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Abstract
In this paper, a novel method is presented to solve the problems of classification and decision-making by employing the 
interval-valued fuzzy set, rough set and granular computing (GrC) concepts. The proposed method can classify the objects 
available in a system, called an interval-valued fuzzy decision table into the four distinct regions as interval-valued fuzzy-
positive region, interval-valued fuzzy-negative region, interval-valued completely fuzzy region and interval-valued gray 
fuzzy region. These four regions constitute a new space for decision-making, which is termed as a four-way interval-valued 
decision space (4WIVDS). Based on the classified objects, various decision rules are generated from the distinct regions of 
the 4WIVDS. The study shows that the interval-valued gray fuzzy region has included most prominent decision rules. For 
taking precise level of decisions based on this particular region, this study utilizes the GrC to extract granular level of deci-
sion rules which are prominent by nature. The proposed 4WIVDS method is verified and validated with various benchmark 
datasets. Experimental results include statistical and comparison analyses which signify the efficiency of the proposed method 
in classifying the objects and generating the decision rules.

Keywords  Fuzzy set · Rough set · Interval-valued fuzzy set · Four-way interval-valued decision space (4WIVDS) · 
Granular computing

1  Introduction

Classification of information and decision-making is the pro-
cess of correlating the relationships between the input and 
output attributes (Theodoridis and Koutroumbas 2008). In 
information classification, input attributes are often called as 
the conditional attributes, whereas output attribute is called 
as the decision attribute. Basically, in the soft computing-
based methods (Singh 2015), i.e., methods based on fuzzy 
set (Zadeh 1965) and rough set (Pawlak 1982), have gained 
popularity in the scientific community for solving the prob-
lem of information classification and decision-making. The 
concept of fuzzy sets as proposed by Zadeh (1965) has been 

applied in many different fields including data analysis and 
decision-making (Bezdek and Pal 1992; Chen et al. 2001, 
2012; Wang and Chen 2008; Chen and Tanuwijaya 2011; 
Chen and Chang 2011). It is almost incomprehensible for 
mathematical- or statistical-based models for making appro-
priate decisions due to the poor characterization of condi-
tions associated with conditional attributes. Therefore, it is 
favorable to utilize a fuzzy concept instead of a crisp concept 
to reach to a specific decision or solution (Szmidt and Kacpr-
zyk 1996). In literature, among several types of fuzzy sets, 
interval-valued fuzzy set (IVFS) presented by Zadeh (1975) 
has been observed to be appropriate for managing uncer-
tainty. In many real-world applications, due to an uncon-
firmed degree of memberships of the elements, it is more 
appropriate to define the degree of memberships in terms 
of IVFS (Yang et al. 2009). For the representation of higher 
order imprecision and vagueness, various interval-valued 
memberships are also suggested based on type-2 fuzzy set 
(Castillo and Melin 2008; Guh et al. 2009; Sanchez et al. 
2015a, b; Cervantes and Castillo 2015; Castillo et al. 2016a, 
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b; Ontiveros-Robles et al. 2018), which are better than real 
membership values.

In these articles (Chen et al. 1997; Chen and Hsiao 2000), 
authors have presented a bidirectional approximate reason-
ing method based on IVFS by utilizing fuzzy production 
rules for knowledge representation. Bustince (2000) studied 
IVFS-based methods in inference approximate reasoning. 
Yang et al. (2009) proposed a new decision-making model 
by combining IVFS with soft set. Zhang et al. (2009a) pro-
posed a new axiomatic definition of the entropy of IVFS. 
For group decision-making, Chen et al. (2013) proposed 
interval-valued hesitant preference relations. Bustince et al. 
(2009) show the application of IVFS in the edge detection 
of the image. Jiang et al. (2010) introduced interval-valued 
intuitionistic fuzzy soft set theory by integrating interval-
valued intuitionistic fuzzy set theory and a soft set theory. 
By combining rough set theory with IVFS, Zhang et al. 
(2009b) proposed the concept of interval-valued fuzzy rough 
sets on two universe of discourses. To fit real-life uncertainty 
in algebraic form, Pal (2015) proposed matrix having row 
and column in the form of interval-valued fuzzy elements. 
Takác̆ (2016) proposed a measure or an inclusion indicator 
for IVFS, which is based on the aggregation of fuzzy interval 
implications. Yu (2017) introduced the method for multi-cri-
teria decision-making using hesitant fuzzy Heronian mean 
operators. Zhang et al. (2016) presented an approach for 
multi-criteria decision-making using interval-valued intui-
tionistic fuzzy set.

