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Abstract
Pythagorean fuzzy set (PFS) is a concept that generalizes intuitionistic fuzzy sets. The notion of PFSs is very much

applicable in decision science because of its unique nature of indeterminacy. The main feature of PFSs is that it is

characterized by membership degree, non-membership degree, and indeterminate degree in such a way that the sum of the

square of each of the parameters is one. In this paper, we propose some novel distance measures for PFSs by incorporating

the conventional parameters that describe PFSs. We provide a numerical example to illustrate the validity and applicability

of the distance measures for PFSs. While analyzing the reliability of the proposed distance measures in comparison with

similar distance measures for PFSs in the literature, we discover that the proposed distance measures, especially, d5 yields

the most reasonable measure. Finally, some applications of d5 to pattern recognition problems are explicated. These novel

distance measures for Pythagorean fuzzy sets could be applied in decision making of real-life problems embedded with

uncertainty.

Keywords Distance measure � Fuzzy set � Intuitionistic fuzzy set � Pattern recognition � Pythagorean fuzzy set

1 Introduction

Zadeh (1965) proposed the concept of fuzzy sets to cope

uncertainty in real-life problems. Fuzzy set theory has

achieved a great success in several fields due to its ability

to cope uncertainty. Fuzzy set is characterized by a mem-

bership function, l which takes value from a crisp set to a

unit interval, I ¼ ½0; 1�. Many application of fuzzy sets

have been carried out (see Chen et al. 2001; Chen and

Tanuwijaya 2011; Chen and Chang 2011; Chen et al. 2012;

Chen and Huang 2003; Lee and Chen 2008; Cheng et al.

2016; Chen and Wang 1995; Wang and Chen 2008). Out of

several generalizations of fuzzy set theory for various

objectives, the notion of intuitionistic fuzzy sets (IFSs)

introduced by Atanassov (1983, 1986) is interesting and

useful.

A lot of attentions were drawn to the development of

distance measures between IFSs in a quest to apply IFSs to

solve many real-life problems. As such, several measures

were proposed (see Hatzimichailidis et al. 2012; Szmidt

and Kacprzyk 2000; Szmidt 2014; Wang and Xin 2005).

Some applications of IFSs in real-life problems have been

extensively researched by Davvaz and Sadrabadi (2016),

Chen and Chang (2015) , Chen et al. (2016a, b), Liu and

Chen (2017, 2018), Liu et al. (2017), De et al. (2001),

Ejegwa et al. (2014), Ejegwa (2015), Ejegwa and Modom

(2015), Ejegwa and Onasanya (2019), Szmidt and Kacpr-

zyk (2001, 2004).

In a pursuit to reasonably cope uncertainty in real-life

problems, Yager (2013a, b) proposed a concept called

Pythagorean fuzzy sets (PFSs). The theory of PFSs is a new

approach to deal with vagueness more precisely in com-

parison with IFSs. Albeit, the origin of PFSs emanated

from IFSs of second type (IFSST) introduced by Atanassov

(1989) as generalized IFSs. Some theoretical aspects of

PFSs have been extensively studied (see Dick et al. 2016;

Gou et al. 2016; He et al. 2016; Peng and Yang 2015).

Pythagorean fuzzy set theory has attracted attentions of

many scholars, and the concept has been applied to several
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application areas. For some applications of PFSs, see

Ejegwa 2019a, b; Gao and Wei 2018; Rahman et al. 2018;

Khan et al. 2018; Garg 2017, 2018; Du et al. 2017; Hadi-

Venchen and Mirjaberi 2014; Yager 2016; Yager and

Abbasov 2013.

The notion of distance measure for PFSs is of immense

important, especially in terms of applications. Several

authors have worked on distance measures for PFSs from

different perspectives. Zhang and Xu (2014) first proposed

distance measure for PFSs by incorporating the three tra-

ditional parameters of PFSs. Li and Zeng (2018) introduced

PFS that is characterized by four parameters and conse-

quently proposed a variety of distance measures for PFSs,

which take into account the four proposed parameters. In

this same vein, Peng (2018) proposed a new distance

measure for PFSs by incorporating four parameters more

than the three traditional components of PFSs. Zeng et al.

