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Abstract
Single-valued trapezoidal neutrosophic number (SVTrNN), an extension of single-valued neutrosophic set, effectively

deals with indeterminate and incomplete information in multi-attribute decision making (MADM) problem. In this paper,

we extend the grey relational analysis (GRA) method for solving SVTrNN based MADM problem, where the weight

information of attributes is partially known or completely unknown. Following the classical GRA method, we define grey

relational co-efficient using a new distance measure. We develop two optimization models to determine the weights of the

attributes. We calculate grey positive and negative relational degrees and define the relative closeness co-efficient of each

alternative to determine the best alternative. We take a numerical example to validate the proposed approach and compare

the proposed method with other exiting methods. It is observed from the numerical study that the proposed GRA method

has an advantage over the existing methods for solving SVTrNN based MADM problem with partially known or com-

pletely unknown attribute weight information.

Keywords Multi-attribute decision making � Single-valued trapezoidal neutrosophic number � Grey relational analysis �
Unknown weight information

1 Introduction

Grey relational analysis (GRA) is an important part of grey

system theory, which is used to conduct relational analysis

of uncertainty of the system. There are many applications

of this method in different multi-attribute decision making

(MADM) problems (Zhang et al. 2005; Wei 2011; Wei

et al. 2011). However, in practice, decision makers face

difficulties to collect accurate information of preference

values of alternatives in MADM due to imprecise and

incomplete data (Xu 2015).

During the past several years, fuzzy sets (Zadeh 1965),

intuitionistic fuzzy sets (Atanasso 1986), and neutrosophic

sets (Smarandache 1999) have gained much attention from

the researchers to deal with uncertain information in

decision making problems. Fuzzy sets is used in various

optimization techniques (Chen and Wang 1995; Chen and

Tanuwijaya 2011; Chen and Chang 2011; Cheng et al.

2016; Lee and Chen 2008; Chen and Huang 2003. Intu-

itionistic fuzzy set is useful to handle various MCDM

problems (Chen and Chang 2015; Chen et al. 2016a, b, Liu

and Chen 2018a; Liu et al. 2017). Recently, MADM

method is being developed under hesitant fuzzy sets and

type-2 fuzzy sets (Mishra et al. 2018; Qin 2017). GRA

method is one of the accepted MADM methods among

TOPSIS (Hwang and Yoon 1981), VIKOR (Opricovic and

Tzeng 2004), PROMETHEE (Brans et al. 1986), AHP

(Wind and Saaty 1980), etc. Researchers have extended the

GRA method for MADM problem in different environ-

ments. Wei (2010) introduced GRA method for intuition-

istic fuzzy MADM problem with incomplete weight

information. Zhang and Liu (2011) proposed GRA method
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based on intuitionistic fuzzy multi-criteria group decision

making problem (MCGDM). Pramanik and Mukhopad-

hyaya (2011) employed GRA method for intuitionistic

fuzzy MCGDM in teacher selection problem. Dey et al.

(2015) applied GRA method for intuitionistic fuzzy

MCGDM for weaver selection in Khadi institution.

Neutrosophic set, pioneered by Smarandache (1999), is

an extension of fuzzy set and intuitionistic fuzzy set.

Neutrosophic set can be used in various branches of

Mathematics (Singh 2019; Dey et al. 2019). It is useful for

solving multi-criteria decision making problems as inde-

terminant and incomplete information can be treated well

by this set. Single-valued neutrosophic set (Haibin et al.

2010), a simplified version of neutrosophic set, has been

successfully applied in MADM or multi-attribute group

decision making problems (Sahin and Liu 2016; Ye 2013;

Kahraman and Otay 2019).

Biswas et al. (2014) proposed GRA method for MADM

under single-valued neutrosophic environment using

entropy method. Mondal and Pramanik (2015a) developed

a neutrosophic MADM model for clay-brick selection in

construction field and solved the problem with GRA

method. Pramanik and Mondal (2015) extended GRA

method for MADM under interval neutrosophic environ-

ment. Biswas et al. (2016a, b) applied GRA method for

MADM with single-valued neutrosophic hesitant fuzzy set.

Mondal and Pramanik (2015b) proposed a GRA method

for rough neutrosophic MADM.

Single-valued trapezoidal neutrosophic number

(SVTrNN) (Subas 2015; Ye 2017) is an extension of

trapezoidal fuzzy number. It is presented by a trapezoidal

number which has three independent membership func-

tions—the truth membership function, the indeterminate

membership function, and the falsity membership function.