It is obvious that IVFS can be used to represent the uncer-
tainty of the data, and to solve the problems associated with 
information classification and decision-making. However, 
to classify the information into more granular level to take 
a granular level of decision, a new computational technique 
is used, which is termed as a granular computing (GrC). 
Nowadays, GrC is evolving as an emerging technique for 
information processing (Peters and Weber 2016). GrC is 
used to extract fine-grain information from the complex 
information or data. It is applied in various domains, such 
as data discretization (Lingras et al. 2016), data classifica-
tion (Antonelli et al. 2016), partition of universe to solve 
complex problems (Zadeh 1997), analysis of non-geometric 
patterns (Livi and Sadeghian 2016), and decision-making 
(Xu and Wang 2016). GrC techniques can be regarded as an 
indispensable part of information granulation, rough sets, 
and interval computations (Pedrycz 2013). GrC is also used 
in data mining for rule representation, rule mining, and soft 
computing (especially in fuzzy and rough sets) (Yao 2006). 
In fuzzy sets, information granulation means discretization 
of the basis of information or source of information into a 
fine-grain level to extract optimal results (Singh and Dhi-
man 2018). Based on fuzzy set, rough set and GrC concepts, 
novel four-way decision-making systems have been pro-
posed (Singh et al. 2018; Singh and Rabadiya 2017, 2018).

Literature review evaluation indicates that there is a still 
requirement of a complex decision-making system that can 
completely deal with the uncertain and vague nature of 
information. By motivating this, we present a novel method 
to solve the problems of uncertain information classifica-
tion and decision-making by employing the IVFS, rough set 
and GrC concepts, which is termed as a “four-way interval-
valued decision space (4WIVDS)”. This 4WDS classifies 
objects available in information system into four distinct 
regions and generates decision rules from them by follow-
ing means as

Step 1:	 Representation of information using IVFS Initially, 
available information corresponding to each attribute is 
fuzzified using the IVFS and transferred into a system, 
which is termed as an interval-valued fuzzy informa-
tion system (IVFIS). Then, a decision table is designed, 
which is called as an interval-valued fuzzy decision table 
(IVFDT).

Step 2:	 Generate three regions using rough set Rough set 
is applied in the IVFDT to classify the objects into three 
regions, viz., lower approximation (LA), upper approxi-
mation (UA) and boundary region (BR).

Step 3:	 Region level partitioning or granularization using 
proposed method In this phase, granularization is 
applied into the three regions of rough set to evolve more 
precise regions with classified information. By applying 
granularization, initially objects available in the LA and 
UA are classified into two separate granular regions as 
interval-valued fuzzy-positive region and interval-val-
ued fuzzy-negative region, respectively. During granu-
larization, two more regions are discovered, which are 
named as an interval-valued completely fuzzy region and 
interval-valued gray fuzzy region. By combining these 
four granular regions, a new decision-making space is 
defined, which is entitled as a four-way interval-valued 
decision space (4WIVDS).

Step 4:	 Granularization of the interval-valued gray fuzzy 
region Among the four regions of the 4WIVDS, the 
interval-valued fuzzy-positive and interval-valued 
fuzzy-negative regions comprise binary relations 
with decision, whereas the interval-valued gray fuzzy 
region comprises information that is inherited from 
both interval-valued fuzzy-positive and interval-valued 
fuzzy-negative regions. In most of the cases, these two 
regions comprise identical decision rules that can obvi-
ously affect on decision-making process. So, there is a 
requirement of further granularization of this particular 
region, so that insignificant information can be filtered 
out from the significant information. For this purpose, 
granularization is applied on the interval-valued gray 
fuzzy region to discover more precise and significant 
information. Finally, information available in the four 
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regions of the 4WIVDS are represented in the form of 
decision rules, and their significance is analyzed using 
various statistical parameters.

Applications of the proposed 4WIVDS are shown in bench-
mark datasets (Lichman 2013), which include Pima Indians 
diabetes, Thyroid disease, Fisher’s Iris and Spambase. Experi-
mental results demonstrate that the proposed 4WIVDS con-
cept is not only able to classify the objects available in the 
IVFDT into the four distinct regions, but also able to take the 
granular level of decisions from them.

The remainder of this article is structured as follows. In 
Sect. 2, the proposed 4WIVDS is presented. In Sect. 3, deci-
sion rule evaluation parameters are discussed. Experimental 
results are discussed in Sect. 4. Conclusion is presented in 
Sect. 5.

