaÞ
subject to a 2 X1;

where X1 is a set of constraints in which the variable ‘‘a’’

should satisfy according to the requirements in real

situation.

Similarly, the minimization problem with the interval

objective function is treated as follows:

minimize a

subject to a 2 X2;

which is also converted into the following bi-objective

programming problem as:

minimize au;EðaÞ
subject to a 2 X2:

Here, X2 is a set of constraints in which the variable ‘‘a’’

should satisfy according to the requirements of reality.

Now, we consider a new interval which can be defined

as an envelope of given set of intervals. In the following

definition, we define such interval as enveloped interval

(EI).

Definition 2.10 Let S ¼ f½a1; b1�; ½a2; b2�; . . ., ½an; bn�g be

a set of intervals. Then ES, defined as ES ¼ ½minn
i¼1ðaiÞ;

maxn
i¼1ðbiÞ�, such that ak � minn

i¼1ðaiÞ� maxn
i¼1ðbiÞ� bl

(for particular k and l), is called the enveloped interval (EI)

of S.

3 HFS, IVHFS and their properties

In this section, we define elaborately the HFS, IVHFS and

their related properties with supporting examples.

Definition 3.1 (Torra 2010) A hesitant fuzzy set AHF on a

reference set X is characterized in terms of a function hAðxÞ
when is applied to X, give a subset of [0, 1],

i.e., AHF ¼ fhx; hAðxÞi : x 2 Xg, where hAðxÞ is termed as

hesitant fuzzy element (HFE), a basic unit of HFS, is a set

of some different values in [0,1] represents the membership

degrees of the element x 2 X.

Example 3.1 Suppose AHF ¼ fhx1; 0:1; 0:4; 0:3i,
hx2; 0:3; 0:35i; hx3; 0:2; 0:4; 0:6; 0:69; 0:8ig is a HFS, where

fx1; x2; x3g 2 X, a reference set and hAðx1Þ ¼ f0:1; 0:4;

0:3g; hAðx2Þ ¼ f0:3, 0:35g; hAðx3Þ ¼ f0:2; 0:4; 0:6; 0:69;

0:8g are hesitant fuzzy elements.

Property 3.1 Given three HFEs represented by h; h1 and

h2 on which some operations are defined by Torra (2010)

as follows:

(i) hc ¼ f1 � c : c 2 hg, complement of h;

(ii) h1 [ h2 ¼ fc1 _ c2 : c1 2 h1; c2 2 h2g;
(iii) h1 \ h2 ¼ fc1 ^ c2 : c1 2 h1; c2 2 h2g;

Furthermore, to aggregate hesitant fuzzy infor-

mation, Xia and Xu (2011) defined some new

operations on h; h1 and h2 with k[ 0 as below:

(iv) h1 	 h2 ¼ fc1 þ c2 � c1c2 : c1 2 h1; c2 2 h2g;
(v) h1 � h2 ¼ fc1c2 : c1 2 h1; c2 2 h2g;

(vi) hk ¼ fck : c 2 hg;
(vii) kh ¼ f1 � ð1 � cÞk : c 2 hg:

To compare the magnitudes of HFEs, Xia and Xu (2011)

defined the following comparison laws:

For any HFE h, SðhÞ ¼
Peh

c2h
c
jehj, called the score

function of h, where eh is the set of all elements in h and

jehj denotes the cardinality of eh.

For any two HFEs, h1 and h2, Sðh1Þ[ Sðh2Þ implies that

h1 [ h2; Sðh1Þ\Sðh2Þ implies that h2 [ h1; otherwise,

Sðh1Þ ¼ Sðh2Þ implies that h1 ¼ h2:

Definition 3.2 (Chen and Xu 2014) Specific membership

degrees against an element of the reference set are not

appropriate to describe the acceptance of the element. To

overcome this complexity, Chen et al. (2013) defined

IVHFS as: BIVHFS ¼ fhxi; ~hBðxiÞ : xi 2 Xig and ~hBðxiÞ
denotes fuzzy interval in [0,1], i.e., BIVHFS ¼ fhxi; ~cii : xi 2
X; ~ci ¼ ½~cl; ~cu� 2 ~hBðxiÞg and ~hBðxiÞ is called interval-val-

ued hesitant fuzzy element (IVHFE), where ~cl ¼ inf ~c; ~cu ¼
sup ~c represent the lower and upper limits of ~c, respec-

tively. As HFE is connected to HFS, IVHFE is connected

to IVHFS.
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Example 3.2 We consider an IVHFS as:

A ¼ fhx1; ½0:1; 0:3�i; hx2; ½0:1; 0:4�; ½0:3; 0:8�i;
hx3; ½0:4; 0:6�i; hx4; ½0:1; 0:4�; ½0:5; 0:7�; ½0:75; 0:9�ig:

Property 3.2 (Chen et al. 2013) defined the operations

and illustrated the comparison results among any interval-

valued hesitant fuzzy elements (IVHFEs), say, ~h ¼
f[~c2 ~h½~cl; ~cu�g, ~h1 ¼ f[~c12 ~h1

½~cl
1; ~c

u
1�g and ~h2 ¼ f[~c22 ~h2

½~cl
2; ~c

u
2�g as described below:

(i) ~hc ¼ f½1 � ~cu; 1 � ~cl� : ~c 2 ~hg, complement of ~h;

(ii) ~h1 [ ~h2 ¼ f½maxð~cl
1; ~c

l
2Þ;maxð~cu

1; ~c
u
2Þ� : ~c1 2 ~h1;

~c2 2 ~h2g;
(iii) ~h1 \ ~h2 ¼ f½minð~cl

1; ~c
l
2Þ;minð~cu

1; ~c
u
2Þ� : ~c1 2 ~h1;

~c2 2 ~h2g;
(iv) ~h1 	 ~h2 ¼ f[~c12 ~h1;~c22 ~h2

½~cl
1 þ ~cl

2 � ~cl
1~c

l
2; ~c

u
1 þ ~cu

2�
~cu

1~c
u
2�g;

(v) ~h1 � ~h2 ¼ f[~c12 ~h1;~c22 ~h2
½~cl

1~c
l
2; ~c

u
1~c

u
2�g;

(vi) ~hk ¼ f[~c2 ~h½ð~clÞk; ð~cuÞk�g, where k 2 ½0; 1�;
(vii) k ~h ¼ f[~c2 ~h½1 � ð1 � ~clÞk; 1 � ð1 � ~cuÞk�g, where

k 2 ½0; 1�.

Property 3.3 (Chen and Xu 2014) Let ~h1; ~h2; and ~h3 are

IVHFEs and let k 2 ½0; 1�. Then, some properties of

IVHFEs can be depicted as below:

(i) ~h1 [ ~h2 ¼ ~h2 [ ~h1;

(ii) ~h1 \ ~h2 ¼ ~h2 \ ~h1;

(iii) ~h1 [ ð ~h2 [ ~h3Þ ¼ ð ~h1 [ ~h2Þ [ ~h3;

(iv) ~h1 \ ð ~h2 \ ~h3Þ ¼ ð ~h1 \ ~h2Þ \ ~h3;

(v) ~h1 	 ð ~h2 	 ~h3Þ ¼ ð ~h1 	 ~h2Þ 	 ~h3;

(vi) ~h1 � ð ~h2 � ~h3Þ ¼ ð ~h1 � ~h2Þ � ~h3;

(vii) kð ~h1 [ ~h2Þ ¼ k ~h1 [ k ~h2;

(viii) kð ~h1 \ ~h2Þ ¼ k ~h1 \ k ~h2;

(ix) ð ~h1 [ ~h2Þk ¼ ~hk
1 [ ~hk

2;

(x) ð ~h1 \ ~h2Þk ¼ ~hk
1 \ ~hk

2:

Definition 3.3 For any ~h ¼ f[~c2 ~h½~cl; ~cu�g and if e ~h is the

set of all elements in ~h, and je ~hj denotes the cardinality of

e ~h then Sð ~hÞ ¼ 1
je ~hj
Pe ~h

~c2 ~h
~c ¼ 1

je ~hj
Pe ~h

~c2 ~h
ð~clþ~cu

2
Þ, is defined as

the score function of ~h.