This number can present incomplete or indeterminate

information effectively with its three membership degrees.

Therefore, it has an advantage over the trapezoidal fuzzy

number and the trapezoidal intuitionistic fuzzy number.

Deli and Subas (2017) developed a ranking method for

single-valued neutrosophic number and employed the

method for solving MADM problem. Biswas et al.

(2016a, b) proposed GRA method for SVTrNN based

MADM with value and ambiguity-based ranking strategy.

Biswas et al. (2018) developed TOPSIS strategy for

SVTrNN based MADM with unknown weight information.

However, the GRA method has not been studied yet to deal

with MADM problems with partially known or completely

unknown weight information in the framework of

SVTrNN, which can although play an effective role to deal

with uncertain and indeterminate information in MADM

problem. In view of the above facts, the primary objectives

of this study are as follows:

• To study MADM problem, where the rating values of

the attributes are SVTrNNs and weight information is

partially known or completely unknown.

• To define a new distance measure of SVTrNN and

study some of its properties.

• To develop optimization models to determine the

weights of attributes.

• To extend GRA method for solving SVTrNN based

MADM problem using a new distance measure.

• To validate the proposed approach with a numerical

example.

• To compare the proposed approach with some existing

methods including TOPSIS.

The structure of the paper is as follows: In Sect. 2, we

present some preliminaries of neutrosophic set, trapezoidal

fuzzy number, and single-valued trapezoidal neutrosophic

number. In this section, we also define a new distance

measure. In Sect. 3, we propose GRA method for SVTrNN

based MADM, where the weight information of attributes

is partially known or completely unknown. Section 4 deals

with a numerical example to demonstrate the developed

model. Finally, in Sect. 5, we conclude the paper with

some remarks.

2 Preliminaries

Smarandache (1999) introduced the concept of neutro-

sophic set. A neutrosophic set A is a set in a universal set X

whose characteristic function is expressed by truth-mem-

bership function TAðxÞ, indeterminacy function IAðxÞ, and
falsity membership function FAðxÞ. These functions are

subsets of ��0; 1þ½, i.e., TAðxÞ : X !��0; 1þ½,
IAðxÞ : X !��0; 1þ½, and FAðxÞ : X !��0; 1þ½ so that
�0� sup TAðxÞ þ sup IAðxÞ þ supFAðXÞ� 3þ.

Definition 1 (Dubois and Prade 1983; Heilpern 1992) A

generalized trapezoidal fuzzy number is an extension of

trapezoidal fuzzy number which is denoted by A ¼
ða; b; c; d;wÞ and subset real number R with membership

function lA given by

lAðxÞ ¼

ðx� aÞw
b� a

; a� x\b

w; b� x� c

ðd � xÞw
d � c

; c\x� d

0; otherwise;

8
>>>>>><

>>>>>>:

where a; b; c; d 2 R and w is called membership degree.

Definition 2 (Subas 2015; Ye 2017) A single-valued

trapezoidal neutrosophic number a is a generalization of
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trapezoidal fuzzy number and its membership functions are

given by

TaðxÞ ¼

ðx� aÞta
b� a

; a� x\b

ta; b� x� c

ðd � xÞta
d � c

; c\x� d

0; otherwise:

8
>>>>>><

>>>>>>:

IaðxÞ ¼

b� xþ ðx� aÞia
b� a

; a� x\b

ia; b� x� c

x� cþ ðd � xÞia
d � c

; c\x� d

0; otherwise:

8
>>>>>><

>>>>>>:

FaðxÞ ¼

b� xþ ðx� aÞfa
b� a

; a� x\b

fa; b� x� c

x� cþ ðd � xÞfa
d � c

; c\x� d

0; otherwise;

8
>>>>>><

>>>>>>:

where Ta, Ia, and Fa are truth membership function, inde-

terminacy membership function, and falsity membership

function, respectively, and they lie between 0 and 1 and

their sum lies between 0 and 3 where a, b, c and d are real

numbers. Therefore, a ¼ ð½a; b; c; d�; ta; ia; faÞ is called a

single-valued trapezoidal neutrosophic number (SVTrNN).

