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Abstract
Attribute reduction is a core issue in rough set theory. In recent years, with the fast development of data processing tools,

information systems may increase quickly in objects over time. How to update attribute reducts efficiently becomes more

and more important. Although some approaches have been proposed, they are used for complete decision systems. There

are relatively few studies on incremental attribute reduction for incomplete decision systems. We introduce knowledge

granularity, that can be obtained by the tolerance classes, to measure the uncertainty in incomplete decision systems.

Furthermore, we propose incremental attribute reduction algorithms for incomplete decision systems when adding multiple

objects and when deleting multiple objects, respectively. Finally, experimental results show that the proposed incremental

approach is effective and efficient to update attribute reducts with the variation of objects in incomplete decision systems.
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1 Introduction

Rough set theory, proposed by Pawlak (1982), is a pow-

erful mathematical tool to deal with uncertainty, granu-

larity, and incompleteness of knowledge in information

systems. It has been applied successfully in many fields

including machine learning, intelligent data analysis,

decision making, knowledge engineering, disease diagno-

sis, and so on (Chen and Tanuwijaya 2011; Derrac et al.

2012; Chen and Chang 2011; Lin et al. 2011; Formica

2012; Wafo Soh et al. 2018; Min et al. 2011; Li et al.

2012, 2016; Wang et al. 2019a; Chen et al. 2013; Liu et al.

2018; D’Eer et al. 2016; Liao et al. 2018; Jothi and Hannah

2016; Zhan et al. 2017; Koley et al. 2016; Afridi et al.

2018; Xu et al. 2017). Since rough set theory can achieve a

subset of all attributes which preserves the discernible

ability of original features, using the data only with no

additional information, it has been widely applied in

attribute reduction (also called attribute selection or feature

selection) (Dai et al. 2017a; Raza and Qamar 2016;

Pacheco et al. 2017; Wang et al. 2016, 2018, 2019b;

Cheng et al. 2016; Min and Xu 2016; Raza and Qamar

2017; Li et al. 2017; Das et al. 2017; Tiwari et al. 2018;

Lin et al. 2018; Yao and Zhang 2017; Dai et al. 2018.

As we know, attribute reduction plays an important role

in data mining and knowledge discovery. Attribute reduc-

tion methods can be classified into non-incremental meth-

ods and incremental methods according to whether the

computation of attribute reduction is from scratch or not

when the data vary dynamically. Non-incremental attribute

reduction, also called classic attribute reduction or static

attribute reduction, has been fully studied and has yielded

many important results (Pawlak 1991; Qian and Liang

2008; Xu and Yu 2017; Dai and Tian 2013; Dai and Xu

2013; Liang et al. 2014; Raza and Qamar 2017; Yao and

Zhang 2017). In practice, real data may change dynami-

cally nowadays. Non-incremental methods are often

infeasible, since they need to compute repeatedly and

consume a large amount of computational time. Incre-

mental methods are considered as effective approaches to

deal with dynamic data, because they can directly update

the results using the previous results from the original

decision system. In dynamic data environments, data

changes take on three basic forms and the attribute
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reduction problem has three issues correspondingly: vari-

ation of object sets, variation of attribute sets, and variation

of attribute values (Xie and Qin 2018). Some achievements

have been made to solve these problems. For example, Jing

et al. (2016) considered the situation of variation of the

attribute sets in complete decision systems, and introduced

incremental mechanisms to calculate the new knowledge

granularity and presented the corresponding incremental

algorithms for attribute reduction based on the calculated

knowledge granularity when multiple attributes are added

to the decision system. Chen et al. (2016) presented an

incremental algorithm for attribute reduction with variable

precision rough sets for the same purpose, by introducing

two Boolean row vectors to characterize the discernibility

matrix and reduct and employing an incremental manner to

update minimal elements in the discernibility matrix at the

arrival of an incremental sample. Xie and Qin (2018)

considered the situation of variation of the attribute values,

introduced the concept of an inconsistency degree in an

incomplete decision system, and proposed a framework of

the incremental attribute reduction algorithm based on

three update strategies of inconsistency degree for dynamic

incomplete decision systems. Wei et al. (2018) proposed a

discernibility matrix based incremental attribute reduction

algorithm to incrementally acquire all reducts of dynamic

data and another incremental attribute reduction algorithm

of more efficiency.

The above methods are suitable only for complete

information systems or complete decision systems and

cannot be applied to incomplete situations. Thus, further

studies on uncertainty measures for incomplete decision

systems have been developed. Dai et al. (2013) proposed a

new form of conditional entropy and obtained some

important properties, which can be used as a reasonable

uncertainty measure for incomplete decision systems. Dai

et al. (2017b) investigated the uncertainty measures in

incomplete interval-valued information systems based on

an a-weak similarity relation and defined accuracy,

roughness, and approximation accuracy to evaluate the

uncertainty based on a rough set model constructed. Liu

et al. (2016) provided a novel three-way decision model

and corresponding algorithm based on incomplete infor-

mation system by defining a new relation to describe the

similarity degree of incomplete information and utilizing

interval number to acquire the loss function. Du and Hu

(2016) investigated an approach on the basis of the dis-

cernibility matrix and the discernibility function to com-

pute all the reducts in incomplete ordered information

systems by introducing the characteristic-based dominance

relation, and designed a heuristic algorithm with polyno-

mial time complexity for finding a unique reduct using the

inner and outer significance measures of each criterion

candidate.

Based on the aforementioned survey, we can see that the

methods mentioned above have not investigated the

incremental attribute reduction mechanism for information

decision systems of character as incomplete and dynamic

simultaneously. To our best knowledge, there are only a

few work on the incremental attribute reduction mecha-

nism for incomplete information decision systems. Shu and

Shen (2013) introduced a simpler way of computing tol-

erance classes than the classical method and presented an

incremental attribute reduction algorithm to compute an

attribute reduct for a dynamically increasing incomplete

decision system. Yang et al. (2017) presented an efficient

incremental algorithm including active sample selection

process and incremental attribute reduction process from

dynamic data sets with increasing samples. Shu and Shen

(2014b) proposed an positive region-based attribute

reduction algorithm to solve the attribute reduction prob-

lem efficiently in incomplete decision systems with

dynamically varying attribute sets. Shu and Shen (2014a)

employed an incremental manner to compute the new

positive region and developed two efficient incremental

feature selection algorithms, respectively, for single object

and multiple objects with varying feature values. From

above, it appears that some of them mainly focused on the

variation of attribute sets or attribute values, and others

only considered the case of increasing objects dynamically.

Thus, being inspired by Dai and Tian (2013), we introduce

the tolerance class to measure knowledge granularity for

the proposed incremental mechanism and develop two

incremental attribute reduction algorithms for incomplete

information decision systems in the cases of increasing and

decreasing objects respectively.

The remainder of this paper is organized as follows.