For any two IVHFEs ~h1 and ~h2, Sð ~h1Þ[ Sð ~h2Þ implies

that ~h1 [ ~h2; Sð ~h2Þ[ Sð ~h1Þ implies that ~h2 [ ~h1; other-

wise, Sð ~h1Þ ¼ Sð ~h2Þ implies that ~h1 ¼ ~h2:

4 Intuitionistic interval-valued hesitant
fuzzy set

When IVFS or IVIFS is considered, both the membership

and non-membership functions are bound by the characters

of intervals. But if these intervals are not taken fixed and

the decision-makers use flexible intervals for the expres-

sion of reality, IVHFS with intuitionistic character, i.e., our

consideration of intuitionistic interval-valued hesitant

fuzzy set (IIVHFS) is generated.

Definition 4.1 Let ~A be an intuitionistic interval-valued

hesitant fuzzy set with intuitionistic interval-valued hesi-

tant fuzzy element as ~ha. Then,

~ha ¼ fh½ ~haMðxiÞ; ~haNMðxiÞ�ig ¼ fh[s½ ~hl
aMðxiÞ;

~hu
aMðxiÞ�;[s½ ~hl

aNMðxiÞ; ~hu
aNMðxiÞ�ig;

where xi belongs to reference set X and ~haMjxðiÞ : X !
D½0; 1� and ~haNMjxðiÞ : X ! D½0; 1�. Where, ‘M’ denotes

membership and ‘NM’ denotes non-membership; [s

denotes the set-union of all interval-valued hesitant fuzzy

elements.

For each i, we, respectively, get the membership and the

non-membership functions of the related intuitionistic

interval-hesitant fuzzy set and D[0, 1] denotes the domain

of the closed interval [0, 1].

Example 4.1 Let ~C ¼ fhx1; ½0:10; 0:50�; ½0:25; 0:40�i;
hx2; ½0:30; 0.50], [0.50, 0.65], [0.60, 0.80]; [0.35, 0.50],

[0.15, 0.25], ½0:10; 0:20�i; hx3; ½0:40; 0:50�; ½0:10; 0:60�;
½0:30; 0:50�; ½0:20; 0:30�ig be an intuitionistic interval-val-

ued hesitant fuzzy set.

Definition 4.2 (Extension principle of IIVHFS) Let H ¼
fh1; h2; . . .; hng be a set of n 2 N, IIVHFEs and let H be a

function on H such that H : ½0; 1�n ! ½0; 1� satisfies the

following: HH ¼
S

hi2h[s½ ~hl
iM; ~hu

iM�;[s½ ~hl
iNM; ~hu

iNM�ifHðhiÞg.

Property 4.1 (Mathematical operations on IIVHFEs)

Given three IIVHFEs represented by ~ha1
; ~ha2

; ~ha3
; and [s

denotes the set of all interval-valued hesitant fuzzy ele-

ments and consider k[ 0, then the following mathematical

operations can be performed as:

(i) ~hc
a1
¼ fh½ ~ha1M; ~ha1NM�igc ¼ fh[s½ ~hl

a1M; ~hu
a1M�;[s

½ ~hl
a1NM; ~hu

a1NM�igc ¼ fh[s½ ~hl
a1NM; ~hu

a1NM�;[s½ ~hl
a1M;

~hu
a1M�ig;

(ii) ~ha1
[ ~ha2

¼ fh ~ha1M; ~ha1NMi [ h ~ha2M; ~ha2NMig ¼ fh[s

½ ~hl
a1M; ~hu

a1M�;[s½ ~hl
a1NM; ~hu

a1NM�i [ h[s½ ~hl
a2M; ~hu

a2M�;[s

½ ~hl
a2NM; ~hu

a2NM�ig ¼ fh[s½ ~hl
a1M _ ~hl

a2M; ~hu
a1M _ ~hu

a2M�;
[s½ ~hl

a1NM
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(iii) ~ha1
\ ~ha2

¼ fh ~ha1M; ~ha1NMi \ h ~ha2M; ~ha2NMig ¼ fh[s

½ ~hl
a1M; ~hu

a1M�;[s½ ~hl
a1NM; ~hu

a1NM�i \ h[s½ ~hl
a2M; ~hu

a2M�;[s

½ ~hl
a2NM; ~hu

a2NM�ig ¼ fh[s½ ~hl
a1M ^ ~hl

a2M; ~hu
a1M ^ ~hu

a2M�;
[s½ ~hl

a1NM

(iv) ~ha1
� ~ha2

¼ fh ~ha1M; ~ha1NMi� h ~ha2M; ~ha2NMig ¼ fh[s

½ ~hl
a1M

~hl
a2M; ~hu

a1M
~hu
a2M�;[s½ ~hl

a1NM þ ~hl
a2NM � ~hl

a1NM

~hl
a2NM; ~hu

a1NM þ ~hu
a2NM � ~hu

a1NM
~hu
a2NM�ig;

(v) ~ha1
	 ~ha2

¼ fh ~ha1M; ~ha1NMi	 h ~ha2M; ~ha2NMig ¼ fh[s

½ ~hl
a1M þ ~hl

a2M � ~hl
a1M

~hl
a2M; ~hu

a1M þ ~hu
a2M � ~hu

a1M
~hu
a2M�;

[s½ ~hl
a1NM

~hl
a2NM; ~hu

a1NM
~hu
a2NM�ig;

(vi) k ~ha1
¼ kfh½ ~ha1M; ~ha1NM�ig ¼ fh[s½1 � ð1 � ~hl

a1MÞk;
1 � ð1 � ~hu

a1MÞk�;[s½ð ~hl
a1NMÞk; ð ~hu

a1NMÞk�ig;
(vii) ~hk

a1
¼ fh[s½ð ~hl

a1MÞk; ð ~hu
a1MÞk�;[s½1 � ð1 � ~hl

a1NMÞk;
1 � ð1 � ~hu

a1NMÞk�ig

5 A new aggregation operator

Based on Definitions 2.10, 4.1, 4.2 and Property 4.1, we

create here a new operator on intuitionistic interval-valued

hesitant fuzzy sets for aggregating the corresponding

hesitant fuzzy elements and this is termed here as Gener-

alized Intuitionistic Enveloped Interval-Valued Hesitant

Fuzzy Weighted Aggregation Operator, abbreviated as

GIEIVHFWAO.

Definition 5.1 (GIEIVHFWAO) Let ~hiði ¼ 1; 2; . . .; nÞ be

a collection of IIVHFEs and w ¼ ðw1;w2; . . .;wnÞ be the

weight vector of ~hiði ¼ 1; 2; . . .; nÞ with wi 2 ½0; 1� andPn
i¼1 wi ¼ 1. An GIEIVHFWAO is a mapping ~Hn ! ~H,

(H denotes the set of all hesitant fuzzy elements) such that

GIEIVHFWAOð ~h1; ~h2; . . .; ~hnÞ ¼
Jn

i¼1ð ~h
wi
i Þ:

If the weights wiði ¼ 1; 2; . . .; nÞ are equally distributed

to each hiði ¼ 1; 2; . . .; nÞ then GIEIVHFWAO reduces to

intuitionistic enveloped interval-valued hesitant fuzzy

aggregation operator (IEIVHFAO) as: IEIVHFAO

ð ~h1; ~h2; . . .; ~hnÞ ¼
Jn

i¼1ð ~h
1
n
iÞ:

Here, ‘
J

’ is used for the proposed aggregation

operator.