Definition 3 Let ~a ¼ ð½p1; q1; r1; s1�; t1; i1; f1Þ and ~b ¼
ð½p2; q2; r2; s2�; t2; i2; f2Þ be two SVTrNNs. Then we define

the distance measure between these two numbers as

dð~a; ~bÞ ¼ 1

3

�
�
�

�
1� p1 þ q1 þ r1 þ d1

4

�
t1

�

�
�
1� p2 þ q2 þ r2 þ s2

4

�
t2

�
�
�:

þ
�
�
�

�
1� p2 þ q2 þ r2 þ s2

4

�
i2

�
�
1� p1 þ q1 þ r1 þ s1

4

�
i1

�
�
�

þ
�
�
�

�
1� p2 þ q2 þ r2 þ s2

4

�
f2

�
�
1� p1 þ q1 þ r1 þ s1

4

�
f1

�
�
�

�
ð1Þ

A real-valued function d : X � X �! ½0; 1� is said to be

distance function if it satisfies the following properties:

1. dð~a; ~bÞ� 0

2. dð~a; ~bÞ ¼ dð~b; ~aÞ
3. dð~a; ~cÞ� dð~a; ~bÞ þ dð~b; ~cÞ 8~a; ~b; ~c 2 X

Proof

1. The distance measure dð~a; ~bÞ is non-negative and

dð~a; ~bÞ ¼ 0 when ~a ¼ ~b, i.e., p1 ¼ p2; q1 ¼ q2; r1 ¼ r2;

s1 ¼ s2; t1 ¼ t2; i1 ¼ i2 and f1 ¼ f2. Therefore,

dð~a; ~bÞ� 0:

2. It is obvious that dð~a; ~bÞ ¼ dð~b; ~aÞ.

3. dð~a; ~cÞ

¼ 1

3

�
�
�
�
1� p1 þ q1 þ r1 þ s1

4

�
t1 �

�
1� p3 þ q3 þ r3 þ s3

4

�
t3

�
�
�

�

þ
�
�
�
�
1� p3 þ q3 þ r3 þ s3

4

�
i3 �

�
1� p1 þ q1 þ r1 þ s1

4

�
i1

�
�
�

þ
�
�
�
�
1� p3 þ q3 þ r3 þ s3

4

�
f3 �

�
1� p1 þ q1 þ r1 þ s1

4

�
f1

�
�
�

�

¼ 1

3

�
�
�
�
1� p1 þ q1 þ r1 þ s1

4

�
t1 �

�
1� p2 þ q2 þ r2 þ s2

4

�
t2

�

þ
�
1� p2 þ q2 þ r2 þ s2

4

�
t2 �

�
1� p3 þ q3 þ r3 þ s3

4

�
t3
�
�

þ
�
�
�
�
1� p3 þ q3 þ r3 þ s3

4

�
i3 �

�
1� p2 þ q2 þ r2 þ s2

4

�
i2

þ
�
1� p2 þ q2 þ r2 þ s2

4

�
i2 �

�
1� p1 þ q1 þ r1 þ s1

4

�
i1

�
�
�

þ
�
�
�
�
1� p3 þ q3 þ r3 þ s3

4

�
f3 �

�
1� p2 þ q2 þ r2 þ s2

4

�
f2

þ
�
1� p2 þ q2 þ r2 þ s2

4

�
f2 �

�
1� p1 þ q1 þ r1 þ s1

4

�
f1

�
�
�

�

� 1

3

�
�
�
�
1� p1 þ q1 þ r1 þ s1

4

�
t1 �

�
1� p2 þ q2 þ r2 þ s2

4

�
t2

�
�
�

�

þ
�
�
�
�
1� p2 þ q2 þ r2 þ s2

4

�
i2 �

�
1� p1 þ q1 þ r1 þ s1

4

�
i1

�
�
�

þ
�
�
�
�
1� p2 þ q2 þ r2 þ s2

4

�
f2 �

�
1� p1 þ q1 þ r1 þ s1

4

�
f1

�
�
�

�

þ 1

3

�
�
�
�
1� p2 þ q2 þ r2 þ s2

4

�
t2 �

�
1� p3 þ q3 þ r3 þ s3

4

�
t3

�
�
�

�

þ
�
�
�
�
1� p3 þ q3 þ r3 þ s3

4

�
i3 �

�
1� p2 þ q2 þ r2 þ s2

4

�
i2

�
�
�

þ
�
�
�
�
1� p3 þ q3 þ r3 þ s3

4

�
f3 �

�
1� p2 þ q2 þ r2 þ s2

4

�
f2

�
�
�

�

¼ dð~a; ~bÞ þ dð~b; ~cÞ

Therefore, dð~a; ~cÞ� dð~a; ~bÞ þ dð~b; ~cÞ 8~a; ~b; ~c 2 X:

h

3 GRA method

Grey relational analysis (GRA) is an important section of

grey system theory which was proposed by Deng (1989).