Section 2 reviews some basic concepts in rough set theory

and introduces a tolerance class based presentation of the

knowledge granularity. Incremental mechanisms to calcu-

late knowledge granularity, relative knowledge granularity,

and significance measurements of attributes for incomplete

decision systems when objects vary dynamically and their

corresponding attribute reduction algorithms are investi-

gated in Sect. 3. In Sect. 4, experiments and comparisons

are conducted. Section 5 concludes the whole paper.

2 Preliminary knowledge

In this section, we first review some basic concepts in

rough set theory, which can also be referred to Pawlak

(1991), Kryszkiewicz (1998), and Pawlak and Skowron

(2007). Furthermore, we recall the concepts of incomplete

information systems and decision systems. At last, the

tolerance relation is reviewed.
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2.1 Basic concepts in rough set theory

An information system is a quadruple IIS ¼ U;A;V; fh i,
where U denotes a non-empty finite set of objects, which is

called the universe; A denotes a non-empty finite set of

conditional attributes; Vis the union of attribute domains,

V ¼
S

a2A Va, where Va is the value set of attribute a,

called the domain of a; f : U � A ! V is an information

function which assigns particular values from domains of

attribute to objects such as a 2 A; x 2 U; f ða; xÞ 2 Va,

where f(a, x) denotes the value of attribute a for object x.

Each attribute subset B � A determines a binary indis-

cernible relation as follows:

INDðBÞ ¼ ui; uj
� �

2 U2j8a 2 B; a uið Þ ¼ a uj
� �� �

: ð1Þ

By the relation INDðBÞ, we obtain the partition of U

denoted by U=INDðBÞ or U / B. For B � A and X � U, the

lower approximation and the upper approximation of X can

be defined as follows:

BX ¼ ui 2 Uj ui½ � � Xf g
BX ¼ ui 2 Uj ui½ � \ X 6¼ ;f g;

where BX is a set of objects that belong to X with certainty,

while BX is a set of objects that possibly belong to X. If

BX ¼ BX, X is named B-definable. Otherwise, X is named

B-rough. Based on BX and BX, the B-positive region, B-

negative region, and B-borderline region of X are defined,

respectively, as follows:

POSBðXÞ ¼ BX

NEGBðXÞ ¼ U � BX

BNB ¼ BX � BX:

2.2 Incomplete decision systems and tolerance
relation

An information system is a quadruple IS ¼ U;A;V; fh i. If
there exists x 2 U and a 2 A, such that f(a, x) is equal to a

missing value(a null or unknown value, denoted as ‘‘*’’),

i.e., � 2 Va, then the information system is called an

incomplete information system (IIS). Thus, the IIS can be

denoted as: IIS ¼ U;A;V ; fh i, where � 2 VA.

A decision system is a quadruple

IDS ¼ U;C [ D;V; fh i, where D is the decision attribute

set, C is the conditional attribute set, and C \ D ¼ ;; V is

the union of attribute domain, i.e., V ¼ VC [ VD. In gen-

eral, we assume that D ¼ fdg. If there exists an

a 2 A; x 2 U, such that f a; xð Þ is equal to a missing value,

then the decision system is called an incomplete decision

system (IDS). Thus, the IDS can be denoted as:

IDS ¼ U;C [ D;V; fh i, where � 2 VC; � 62 VD.

Definition 1 Given an incomplete decision system IDS =

U;C [ D;V ; fh i, for any subset of attributes B � C, let

T(B) denote the binary tolerance relation between objects

that are possibly indiscernible in terms of values of attri-

butes in B. T(B) is defined as

TðBÞ ¼ fðx; yÞj8a 2 B; f ða; xÞ ¼ f ða; yÞg
_ f ða; xÞ ¼ � _ f ða; yÞ ¼ �g;

ð2Þ

where T(B) is reflexive and symmetric, but not necessarily

transitive.

Definition 2 Given an incomplete decision system IDS =

U;C [ D;V ; fh i, x 2 UandB � C, the tolerance class of the

object x with respect to attribute set B is defined by

TBðxÞ ¼ yj x; yð Þ 2 TðBÞf g ð3Þ

2.3 Knowledge granulation in incomplete decision
systems

Definition 3 (Dai and Tian 2013) Given an incomplete

decision system IDS ¼ U;C [ D;V; fh i, TCðxÞ is the tol-

erance class of object x with respect to attribute set C.

Based on the tolerance class, the knowledge granularity of

C on U is defined as follows:

GKUðCÞ ¼
1

jUj2
XjUj

i¼1

jTCðuiÞj; ð4Þ

where |U| stands for the number of objects in U.

Example 1 Example for computing of the knowledge

granularity.

Table 1 shows an incomplete decision system

IDS ¼ U;C [ D;V; fh i, where U ¼ fu1; u2; u3; u4; u5; u6;
u7; u8; u9g, C ¼ fa1; a2; a3; a4; a5g and D ¼ f0; 1g.
According to Definition 2, we have TCðu1Þ ¼ fu1; u6g,
TCðu2Þ ¼ fu2; u4; u8g, TCðu3Þ ¼ fu3; u5g, TCðu4Þ ¼ fu2;
u4; u8g, TCðu5Þ ¼ fu3; u5g, TCðu6Þ ¼ fu1; u6; u7g, TCðu7Þ
¼ fu6; u7g, TCðu8Þ ¼ fu2; u4; u8; u9g, and TCðu9Þ ¼
fu8; u9g. According to Definition 3, we have

Table 1 Incomplete decision

system 1
U a1 a2 a3 a4 a5 d

u1 1 * 0 0 1 0

u2 0 0 1 * 1 0

u3 0 1 * 1 0 1

u4 * 0 1 0 1 0

u5 0 1 1 1 0 1

u6 1 0 0 0 * 1

u7 1 0 0 * 0 1

u8 0 * 1 0 1 0

u9 * 1 1 0 1 1
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GKUðCÞ ¼
1

92
ð2þ 3þ 2þ 3þ 2þ 3þ 2þ 4þ 2Þ ¼ 23

81
:

Similarly, we can get GKUðC [ DÞ ¼ 19
81
.

Proposition 1 Given an incomplete decision system

IDS ¼ U;C [ D;V; fh i, P;Q � C. IF P � Q, then

GKUðPÞ�GKUðQÞ.

Proof According to Definition 2, we have 8ui 2 U,

TPðuiÞ 	 TQðuiÞ. Then, we get jTPðuiÞj � jTQðuiÞj.
Since GKUðPÞ ¼ 1

jUj2
PjUj

i¼1jTPðuiÞj and GKUðQÞ ¼
1

jUj2
PjUj

i¼1jTQðuiÞj, we have 1

jUj2
PjUj

i¼1jTPðuiÞj� 1

jUj2
PjUj

i¼1

jTQðuiÞj.
It is obvious that GKUðPÞ�GKUðQÞ. h

Let IDS ¼ U;C [ D;V; fh i be an incomplete system,

P;Q � C. If P � Q, we can see that GKUðPÞ�GKUðQÞ. In
other word, the knowledge granularity of attribute set

declines with the increase of number of attributes. Thus,

the measure of knowledge granularity has the monotonicity

with respect to attributes and is reasonable to be used as a

uncertainty measure in rough set theory.