2 � The proposed four‑way interval‑valued 
decision space (4WIVDS)

The proposed 4WIVDS follows four sequential steps (as dis-
cussed in Sect. 1) for the classification of objects and genera-
tion of decision rules from information systems. This section 
provides an illustration of these four steps of the proposed 
4WIVDS in the following subsections.

2.1 � Representation of information using IVFS

The IVFS is an extension of fuzzy set, which can be defined 
as follows:

Definition 1  (Interval-valued fuzzy set (IVFS)) 
(Gorzałczany 1987) Let the universe of discourse 
U = {(d1, d2,… , dk)} consist of non-empty finite set of 
objects; D = {X1,X2,… ,Xk} is a non-empty finite set of 
attributes. Then, an IVFS Ã on the universe of discourse U 
is a mapping, such that

Here, Int ([0, 1]) represents for the set of all closed sub-
intervals of [0, 1]. The set of all IVFS on the universe U is 
denoted by I (U).

Let I1 = [lb1, ub1] , I2 = [lb2, ub2] , … , In = [lbn, ubn] be 
the set of sub-intervals for each of the tuples that belong to 
the U. Now, if Ã ∈ I(U) , then the corresponding degree of 
membership for each tuple can be bounded between lower 
and upper degrees of membership as [𝜇Ã(Ii)∗,𝜇Ã(Ii)

∗] , where 
0 ≤ 𝜇Ã(Ii)∗ ≤ 𝜇Ã(Ii)

∗ ≤ 1 . The lower and upper degrees of 
membership for each Ii w.r.t. U can be computed as

(1)Ã ∶ U → Int ([0, 1]).

(2)𝜇Ã(Ii)∗ =
lbi −min (U)

max (U) −min (U)

Here, lbi and ubi represent the lower and upper bounds of 
the sub-interval Ii , where Ii ∈ U . In Eqs. (2) and (3), min 
(U) and max (U) return the minimum and maximum values 
of the k-tuples that belong to the universe of discourse U, 
respectively.

In this study, each tuple associated with the attributes 
is represented using an interval-valued fuzzified linguistic 
variable (IVFLV). Therefore, IS in which each tuple is rep-
resented using the IVFLV is called as an interval-valued 
fuzzy information system (IVFIS). In the IVFIS, each row 
may represent event (i.e., a case, an event, a patient, etc.) 
and every column may represent attribute (i.e., a variable, 
an observation, a property, etc.). We can define the IVFIS 
based on IVFS next.

Definition 2  (Interval-valued fuzzy information system 
(IVFIS)) Assume that � (D) is the set of all IVFLV for the 
D, then an interval-valued fuzzy information system (IVFIS) 
can be defined as a function fi (i = 1, 2,… , n) , such that 
∀di ∶ D ⟶ � (D).

In the following, an example is illustrated using the 
daily stock index price of Yahoo Inc. for the period 
3/1/2000–31/1/2000. This dataset is shown in Table 1 and 
collected from the website: http://in.finan​ce.yahoo​.com.

Example 1  Dataset as shown in Table 1 comprises 20 objects 
(i.e., 1, 2, 3,… , 20 ), where all of them belong to the universe 
of discourse U (refer to Definition 1). In this table, vari-
ous crisp information in context of the daily used financial 
attributes, such as “Open”, “High”, “Low”, “Close”, and 
“Final Price”, have been shown. The attributes “Open”, 
“High”, “Low”, and “Close” are called as the conditional 
attributes, whereas “Final Price” is called as the decision 
attribute. For each of the tuples, their corresponding mem-
berships are determined using Eqs. (2) and (3), respec-
tively. Then, they are represented using IVFLVs. A list of 
IVFLVs used to represent each of the tuples corresponding 
to their attributes are shown in Table 2. In Table 2, each 
Iji (i = 1, 2, 3 for j=1, and so on ) represents an IVFLV 
for each of the corresponding attributes. For example, in 
Table 1, dated on 3/1/2000, the stock index price for the 
attribute “Open” is 110.73. This stock index price belongs 
to the interval I13 = (0.69, 1) (refer to Table 2); hence, this 
crisp information is represented by IVFLV I13 . In this way, 
all the crisp information available in Table 1 is represented 
using the list of IVFLVs (as given in Table 2). Hence, a sys-
tem is prepared for each of the tuples contained in Table 1 

(3)𝜇Ã(Ii)
∗ =

ubi −min (U)

max (U) −min (U)
.

http://in.finance.yahoo.com
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using the IVFLVs, which is shown in Table 3. This newly 
evolved system is called as an interval-valued fuzzy decision 
table (IVFDT).