(2018) extended the distance measures for PFSs studied by

Li and Zeng (2018) by incorporating five parameters.

Howbeit, the four or five parameters captured in (Li and

Zeng 2018; Peng 2018; Zeng et al. 2018) are not the tra-

ditional components of PFSs. Ejegwa (2018) proposed

some distance measures for PFSs which satisfied the metric

conditions by incorporating the three parameters of PFSs.

Sequel to the exploration of some distance measures for

PFSs (see Zhang and Xu 2014; Li and Zeng 2018; Peng

2018; Zeng et al. 2018; Ejegwa 2018); especially, those

distance measures (Zhang and Xu 2014; Ejegwa 2018) that

incorporated the three conventional parameters of PFSs,

the need to propose new distance measures for PFSs with

more reasonable, reliable, and efficient output, are unde-

niable. Thus, the motivation of this work. In this paper, we

explore some novel distance measures for PFSs. By taking

into account the three parameters characterization of PFSs

(viz, membership degree, non-membership degree, and

indeterminate degree), we propose some new distance

measures for PFSs with application to pattern recognition

problems. Before applying the proposed distance measures

to some cases of pattern recognition, we provide a

numerical example to illustrate the validity and applica-

bility of the proposed distance measures for PFSs in

comparison with the distance measures in (Zhang and Xu

2014; Ejegwa 2018), and find that the proposed distance

measures, especially, d5 yield the most reasonable measure.

Hence, we apply the most reasonable of the distance

measures for PFSs, that is, d5 to pattern recognition

problems.

This paper is organized by presenting some mathemat-

ical preliminaries of fuzzy sets, IFSs, and PFSs in Sect. 2.

In Sect. 3, we reiterate some distance measures for PFSs

studied in (Zhang and Xu 2014; Ejegwa 2018) with a

numerical example. In addition, in Sect. 3, some novel

distance measures for PFSs are proposed with a numerical

example. Section 4 discusses the application of d5 to pat-

tern recognition problems. Finally, Sect. 5 summarises the

resulted outcomes of the paper with future direction of

research.

2 Preliminaries

We recall some basic notions of fuzzy sets and IFSs as

background to PFSs.

Definition 2.1 (Zadeh 1965). Let X be a nonempty set. A

fuzzy set A of X is characterized by a membership function:

lA : X ! ½0; 1�:

That is

lAðxÞ ¼
1; if x 2 X

0; if x 62 X

ð0; 1Þ if x ispartlyinX

8
><

>:

Alternatively, a fuzzy set A of X is an object having the

form:

A ¼ fhx; lAðxÞi j x 2 Xg orA ¼ lAðxÞ
x

� �

j x 2 X

� �

;

where the function

lAðxÞ : X ! ½0; 1�

defines the degree of membership of the element, x 2 X.

Definition 2.2 (Atanassov 1983, 1986). Let a nonempty

set X be fixed. An IFS A of X is an object having the form:

A ¼ fhx; lAðxÞ; mAðxÞi j x 2 Xg

or

A ¼ lAðxÞ; mAðxÞ
x

� �

j x 2 X

� �

;

where the functions

lAðxÞ : X ! ½0; 1� and mAðxÞ : X ! ½0; 1�

define the degree of membership and the degree of non-

membership, respectively, of the element x 2 X to A, which

is a subset of X, and for every x 2 X

0� lAðxÞ þ mAðxÞ� 1:

For each A in X

pAðxÞ ¼ 1� lAðxÞ � mAðxÞ

is the intuitionistic fuzzy set index or hesitation margin of x

in X. The hesitation margin pAðxÞ is the degree of non-

determinacy of x 2 X, to the set A and pAðxÞ 2 ½0; 1�. The
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hesitation margin is the function that expresses lack of

knowledge of whether x 2 X or x 62 X. Thus

lAðxÞ þ mAðxÞ þ pAðxÞ ¼ 1:

Definition 2.3 (Yager 2013a, b). Let X be a universal set.