Definition 4 Given an incomplete decision system IDS =

U;C [ D;V ; fh i, T(C) and TðC [ DÞ are the tolerance

relation for attribute set C and C [ D, respectively. The

knowledge granularity of C relative to D on U is defined as

follows:

GKUðDjCÞ ¼ GKUðCÞ � GKUðC [ DÞ

¼ 1

jUj2
XjUj

i¼1

ðjTCðuiÞj � jTC[DðuiÞjÞ:
ð5Þ

Definition 5 Given an incomplete decision system IDS =

U;C [ D;V ; fh i, TC, TC�fag, TC[D, and TðC�fagÞ[D are the

tolerance relation for C, C � fag, C [ D, and

ðC � fagÞ [ D, respectively. The significance measure

(inner significance) of a in C on U is defined as follows:

SiginnerU ða;C;DÞ ¼ 1

jUj2
XjUj

i¼1

½ðjTC�fagðuiÞj

� jTðC�fagÞ[DðuiÞjÞ � ðjTCðuiÞj
�jTC[DðuiÞjÞ�;

ð6Þ

where a denotes any one attribute in C and the following

are the same.

Definition 6 Given an incomplete decision system

IDS ¼ U;C [ D;V; fh i, the core of IDS is defined as

follows:

CoreC ¼ fa 2 CjSiginnerU ða;C;DÞ[ 0g: ð7Þ

If 8a 2 C; SiginnerU ða;C;DÞ ¼ 0, then CoreC ¼ ;.

Example 2 (Continued from Example 1) According to

Definitions 3, 4, and 5, we have

SiginnerU ða1;C;DÞ ¼
1

81
½ð23� 19Þ � ð23� 19Þ� ¼ 0

SiginnerU ða2;C;DÞ ¼
1

81
½ð27� 19Þ � ð23� 19Þ� ¼ 4

81

SiginnerU ða3;C;DÞ ¼
1

81
½ð29� 21Þ � ð23� 19Þ� ¼ 4

81

SiginnerU ða4;C;DÞ ¼
1

81
½ð23� 19Þ � ð23� 19Þ� ¼ 0

SiginnerU ða5;C;DÞ ¼
1

81
½ð25� 19Þ � ð23� 19Þ� ¼ 2

81

Then, we have CoreC ¼ fa2; a3; a5g:

Definition 7 Given an incomplete decision system IDS =

U;C [ D;V ; fh i and B � C, TB, TB[D, TB[fag and

TðB[fagÞ[D are the tolerance relation for B, B [ D, B [ fag
and ðB [ fagÞ [ D, respectively. Then, 8a 2 ðC � BÞ, the
significance measure (outer significance) of a in B on U is

defined as follows:

SigouterU ða;B;DÞ ¼ 1

jUj2
XjUj

i¼1

½ðjTBðuiÞj � jTB[DðuiÞjÞ

� ðjTB[fagðuiÞj � jTðB[fagÞ[DðuiÞjÞ�:
ð8Þ

Definition 8 Given an incomplete decision system IDS =

U;C [ D;V ; fh i and B � C, then B is a relative reduct

based on the knowledge granularity of IDS if

(1) GKUðDjBÞ ¼ GKUðDjCÞ.
(2) 8a 2 B;GKUðDjðB� fagÞÞ 6¼ GKUðDjBÞ.

3 Incremental attribute reduction
algorithms for incomplete decision
systems when objects vary dynamically

After having investigated an incremental mechanism to

compute knowledge granularity for incomplete decision

systems to which multiple objects are added one by one,

this section introduces an incremental attribute reduction

algorithm for the addition of multiple objects based on

knowledge granularity.

3.1 An incremental mechanism to calculate
knowledge granularity for IDS when adding
an object

This section investigates changes of tolerance class, rela-

tive knowledge granularity, inner significance, and outer

significance, and then introduces the incremental

548 Granular Computing (2020) 5:545–559
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mechanism for calculating knowledge granularity when an

object is added to an incomplete decision system.

Proposition 2 Given an incomplete decision system

IDS ¼ U;C [ D;V; fh i, where U ¼ fu1; u2; . . .; ung de-

notes a non-empty finite set containing n objects. uðnþ1Þ is

the incremental object that will be added to IDS, and T 0
C is

the tolerance relation on Uþ ¼ ðU [ fuðnþ1ÞgÞ. The

knowledge granularity of C on Uþ is

GKUþðCÞ ¼ 1

ðnþ 1Þ2
ðn2GKUðCÞ þ 2jT 0

Cðuðnþ1ÞÞj � 1Þ;

ð9Þ

where T 0
Cðuðnþ1ÞÞ ¼ ujj uðnþ1Þ; uj

� �
2 T 0

C; 1
 j
 nþ 1
� �

:

Proof After uðnþ1Þ is adding toU, the tolerance class of ui is

T 0
CðuiÞ ¼

TCðuiÞ
S
fuðnþ1Þg; ðui; uðnþ1ÞÞ 2 T 0

C

TCðuiÞ; ðui; uðnþ1ÞÞ 62 T 0
C

(

; 1
 i
 n

Suppose

DjTCðuiÞj ¼
1; ðui; uðnþ1ÞÞ 2 T 0

C

0; ðui; uðnþ1ÞÞ 62 T 0
C

(

; 1
 i
 n

then

jT 0
CðuiÞj ¼ jTCðuiÞj þ DjTCðuiÞj; 1
 i
 n:

Because tolerance relation is symmetric, if

ðui; uðnþ1ÞÞ 2 T 0
C, then ðuðnþ1Þ; uiÞ 2 T 0

C; 1
 i
 n. In other

words, if ui 2 T 0
Cðuðnþ1ÞÞ, then uðnþ1Þ 2 T 0

CðuiÞ; 1
 i
 n.

Obviously, the number of objects that has tolerance relation

with uðnþ1Þ is equal to those whose tolerance class contains

uðnþ1Þ except uðnþ1Þ itself after uðnþ1Þ is added to IDS. Then,

we can get

XjUj

i¼1

DjTCðuiÞj ¼ jT 0
Cðuðnþ1ÞÞj � 1:

According to Definition 3, the knowledge granularity of C

on Uþ is described as follows:

GKUþðCÞ

¼ 1

jUþj2
XjU

þj

i¼1

jT 0
CðuiÞj

¼ 1

ðnþ 1Þ2
XjUj

i¼1

jT 0
CðuiÞj þ jT 0

Cðuðnþ1ÞÞj
 !

¼ 1

ðnþ 1Þ2
XjUj

i¼1

jTCðuiÞj þ
XjUj

i¼1

DjTCðuiÞj þ jT 0
Cðuðnþ1ÞÞj

 !

¼ 1

ðnþ 1Þ2
ðn2GKUðCÞ þ 2jT 0

Cðuðnþ1ÞÞj � 1Þ:

h

Proposition 3 Given an incomplete decision system

IDS ¼ U;C [ D;V; fh i. uðnþ1Þ is the incremental object.