GRA is mainly used to conduct relational analysis of

uncertainty of a system having incomplete information.

This method is applicable to discrete sequence for co-re-

lational analysis of such sequence with processing uncer-

tainty, multi-variate input, and discrete data. GRA method

has been successfully applied for multi-criteria decision

making problems. The method can be described as given

below (see also Fig. 1):

• Grey relational generating

Translate all the alternatives to comparability sequence.

This process is called grey relational generating.
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• Defined ideal target sequence

Define the ideal target of the sequence of each

alternative.

• Calculate Grey relational coefficient

Calculate the grey relational coefficient between ideal

target sequence and comparability sequence.

• Determine Grey relational degree

If an alternative achieves the maximum grey relational

degree between the ideal target sequence and itself, then

that alternative is the optimal choice of alternative.

3.1 GRA method for multi-attribute decision
making based on SVTrNN with incomplete
weight information

Let A ¼ fA1;A2; . . .Amg be a finite set of alternatives, C ¼
fC1;C2; . . .;Cng be the set of attributes, and the rating values
of attributes be represented by SVTrNNs. Let xij ¼
ð½aij; bij; cij; dij�; tij; iij; fijÞ be the rating values of Ai, the i-th

alternative over the attribute Cj. Then the decision matrix is

given by

X = (xij)m×n =

C1 C2 . . . Cn

A1 x11 x12 . . . x1n

A2 x21 x22 . . . x2n

...
...

...
. . .

...

Am xm1 xm2 . . . xmn

ð2Þ

Let W ¼ fw1;w2; . . .;wng be the weight vector for the

attributes and D be the set of known weight information

which can be constructed in the form as given by Park

et al. (1997, 2011) and Park (2004):

1. When weak ranking: fwi �wjg, i 6¼ j;

2. When strict ranking: fwi � wj � �ið[ 0Þg, i 6¼ j;

3. The ranking of difference: fwi � wj �wk � wpg,
i 6¼ j 6¼ k 6¼ p;

4. The ranking with multiples: fwi � aiwjg,
0� ai � 1; i 6¼ j;

5. An interval form: fbi �wi � bi þ �ið[ 0Þg,
0� bi � bi þ �i � 1.

We now propose the GRA method for MADM based on

SVTrNN with partially known and completely unknown

weight information. The steps are as follows:

Step 1: Normalize the decision matrix

This step transforms dimensional attributes into non-

dimensional attributes which permit comparison among

criteria because different criteria are usually measured in

different units. In general, there are two types of attribute.

One is benefit type attribute and another one is cost type

attribute. Let X ¼ ðxijÞm�n be a decision matrix, where

SVTrNN xij ¼ aij; bij; cij; dij
� 	

; tij; iij; fij
� �

is the rating value

of the alternative Ai with respect to the attribute Cj.

In order to eliminate the influence of attribute type, we

consider the following technique and obtain the standardize

matrix R ¼ ðrijÞm�n, where rij ¼ r1ij; r
2
ij; r

3
ij; r

4
ij

h i
; tij; iij; fij

� �

is SVTrNN. Then we have

rij ¼
aij
uþj

;
bij
uþj

;
cij
uþj

;
dij
uþj

" #

; tij; iij; fij

 !

; for benefit type attribute:

ð3Þ

rij ¼
u�j
dij

;
u�j
cij

;
u�j
bij

;
u�j
aij


 �

; tij; iij; fij

� �

; for cost type attribute:

ð4Þ

where uþj ¼ maxfdij; for i ¼ 1; 2; . . .;mg and

u�j ¼ minfaij; for i ¼ 1; 2; . . .;mg for j ¼ 1; 2; :::; n.