Then, a Pythagorean fuzzy set A which is a set of ordered

pairs over X, is defined by

A ¼ fhx; lAðxÞ; mAðxÞi j x 2 Xg

or

A ¼ lAðxÞ; mAðxÞ
x

� �

j x 2 X

� �

;

where the functions

lAðxÞ : X ! ½0; 1� and mAðxÞ : X ! ½0; 1�

define the degree of membership and the degree of non-

membership, respectively, of the element x 2 X to A, which

is a subset of X, and for every x 2 X:

0�ðlAðxÞÞ
2 þ ðmAðxÞÞ2 � 1:

Supposing ðlAðxÞÞ2 þ ðmAðxÞÞ2 � 1, then there is a degree

of indeterminacy of x 2 X to A defined by pAðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ½ðlAðxÞÞ2 þ ðmAðxÞÞ2�
q

and pAðxÞ 2 ½0; 1�. In what

follows, ðlAðxÞÞ2 þ ðmAðxÞÞ2 þ ðpAðxÞÞ2 ¼ 1. Otherwise,

pAðxÞ ¼ 0 whenever ðlAðxÞÞ2 þ ðmAðxÞÞ2 ¼ 1.

We denote the set of all PFSs over X by PFS(X).

Example 2.4 Let A 2 PFSðXÞ. Suppose lAðxÞ ¼ 0:70 and

mAðxÞ ¼ 0:50 for X ¼ fxg. Clearly, 0:70þ 0:50£1, but

0:702 þ 0:502 � 1. Thus, pAðxÞ ¼ 0:5099, and hence,

ðlAðxÞÞ2 þ ðmAðxÞÞ2 þ ðpAðxÞÞ2 ¼ 1.

Table 1 explains the difference between Pythagorean

fuzzy sets and intuitionistic fuzzy sets (Ejegwa 2018).

Definition 2.5 (Yager 2013a). Let A;B 2 PFSðXÞ. Then A

and B are equal iff lAðxÞ ¼ lBðxÞ and mAðxÞ ¼ mBðxÞ
8x 2 X.

Definition 2.6 (Yager 2013a, b). Let A;B 2 PFSðXÞ.
Then, we define the following:

(i) Ac ¼ fhx; mAðxÞ; lAðxÞijx 2 Xg.
(ii) A [ B ¼ fhx;maxðlAðxÞ; lBðxÞÞ;minðmAðxÞ;

mBðxÞÞijx 2 Xg.
(iii) A \ B ¼ fhx;minðlAðxÞ; lBðxÞÞ;maxðmAðxÞ;

mBðxÞÞijx 2 Xg.

Remark 2.7 (Ejegwa 2018). Let A;B;C 2 PFSðXÞ. By

Definition 2.6, the following properties hold:

ðAcÞc ¼A

A \ A ¼A

A [ A ¼A

A \ B ¼B \ A

A [ B ¼B [ A

A \ ðB \ CÞ ¼ðA \ BÞ \ C

A [ ðB [ CÞ ¼ðA [ BÞ [ C

A \ ðB [ CÞ ¼ðA \ BÞ [ ðA \ CÞ
A [ ðB \ CÞ ¼ðA [ BÞ \ ðA [ CÞ

ðA \ BÞc ¼Ac [ Bc

ðA [ BÞc ¼Ac \ Bc

Definition 2.8 (Ejegwa and Onasanya, 2019). Let

A 2 PFSðXÞ. Then, the level/ground set of A is defined by

A� ¼ fx 2 XjlAðxÞ[ 0; mAðxÞ\1g:

Certainly, A� is a subset of X.

3 Some distance measures for Pythagorean
fuzzy sets

Here, we present some distance measures (DM) for PFSs.

First, let us consider the definition of distance measure for

PFSs. Distance measure for PFSs is a term that describes

the difference between Pythagorean fuzzy sets.

Definition 3.1 (Ejegwa 2018). Let X be nonempty set and

A;B;C 2 PFSðXÞ. The distance measure d between A and

B is a function d : PFS� PFS ! ½0; 1� that satisfies

(i) 0� dðA;BÞ� 1 (boundedness).