T 0
Cðuðnþ1ÞÞ and T 0

C[Dðuðnþ1ÞÞ are the tolerance classes of

uðnþ1Þ with respect to attribute set C and C [ D on Uþ,

respectively. The knowledge granularity of C relative to D

on Uþ is

GKUþðDjCÞ ¼ 1

ðnþ 1Þ2
ðn2GKUðDjCÞ þ 2ðjT 0

Cðuðnþ1ÞÞj

� jT 0
C[Dðuðnþ1ÞÞjÞÞ;

ð10Þ

where |.| denotes the cardinality of a set.

Proof According to Definition 4 and Proposition 2, we

have

GKUþðDjCÞ
¼ GKUþðCÞ � GKUþðC [ DÞ

¼ 1

ðnþ 1Þ2
ðn2GKUðCÞ þ 2jT 0

Cðuðnþ1ÞÞj � 1Þ

� 1

ðnþ 1Þ2
ðn2GKUðC [ DÞ þ 2jT 0

C[Dðuðnþ1ÞÞj � 1Þ

¼ 1

ðnþ 1Þ2
ðn2ðGKUðCÞ � GKUðC [ DÞÞ

þ 2jT 0
Cðuðnþ1ÞÞj � 2jT 0

C[Dðuðnþ1ÞÞjÞ

¼ 1

ðnþ 1Þ2
ðn2GKUðDjCÞ þ 2ðjT 0

Cðuðnþ1ÞÞj � jT 0
C[Dðuðnþ1ÞÞjÞÞ:

h

Proposition 4 Given an incomplete decision system

IDS ¼ U;C [ D;V; fh i, uðnþ1Þ is the incremental object.

T 0
C�fagðuðnþ1ÞÞ, T 0

ðC�fagÞ[Dðuðnþ1ÞÞ, T 0
Cðuðnþ1ÞÞ and

T 0
C[Dðuðnþ1ÞÞ are the tolerance classes of uðnþ1Þ with

respect to attribute set C � fag, ðC � fagÞ [ D, C and C [
D on Uþ, respectively. Then 8a 2 C, the inner significance

of a in C on Uþ is

SiginnerUþ ða;C;DÞ ¼ 1

ðnþ 1Þ2
ðn2SiginnerU ða;C;DÞ

þ 2ðjT 0
C�fagðuðnþ1ÞÞj � jT 0

Cðuðnþ1ÞÞj
þ jT 0

C[Dðuðnþ1ÞÞj � jT 0
ðC�fagÞ[Dðuðnþ1ÞÞjÞÞ

ð11Þ

Proof According to Definition 5 and Proposition 3, we

can get
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SiginnerUþ ða;C;DÞ
¼ GKUþðDjC � fagÞ � GKUþðDjCÞ

¼ 1

ðnþ 1Þ2
ðn2GKUðDjC � fagÞ þ 2ðjT 0

C�fagðuðnþ1ÞÞj

� jT 0
ðC�fagÞ[Dðuðnþ1ÞÞjÞÞ �

1

ðnþ 1Þ2
ðn2GKUðDjCÞ

þ 2ðjT 0
Cðuðnþ1ÞÞj � jT 0

C[Dðuðnþ1ÞÞjÞÞ

¼ 1

ðnþ 1Þ2
ðn2ðGKUðDjC � fagÞ � GKUðDjCÞÞ

þ 2ðjT 0
C�fagðuðnþ1ÞÞj � jT 0

Cðuðnþ1ÞÞj
þ jT 0

C[Dðuðnþ1ÞÞj � jT 0
ðC�fagÞ[Dðuðnþ1ÞÞjÞÞ

¼ 1

ðnþ 1Þ2
ðn2SiginnerU ða;C;DÞ þ 2ðjT 0

C�fagðuðnþ1ÞÞj

� jT 0
Cðuðnþ1ÞÞj þ jT 0

C[Dðuðnþ1ÞÞj � jT 0
ðC�fagÞ[Dðuðnþ1ÞÞjÞÞ

h

Proposition 5 Given an incomplete decision system

IDS ¼ U;C [ D;V; fh i, uðnþ1Þ is the incremental object.

jT 0
Bðuðnþ1ÞÞ, T 0

B[Dðuðnþ1ÞÞ, T 0
B[fagðuðnþ1ÞÞ and

T 0
B[fag[Dðuðnþ1ÞÞ are the tolerance classes of uðnþ1Þ with

respect to attribute set B, B [ D, B [ fag and B [ fag [ D

on Uþ, respectively. Then 8a 2 ðC � BÞ, the outer signif-

icance of a in B on Uþ is

SigouterUþ ða;B;DÞ ¼ 1

ðnþ 1Þ2
ðn2SigouterU ða;B;DÞ

þ 2ðjT 0
Bðuðnþ1ÞÞj � jT 0

B[Dðuðnþ1ÞÞj
� jT 0

B[fagðuðnþ1ÞÞj þ jT 0
B[fag[Dðuðnþ1ÞÞjÞÞ

ð12Þ

Proof According to Definition 7 and Proposition 3, we

can get

SigouterUþ ða;B;DÞ
¼ GKUþðDjBÞ � GKUþðDjðB [ fagÞÞ

¼ 1

ðnþ 1Þ2
ðn2GKUðDjBÞ þ 2ðjT 0

Bðuðnþ1ÞÞj

� jT 0
B[Dðuðnþ1ÞÞjÞÞ �

1

ðnþ 1Þ2
ðn2GKUðDjB [ fagÞ

þ 2ðjT 0
B[fagðuðnþ1ÞÞj � jT 0

B[fag[Dðuðnþ1ÞÞjÞÞ

¼ 1

ðnþ 1Þ2
ðn2ðGKUðDjBÞ � GKUðDjB [ fagÞÞ

þ 2ðjT 0
Bðuðnþ1ÞÞj � jT 0

B[Dðuðnþ1ÞÞj
� jT 0

B[fagðuðnþ1ÞÞj þ jT 0
B[fag[Dðuðnþ1ÞÞjÞÞ

¼ 1

ðnþ 1Þ2
ðn2SigouterU ða;B;DÞ þ 2ðjT 0

Bðuðnþ1ÞÞj

� jT 0
B[Dðuðnþ1ÞÞj � jT 0

B[fagðuðnþ1ÞÞj
þ jT 0

B[fag[Dðuðnþ1ÞÞjÞÞ

h

3.2 An incremental reduction algorithm for IDS
when adding one object

First, a traditional heuristic attribute reduction algorithm

for decision systems is introduced in Algorithm 1 (Pawlak

1991; Wang et al. 2013; Liang et al. 2014). Based on the

incremental mechanism of knowledge granularity above,

this subsection introduces an incremental attribute reduc-

tion algorithm (see Algorithm 2) under knowledge granu-

larity when adding an object to the decision system. At last,

a brief comparison of time complexity between incre-

mental reduction algorithm and traditional heuristic

reduction algorithm is given.

The detailed execution process of Algorithm 1 is as

follows. In Step 1, an empty set is assigned to REDU .