Step 2: Calculate positive and negative ideal solutions

The positive ideal solution and the negative ideal solu-

tion of SVTrNN are Pþ and N�, respectively, for the

matrix R ¼ ðrijÞm�n, and those are given below:

• For benefit type attribute,

Pþ ¼ Pþ
1 ;P

þ
2 ; . . .;P

þ
n

 �

where

Pþ
j ¼ max

i
r1ij

� �
;max

i
r2ij

� �
;max

i
r3ij

� �
;max

i
r4ij

� �
 �

;

�

max
i
ðtijÞ;min

i
ðiijÞ;min

i
ðfijÞÞ

and N� ¼ N�
1 ;N

�
2 ; . . .;N

�
n

 �

where

Fig. 1 A schematic diagram of the GRA Method

564 Granular Computing (2020) 5:561–570

123



N�
j ¼ min

i
r1ij

� �
;min

i
r2ij

� �
;min

i
r3ij

� �
;min

i


�

r4ij

� �i
;

min
i
ðtijÞ;max

i
ðiijÞ;max

i
ðfijÞÞ

• For cost type attribute,

Pþ ¼ Pþ
1 ;P

þ
2 ; . . .;P

þ
n

 �

where

Pþ
j ¼ min

i
r1ij

� �
;min

i
r2ij

� �
;min

i
r3ij

� �
;min

i
r4ij

� �
 �

;

�

min
i
ðtijÞ;max

i
ðiijÞ;max

i
ðfijÞÞ

and N� ¼ N�
1 ;N

�
2 ; . . .;N

�
n

 �

where

N�
j ¼ max

i
r2ij

� �
;max

i
r2ij

� �
;max

i
r3ij

� �
;max

i
r4ij

� �
 �

;

�

max
i
ðtijÞ;min

i
ðiijÞ;min

i
ðfijÞÞ

Step 3: Calculate the grey relational coefficient

In this step, we determine the grey relational coefficient

of each alternative from positive ideal solution Pþ and

negative ideal solution N�, which can be obtained from the

following:

nþij ¼
min

1� i�m
min

1� j� n
d rij;P

þ
j

� �
þ q max

1� i�m
max

1� j� n
d rij;P

þ
j

� �

d rij;P
þ
j

� �
þ q max

1� i�m
max

1� j� n
d rij;P

þ
j

� �

ð5Þ

n�ij ¼
min

1� i�m
min

1� j� n
d rij;N

�
j

� �
þ q max

1� i�m
max

1� j� n
d rij;N

�
j

� �

d rij;N
�
j

� �
þ q max

1� i�m
max

1� j� n
d rij;N

�
j

� �

ð6Þ

q is the identification coefficient and we consider q ¼ 0:5

in this study.

Step 4: Calculate the attribute weight

When the attribute weights are known, calculate the

largest degree of grey relation from positive ideal solution

and the smallest degree from negative ideal solution and

determine the best alternative in GRA method. We develop

the following models when the weight information is par-

tially known or completely unknown:

1. Weight information is partially known

If the weight information is partially known then we

develop the following optimization model:

Model-1

min n�i ¼
Pn

j¼1

wjn
�
ij

max nþi ¼
Pn

j¼1

wjn
þ
ij

subject to w 2 D;
Pn

i¼1

wj ¼ 1;wj � 0;

for j ¼ 1; 2; . . .; n:

8
>>>>>>>><

>>>>>>>>:

Since every alternative is important, no preference should

be given to any alternative. We can aggregate the above

multi-objective optimization model into the following

single-objective model with equal weights:

Model-2

min n ¼
Pn

j¼1

Pm

i¼1

ðn�ij � nþij Þwj

subject to w 2 D;
Pn

j¼1

wj ¼ 1;wj � 0;

for j ¼ 1; 2; . . .; n:

8
>>>><

>>>>:

We find the optimal solution of Model-2 and use it as

weight vector.

2. Weight information is completely unknown

In this case, we have the following single-objective

model:

Model-3

min n ¼
Pn

j¼1

Pm

i¼1

ðn�ij � nþij Þwj

subject to w 2 D;
Pn

j¼1

w2
j ¼ 1;wj � 0;

for j ¼ 1; 2; . . .; n:

8
>>>><

>>>>:

To solve this model, we construct the Lagrangian function

Lðw; hÞ ¼
Xm

i¼1

Xn

j¼1

n�ij � nþij

� �
þ h
2

Xn

j¼1

w2
j � 1

 !