(ii) dðA;BÞ ¼ 0 iff A ¼ B (separability).

(iii) dðA;BÞ ¼ dðB;AÞ (symmetric).

(iv) dðA;CÞ þ dðB;CÞ� dðA;BÞ (triangle inequality).

Now, we recall a proposition from Ejegwa (2018), and

state a new result.

Proposition 3.2 (Ejegwa 2018). Let A;B;C 2 PFSðXÞ.
Suppose A 	 B 	 C, then dðA;CÞ� dðA;BÞ and

dðA;CÞ� dðB;CÞ.

Proposition 3.3 If A;B;C 2 PFSðXÞ, such that

A 	 B 	 C, then

Table 1 Pythagorean fuzzy sets and intuitionistic fuzzy sets

Intuitionistic fuzzy sets Pythagorean fuzzy sets

lþ m� 1 lþ m� 1 or lþ m� 1

0� lþ m� 1 0� l2 þ m2 � 1

p ¼ 1� ðlþ mÞ p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ½l2 þ m2�

p

lþ mþ p ¼ 1 l2 þ m2 þ p2 ¼ 1
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dðA;CÞ�max½dðA;BÞ; dðB;CÞ�:

Proof Let A;B;C 2 PFSðXÞ. Assume that A 	 B 	 C,

then by Proposition 3.2, we have dðA;BÞ� dðA;CÞ and

dðB;CÞ� dðA;CÞ. Hence
dðA;CÞ�max½dðA;BÞ; dðB;CÞ�:

h

Let A and B be PFSs of X ¼ fx1; . . .; xng, and by

incorporating the three parameters of PFSs, the following

distance measures have been proposed in the literature:

d1ðA;BÞ ¼
1

2n

Xn

i¼1

½jlAðxiÞ � lBðxiÞj þ jmAðxiÞ � mBðxiÞj

þ jpAðxiÞ � pBðxiÞj�

d2ðA;BÞ ¼
1

2n

Xn

i¼1

½ðlAðxiÞ � lBðxiÞÞ2
 

þ ðmAðxiÞ � mBðxiÞÞ2

þðpAðxiÞ � pBðxiÞÞ2�
�1

2

d3ðA;BÞ ¼
1

2n

Xn

i¼1

½jðlAðxiÞÞ2 � ðlBðxiÞÞ2j

þ jðmAðxiÞÞ2 � ðmBðxiÞÞ2j
þ jðpAðxiÞÞ2 � ðpBðxiÞÞ2j�

d4ðA;BÞ ¼
1

2

Xn

i¼1

½jðlAðxiÞÞ2 � ðlBðxiÞÞ2j

þ jðmAðxiÞÞ2 � ðmBðxiÞÞ2j
þ jðpAðxiÞÞ2 � ðpBðxiÞÞ2j�;

where

pAðxiÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ½ðlAðxiÞÞ2 þ ðmAðxiÞÞ2�
q

and

pBðxiÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ½ðlBðxiÞÞ2 þ ðmBðxiÞÞ2�
q

:

These are the distance measures studied in Pythagorean

fuzzy set setting that take account of the three conventional

parameters of PFSs. Note that d1ðA;BÞ–d3ðA;BÞ were

introduced by Ejegwa (2018); Zhang and Xu (2014) pro-

posed d4ðA;BÞ. Certainly, d3ðA;BÞ normalizes d4ðA;BÞ.

3.1 New distance measures for Pythagorean
fuzzy sets

We propose some new distance measures for Pythagorean

fuzzy sets, and exemplify the measures to ascertain their

compliant to Definition 3.1.