Steps 2–7 are actually used to get the core of the

incomplete decision system according to Definition 6,

which constitute a loop with |C| times. |C| denotes the

number of all conditional attributes in the incomplete

decision system. According to Definition 5, the inner

significance of an certain aj 2 C, that is SiginnerU ðaj;C;DÞ,
is calculated in Step 3. In Step 4, SiginnerU ðaj;C;DÞ is

compared with zero if SiginnerU ðaj;C;DÞ[ 0, then aj is

added to REDU , which denotes aj is indispensable and

should be added to the core of the incomplete decision

system. In Step 8, REDU is assigned to B. Steps 9–15 are

actually used to find an attribute set that satisfies the first

condition in Definition 8 and a loop stoping until

GPUðDjBÞ is equal to GPUðDjCÞ. Steps 10–12 constitute

a loop used to calculate the outer significance of an cer-

tain ðaiÞ 2 ðC � BÞ, that is SigouterU ðai;B;DÞ according to

Definition 7. In Step 13, a0 is used to store the attribute

that has the maximum value of outer significance. In Step

14, a0 is added to B. Steps 16–20 are actually used to

delete attributes that satisfy the second condition in

Definition 8 and a loop with |B| times. In Step 17,

GPUðDjðB� fagÞÞ is compared with GPUðDjCÞ if they

are equal, then ai is deleted from B, which indicates that

ai is redundant and cannot be in the reduct of the

incomplete decision system. In Step 21, B is assigned to

REDU . In Step 22, REDU is returned as the result of

Algorithm 1.
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Algorithm 1 Traditional Heuristic attribute reduction
Algorithm based on knowledge granularity for decision
systems(THA)
Input: A decision system IDS = U, C ∪ D, V, f
Output: A reduct REDU on U
1: REDU ← ∅;
2: for 1 ≤ j ≤ |C| do
3: Calculate Siginner

U (aj , C, D);
4: if Siginner

U (aj , C, D) > 0 then
5: REDU ← (REDU ∪ {aj});
6: end if
7: end for
8: B ← REDU ;
9: while GPU (D|B) = GPU (D|C) do
10: for each (ai) ∈ (C − B) do
11: Compute Sigouter

U (ai, B, D);
12: end for
13: a0 = max{Sigouter

U (ai, B, D), ai ∈ (C − B)};
14: B ← (B ∪ {a0});
15: end while
16: for each(ai) ∈ B do
17: if GPU (D|(B − {a})) = GPU (D|C) then
18: B ← (B − {ai});
19: end if
20: end for
21: REDU ← B;
22: return REDU ;

The time complexity of Algorithm 1 is OðjUj2jCj2Þ.
According to Definition 2, we first compute

TCðuiÞ; 1
 i
 n with a time complexity being O(|U||C|).

Then, we can get GKUðCÞ with a time complexity being

OðjUj2jCjÞ. Thus, according to Definition 5, the time of

calculating SiginnerU ðaj;C;DÞ is Oð4jUj2jCjÞ � OðjUj2jCjÞ.
Therefore, the time complexity of Steps 2–7 is

OðjUj2jCj2Þ. Similarly, the time complexity of Steps 9–15

is OðjUj2jCj2Þ, and the time complexity of Steps 16–20 is

also OðjUj2jCj2Þ. Hence, the time complexity of Algorithm

1 is OðjUj2jCj2Þ based on the foregoing analysis.

In Algorithm 2, Uþ denotes the new decision system

after adding the incremental object uðnþ1Þ to the original

decision system U. The detailed execution process of

Algorithm 2 is as follows. In Step 1, the reduct REDU on U

is assigned to B. In Step 2, four tolerance classes of the

incremental object uðnþ1Þ in Uþ, which are T 0
Cðuðnþ1ÞÞ,

T 0
C[Dðuðnþ1ÞÞ, T 0

Bðuðnþ1ÞÞ and T 0
B[Dðuðnþ1ÞÞ, are calculated

respectively according to Definition 2. In Step 3, the

knowledge granularity of B relative to D on

Uþ(GKUþðDjBÞ) and the knowledge granularity of C rel-

ative to D on Uþ(GKUþðDjCÞ) are calculated, respectively,
according to Proposition 3. In Step 4, GKUþðDjBÞ is

compared with GKUþðDjCÞ if they are equal, then algo-

rithm flow skips to step 19, which indicates that the reducts

of Uþ and U are identical. Otherwise, the loop consisting

of Steps 7–13 executes. Steps 8-10 constitute a loop used to

calculate the outer significance of an certain

ðaiÞ 2 ðC � BÞ, that is, SigouterUþ ðai;B;DÞ, according to

Proposition 5. In Step 11, a0 is used to store the attribute

that has the maximum value of outer significance. In Step

12, a0 is added to B. Steps 14–18 are actually used to delete

attributes that satisfy the second condition in Definition 8

and a loop with |B| times. In Step 15, GKUþðDjðB� fagÞÞ
is compared with GKUþðDjCÞ if they are equal, then ai is

deleted from B, which indicates that ai is redundant and

cannot be in the reduct of Uþ. In Step 19, B is assigned to

REDUþ . In Step 20, REDUþ is returned as the result of

Algorithm 2.

Algorithm 2 An Knowledge Granularity based In-
cremental Reduction algorithm when Adding an ob-
ject(KGIRA)
Input: An incomplete decision system IDS =

U, C ∪ D, V, f , the reduct REDU on U , the in-
cremental object un+1.

Output: A new reduct REDU+ on (U+) after adding un+1
to IDS

1: B ← REDU ;
2: Compute TC(u(n+1)), TC∪D(u(n+1)), TB(u(n+1)),

TB∪D(u(n+1));
3: Compute GKU+(D|B) and GKU+(D|C)(according to

Proposition 3);
4: if GKU+(D|B) = GKU+(D|C) then
5: go to 19;
6: end if
7: while GKU+(D|B) = GKU+(D|C) do
8: for each (ai) ∈ (C − B) do
9: Compute Sigouter

U+ (ai, B, D)(according to Propo-
sition 5);

10:
11:

end for
a0 = max{Sigouter

U+ (ai, B, D), ai ∈ (C −B)};
B ← (B ∪ {a0});

13: end while
14: for each (ai) ∈ B do
15:
16:

if GKU+(D|(B − {a})) = GKU+(D|C) then
B ← (B − {ai});

17: end if
18: end for
19: REDU+ ← B;
20: return REDU+ ;

12:

The time complexity of Algorithm 2 is OðjUjjCj2Þ.
According to Definition 2, the time complexity of com-

puting T 0
Cðuðnþ1ÞÞ is O(|U||C|). Then, according to Propo-

sition 3, the time complexity of Steps 2–3 is OðjUjjCjþ
jUjðjCj þ 1Þ þ jUjjBj þ jUjðjBj þ 1ÞÞ � OðjUjjCjÞ:
According to Proposition 4, the time complexity of Steps

7–13 is OðjUjjCj2Þ. Similarly, the time complexity of Steps

14–18 is OðjUjjCj2Þ. Hence, the time complexity of

Algorithm 2 is OðjUjjCj þ jUjjCj2Þ þ jUjjCj2Þ �
OðjUjjCj2Þ based on the foregoing analysis.