; ð7Þ

where h 2 R is the Lagrange multiplier. The first-order

conditions for optimality of L give

oL

owi
¼
Xm

i¼1

n�ij � nþij

� �
þ hwj ¼ 0 ð8Þ

oL

oh
¼
Xn

j¼1

w2
j � 1 ¼ 0 ð9Þ

From Eq. (8), we get the weight vector of the form

wj ¼
�
Pm

i¼1ðn
�
ij � nþij Þ

h
; j ¼ 1; 2; . . .n: ð10Þ

Putting this value in Eq. (9), we get

h2 ¼
Xm

j¼1

Xm

i¼1

ðn�ij � nþij Þ
2 ð11Þ

i:e:; h ¼�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xn

j¼1

Xm

i¼1

ðn�ij � nþij Þ
2

v
u
u
t for h\0 ð12Þ

h ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xn

j¼1

Xm

i¼1

ðn�ij � nþij Þ
2

v
u
u
t for h[ 0 ð13Þ

From Eqs. (10), (12) and (13), we get the weight vector of

the form
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wj ¼
Pm

i¼1ðn
�
ij � nþij Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
j¼1

Pm
i¼1ðn

�
ij � nþij Þ

2
q for wj [ 0 ð14Þ

wj ¼�
Pm

i¼1ðn
�
ij � nþij Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
j¼1

Pm
i¼1ðn

�
ij � nþij Þ

2
q for wj\0 ð15Þ

Therefore, the normalized weight vector is given by

�wj ¼
wj

Pn
j¼1 wj

ð16Þ

Step 5: Determine the degree of grey relational coefficient

The degree of grey relational coefficient of each alter-

native Ai from the positive ideal solution and that from the

negative ideal solution with respect to attribute weight can

be obtained, respectively, from the following:

nþi ¼
Xn

j¼1

wjn
þ
ij ; i ¼ 1; 2; . . .m: ð17Þ

n�i ¼
Xn

j¼1

wjn
�
ij ; i ¼ 1; 2; . . .m: ð18Þ

Step 6: Compute the relative closeness co-efficient

In this step, we determine the relative closeness co-ef-

ficient ni of each alternative Ai with respect to the ideal

alternative Aþ as

ni ¼
nþi

nþi þ n�i
; for i ¼ 1; 2; . . .;m: ð19Þ

Step 7: Rank the alternatives

Rank each alternative Ai with respect to ni. The greatest
value of niði ¼ 1; 2; . . .mÞ of alternative Aiði ¼ 1; 2; . . .mÞ
is the best alternative.

4 Numerical example

To demonstrate the proposed GRA method, we consider

the following problem:

In supply chain management, supplier selection is a

major issue. Supplier evaluation is the process to access

new or existing suppliers based on their price, production,

delivery, quality of service, etc. Evaluation criteria of

supplier are uncertain. Purchasing department of an over-

seas multi-national company intends to pick a suit-

able supplier to get better development.

To formulate the problem, suppose that there are four

suppliers fA1;A2;A3;A4g and each supplier has four attri-

butes such as price, quality, delivery, and e-commerce

capability. We consider C1;C2;C3;C4 for price, quality,

delivery, and e-commerce capability, respectively. The

rating values of the attributes are SVTrNN numbers. Then

we get the following decision matrix:

C1 C2

A1 [7, 8, 9, 10]; 0.3, 0.4, 0.5 [6, 7, 8, 9]; 0.4, 0.5, 0.6

A2 [5, 6, 7, 8]; 0.3, 0.4, 0.5 [3, 4, 5, 6]; 0.3, 0.4, 0.5

A3 [3, 4, 5, 6]; 0.5, 0.6, 0.7 [1, 2, 3, 4]; 0.4, 0.5, 0.6

A4 [5, 6, 7, 8]; 0.6, 0.7, 0.8 [3, 4, 5, 6]; 0.4, 0.5, 0.6

C3 C4

A1 [4, 5, 6, 7]; 0.1, 0.2, 0.3 [4, 5, 6, 7]; 0.3, 0.4, 0.5

A2 [6, 7, 8, 9]; 0.4, 0.5, 0.6 [7, 8, 9, 10]; 0.4, 0.5, 0.6

A3 [4, 5, 6, 7]; 0.2, 0.3, 0.4 [6, 7, 8, 9]; 0.4, 0.5, 0.6

A4 [3, 4, 5, 6]; 0.5, 0.6, 0.7 [5, 6, 7, 8]; 0.3, 0.4, 0.5

We now determine the best alternative with the help of

the proposed GRA method. For this, we adopt the fol-

lowing steps:

Step 1: Normalize the decision matrix.

In the decision matrix, the first column C1 represents the

cost attribute, and second (C2), third (C3) and fourth (C4)

columns represent benefit type of attribute. Then, from

Eqs. (3) and (4), we get the standardized decision matrix as

given below.