Theorem 5.1 Let ~hiði ¼ 1; 2; . . .; nÞ be a collection of

IIVHFEs and w ¼ ðw1;w2; . . .;wnÞ be the weight vector of
~hiði ¼ 1; 2; . . .; nÞ with wi 2 ½0; 1� and

Pn
i¼1 wi ¼ 1, then,

the aggregated values of ~hiði ¼ 1; 2; . . .; nÞ, calculated

using generalized intuitionistic enveloped interval-valued

hesitant fuzzy weighted aggregation operator (GIEIVHF-

WAO) is an IIVHFE as (where k[ 0):

GIEIVHFWAOð ~h1; ~h2; . . .; ~hnÞ

¼ 1 �
Yn

i¼1

ð1 � minð ~hl
iMÞÞ

wi

 !1
k

;

2
4

*8<
:

1 �
Yn

i¼1

ð1 � maxð ~hu
iMÞÞ

wi

 !1
k

3
5;

1 � 1 �
Yn

i¼1

ðminð ~hl
iNMÞÞwi

 !1
k

;

2
4

1 � 1 �
Yn

i¼1

ðmaxð ~hu
iNMÞÞwi

 !1
k

3
5
+

: ~hiM; ~hiNM 2 ~hi

9=
;:

If k ¼ 1, we get gIEIVHFWAO which is defined as below:

gIEIVHFWAO

¼ 1 �
Yn

i¼1

ð1 � minð ~hl
iMÞÞ

wi ;

"*(

1 �
Yn

i¼1

ð1 � maxð ~hu
iMÞÞ

wi

#
;

1 � 1 �
Yn

i¼1

ðminð ~hl
iNMÞÞwi

 !
;

"

1 � 1 �
Yn

i¼1

ðmaxð ~hu
iNMÞÞwi

 !#+
: ~hiM; ~hiNM 2 ~hi

)

¼ h½hl
kM ; h

u
kM�; ½hl

kNM; hu
kNM�i:

where k is the optimized i among n values.

Proof Since,

ð1 � minð ~hl
1MÞÞ

w1ð1 � minð ~hl
2MÞÞ

w2

¼
Y2

i¼1

ð1 � minð ~hl
iMÞÞ

wi

and

ð1 � maxð ~hu
1MÞÞ

w1ð1 � maxð ~hu
2MÞÞ

w2

¼
Y2

i¼1

ð1 � maxð ~hu
iMÞÞ

wi

then using the laws of mathematical induction, the proof is

simple and obvious.

Now, we define, respectively, the score and accuracy

functions approach on gIEIVHFWAO as:

gs
IEIVHFWAO

¼ ð ~hl
kM þ ~hu

kM � ð ~hl
kNM þ ~hu

kNMÞÞ=2;

and
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ga
IEIVHFWAO ¼ ð ~hl

kM þ ~hu
kM þ ~hl

kNM þ ~hu
kNMÞ=2;

for particular i ¼ k.

Here, we get the following relations, where we consider

two IIVHFSs as, Q̂1 and Q̂2 (where ‘s’ indicates ‘score’ and

‘a’ indicates ‘accuracy’)

(i) when gs
IEIVHFWAOðQ̂1Þ[ gs

IEIVHFWAOðQ̂2Þ; then

Q̂1 [ Q̂2;

(ii) when gs
IEIVHFWAOðQ̂1Þ\gs

IEIVHFWAOðQ̂2Þ; then

Q̂1\Q̂2;

(iii) when gs
IEIVHFWAOðQ̂1Þ ¼ gs

IEIVHFWAOðQ̂2Þ;

then

1. ga
IEIVHFWAOðQ̂1Þ[ ga

IEIVHFWAOðQ̂2Þ implies Q̂1 [ Q̂2;

2. ga
IEIVHFWAOðQ̂1Þ\ga

IEIVHFWAOðQ̂2Þ implies Q̂1\Q̂2;

3. ga
IEIVHFWAOðQ̂1Þ ¼ ga

IEIVHFWAOðQ̂2Þ implies Q̂1 ¼ Q̂2.

Removing the weight variables, we consider the general-

ized intuitionistic enveloped interval-valued hesitant fuzzy

aggregation (GIEIVHFA) operator, defined as below. h

Definition 5.2 Let ~hiði ¼ 1; 2; . . .; nÞ be a collection of

IIVHFEs. Then, the aggregated values of ~hiði ¼ 1; 2;

. . .; nÞ, calculated using generalized intuitionistic envel-

oped interval-valued hesitant fuzzy aggregation operator

(GIEIVHFAO) is an IIVHFE as (where k[ 0):

GIEIVHFAOð ~h1; ~h2; . . .; ~hnÞ

¼ 1 �
Yn

i¼1

ð1 � minð ~hl
iMÞÞ

 !1
k

;

2
4

*8<
:

1 �
Yn

i¼1

ð1 � maxð ~hu
iMÞÞ

 !1
k

3
5;

1 � ð1 �
Yn

i¼1

ðminð ~hl
iNMÞÞÞ

1
k;

"

1 � 1 �
Yn

i¼1

ðmaxð ~hu
iNMÞÞ

 !1
k

3
5
+

: ~hiM; ~hiNM 2 ~hi

9=
;:

If k ¼ 1, we get gIEIVHFAO which is described as,

gIEIVHFAO

¼ 1 �
Yn

i¼1

ð1 � minð ~hl
iMÞÞ; 1 �

Yn

i¼1

ð1 � maxð ~hu
iMÞÞ

" #
;

*(

1 � 1 �
Yn

i¼1

ðminð ~hl
iNMÞÞ

 !
;

"

1 � 1 �
Yn

i¼1

ðmaxð ~hu
iNMÞÞ

 !#+
: ~hiM; ~hiNM 2 ~hi

)

¼ h½hl
kM; hu

kM�; ½hl
kNM; hu

kNM�i:

Property 5.1 GIEIVHFWAO, when applied on IIVHFEs
~hiði ¼ 1; 2; . . .; nÞ, follows idempotent, bounded and

monotonic properties.

Proof Proofs are easy to achieve. h

6 Intuitionistic interval-valued hesitant
fuzzy matrix game

In this section, two subsections are allowed. First one

describes the matrix games in crisp environment, whereas

the second depicts the situation in IIVHF environment.

6.1 Matrix game in crisp environment

A finite two-person zero-sum game in matrix form,

(Y, Z, A), sometimes called a matrix game, means that

there is a matrix A ¼ ðaijÞði ¼ 1; 2; . . .; p; j ¼ 1; 2; . . .; qÞ of

real numbers, called payoff matrix as

A ¼

a21 a22 a23 . . . a2q

..

. ..
. ..

. . .
. ..

.

ap1 ap2 ap3 . . . apq

2
664

3
775:

When the player I, the row player, choose to play row i and

player II, the column player, choose to play column j, then

the payoff to player I is aij. The payoff to player I is aij and

that of player II is �aij due to the zero-sum condition,

imposed upon the two-person game. Both players want to

choose strategies that will benefit their individual payoffs.