Since the number of objects is jUj þ 1, the time com-

plexity of THA is actually OðjCj2ðjUj þ 1Þ2Þ when adding
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the object unþ1 to the object set U. Because

jUjjCj2 
ðjUj þ 1Þ2jCj2, OðjUjjCj2Þ is much lower than

OððjUj þ 1Þ2jCj2Þ. Hence, KGIRA spends much less time

than THA.

3.3 An incremental mechanism to calculate
knowledge granularity for IDS when deleting
one object

For the sake of convenience, given an incomplete decision

system IDS ¼ U;C [ D;V ; fh i. U ¼ fu1; u2; . . .; ung
denotes the original object set and un denotes the object to

be deleted from U. For simplicity, U� ¼ U � fung ¼
fu1; u2; . . .; un�1g is written as U� in the following.

Proposition 6 Given an incomplete decision system

IDS ¼ U;C [ D;V; fh i, where U ¼ fu1; u2; . . .; ung de-

notes a non-empty finite set containing n objects. un is the

object that will be deleted from IDS, and TC is the toler-

ance relation on U. The knowledge granularity of C on U�

is

GKU�ðCÞ ¼ 1

ðn� 1Þ2
½n2GKUðCÞ � ð2jTCðunÞj � 1Þ�

ð13Þ

Proof After un is deleting to U, the tolerance class of ui is

T 00
CðuiÞ ¼

TCðuiÞ � fung; ðui; unÞ 2 TC

TCðuiÞ; ðui; unÞ 62 TC

�

1
 i
 n� 1:

Suppose

DjTCðuiÞj ¼
1; ðui; unÞ 2 TC

0; ðui; unÞ 62 TC

�

1
 i
 n� 1;

then jT 00
CðuiÞj ¼ jTCðuiÞj � DjTCðuiÞj; 1
 i
 n� 1. Because

tolerance relation is symmetric, if ðui; unÞ 2 TC, then

ðun; uiÞ 2 TC; 1
 i
 n� 1. In other words, if ui 2 TCðunÞ,
then un 2 TCðuiÞ; 1
 i
 n� 1. Obviously, the number of

objects that has tolerance relation with un is equal to those

whose tolerance class contains un except un itself onU. Then,

we can get

Xn�1

i¼1

DjTCðuiÞj ¼ jTCðunÞj � 1:

According to Definition 3, the knowledge granularity of C

on U� is described as follows:

GKU�ðCÞ

¼ 1

jU�j2
XjU

�j

i¼1

jT 00
CðuiÞj

¼ 1

ðn� 1Þ2
Xn

i¼1

jTCðuiÞj �
Xn�1

i¼1

DjTCðuiÞj � jTCðunÞj
 !

¼ 1

ðn� 1Þ2
Xn

i¼1

jTCðuiÞj � ðjTCðunÞj � 1Þ � jTCðunÞj
" #

¼ 1

ðn� 1Þ2
½n2GKUðCÞ � ð2jTCðunÞj � 1Þ�:

h

Proposition 7 Given an incomplete decision system

IDS ¼ U;C [ D;V; fh i, un is the deleting object. TCðunÞ
and TC[DðunÞ are the tolerance classes of un with respect to
attribute set C and C [ D on U, respectively. The knowl-

edge granularity of C relative to D on U� is

GKU�ðDjCÞ ¼ 1

ðn� 1Þ2
½n2GKUðDjCÞ

� 2ðjTCðunÞj � jTC[DðunÞjÞ�:
ð14Þ

Proof According to Definition 4 and Proposition 6, we

have

GKU�ðDjCÞ
¼ GKU�ðCÞ � GKU�ðC [ DÞ

¼ 1

ðn� 1Þ2
½n2GKUðCÞ � ð2jTCðunÞj � 1Þ�

� 1

ðn� 1Þ2
½n2GKUðC [ DÞ � ð2jTC[DðunÞj � 1Þ�

¼ 1

ðn� 1Þ2
½n2ðGKUðCÞ � GKUðC [ DÞÞ � 2ðjTCðunÞj

� jTC[DðunÞjÞ�

¼ 1

ðn� 1Þ2
½n2GKUðDjCÞ � 2ðjTCðunÞj � jTC[DðunÞjÞ�

h

3.4 An incremental reduction algorithm for IDS
when deleting an object

Based on the incremental mechanism of knowledge gran-

ularity above, this subsection introduces an incremental

attribute reduction algorithm (see Algorithm 3) when

deleting multiple objects from the decision system.

552 Granular Computing (2020) 5:545–559

123



Algorithm 3 An Knowledge Granularity based In-
cremental Reduction algorithm when Deleting an ob-
ject(KGIRD)
Input: An incomplete decision system IDS =

U, C ∪ D, V, f , the reduct REDU on U .
Output: A new reduct REDU− on (U−) after deleting un

from IDS.
1: B ← REDU ;
2: Compute GPU−(D|C)(according to Proposition 7);
3: for each(ai) ∈ B do
4: if GPU− (D|(B − {ai})) = GPU−(D|C) then
5: B ← (B − {ai});
6: end if
7: end for
8: REDU− ← B;
9: return REDU− ;

In Algorithm 3, U� denotes the new decision system

after deleting an object from the original decision system

U. The detailed execution process of Algorithm 3 is as

follows. In Step 1, the reduct REDU on U is assigned to B.

In Step 2, the knowledge granularity of C relative to D on

U�ðGPU�ðDjCÞÞ is calculated according to Proposition 7.

Steps 3–7 are actually used to delete attributes that satisfies

the second condition in Definition 8 and a loop with |B|

times. In Step 4, GPU�ðDjðB� faigÞÞ is compared with

GPU�ðDjCÞ if they are equal, then ai is deleted from B,

which indicates that ai is redundant and cannot be in the

reduct of U�. In Step 8, B is assigned to REDU� . In Step 9,

REDU� is returned as the result of Algorithm 3.

The time complexity of Algorithm 3 is OðjCj2ðn� 1ÞÞ.
According to Definition 2 and Proposition 7, the time

complexity of Step 2 is OððjCj þ 1ÞðjUj � 1ÞÞ. Then,

similarly, the time complexity of Steps 3–9 is

OðjCj2ðjUj � 1ÞÞ. Hence, the time complexity of Algo-

rithm 3 is OððjCj þ 1ÞðjUj � 1Þ þ jCj2ðjUj � 1ÞÞ �
OðjCj2ðjUj � 1ÞÞ based on the foregoing analysis.

Since the number of objects is jUj � 1, the time com-

plexity of THA is actually OðjCj2ðjUj � 1Þ2Þ when delet-

ing the object un from the object set U. Because

jCj2ðjUj � 1Þ
 jCj2ðjUj � 1Þ2, OðjCj2ðjUj � 1ÞÞ is lower

than OðjCj2ðjUj � 1Þ2Þ. Hence, KGIRD spends much less

time than THA.