The interval-valued fuzzy information system (IVFIS) 
can be classified into two disjoint classes of attributes, called 
as conditional and decision (actions) attributes, respectively. 
Such a system is called an interval-valued fuzzy decision 
table (IVFDT), which is defined next.

Definition 3  (Interval-valued fuzzy decision table (IVFDT)) 
An interval-valued fuzzy decision table (IVFDT) is an IVFIS, 
which is augmented with a special attribute Xj ∈ D , known 
as the decision attribute, whereas attributes other than Xj 
are called the conditional attributes. It can be denoted by � .

Example 2  In Example 1, we have seen that how crisp values 
can be represented in terms of the IVFLVs. Now, informa-
tion contained in Table 3 can be regarded as the IVFDT. 
In Table 3, last column “Final Price” represents the deci-
sion attribute. Remaining attributes are considered as the 

conditional attributes. Now, this IVFDT can be used for 
object classification and decision rule generation.

Definition 4  (Interval-valued fuzzy equivalence class 
(IVFEC)) An interval-valued fuzzy equivalence class 
(IVFEC) is a set of objects from the U = {(d1, d2,… , dk)} 
such that their tuple values are identical in terms of condi-
tional and decision attributes of the IVFDT.

Definition 5  (Interval-valued fuzzy equivalence class 
(IVFEC)) It is a set of all objects like dj, dk , so that dj, dk have 
similar conditional and decision attributes in the IVFDT ( �  ). 
It can be denoted as � and can be represented by

Example 3  From Table 3, we want to explain the attribute 
“Final Price” in terms of objects 1–20. In this table, when all 
the conditional as well as decision attributes are considered, 
then total four IVFECs are explored as �c = {3, 7, 8, {9, 13}, 
{4, 5}, {1, 2, 6}, {10, 11, 12, 14, 15, 16, 17, 18, 19, 20}}. 
Among all these IVFECs, there are three particular objects, 

(4)� = {dj, dk ∈ � ∣D(dj) = D(dk)}.

Table 1   Multi-attribute 
information system for the daily 
stock index price of Yahoo 
Inc. for the period 3/1/2000–
31/1/2000

Object Date Open High Low Close Final Price

1 03/01/2000 110.73 119.25 107.38 475.00 203.09
2 04/01/2000 116.13 125.03 110.50 443.00 198.66
3 05/01/2000 107.63 107.78 100.50 410.50 181.6
4 06/01/2000 101.56 103.25 90.25 368.19 165.81
5 07/01/2000 91.69 102.00 90.75 407.25 172.92
6 10/01/2000 108.13 112.81 105.00 436.06 190.5
7 11/01/2000 105.97 106.56 98.00 397.38 176.98
8 12/01/2000 97.47 98.50 88.75 357.56 160.57
9 13/01/2000 91.63 94.34 84.50 346.88 154.34
10 14/01/2000 88.75 90.75 85.50 353.00 154.5
11 18/01/2000 85.44 87.50 83.75 341.19 149.47
12 19/01/2000 84.00 91.84 84.00 364.00 155.96
13 20/01/2000 92.27 92.98 87.25 351.94 156.11
14 21/01/2000 88.75 90.00 87.00 351.94 154.42
15 24/01/2000 88.48 90.13 81.00 324.31 145.98
16 25/01/2000 81.75 86.75 79.06 345.56 148.28
17 26/01/2000 85.13 85.87 81.94 328.56 145.37
18 27/01/2000 83.11 84.89 81.28 337.38 146.66
19 28/01/2000 83.39 85.75 77.41 313.50 140.01
20 31/01/2000 77.50 80.52 75.75 322.06 138.96

Table 2   A list of IVFLVs used 
to fuzzify the daily stock index 
price of Yahoo Inc. for the 
period 3/1/2000–31/1/2000

S. no. Open High Low Close Final Price

1 I11 = (0, 0.33) I21 = (0, 0.33) I31 = (0, 0.33) I41 = (0, 0.33) I51 = (0, 0.33)

2 I12 = (0.36, 0.66) I22 = (0.33, 0.66) I32 = (0.33, 0.66) I42 = (0.33, 0.66) I52 = (0.33, 0.66)

3 I13 = (0.69, 1) I23 = (0.67, 1) I33 = (0.67, 1) I43 = (0.67, 1) I53 = (0.67, 1)
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viz., 3, 7 and 8 can be distinguished from one another based 
on the corresponding attributes.