Consider the matrix game with the set of pure strategies

a and b and that of mixed strategies Y and Z for two players

I and II, respectively, are defined as:
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a ¼ fa1; a2; . . .; apg and b ¼ fb1; b2; . . .; bqg;

Y ¼ y ¼ ðy1; y2; . . .; ypÞT :
Xp

i¼1

yi ¼ 1; yi � 0; i ¼ 1; 2; . . .; p

( )
;

Z ¼ z ¼ ðz1; z2; . . .; zqÞT :
Xq

j¼1

zj ¼ 1; zj � 0; j ¼ 1; 2; . . .; q

( )
;

where yiði ¼ 1; 2; . . .; pÞ and zjðj ¼ 1; 2; . . .; qÞ are proba-

bilities in which the players I and II choose their pure

strategies ai 2 aði ¼ 1; 2; . . .; pÞ and bj 2 bðj ¼ 1; 2; . . .; qÞ,
respectively. Basically, we find the value of the game and

the optimal strategy(ies) for each player. The value of the

game is defined to be the maximum guaranteed gain to the

maximizing player I or the minimum possible loss to the

minimizing player II when the best strategies are used by

both the players. If a player lists the worst possible out-

comes of all his or her potential strategies, he or she will

choose that strategy, the most suitable for him or her. This

concept is treated as maximin or minimax principle. If in a

game, maximin for player I and minimax for player II be

equal, then the game is said to have a saddle point [Neu-

mann and Morgenstern (1944) used the term ‘saddle

point’]. Assume that player I uses any mixed strategy

y 2 Y . Obviously, player I’s expected gain-floor is

minðytAz : z 2 ZÞ and if shortly be denoted by v, we have to

maximize v, say v
 for certain y
 2 Y , as vðy
Þ ¼ maxðvy :

y 2 YÞ ¼ maxðminf
Pp

i¼1 aijyi : j ¼ 1; 2; . . .; qgÞ.
Such y
 and v
, respectively, called player I’s maximin

strategy and game value, are obtained from the following

linear programming problem in Model 1.

Model 1

maximize v ð1Þ

subject to
Xp

i¼1

aijyi � vðj ¼ 1ð1ÞqÞ; ð2Þ

Xp

i¼1

yi ¼ 1; ð3Þ

yi � 0ði ¼ 1ð1ÞpÞ: ð4Þ

And with same argument, player II’s optimal or minimax

strategy, say z
 2 Z, and the game value, say w
 are

derived from Model 2 as:

Model 2

minimize w ð5Þ

subject to
Xq

j¼1

aijzi �wði ¼ 1ð1ÞpÞ; ð6Þ

Xq

j¼1

zj ¼ 1; ð7Þ

zj � 0ðj ¼ 1ð1ÞqÞ: ð8Þ

6.2 Matrix game in IIVHF environment

Due to the imprecision of the available information, fuzzy

sets, interval numbers, rough sets, etc. are used as tools to

construct the model of the problem. As a special case of

fuzzy sets, Atanassov’s IFS considers the non-membership

characters of the elements of corresponding set. Interval

number-based set also elaborately describes elements’

flexibility over a range of numbers. But in the above-

mentioned situations, decision-makers use boundaries of

fixed choices. So, hesitancy character can be concluded

with the above characters to freely choose the elements

within several boundaries incorporated with membership

and non-membership degrees. Firstly, we generate matrix

game models when elements are interval in nature, as

Model 3 and Model 4.

Model 3

maximize ½vl; vr�

subject to
Xp

i¼1

½al
ij; ar

ij�yi � II ½vl; vr�ðj ¼ 1ð1ÞqÞ;

the constraints (3) and (4):

and

Model 4

maximize ½wl;wr�

subject to
Xq

j¼1

½al
ij; ar

ij�zj � II ½wl;wr�ði ¼ 1ð1ÞpÞ;

the constraints (7) and (8):

where both ‘‘� II’’ and ‘‘� II’’ denote the interval

inequalities.

Value of the game is defined to be the maximum

guaranteed gain to the maximizing player I or the mini-

mum possible loss to the minimizing player II when the

best strategies are used by both the players. If a player lists

the worst possible outcomes of all his or her potential

strategies, he or she will choose that strategy, the most

suitable for him or her.

Secondly, from Model 1 and Model 2, we degenerate

hesitant fuzzy matrix game ðY; Z; haij
Þ as depicted in Model

5 and Model 6.
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Model 5

maximize hv

subject to
Xp

i¼1

haij
yi � HFIhvðj ¼ 1ð1ÞqÞ;

the constraints (3) and (4):

and

Model 6

minimize hw

subject to
Xq

j¼1

haij
zi � HFIhwði ¼ 1ð1ÞpÞ;

the constraints (7) and (8):

where both ‘‘� HFI’’ and ‘‘� HFI’’ denote the hesitant fuzzy

inequalities; haij
represents hesitant fuzzy payoffs of the

game; hv and hw represent the game values of two players

to be optimized. Now, maximin value of player I is

obtained after solving Model 5 and minimax value of

player II is reached on solving Model 6.

Let ~H ¼ ð ~haij
Þp�q be the intuitionistic interval-valued

hesitant fuzzy decision matrix to the matrix game by the

players or decision-makers, then according to Defini-

tion 4.1 and using interval constraints relations, the

expected payoff of player I can be written as Eð ~haij
Þ, given

by

Eð ~haij
Þ

¼ yt ~haij
z

¼
Xp

i¼1

Xq

j¼1

~haij
yizj

¼
Xp

i¼1

Xq

j¼1

h[s½hl
aijM

; hu
aijM

�;[s½hl
aijNM; hu

aijNM�i yizj

¼
Xp

i¼1

Xq

j¼1

[s½hl
aijM

; hu
aijM

�;
*

Xp

i¼1

Xq

j¼1

[s½hl
aijNM; hu

aijNM�
+

yizj:

And using our proposed aggregating operator, i.e.,

GIEIVHFWAO, defined in Sect. 5, we convert the intu-

itionistic interval-valued hesitant fuzzy elements into

intuitionistic interval-valued fuzzy elements and then the

expected payoff of player I is defined and written as,

Eð ~haij
Þ

¼
Xp

i¼1

Xq

j¼1

½hl
aijM

; hu
aijM

�
*

;
Xp

i¼1

Xq

j¼1

½hl
aijNM; hu

aijNM�iyizj:

Since intuitionistic interval-valued hesitant fuzzy matrix

game (IIVHFMG) is zero-sum, therefore using Defini-

tion 4.1 and interval constraint relations, we get for player II,

Eð� ~haij
Þ

¼ ytð� ~haij
Þz

¼
Xp

i¼1

Xq

j¼1

ð� ~haij
ÞyizjÞ

¼
Xp

i¼1

Xq

j¼1

�h[s½hl
aijM

; hu
aijM

�;

[s ½hl
aijNM; hu

aijNM�i yizj

¼ �
Xp

i¼1

Xq

j¼1

[s½hl
aijM

; hu
aijM

�;
*

�
Xp

i¼1

Xq

j¼1

[s½hl
aijNM; hu

aijNM�
+

yizj:

Again applying our proposed aggregation operator

(GIEIVHFWAO) of Sect. 5, we reduce the intuitionistic

interval-valued hesitant fuzzy elements into intuitionistic

interval-valued fuzzy elements and the corresponding

expected payoff of player II is written as,

Eð� ~haij
Þ

¼
Xp

i¼1

Xq

j¼1

½�hu
aijM

;�hl
aijM

�;
*

Xp

i¼1

Xq

j¼1

½�hu
aijNM;�hl

aijNM�
+

yizj:

Both Eð ~haij
Þ and Eð� ~haij

Þ are IIVFNs.