4 Empirical experiments

4.1 A description of data sets and experimental
environment

In this section, the proposed incremental attribute reduction

approach is tested on several real-life data sets available

from the University of California Irvine (UCI) Repository

of Machine Learning Database (Dua and Taniskidou 2017).

The characteristics of the data sets are summarized in

Table 2. For a complete data set, 5% of the attribute values

randomly selected from the data set are converted into

missing values, which makes them into incomplete deci-

sion systems. The proposed algorithms are coded in Eclipse

IDE for Java Developers with Neon.3 Release (4.6.3)

version using JDK 1:8:0 111 version and they have been

carried out on a personal computer with the following

specification: Intel Core i5-3570 3.4 GHz CPU, 4.0 GB of

memory, and 64-bit Win7.

4.2 Performance comparison between algorithm
KGIRA and algorithm THA

In the experiments, each original data set is divided into ten

parts averagely according to the number of objects. 20% of

each data set is used for basic data set and 80% remaining

objects is used for incremental data set added one by one in

Table 2 Description of data sets
Data sets Data type Row Attribute Class

1 Lung cancer (LC) Incomplete 32 56 3

2 Wine (WI) Complete 178 13 3

3 Lymphography (LY) Complete 148 18 4

4 Breast Cancer Wisconsin (BC) Incomplete 699 9 2

5 Ionosphere (IO) Complete 351 34 2

6 Dermatology (DE) Complete 366 33 6

7 Anneal (AN) Incomplete 798 38 6

8 LSVT voice (LV) Complete 126 310 2

9 Image segmentation (I-S) Incomplete 2310 19 7

10 Musk1 (MU) Complete 476 166 2

11 Mice protein (MP) Incomplete 1080 80 8

12 Splice-junction gene (SP) Complete 3190 60 3

13 Multiple features (MF) Complete 2000 216 10
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subsequent steps. Objects in incremental data set are added

to basic data set one by one. Once the number of objects

added reaches 10% of the original data set, the time spent is

recorded, until all objects in incremental data set are added

to basic data set. In each subfigure of Fig.1, the x-axis is the

percent of objects that exist in basic data set and the y-axis

is the value of computational time. Circle marked lines are
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Fig. 1 Results of execution for KGIRA and THA on data sets from UCI
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computational time of algorithm THA and asterisk marked

lines are computational time of algorithm KGIRA.

From Fig.1, for each data set, the computational time of

algorithm KGIRA and algorithm THA increase when the

number of objects added to decision system increases. The

computational time of algorithm KGIRA is much smaller

than that of the algorithm THA. Moreover, the computa-

tional time of algorithm KGIRA on the last two data sets,

SP and MF, is 174.954 s and 57.221 s, respectively. The

computational time of algorithm THA on the same two

data sets are both more than 8 h. Therefore, the comparison

of the computational time of algorithm KGIRA and algo-

rithm THA on data sets SP and MF is not shown in the

graph.

In Table 3, we can find that some reducts obtained by

algorithm KGIRA are not the same as those obtained by

algorithm THA. Moreover, the number of selected attibutes

in reduct, also called the length of reduct (LR), which

obtained by algorithm KGIRA is a little more than that

obtained by algorithm THA on most of data sets. It is

because that algorithm KGIRA gets the reduct based on the

previous result.

In Table 4, the precision of classification is calculated on

selecting the reducts obtained by the algorithms THA and

KGIRA. The classification accuracy is calculated by Naive

Bayes Classifier (NB) and Decision Tree algorithm

(REPTree) with fivefold cross validation. From Table 4, it

is clear that the average classification accuracy of the

Table 3 Comparison of reducts between algorithm THA and algorithm KGIRA

Data sets KGIRA (Alg. 2) THA (Alg. 1)

LR Reduct LR Reduct

1 LC 6 2, 1, 5, 4, 3, 7 4 5, 2, 11, 14

2 WI 5 1, 3, 0, 2, 6 5 10, 5, 0, 4, 1

3 LY 8 17, 13, 12, 14, 0, 1, 7, 5 7 13, 17, 12, 1, 14, 15, 0

4 BC 5 5, 0, 2, 3, 1 5 5, 1, 0, 3, 2

5 IO 10 21, 18, 6, 7, 16, 19, 5, 2, 11, 13 8 32, 23, 4, 33, 18, 17, 6, 13

6 DE 13 15, 3, 18, 2, 14, 4, 6, 1, 9, 5, 12, 17, 8 10 8, 3, 15, 18, 2, 31, 27, 1, 4, 13

7 AN 13 2, 3, 4, 7, 8, 11, 32, 33, 34, 31, 6, 16, 36 13 2, 3, 4, 6, 7, 8, 11, 16, 31, 32, 33, 34, 36

8 LV 7 82, 3, 1, 13, 6, 34, 8 3 86, 300, 51

9 I-S 8 0, 1, 17, 13, 15, 11, 5, 14 8 0, 1, 5, 13, 14, 15, 17, 10

10 MU 14 1, 13, 130, 3, 5, 7, 10, 2, 14, 0, 12, 8, 22, 16 11 91, 5, 87, 107, 13, 100, 93, 150, 14, 157, 1

11 MP 8 46, 76, 30, 48, 2, 1, 3, 4 7 46, 76, 49, 21, 58, 64, 1

12 SP 13 24, 33, 52, 43, 2, 1, 3, 0, 7, 4, 8, 5, 6 12 34, 21, 2, 17, 5, 7, 0, 18, 25, 9, 26, 1

13 MF 10 92, 151, 12, 179, 2, 4, 1, 5, 0, 3 8 54, 9, 56, 151, 10, 71, 130, 4

Table 4 Comparison of THA

and KGIRA on classification

accuracy

Data sets NB REPTree

KGIRA (Alg. 2) THA (Alg. 1) KGIRA (Alg. 2) THA (Alg. 1)

1 LC 46:25� 4:15 48:75� 4:00 43:13� 5:38 43:13� 5:73

2 WI 92:25� 0:75 89:44� 0:83 84:04� 1:51 74:61� 2:94

3 LY 83:04� 1:11 80:68� 0:69 72:16� 1:83 71:69� 2:52

4 BC 96:34� 0:15 96:29� 0:15 94:59� 0:39 94:62� 0:37

5 IO 86:50� 0:57 84:56� 0:21 84:99� 1:26 86:98� 0:86

6 DE 93:52� 0:32 84:95� 0:41 80:08� 1:54 63:69� 1:83

7 AN 77:05� 0:30 77:14� 0:40 77:99� 0:44 77:80� 0:39

8 LV 72:54� 1:51 75:32� 2:11 69:92� 2:64 70:56� 1:64

9 I-S 88:26� 0:25 89:54� 0:07 91:02� 0:39 92:27� 0:22

10 MU 69:85� 0:82 72:16� 0:82 68:95� 1:59 71:28� 1:37

11 MP 66:47� 0:56 64:17� 0:58 64:19� 0:76 62:94� 1:33

12 SP 59:21� 0:17 67:09� 0:17 56:48� 0:80 62:86� 0:56

13 MF 83:35� 0:20 78:84� 0:21 64:43� 0:60 58:28� 0:82

Average 78.05 77.61 73.23 71.59
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reducts found by incremental algorithm KGIRA is better

than those by algorithm THA. The experimental results

show that the incremental algorithm KGIRA can discover a

better attribute reduct compared with algorithm THA from

the viewpoint of average classification performance.