Let A;B 2 PFSðXÞ, such that X ¼ fx1; . . .; xng. By

incorporating the three parameters of PFSs, we propose the

following new distance measures for PFSs:

d5ðA;BÞ ¼
1

4n

Xn

i¼1

½jlAðxiÞ � lBðxiÞj þ jjlAðxiÞ

� mAðxiÞj � jlBðxiÞ � mBðxiÞjj
þ jjlAðxiÞ � pAðxiÞj � jlBðxiÞ � pBðxiÞjj�

d6ðA;BÞ ¼
1

4n

Xn

i¼1

½jlAðxiÞ � lBðxiÞj þ jmAðxiÞ

� mBðxiÞj þ jpAðxiÞ � pBðxiÞj
þ 2maxfjlAðxiÞ � lBðxiÞj; jmAðxiÞ
� mBðxiÞj; jpAðxiÞ � pBðxiÞjg�

d7ðA;BÞ ¼
1

4n

Xn

i¼1

½ðlAðxiÞ � lBðxiÞÞ
2 þ ðmAðxiÞ

 

� mBðxiÞÞ2 þ ðpAðxiÞ � pBðxiÞÞ2

þ 2maxfðlAðxiÞ � lBðxiÞÞ2; ðmAðxiÞ

�mBðxiÞÞ2; ðpAðxiÞ � pBðxiÞÞ2g�
�1

2

;

where

pAðxiÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ½ðlAðxiÞÞ2 þ ðmAðxiÞÞ2�
q

and

pBðxiÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ½ðlBðxiÞÞ2 þ ðmBðxiÞÞ2�
q

:

3.2 Numerical verification

Now, we verify whether the proposed distance measures

for PFSs satisfy the conditions in Definition 3.1.

For example, let A;B;C 2 PFSðXÞ for X ¼ fx1; x2; x3g.
Suppose

A ¼ 0:6; 0:2

x1

� �

;
0:4; 0:6

x2

� �

;
0:5; 0:3

x3

� �� �

;

B ¼ 0:8; 0:1

x1

� �

;
0:7; 0:3

x2

� �

;
0:6; 0:1

x3

� �� �

and

C ¼ 0:9; 0:2

x1

� �

;
0:8; 0:2

x2

� �

;
0:7; 0:3

x3

� �� �

:

Calculating the distance using the proposed distance mea-

sures above, we have
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d5ðA;BÞ ¼
1

12

X3

i¼1

½j0:6� 0:8j þ jj0:6� 0:2j � j0:8� 0:1jj

þ jj0:6� 0:7746j � j0:8� 0:5916jj
þ j0:4� 0:7j
þ jj0:4� 0:6j � j0:7� 0:3jj þ jj0:4� 0:6928j
� j0:7� 0:6481jj
þ j0:5� 0:6j þ jj0:5� 0:3j � j0:6� 0:1jj
þ jj0:5� 0:8124j � j0:6� 0:7937jj�

¼0:1495

d6ðA;BÞ ¼
1

12

X3

i¼1

½j0:6� 0:8j þ j0:2� 0:1j

þ j0:7746� 0:5916j
þ 2maxfj0:6� 0:8j; j0:2� 0:1j;
j0:7746� 0:5916jg

þ j0:4� 0:7j þ j0:6� 0:3j þ j0:6928� 0:6481j
þ 2maxfj0:4� 0:7j; j0:6� 0:3j;
j0:6928� 0:6481jg

þ j0:5� 0:6j þ j0:3� 0:1j þ j0:8124� 0:7937j
þ 2maxfj0:5� 0:6j; j0:3� 0:1j;
j0:8124� 0:7937jg�

¼0:2372

d7ðA;BÞ ¼
1

12

X3

i¼1

½ð0:6� 0:8Þ2 þ ð0:2� 0:Þ2
 

þ ð0:7746� 0:5916Þ2

þ 2maxfð0:6� 0:8Þ2; ð0:2� 0:1Þ2;
ð0:7746� 0:5916Þ2g

þ ð0:4� 0:7Þ2 þ ð0:6� 0:3Þ2

þ ð0:6928� 0:6481Þ2

þ 2maxfð0:4� 0:7Þ2; ð0:6� 0:3Þ2;
ð0:6928� 0:6481Þ2g

þ ð0:5� 0:6Þ2 þ ð0:3� 0:1Þ2

þ ð0:8124� 0:7937Þ2

þ 2maxfð0:5� 0:6Þ2; ð0:3� 0:1Þ2;