Player II is eager to find a mixed strategy z 2 Z which

minimizes E(y, z). This can be denoted as minz2ZðEðy; zÞÞ. But

as player I should choose a mixed strategy y 2 Y maximizing

minz2ZðEðy; zÞÞ of player II, i.e., v
 ¼ maxy2Y minz2ZðEðy; zÞÞ
and this v
 is called sometimes as the player I’s gain-floor.

Similarly, player I wishes to get a mixed strategy y 2 Y which

maximize E(y, z), denoted as maxy2YðEðy; zÞÞ.
Thus, player II should choose a mixed strategy z 2 Z

which minimizes maxy2YðEðy; zÞÞ of player I, i.e., w
 ¼
minz2Zðmaxy2YðEðy; zÞÞÞ and this w
 is called player II’s

loss-ceiling. Obviously, player I’s gain-floor and player II’s

loss-ceiling should be intuitionistic interval-valued hesitant

fuzzy numbers. So, the solution of the game may be

defined in a similar way to that of the Pareto-optimal

solution as follows.

Definition 6.1 (Solution of IIVHFMG) Let v
 ¼
h½vM; vM�; ½vNM; vNMÞ�i and w
 ¼ h½wM;wM�; ½wNM;wNMÞ�i
be two IIVHFEs. Assume that there exist y
 2 Y and z
 2 Z.

Then ðy
; z
; v
;w
Þ is called a pragmatic solution of the
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intuitionistic interval-valued hesitant fuzzy matrix game

(IIVHFMG) ~H if for any y 2 Y and z 2 Z, ðy
; z
; v
;w
Þ
satisfies the conditions y


t ~Hz� IIVHFIv

; and yt ~Hz
 � IIVHFIw


:

Definition 6.2 (Game value of IIVHFMG) Assume that

there exist v
1 2 V and w

1 2 W . If there exist no other v
2 2

Vðv
1 6¼ v
2Þ and w

2 2 Wðw


1 6¼ w

2Þ such that v
1 � IIVHFIv



2

and w

1 � IIVHFIw



2; then, ðy
; z
; v
1;w


1Þ is called a solution

of the intuitionistic interval-valued hesitant fuzzy matrix

game ~H; y
 is called a maximin strategy for player I and z


is called a minimax strategy for player II. v
1 and w

1 are

called player I’s gain-floor and player II’s loss-ceiling and

y

t ~Hz


t

as a game value.

According to Theorem 5.1, we derive Model 7 and

Model 8 for players I and II, respectively, from Models 5

and 6 using Models 3 and 4, respectively, as,

Model 7

maximize h[s½ ~hl
vMðxiÞ; ~hu

vMðxiÞ�;
[s ½ ~hl

vNMðxiÞ; ~hu
vNMðxiÞ�i

subject to
Xp

i¼1

h[s½ ~hl
aijM

ðxiÞ; ~hu
aijM

ðxiÞ�;

[s ½ ~hl
aijNMðxiÞ; ~hu

aijNMðxiÞ�iyi

� IIVHFIh[s½ ~hl
vMðxiÞ; ~hu

vMðxiÞ�;
[s ½ ~hl

vNMðxiÞ; ~hu
vNMðxiÞ�iðj ¼ 1ð1ÞqÞ;

the constraints (3) and (4):

and

Model 8

minimize h[s½ ~hl
wMðxiÞ; ~hu

wMðxiÞ�;
[s ½ ~hl

wNMðxiÞ; ~hu
wNMðxiÞ�i

subject to
Xq

j¼1

h[s½ ~hl
aijM

ðxiÞ; ~hu
aijM

ðxiÞ�;

[s ½ ~hl
aijNMðxiÞ; ~hu

aijNMðxiÞ�izj

� IIVHFIh[s½ ~hl
wMðxiÞ; ~hu

wMðxiÞ�;
[s ½ ~hl

wNMðxiÞ; ~hu
wNMðxiÞ�iði ¼ 1ð1ÞpÞ;

the constraints (7) and (8):

where both ‘‘� IIVHFI’’ and ‘‘� IIVHFI’’ denote the intu-

itionistic interval-valued hesitant fuzzy inequalities. Now

maximin value of player I is obtained after solving Model 7

and minimax value of player II is reached on solving

Model 8. Based on the introduced ranking approach of

IIVHFE and established models of the game problems for

the players, the next upcoming para establishes an

approach to solve the intuitionistic interval-valued hesitant

fuzzy matrix game which addresses the situation where

elements are IIVHFEs. Now applying gIEIVHFWAO from

Theorem 5.1, we obtain the models as Model 9 and Model

10 respectively from Model 7 and Model 8 as below:

Model 9

maximize h½hl
kvM; hu

kvM�; ½hl
kvNM; hu

kvNM�i

subject to
Xp

i¼1

h½hl
aijM

; hu
aijM

�;

½hl
aijNM; hu

aijNM�iyi

� IIVFIh½hl
kvM; hu

kvM�;
½hl

kvNM; hu
kvNM�iðj ¼ 1ð1ÞqÞ;

the constraints (3) and (4):

and

Model 10

minimize h½hl
kwM; hu

kwM�; ½hl
kwNM; hu

kwNM�i

subject to
Xq

j¼1

h½hl
aijM

; hu
aijM

�; ½hl
aijNM; hu

aijNM�izj

� IIVFIh½hl
kwM; hu

kwM�; ½hl
kwNM; hu

kwNM�i
ði ¼ 1ð1ÞpÞ;

the constraints (7) and (8):

Here, � IIVFI and � IIVFI indicate the abbreviated form of

intuitionistic interval-valued fuzzy inequalities and the

index k is used to signify the particular positional value,

introducing after the aggregation operator.

Model 9 and Model 10 are reduced into bi-objective

linear programming problems as Model 11 and Model 12,

given below.

Model 11

maximize ½hl
kvM; hu

kvM�
minimize ½hl

kvNM; hu
kvNM�

subject to
Xp

i¼1

½hl
aijM

; hu
aijM

�yi � ½hl
kvM; hu

kvM�

ðj ¼ 1ð1ÞqÞ;
Xp

i¼1

½hl
aijNM; hu

aijNM�yi � ½hl
kvNM; hu

kvNM�

ðj ¼ 1ð1ÞqÞ;
the constraints (3) and (4):

and
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Model 12

minimize ½hl
kwM; hu

kwM�
maximize ½hl

kwNM; hu
kwNM�

subject to
Xq

j¼1

½hl
aijM

; hu
aijM

�zj

� ½hl
kwM; hu

kwM�ði ¼ 1ð1ÞpÞ;
Xq

j¼1

½hl
aijNM; hu

aijNM�zj

� ½hl
kwNM; hu

kwNM�ði ¼ 1ð1ÞpÞ;
the constraints (7) and (8):

Now we simplify the equations of Model 11 and Model 12

in the following format as:

Model 13

maximize ½vM; vM�
minimize ½vNM ; vNM�

subject to
Xp

i¼1

½hl
aijM

; hu
aijM

�yi � ½vM; vM�

ðj ¼ 1ð1ÞqÞ;
Xp

i¼1

½hl
aijNM; hu

aijNM�yi � ½vNM; vNM�

ðj ¼ 1ð1ÞqÞ;
vM � vM; vNM � vNM;

vM þ vNM � 0; vM þ vNM � 1;

the constraints (3) and (4):

and

Model 14

minimize ½wM;wM�
maximize ½wNM;wNM�

subject to
Xq

j¼1

½hl
aijM

; hu
aijM

�zj

� ½wM;wM�ði ¼ 1ð1ÞpÞ;
Xq

j¼1

½hl
aijNM; hu

aijNM�zj

� ½wNM;wNM�ði ¼ 1ð1ÞpÞ;
wM �wM;wNM �wNM;

wM þ wNM � 0;wM þ wNM � 1;

the constraints (7) and (8):