Moreover, incremental algorithm KGIRA can discover a

feasible attribute reduct within a rather shorter calculation

time.
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Fig. 2 Results of execution for algorithm KGIRD and algorithm THA on data sets from UCI
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4.3 Performance comparison between algorithm
KGIRD and algorithm THA

In the experiment, each original data set is used for basic

data set and divided into ten parts averagely according to

the number of objects. Objects are deleted from the basic

data set one by one until 20% of the original data set

remains. Once the number of objects deleted reaches 10%

of the original data set, the time spent is recorded. In each

subfigure of Fig. 1, the x-axis is the size of basic data set

and the y-axis is the value of computational time. Circle

marked lines are computational time of algorithm THA and

asterisk marked lines are computational time of algorithm

KGIRD.

From Fig. 2, for each data set, the computational time of

algorithm KGIRD and algorithm THA increase when the

number of objects deleted to decision system increases.

The computational time of algorithm KGIRD is much

smaller than that of the algorithm THA. Moreover, the

computational time of algorithm KGIRD on the last two

data sets, SP and MF, is 1777.764 s and 217.447 s,

respectively. The computational time of algorithm THA on

the same two data sets is both more than eight hours.

Therefore, the comparison of the computational time of

algorithm KGIRD and algorithm THA on data sets SP and

MF is not shown in the graph.

In Table 5, we can find that nearly, half of reducts

obtained by algorithm KGIRD are not the same as those

obtained by algorithm THA. It is because algorithm

KGIRD gets the reduct based on the previous result and

algorithm THA computes the result from the beginning.

Furthermore, reducts obtained by algorithm KGIRD from

Table 5 Comparison of reducts

between algorithm THA and

algorithm KGIRD

Data sets KGIRD (Alg.3) THA (Alg.1)

LR Reduct LR Reduct

1 LC 2 5, 2 2 33, 2

2 WI 3 10, 1, 0 3 9, 5, 0

3 LY 5 17, 12, 1, 14, 0 4 17, 13, 12, 14

4 BC 3 5, 1, 0 3 1, 5, 0

5 IO 5 33, 18, 6, 17, 7 5 22, 17, 15, 25, 21

6 DE 7 8, 3, 15, 18, 27, 1, 4 6 15, 3, 18, 2, 17, 14

7 AN 9 2, 3, 4, 7, 8, 11, 32, 33, 34 9 2, 3, 4, 7, 8, 11, 32, 33, 34

8 LV 2 86, 51 2 82, 4

9 I-S 5 0, 1, 14, 15, 17 6 0, 1, 17, 13, 15, 11

10 MU 7 91, 5, 87, 13, 93, 157, 1 5 96, 1, 13, 149, 130

11 MP 6 46, 76, 49, 21, 58, 64 5 46, 76, 30, 48, 0

12 SP 10 34, 21, 2, 7, 18, 9, 26,3, 10, 28 9 21, 24, 7, 3, 33, 52, 42, 51,0

13 MF 7 54, 9, 151, 10, 71, 130, 4 6 92, 151, 12, 198, 179, 2

Table 6 Comparison of THA

and KGIRD on classification

accuracy

Data sets NB REPTree

KGIRD (Alg. 3) THA (Alg. 1) KGIRD (Alg. 3) THA (Alg. 1)

1 LC 50:00� 0:00 66:67� 0:00 25:00� 15:37 26:67� 15:28

2 WI 66:86� 3:88 79:43� 2:80 42:57� 4:51 44:29� 6:29

3 LY 87:59� 3:52 79:31� 5:34 63:79� 6:02 61:03� 6:18

4 BC 97:48� 0:36 97:27� 0:29 93:60� 0:82 93:45� 1:22

5 IO 75:14� 1:83 79:00� 3:26 73:71� 3:14 76:43� 3:01

6 DE 78:22� 2:41 63:97� 2:04 49:32� 4:58 45:89� 5:24

7 AN 81:07� 0:44 81:07� 0:91 80:75� 0:42 80:44� 1:11

8 LV 71:60� 3:77 87:60� 3:32 70:40� 4:80 86:00� 3:22

9 I-S 80:67� 0:81 86:26� 0:86 68:48� 1:03 73:48� 2:02

10 MU1 65:26� 2:70 68:21� 0:92 57:26� 3:27 57:37� 3:06

11 MP 47:18� 2:45 59:63� 1:97 37:87� 2:53 37:73� 2:11

12 SP 73:93� 0:55 59:51� 1:12 70:72� 1:46 56:60� 1:10

13 MF 66:38� 1:64 64:20� 1:00 42:13� 1:66 37:10� 2:43

Average 72.41 74.78 59.66 59.73
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Table 5 are included in that obtained by algorithm THA

from Table 3 on most data sets. This is because the original

reducts are obtained by algorithm THA on the original data

sets, and then, algorithm KGIRD gets the reducts based on

the previous result.

In Table 6, the classification performance is calculated

on the reducts obtained by algorithms THA and KGIRD.

The results of classification accuracy are calculated by

Naive Bayes Classifier (NB) and Decision Tree algo-

rithm(REPTree) with fivefold cross validation. From

Table 6, it is clear that the average classification accuracy

of the reducts found by incremental algorithm KGIRD are

little lower than those by algorithm THA, due to the bad

performance on the first data set LC. The experimental

results show that the incremental algorithm KGIRD can

discover a satisfactory attribute reduct from the viewpoint

of classification performance. Moreover, incremental

algorithm KGIRD can discover a feasible attribute reduct

within a rather shorter calculation time.

5 Conclusion

In this paper, we use knowledge granularity to measure the

uncertainty and the importance of attributes in incomplete

decision systems. Based on this measure, incremental

reduction algorithms for incomplete decision systems are

constructed when adding multiple objects and deleting

multiple objects one by one, respectively. To test the

effectiveness of the constructed attribute selection

approaches based on knowledge granularity, experiments

on several real-life data from UCI data sets are conducted.

Results show that the proposed approaches are effective to

reduce the numbers of attributes obviously and incremental

approaches are more efficient to update attribute reducts

when the objects vary in incomplete decision systems than

the non-incremental approach. Compared with existing

methods (Jing et al. 2016; Yang et al. 2017), our approa-

ches can deal with incomplete decision systems, which are

more complicated. We plan to study knowledge granular-

ity-based incremental attribute reduction solutions for

incomplete decision systems under the situation of adding

or deleting multiple objects at a time. Furthermore, it is

worth of future research to use knowledge granularity to

deal with the attribute reduction problem in fuzzy rough

sets.
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