ð0:8124� 0:7937Þ2g�
�1

2

¼0:2338

Similarly, we obtain

d5ðA;CÞ ¼0:2048; d6ðA;CÞ ¼ 0:3294; d7ðA;CÞ ¼ 0:3346;

d5ðB;CÞ ¼0:1024; d6ðB;CÞ ¼ 0:1784; d7ðB;CÞ ¼ 0:1691:

3.2.1 Comments

The following are observed from the above computations:

(i) It follows that, diðA;BÞ; diðA;CÞ; diðB;CÞ 2 ½0; 1�,
8di, where i ¼ 5; 6; 7,

(ii) diðA;BÞ ¼ 0, diðA;CÞ ¼ 0 and diðB;CÞ ¼ 0 if and

only if A ¼ B, A ¼ C and B ¼ C 8di, where

i ¼ 5; 6; 7,

(iii) 8di, where i ¼ 5; 6; 7, it follows that

diðA;BÞ ¼ diðB;AÞ; diðA;CÞ ¼ diðC;AÞ and
diðB;CÞ ¼ diðC;BÞ

because of the use of square and absolute value,

(iv) diðA;CÞ þ diðB;CÞ� diðA;BÞ holds 8di, where

i ¼ 5; 6; 7.

Clearly, Conditions (i)–(iv) of Definition 3.1 hold for all

the distance measures.

Applying the distance measures in (Zhang and Xu 2014;

Ejegwa 2018), that is, d1, d2, d3, and d4 to calculate the

distances between PFSs A, B, and C, we get the following

results in Table 2.

Table 3 contains all the values of distance measures

(that is, d1, d2, d3, d4, d5, d6, and d7) between the PFSs A,

B, and C defined over X ¼ fx1; x2; x3g.

3.2.2 Discussion

From Table 3, we observe that the distance measure pro-

posed by Zhang and Xu (2014), that is, d4 does not com-

pletely satisfies the conditions of distance measures for

PFSs as seen in Definition 3.1, since d4ðA;CÞ 62 ½0; 1�.
However, the distance measures in (Ejegwa 2018), that is,

d1, d2, and d3 completely satisfy the conditions of distance

measures for PFSs in Definition 3.1. Similarly, the pro-

posed distance measures, say d5, d6, and d7, completely

satisfy the conditions of distance measures for PFSs. Thus,

d1, d2, d3, d5, d6, and d7 are appropriate distance measures

for PFSs.

Notwithstanding, d5 is the most reasonable/efficient of

the distance measures discussed, since

Table 2 Numerical outputs

DM d1 d2 d3 d4

d(A, B) 0.2411 0.2294 0.2400 0.7200

d(A, C) 0.3298 0.3274 0.3900 1.1700

d(B, C) 0.1887 0.1632 0.1867 0.5600
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d5ðA;BÞ\diðA;BÞ;
d5ðA;CÞ\diðA;CÞ and
d5ðB;CÞ\diðB;CÞ 8i ¼ 1; 2; 3; 6; 7:

Hence, we adopt d5 for application to pattern recognition

problems.

4 Application to pattern recognition
problems

In this section, we apply d5 to deal with some pattern

recognition problems experience in real life.

Example 4.1 Suppose we have a pattern recognition

problem about the classification of building materials.

Given three classes of building materials represented by

PFSs ~A1, ~A2, and ~A3 in the feature space X ¼ fx1; x2; x3g,
respectively, shown as follows:

~A1 ¼
h0:34; 0:34i

x1
;
h0:19; 0:48i

x2
;
h0:02; 0:12i

x3

� �

~A2 ¼
h0:35; 0:33i

x1
;
h0:20; 0:47i

x2
;
h0:02; 0:5i

x3

� �

~A3 ¼
h0:33; 0:35i

x1
;
h0:21; 0:46i

x2
;
h0:01; 0:13i

x3

� �

:

Given another kind of unknown building material repre-

sented by an PFS ~B in the feature space X ¼ fx1; x2; x3g.
The goal is to classify the unknown pattern ~B into one of

the pattern ~A1, ~A2 or ~A3, where

~B ¼ h0:37; 0:31i
x1

;
h0:23; 0:44i

x2
;
h0:04; 0:10i

x3

� �

:

Calculating the distances between the known building

materials and the unknown building material using d5, we

get

d5ð ~A1; ~BÞ ¼
1

12

X3

i¼1

½jl ~A1
ðxiÞ � l ~BðxiÞj

þ jjl ~A1
ðxiÞ � m ~A1

ðxiÞj � jl ~BðxiÞ � m ~BðxiÞjj
þ jjl ~A1

ðxiÞ � p ~A1
ðxiÞj � jl ~BðxiÞ � p ~BðxiÞjj�

¼ 0:0273;

d5ð ~A2; ~BÞ ¼ 0:0618; d5ð ~A3; ~BÞ ¼ 0:0261:

From the results, we can see that the distance between ~A3

and ~B is the smallest and the distance between ~A2 and ~B is

the greatest. Hence, ~B belongs to ~A3.

Example 4.2 Given three kinds of mineral fields, each is

featured by the content of three minerals and has one kind

of typical hybrid mineral. We can express the three kinds

of typical hybrid mineral by three PFSs ~C1, ~C2, and ~C3 in

the feature X ¼ fx1; x2; x3g, respectively, shown as

follows:

~C1 ¼
h0:5; 0:4i

x1
;
h0:8; 0:0i

x2
;
h0:3; 0:7i

x3

� �

~C2 ¼
h0:6; 0:3i

x1
;
h0:9; 0:1i

x2
;
h0:6; 0:4i

x3

� �

~C3 ¼
h0:6; 0:3i

x1
;
h0:9; 0:1i

x2
;
h0:5; 0:5i

x3

� �

:

Given another kind of hybrid mineral represented by an

PFS ~D in the feature X ¼ fx1; x2; x3g. The aim is to find

which field should mineral ~D belongs, where

~D ¼ h0:4; 0:2i
x2

;
h0:9; 0:05i

x3

� �

:

Using d5, we calculate the distances between the three

kinds of mineral fields and the unknown as thus:

d5ð ~C1; ~DÞ ¼
1

12

X3

i¼1

½jl ~C1
ðxiÞ � l ~DðxiÞj

þ jjl ~C1
ðxiÞ � m ~C1

ðxiÞj � jl ~DðxiÞ � m ~DðxiÞjj
þ jjl ~C1

ðxiÞ � p ~C1
ðxiÞj � jl ~DðxiÞ � p ~DðxiÞjj�

¼ 0:3443;

d5ð ~C2; ~DÞ ¼ 0:3237; d5ð ~C3; ~DÞ ¼ 0:3392:

From the results, we can say that mineral field ~D belongs to
~C2, since the distance between ~C2 and ~D is the shortest.

Example 4.3 Consider three known patterns of building

materials represented by PFSs ~E1, ~E2, and ~E3 of the feature

space X ¼ fx1; x2; x3; x4g, respectively, shown as follows:

Table 3 Numerical outputs
DM d1 d2 d3 d4 d5 d6 d7

d(A, B) 0.2411 0.2294 0.2400 0.7200 0.1495 0.2372 0.2338

d(A, C) 0.3298 0.3274 0.3900 1.1700 0.2048 0.3294 0.3346

d(B, C) 0.1887 0.1632 0.1867 0.5600 0.1024 0.1784 0.1691
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~E1 ¼
h0:5; 0:3i

x1
;
h0:7; 0:0i

x2
;
h0:4; 0:5i

x3
;
h0:7; 0:3i

x4

� �

~E2 ¼
h0:5; 0:2i

x1
;
h0:6; 0:1i

x2
;
h0:2; 0:7i

x3
;
h0:7; 0:3i

x4

� �

~E3 ¼
h0:5; 0:4i

x1
;
h0:7; 0:1i

x2
;
h0:4; 0:6i

x3
;
h0:7; 0:2i

x4

� �

:

The aim is to classify an unknown pattern of building

material represented by an PFS ~F in the feature space X ¼
fx1; x2; x3; x4g into one of the pattern ~E1, ~E2 or ~E3, where