Now using Definitions 2.4, 2.5, 2.8 and 2.9, the equations

of Model 13 and Model 14 are changed and we get Model

15 and Model 16 respectively as:

Model 15

maximize ððvM þ vMÞ=2 � ðvNM þ vNMÞ=2Þ

subject to
Xp

i¼1

½hl
aijM

; hu
aijM

�yi

� ½vM; vM�ðj ¼ 1ð1ÞqÞ;
Xp

i¼1

½hl
aijNM; hu

aijNM�yi

� ½vNM; vNM�ðj ¼ 1ð1ÞqÞ;
vM � vM; vNM � vNM;

vM þ vNM � 0; vM þ vNM � 1;

the constraints (3) and (4):

and

Model 16

minimize ððwM þ wMÞ=2 � ðwNM þ wNMÞ=2Þ

subject to
Xq

j¼1

½hl
aijM

; hu
aijM

�zj

� ½wM;wM�ði ¼ 1ð1ÞpÞ;
Xq

j¼1

½hl
aijNM; hu

aijNM�zj

� ½wNM;wNM�ði ¼ 1ð1ÞpÞ;
wM �wM;wNM �wNM;

wM þ wNM � 0;wM þ wNM � 1;

the constraints (7) and (8):

Now solving Model 15 and Model 16, we calculate the

required results of our formulated problem.

7 A real-life management problem

Not only the developed or developing countries, but also

the whole world are facing the problems of strikes, lock-

outs, work stoppages everyday in both the hemispheres.

From the very beginning of industrial revolution, the

relations among workers, employers and wages, draw the

attention of all concerned. When the workers are denied

with some beneficial treatments, an unusual situation arises

between the employees and the employers. Sometimes, we

call it as a strike or lockout or work stoppage. A strike is

the most popular, established, allowed and sometimes

criticized component of a workplace dispute. A strike can

be defined as concerted suspension of work by a group of

employees or a group of laborers for the purpose of

obtaining or resisting or improving in the conditions of

employment or the existing disputes over the terms of the

labor contract.

Granular Computing (2021) 6:359–375 369

123



Here, we consider strike as a matrix game problem.

Consider, there are a company or an employer A and a set

of workers or employees B. Workers contribute their labors

to the company for producing the production materials,

say, Xs. Generally the production of Xs engages both

employers and employees and naturally some management

criteria arise. Company A wishes to earn more profit using

B, whereas, B wishes to earn for better livelihood by

producing Xs in the company and vice versa. Therefore, a

management problem arises. When company earns more

without paying the wages properly to laborers and workers,

or company loses its profit but laborers are given their

wages periodically, then disputes arise. Then company

expresses its unwillingness to pay wages. So, a clash begins

between employers and employees. Strike sometimes

appears as an arm of workers to express their demand. To

earn the labor right, workers do strikes, lockouts, work

stoppage, etc. Workers want to maximize their wages,

whereas company wishes minimum loss for itself. So, we

can describe it as a game phenomena considering its two

players as workers (player I) and company (player II).

Player I is a maximizing player and player II is a mini-

mizing player.

We consider player I’s strategies as: do strike for wage

increase (f1), do strike for wage cut (f2) and do strike for

changes of daily-hours (f3). Similarly, player II’s strategies

are: cutting off wages of workers who sought for wage

increase (g1), stopping off wages of workers crying for

wage cut (g2) and employing new workers against those

shouting for changing in daily-hours labor (g3).

Under the circumstances, workers call out a work

stoppage through 3-days-12-h strike. The strike persists

from 6 am to 6 pm in three sections, say, from 6 to 10 am,

from 10 am to 2 pm and thereafter till 6 pm. We concen-

trate the data in Tables 1, 2 and 3. Here,

cwi
11 ¼ h½0:50; 0:60�; ½0:20; 0:30�ih½0:40; 0:50�; ½0:20; 0:30�i
h½0:50; 0:65�; ½0:10; 0:20�i;

cwi
12 ¼ h½0:50; 0:60�; ½0:04; 0:10�ih½0:40; 0:60�; ½0:03; 0:10�i
h½0:40; 0:50�; ½0:04; 0:10�i;

cwi
13 ¼ h½0:30; 0:40�; ½0:50; 0:60�ih½0:20; 0:30�; ½0:60; 0:70�i
h½0:10; 0:20�; ½0:60; 0:70�i;

cwi
21 ¼ h½0:70; 0:80�; ½0:10; 0:20�ih½0:30; 0:50�; ½0:10; 0:20�i
h½0:40; 0:50�; ½0:10; 0:20�i;

cwi
22 ¼ h½0:60; 0:80�; ½0:10; 0:20�ih½0:50; 0:80�; ½0:05; 0:20�i
h½0:10; 0:20�; ½0:10; 0:20�i;

cwi
23 ¼ h½0:05; 0:10�; ½0:40; 0:50�ih½0:30; 0:40�; ½0:40; 0:50�i
h½0:20; 0:40�; ½0:40; 0:50�i;

cwi
31 ¼ h½0:20; 0:40�; ½0:40; 0:50�ih½0:35; 0:40�; ½0:40; 0:50�i
h½0:20; 0:60�; ½0:10; 0:30�i;

cwi
32 ¼ h½0:40; 0:60�; ½0:00; 0:01�ih½0:30; 0:60�; ½0:03; 0:04�i
h½0:00; 0:02�; ½0:01; 0:02�i;

cwi
33 ¼ h½0:60; 0:70�; ½0:10; 0:20�ih½0:20; 0:50�; ½0:20; 0:30�i
h½0:30; 0:40�; ½0:10; 0:30�i;

Table 1 Demand for wage increasing in 3 days

f1

g1 g2 g3

For wage increase (wi) h6–10 ami h10–2 pmi h2–6 pmi h6–10 ami h10–2 pmi h2–6 pmi h6–10 ami h10–2 pmi h2–6 pmi
1st day cwi

11 cwi
12 cwi

13

2nd day cwi
21 cwi

22 cwi
23

3rd day cwi
31 cwi

32 cwi
33

Table 2 Demand for strike in 3 days against wage cut

f2

g1 g2 g3

Against wage cut (wc) h6–10 ami h10–2 pmi h2–6 pmi h6–10 ami h10–2 pmi h2–6 pmi h6–10 ami h10–2 pmi h2–6 pmi
1st day cwc