C1 C2

A1 [0.30, 0.33, 0.37, 0.42]; 0.3, 0.4, 0.5 [0.66, 0.77, 0.88, 1.00]; 0.4, 0.5, 0.6

A2 [0.37, 0.42, 0.50, 0.60]; 0.3, 0.4, 0.5 [0.33, 0.44, 0.55, 0.66]; 0.3, 0.4, 0.5

A3 [0.50, 0.60, 0.75, 1.00]; 0.5, 0.6, 0.7 [0.11, 0.22, 0.33, 0.44]; 0.4, 0.5, 0.6

A4 [0.37, 0.42, 0.50, 0.60]; 0.6, 0.7, 0.8 [0.33, 0.44, 0.55, 0.66]; 0.4, 0.5, 0.6

C3 C4

A1 [0.44, 0.55, 0.66, 0.77]; 0.1, 0.2, 0.3 [0.40, 0.50, 0.60, 0.70]; 0.3, 0.4, 0.5

A2 [0.66, 0.77, 0.88, 1.00]; 0.4, 0.5, 0.6 [0.70, 0.80, 0.90, 1.00]; 0.4, 0.5, 0.6

A3 [0.44, 0.55, 0.66, 0.77]; 0.2, 0.3, 0.4 [0.60, 0.70, 0.80, 0.90]; 0.4, 0.5, 0.6

A4 [0.33, 0.44, 0.55, 0.66]; 0.5, 0.6, 0.7 [0.50, 0.60, 0.70, 0.80]; 0.3, 0.4, 0.5

Step 2: Calculate the positive and negative ideal solutions.

In the decision matrix, the first column C1 represents the

cost attribute, and other columns represent benefit attribute.

Therefore, the positive ideal solution Pþ ¼
fPþ

1 ;P
þ
2 ;P

þ
3 ;P

þ
4 g is given by
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�
½0:30; 0:33; 0:37; 0:42�; 0:3; 0:7; 0:8

�

�
½0:66; 0:77; 0:88; 1:00�; 0:4; 0:4; 0:5

�

�
½0:66; 0:77; 0:88; 1:00�; 0:4; 0:2; 0:3

�

�
½0:70; 0:80; 0:90; 1:00�; 0:4; 0:4; 0:5

�

0

B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
A

and the negative ideal solution N� ¼ fN�
1 ;N

�
2 ;N

�
3 ;N

�
4 g is

given by
�
½0:50; 0:60; 0:75; 1:00�; 0:6; 0:4; 0:0:5

�

�
½0:11; 0:22; 0:33; 0:44�; 0:3; 0:5; 0:6

�

�
½0:33; 0:44; 0:55; 0:66�; 0:2; 0:6; 0:7

�

�
½0:40; 0:50; 0:60; 0:70�; 0:3; 0:5; 0:6

�

0

B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
A

Step 3: Calculate the grey relational coefficient.

Grey relational coefficients of alternatives from ideal

solutions (positive, negative) are given by

nþ ¼ðnþij Þ4�4 ¼

0:562 1:00 0:80 0:593

0:479 0:567 0:899 1:00

0:428 0:355 0:629 0:753

0:629 0:478 0:389 0:701

0

B
B
B
@

1

C
C
C
A

n� ¼ðn�ij Þ4�4 ¼

0:625 0:396 0:501 0:961

0:742 0:572 0:513 0:574

0:862 1:00 0:576 0:711

0:427 0:708 0:849 0:761

0

B
B
B
@

1

C
C
C
A

Step 4: Calculate the attribute weight.

Here we consider two cases for the attribute weights: (1)

when information of the attribute weights is partially

known and (2) when information of the attribute weights is

completely unknown.

Case 1: When the information of the attribute weights

is partially known. Suppose that we have the following

weight information:

D ¼

0:15�w1 � 0:20

0:20�w2 � 0:40

0:30�w3 � 0:45

0:05�w4 � 0:15

and w1 þ w2 þ w3 þ w4 ¼ 1

8
>>>>>><

>>>>>>:

Using Model-2, we construct the single objective pro-

gramming problem as

min nðwÞ ¼ 0:558w1 þ 0:249w2 � 0:278w3 � 0:036w4

subject to w 2 D and
P4

j¼1 wj ¼ 1;wj [ 0;

for j ¼ 1; 2; 3; 4:

8
><

>:

Solving this problem with the optimization software

LINGO 11, we get the optimal weight vector as

�w ¼ ð0:15; 0:38; 0:45; 0:02Þ:

Case 2 : In this case, the attribute weights are completely

unknown. Using Model–3 and Eqs. (14), (15), and (16), we

get the following weight vector:

�w ¼ ð0:498; 0:222; 0:248; 0:032Þ:

Step 5: Compute the degree of grey relational coefficient.