~F ¼ h0:4; 0:3i
x1

;
h0:7; 0:1i

x2
;
h0:3; 0:6i

x3
;
h0:7; 0:3i

x4

� �

:

Calculating the distances between the known pattern of

building materials and the unknown pattern using d5, we

get

d5ð ~E1; ~FÞ ¼
1

16

X4

i¼1

½jl ~E1
ðxiÞ � l ~FðxiÞj

þ jjl ~E1
ðxiÞ � m ~E1

ðxiÞj � jl ~FðxiÞ � m ~FðxiÞjj
þ jjl ~E1

ðxiÞ � p ~E1
ðxiÞj � jl ~FðxiÞ � p ~FðxiÞjj�

¼ 0:0834;

d5ð ~E2; ~FÞ ¼ 0:0721; d5ð ~E3; ~FÞ ¼ 0:0490:

From the results, we can say that the distance between ~E3

and ~F is the shortest, and the distance between ~E1 and ~F is

the longest. Thus, it follows that ~F belongs to ~E3.

Example 4.4 Given three kinds of mineral fields, each is

featured by the content of five minerals and has one kind of

typical hybrid mineral. We can express the three kinds of

mineral fields by three PFSs ~G1, ~G2, and ~G3 in the feature

X ¼ fx1; x2; x3; x4; x5g, respectively, shown as follows:

~G1 ¼
h0:9; 0:1i

x1
;
h0:8; 0:0i

x2
;
h0:7; 0:1i

x3
;
h0:7; 0:4i

x5

� �

~G2 ¼
h0:8; 0:1i

x1
;
h0:8; 0:2i

x2
;
h0:9; 0:0i

x4

� �

~G3 ¼
h0:6; 0:2i

x2
;
h0:8; 0:0i

x3
;
h0:6; 0:1i

x5

� �

:

Suppose we have an unknown mineral field represented by

an PFS ~H in the feature space X ¼ fx1; x2; x3; x4; x5g,
where

~H¼ h0:5;0:3i
x1

;
h0:6;0:2i

x2
;
h0:8;0:1i

x3
;
h0:9;0:0i

x4
;
h0:7;0:4i

x5

� �

:

Our task is to justify which mineral field the unknown

mineral field ~H belong to.

Calculating the distances between each of ~G1, ~G2 and
~G3, and the unknown mineral field ~H using d5, we have

d5ð ~G1; ~HÞ ¼ 1

20

X5

i¼1

½jl ~G1
ðxiÞ � l ~HðxiÞj

þ jjl ~G1
ðxiÞ � m ~G1

ðxiÞj � jl ~HðxiÞ � m ~HðxiÞjj
þ jjl ~G1

ðxiÞ � p ~G1
ðxiÞj � jl ~HðxiÞ � p ~HðxiÞjj�

¼ 0:1827;

d5ð ~G2; ~HÞ ¼ 0:2040; d5ð ~C3; ~DÞ ¼ 0:1785:

From the results, we can say that the unknown mineral field

~H belongs to ~G3, since the distance between ~G3 and ~H is

the shortest.

5 Conclusion

The concept of PFSs is of immense importance in real-life

problems because of its ability to cope with embedded

imprecision more effective than IFSs. Some of the appli-

cations of PFSs have been explored (see Ejegwa 2019a, b;

Perez-Dominguez et al. 2018; Yager 2013b, 2014, 2016).

So far, we have proposed some new distance measures for

PFSs that satisfied the properties of distance measure, by

taking into account the conventional parameters of PFSs.

We verified the authenticity of the proposed distance

measures in comparison with some distance measures for

PFSs that also used the conventional parameters (see

Ejegwa 2018; Zhang and Xu 2014), and found that the

proposed distance measures, especially, d5 yields better

output. To test the applicability of the proposed distance

measures in real-life problems, some pattern recognition

problems were considered via d5, for reliable output. The

novel distance measures for Pythagorean fuzzy sets pro-

posed in this work could be applied in decision making of

real-life problems embedded with uncertainty.
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