11 cwc
12 cwc

13

2nd day cwc
21 cwc

22 cwc
23

3rd day cwc
31 cwc

32 cwc
33
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cwc
11 ¼ h½0:30; 0:40�; ½0:50; 0:60�ih½0:20; 0:30�; ½0:60; 0:70�i
h½0:10; 0:20�; ½0:60; 0:70�i;

cwc
12 ¼ h½0:60; 0:70�; ½0:20; 0:30�ih½0:40; 0:70�; ½0:20; 0:30�i
h½0:40; 0:50�; ½0:20; 0:30�i;

cwc
13 ¼ h½0:50; 0:60�; ½0:04; 0:10�ih½0:40; 0:60�; ½0:03; 0:10�i
h½0:40; 0:50�; ½0:04; 0:10�i;

cwc
21 ¼ h½0:05; 0:10�; ½0:40; 0:50�ih½0:30; 0:40�; ½0:40; 0:50�i
h½0:20; 0:40�; ½0:40; 0:50�i;

cwc
22 ¼ h½0:40; 0:50�; ½0:20; 0:30�ih½0:30; 0:60�; ½0:30; 0:40�i
h½0:20; 0:50�; ½0:30; 0:40�i;

cwc
23 ¼ h½0:60; 0:80�; ½0:10; 0:20�ih½0:50; 0:80�; ½0:05; 0:20�i
h½0:10; 0:20�; ½0:10; 0:20�i;

cwc
31 ¼ h½0:40; 0:50�; ½0:10; 0:20�ih½0:20; 0:50�; ½0:20; 0:30�i
h½0:10; 0:30�; ½0:30; 0:40�i;

cwc
32 ¼ h½0:40; 0:50�; ½0:30; 0:40�ih½0:30; 0:50�; ½0:30; 0:50�i
h½0:20; 0:40�; ½0:50; 0:50�i;

cwc
33 ¼ h½0:40; 0:60�; ½0:00; 0:01�ih½0:30; 0:60�; ½0:03; 0:04�i
h½0:00; 0:02�; ½0:01; 0:02�i

cch
11 ¼ h½0:30; 0:40�; ½0:50; 0:60�ih½0:20; 0:30�; ½0:60; 0:70�i
h½0:10; 0:20�; ½0:60; 0:70�i;

cch
12 ¼ h½0:30; 0:60�; ½0:00; 0:10�ih½0:10; 0:50�; ½0:30; 0:30�i
h½0:10; 0:20�; ½0:40; 0:40�i;

cch
13 ¼ h½0:60; 0:70�; ½0:20; 0:30�ih½0:40; 0:70�; ½0:20; 0:30�i
h½0:40; 0:50�; ½0:20; 0:30�i;

cch
21 ¼ h½0:05; 0:10�; ½0:40; 0:50�ih½0:30; 0:40�; ½0:40; 0:50�i
h½0:20; 0:40�; ½0:40; 0:50�i;

cch
22 ¼ h½0:30; 0:40�; ½0:40; 0:50�ih½0:20; 0:40�; ½0:30; 0:50�i
h½0:40; 0:50�; ½0:10; 0:30�i;

cch
23 ¼ h½0:40; 0:50�; ½0:20; 0:30�ih½0:30; 0:60�; ½0:30; 0:40�i
h½0:20; 0:50�; ½0:30; 0:40�i;

cch
31 ¼ h½0:60; 0:70�; ½0:10; 0:20�ih½0:20; 0:50�; ½0:20; 0:30�i
h½0:30; 0:40�; ½0:10; 0:30�i;

cch
32 ¼ h½0:20; 0:40�; ½0:20; 0:30�ih½0:10; 0:40�; ½0:50; 0:60�i
h½0:30; 0:40�; ½0:40; 0:50�i;

cch
33 ¼ h½0:40; 0:50�; ½0:30; 0:40�ih½0:30; 0:50�; ½0:30; 0:50�i
h½0:20; 0:40�; ½0:50; 0:50�i:

From Table 1, we describe that when player II uses strat-

egy g1 (i.e., cutting off the wages of workers demanding

the increase of the wages), and player I uses strategy f1,

then at 2nd day of 12-h strike, from 6 to 10 am, willingness

to do strike lies between 70 and 80%, whereas 10–20% are

not ready for that; from 10 am to 2 pm, eagerness to do

strike lies between 30 and 50%, whereas workers have

10–20% reluctancy for that; and from 2 to 6 pm, workers

are prone to do strike with willingness between 40 and

50%, whereas 10–20% hesitancy arise among them for the

particular movement. Similarly, other cells of three tables,

i.e., Tables 1, 2 and 3 can be illustrated.

Now, we apply the proposed aggregation operator

gIEIVHFWAO from Theorem 5.1 as a ranking technique to

Tables 1, 2 and 3 to make a compact form which is rep-

resented in Table 4. Again, we consider that all strategies

from both sides are not equally weighted. Here, we choose

the weights 0.4, 0.3, and 0.3 in three consecutive days to

the demand strategies. Now, utilizing data from Table 4 in

Model 15, we have Model 17 as follows:

Model 17

maximize 0:5vM þ 0:5vM � 0:5vNM � 0:5vNM

subject to 0:31y1 þ 0:08y2 þ 0:11y3 � vM;

0:21y1 þ 0:28y2 þ 0:13y3 � vM;

0:11y1 þ 0:21y2 þ 0:28y3 � vM;

0:69y1 þ 0:43y2 þ 0:51y3 � vM;

0:67y1 þ 0:61y2 þ 0:51y3 � vM;

0:51y1 þ 0:67y2 þ 0:61y3 � vM;

0:10y2 þ 0:28y2 þ 0:28y3 � vNM;

0:22y2 � vNM;

0:28y1 þ 0:22y3 � vNM;

0:30y1 þ 0:53y2 þ 0:49y3 � vNM;

0:09y1 þ 0:38y2 þ 0:08y3 � vNM;

0:49y1 þ 0:09y2 þ 0:38y3 � vNM;

1� vM þ vNM � 0;

vM � vM;

vNM � vNM;

y1 þ y2 þ y3 ¼ 1;

y1 � 0; y2 � 0; y3 � 0:

Table 3 Demand for strike in 3 days for changing working hours

f3

g1 g2 g3

For change in hour (ch) h6–10 ami h10–2 pmi h2–6 pmi h6–10 ami h10–2 pmi h2–6 pmi h6–10 ami h10–2 pmi h2–6 pmi
1st day cch

11 cch
12 cch

13

2nd day cch
21 cch

22 cch
23

3rd day cch
31 cch

32 cch
33
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Solving Model 17 using LINGO 14.0 iterative scheme with

32-bit machine, we obtain the solutions as:

ðvM; vM; vNM; vNMÞ ¼ ð0:1491304; 0:5726087;

0:1704348; 0:3900000Þ

and

ðy1; y2; y3Þ ¼ ð0:6086957; 0:3913043; 0:0000000Þ:

Thus, we get,

v
 ¼ h½vM; vM�; ½vNM; vNM�i ¼ h½0:1491304; 0:5726087�;
½0:1704348; 0:3900000�i, i.e., throughout all 3 days with

12-h each day in strike period, eagerness for strike lies

almost in between 14 and 57%, whereas, apathetic situation

arises in 17–39%, nearly. Again using Table 4 in Model

16, we get Model 18 as:

Model 18

minimize 0:5wM þ 0:5wM � 0:5wNM � 0:5wNM

subject to 0:31z1 þ 0:21z2 þ 0:11z3 �wM;

0:08z1 þ 0:28z2 þ 0:21z3 �wM;

0:11z1 þ 0:13z2 þ 0:28z3 �wM;

0:69z1 þ 0:67z2 þ 0:51z3 �wM;

0:43z1 þ 0:61z2 þ 0:67z3 �wM;

0:51z1 þ 0:51z2 þ 0:61z3 �wM;

0:10z1 þ 0:28z3 �wNM;

0:28z1 þ 0:22z2 �wNM;

0:28z1 þ 0:22z3 �wNM;

0:30z1 þ 0:09z2 þ 0:49z3 �wNM;

0:53z1 þ 0:38z2 þ 0:09z3 �wNM;

0:49z1 þ 0:08z2 þ 0:38z3 �wNM;

1�wM þ wNM � 0;

wM �wM;

wNM �wNM;

z1 þ z2 þ z3 ¼ 1;

z1 � 0; z2 � 0; z3 � 0:

Using LINGO 14.0 iterative scheme, we calculate the

solutions from Model 18 as:

ðwM;wM;wNM;wNMÞ ¼ ð0:2317391; 0:6195652;

0:1704348; 0:3578261Þ;

and

ðz1; z2; z3Þ ¼ ð0:6086957; 0:0000000; 0:3913043Þ:

Here we get, w
¼h½wM;wM�;½wNM;wNM�i¼h½0:2317391;

0:6195652�;½0:1704348;0:3578261�i, i.e., in strike period,

eagerness for non-membership of strike almost lies in

between 23 and 61%, whereas, apathetic situation arises

from, nearabout, 17–35%.