Using Eq. (17), the degree of grey relational coefficient

from positive ideal solution is obtained as

nþi ¼ fnþ1 ; n
þ
2 ; n

þ
3 ; n

þ
4 g which is given in Table 1.

Similarly, using Eq. (18), the degree of grey relational

coefficient from negative ideal solution is obtained as n�i ¼
fn�1 ; n�2 ; n�3 ; n�4 g which is given in Table 2.

Step 6: Calculate the relative relational degree.

Using Eq. (19), the relative closeness co-efficient of

each alternative can be obtained as given in Table 3.

From Table 3, we see that, in Case 1, the relational

degrees are in the order n2 [ n1 [ n4 [ n3, whereas in

Case 2, the relational degrees are in the order

n2 [ n1 [ n4 [ n3.

Table 1 Relative closeness co-

efficient
nþi Case 1 Case 2

nþ1 0.831 0.716

nþ2 0.711 0.619

nþ3 0.497 0.471

nþ4 0.465 0.538

Table 2 Relative closeness co-

efficient
n�i Case 1 Case 2

n�1 0.488 0.554

n�2 0.554 0.642

n�3 0.782 0.816

n�4 0.730 0.605

Table 3 Relative relational

degree
ni Case 1 Case 2

n1 0.630 0.563

n2 0.562 0.490

n3 0.388 0.365

n4 0.389 0.470
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Step 7: Rank the alternatives

Considering the relative relational degrees, we deter-

mine the ranking of the alternatives as follows:

Case 1: A2 � A1 � A4 � A3

Case 2: A2 � A1 � A4 � A3

The above shows that the ranking is same in two cases.

However, in both the cases, A2 emerges as the best

alternative.

In the following, we compare our proposed approach

with the method suggested by Biswas et al. (2018), because

only Biswas et al.’s method (2018) is suitable for the

considered MADM problem where the preference values of

alternatives take the form of SVTrNN and attribute weights

are partially known or incompletely unknown. We solve

the numerical example using Biswas et al.’s (2018) method

and obtain the similar ranking result which demonstrates

the validity of our proposed approach. A comparison of the

results is shown in Table 4.

The proposed GRA method is flexible to deal with

MADM problems with SVTrNNs because the decision

maker can analyze solution results by choosing different

referential sequences and distinguishing coefficients. On

the other hand, Biswas et al.’s (2018) method is limited

because it depends only on distance measure. Therefore,

the proposed approach is better than Biswas et al.’s method

to deal with MADM problems. Currently some other

methods (Subas 2015; Ye 2017; Deli and Subas 2017) are

available for MADM problem with SVTrNNs, where the

weight information of attributes is assumed to be com-

pletely known. These methods cannot deal with SVTrNN

based MADM problem with partially known or completely

unknown weight information. On the other hand, our pro-

posed method can handle SVTrNN based MADM problem

with known weight information, partially known weight,

and completely unknown weight information. Therefore,

our method is better than the existing methods.

The proposed method has the following features:

• The method considers the preference values of the

alternatives in terms of SVTrNNs that effectively deal

with neutrosophic information in MADM problem.

• The method offers flexible choices for choosing the

importance of attribute weights.

• The method only considers relative closeness coeffi-

cient obtained from GRA to rank the alternatives.

Therefore, the method is simple and understandable.

• The proposed strategy is free from information loss due

to use of any complex aggregation operator or trans-

formation of SVTrNN based attribute values into crisp

values.

• The method considers a new distance measure for

solving MADM problems.

5 Conclusion

Single-valued trapezoidal neutrosophic number is a well-

built tool for dealing with indeterminate and incomplete

information that exists in real MADM problems. In this

paper, we have extended GRA method for MADM prob-

lem based on SVTrNN, where the weight information is

partially known and completely unknown. We have cal-

culated grey relational degrees between every alternative

and positive ideal solution, and between every alternative

and negative ideal solution, and then defined relative

relational degrees to determine the ranking of the alterna-

tives. In order to determine the attribute weights, we have

developed two optimization models under the condition

that the attribute weights are partially known or completely

unknown. We have provided a numerical example to

demonstrate the developed method. The proposed model

can be utilized in many practical problems like personnel

selection, medical diagnosis, center location selec-

tion (Pramanik et al. 2016), weaver selection (Dey et al.

2016), etc. under SVTrNN environment.
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