8 Results and discussion

In this part of the paper, we infer that when we consider the

demands of the strike supporters have weights in percent-

ages 40%, 30% and 30% corresponding to the strategies for

wage increase, for wage cut and for the changes of daily-

hours, respectively, throughout all 3 days with 12-h each

day in strike period, eagerness for strike lies almost in

between 14 and 57%, whereas, apathetic situation arises in

17–39%, nearly; although, for the whole of 3 days with

12-h each day in strike period, eagerness for non-mem-

bership of strike almost lies in between 23 and 61%, and

apathetic situation arises from, nearabout, 17–35%. In

Table 5, we choose different weights imposed on different

demands of the strike supporters. From Table 5, we say

that when we consider the demands of the strike supporters

with weights in percentages 30%, 40% and 30% corre-

sponding to the strategies for wage increase, for wage cut

and for the changes of daily-hours, respectively, throughout

all 3 days with 12-h each day in strike period, eagerness for

strike lies almost in between 13 and 58%, when, apathetic

situation arises in 17–37%, nearly; while, for whole of 3

days with 12-h each day in strike period, eagerness for non-

membership of strike almost lies in between 22 and 62%,

given that, apathetic situation arises from, nearabout,

17–35%. From third line of Table 5, we say that when

demands of strike supporters have weights in percentages

50%, 30% and 20% corresponding to the strategies for

wage increase, for wage cut and for daily-hours-change,

respectively, in strike period, eagerness for strike lies

almost in between 15 and 55%, while, apathetic situation

arises in 19–40%, nearly; whereas, for whole of 3 days

with 12-h each day in strike period, eagerness for non-

membership of strike almost lies in between 24 and 60%,

whilst, apathetic situation arises from, nearabout, 20–38%.

Even, when we consider no weights assigned to three

consecutive days, we notice that, in 3 days 12-h strike,

Table 4 Aggregated payoff

matrix for IIVHFMG
g1 g2 g3

f1 h½0:31; 0:69�; ½0:10; 0:30�i h½0:21; 0:67�; ½0:00; 0:09�i h½0:11; 0:51�; ½0:28; 0:49�i
f2 h½0:08; 0:43�; ½0:28; 0:53�i h½0:28; 0:61�; ½0:22; 0:38�i h½0:21; 0:67�; ½0:00; 0:09�i
f3 h½0:11; 0:51�; ½0:28; 0:49�i h½0:13; 0:51�; ½0:00; 0:08�i h½0:28; 0:61�; ½0:22; 0:38�i
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eagerness for strike lies almost in between 47 and 91%,

despite the fact that apathetic situation arises in 1–7%.

From Table 5, we observe that different weights when

assigned to different days, give different results. Strike

supporters and strategy makers may draw their attention

into the fact that same demands when issued in different

days have different impacts in socio-economic situations.

From above analysis, we see that hesitant fuzzy set is a

very useful tool to deal with uncertainty. Further, hesitant

fuzzy set with intuitionistic interval-valued nature has a

great impact when these are used to describe reality. The

intuitionistic interval-valued hesitant fuzzy set, a substan-

tial and important consequences of hesitant fuzzy set,

intuitionistic hesitant fuzzy set and interval-valued hesitant

fuzzy set, with the proposed aggregation operator have a

great significance to tackle the managenent situation, here.

9 Conclusion

Many decision-making problems under hesitant fuzzy

environment have been developed. The proposed methods

are under the assumption that hesitant fuzzy set permits the

membership having a set of possible exact and crisp values.

However, under several conditions, for the group decision-

making problems, the informations are usually uncertain or

fuzzy due to the increasing complexity of the realistic

environment and the vagueness of inherent subjective

nature of human perception. Thus, exact as well as crisp

values are inadequate or insufficient to model real-life

decision-making problems. Indeed, human judgments

including preference information may be stated which

allow the membership having a set of possible hesitant

fuzzy linguistic values. Several articles have been written

on strikes, stoppages, labor organization, wages, etc. A

comparative study with some existing literature is given in

Table 6.

We summarize our achieved results in the following

points:

(i) This paper has been presented with a detailed

analysis of real-life management problem applied

with a new aggregation operator on intuitionistic

interval-valued hesitant fuzzy set.

(ii) Our analysis began with a simple observation that

in disputes arising over demands for a wage

increase, successful strikes resulted in a tendency

of significant wage gain, while failed strikes had

tendency with no change in wages.

(iii) Our proposed operator and methods can be applied

to decision-making problems, mainly in game

problems, in which the problem-data are in the

form of intuitionistic interval-valued hesitant

fuzzy numbers. Whereas, the existing methods of

Table 5 Different weights on 3 days to different demand-strategies

Weights on the 3 days h½vM; vM�; ½vNM; vNM�i h½wM;wM�; ½wNM;wNM�i

Game values for the maximizing and the minimizing players

(0.3, 0.4, 0.3) h½0:1334783; 0:5804348�; ½0:1704348; 0:3760870�i h½0:2291525; 0:6291525�; ½0:1755932; 0:3571186�i
(0.4, 0.4, 0.2) h½0:1451786; 0:5603571�; ½0:1944643; 0:3867857�i h½0:2346269; 0:6168657�; ½0:2019403; 0:3692537�i
(0.5, 0.3, 0.2) h½0:1575000; 0:5521429�; ½0:1944643; 0:4008929�i h½0:2412857; 0:6051429�; ½0:2027143; 0:3825714�i
(0.4, 0.3, 0.3) h½0:1491304; 0:5726087�; ½0:1704348; 0:3900000�i h½0:2317391; 0:6195652�; ½0:1704348; 0:3578261�i

Table 6 Comparative study with other literature

Literature Application area Domain

representation

Computational methods Domain of aggregated

results

Reder and Neumann

(1980)

Conflict, contract cases of strike Real numbers Stochastic processes Stochastic data

Card (1990) Strike, wages Real numbers Probability theory Real numbers

Kaufman (2010) Labour problem, employment

relationship

Real numbers Graphical methods N/A

Lin-Hi and Blumberg

(2017)

Labour standards Real numbers Secondary data analysis Real numbers

Cooke et al. (2019) Industrial management Real numbers Survey study, multi-disciplinary

data analysis

N/A

Our proposed work Wage, working hours of labours IIVHF numbers Game theory approach, Aggreation

method

Intuitionistic interval

numbers
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aggregation have a little bit difficulty to execute

but our proposed aggregation method has much

wider applications for its simple execution-

process.

Analysis of strike problems using game theory is a new

approach when hesitancy characters are included in nature.

Applications of IIVHF matrix game situation with pro-

posed aggregation operator are possible in various fields of

decent work, decent industrial relations and decent social

relations. Not only that, the proposed management problem

can be applied to urban labor market, toy and car indus-

tries, educational hub management, global production

networks, strategies and human resource management,

quality management of employees, migrant workers’ situ-

ations, management of collective bargaining, legal policy

support systems of workers, etc. Researchers may explain

such management problems using our proposed game

problem as future studies.
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