Example 4  Decision rules can often be presented as impli-
cations, called “if...then ...” rules. An example of decision 
rule induced from the IVFDT (as shown in Table 3) is given 
as follows:

Here, I13 , I23 , I33 , and I43 represent the IVFLVs correspond-
ing to their corresponding conditional attributes for the 
object 1 (as shown in Table 3).

2.2 � Generate three regions using rough set

In this subsection, rough set theory is applied to classify 
the objects available in the IVFDT into three regions as 
LA, UA and BR. Before initiating the classification using 
rough set theory, an interval-Valued equivalence rela-
tion is required to obtain for the objects available in the 
IVFDT, which can be defined as

1 ∶ if (Open, I13), (High, I23), (Low, I33),

(Close, I43), then (Final Price, I53).

Definition 6  (Interval-Valued Equivalence Relation 
(IVER)) Let R be an interval-valued equivalence relation 
(IVER) over U, then the family of all IVFEC of R is repre-
sented by U/R.

Based on the IVER, three regions, viz., LA, UA and 
BR, can be defined for the objects available in the IVFDT. 
These three regions are defined next.

Definition 7  (Lower approximation (LA)) It is a set of all 
objects di that completely belong to the set I(U). The lower 
approximation (LA) of di (i.e., R(di) ) can be defined as

Definition 8  (Upper approximation (UA) It is a set of all 
objects di that possibly belong to the set I (U). The interval-
valued upper approximation (IVUA) of di (i.e., R̄(di) ) can 
be defined as

Definition 9  (Boundary region (BR)) The set of all objects 
di ∈ I(U) , which can be decisively classified neither as mem-
bers of R̄(di) nor as members of R̄(di) w.r.t. R is called the 
boundary region (BR) of a set I(U) w.r.t. R, and denoted by 
RSB.

(5)R(di) = ∪{di ∈ I(U) ∣ [di]R ⊆ I(U)}.

(6)R̄(di) = ∪{di ∈ I(U) ∣ [di]R ∩ I(U) ≠ �}.

(7)RSB = R̄(di) − R(di).

Table 3   The IVFDT for the 
daily stock index price of Yahoo 
Inc. for the period 3/1/2000–
31/1/2000

Object Date Open High Low Close Final Price

1 03/01/2000 I13 I23 I33 I43 I53

2 04/01/2000 I13 I23 I33 I43 I53

3 05/01/2000 I13 I22 I33 I42 I52

4 06/01/2000 I12 I22 I32 I42 I52

5 07/01/2000 I12 I22 I32 I42 I52

6 10/01/2000 I13 I23 I33 I43 I53

7 11/01/2000 I13 I22 I32 I42 I52

8 12/01/2000 I12 I22 I32 I41 I52

9 13/01/2000 I12 I21 I31 I41 I51

10 14/01/2000 I11 I21 I31 I41 I51

11 18/01/2000 I11 I21 I31 I41 I51

12 19/01/2000 I11 I21 I31 I41 I51

13 20/01/2000 I12 I21 I31 I41 I51

14 21/01/2000 I11 I21 I31 I41 I51

15 24/01/2000 I11 I21 I31 I41 I51

16 25/01/2000 I11 I21 I31 I41 I51

17 26/01/2000 I11 I21 I31 I41 I51

18 27/01/2000 I11 I21 I31 I41 I51

19 28/01/2000 I11 I21 I31 I41 I51

20 31/01/2000 I11 I21 I31 I41 I51
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Based on the above notions, we can formulate the defini-
tion of rough set as:

Definition 10  (Rough set (RS)) A set I(U) is called rough 
set (RS) (inexact) w.r.t. R, if and only if the BR of I(U) is 
nonempty.

Example 5  We want to explain the attribute “Final Price” 
for the decision I51 in terms of objects {9, 13, 14, 15, 16, 17, 
18, 19, 20} as

•	 The R(ui) of the set of objects having decision I51 w.r.t. 
the “Final Price” is the set {10, 11, 12} (based on Eq. 5).

•	 The R(ui) of the set of objects having decision I51 w.r.t. 
the “Final Price” is the set {3, 7, 8, {9, 13}, {4, 5}, {1, 
2, 6}, {10, 11, 12, 14, 15, 16, 17, 18, 19, 20}} (based on 
Eq. 6).

•	 The set {10, 11, 12} is the RSB for the attribute “Final 
Price” having decision I51 (based on Eq. 7).

Using rough set theory (Pawlak 1982), set of objects 
available in the IVFDT can be classified into three regions 
as LA, UA and BR. This approach of classification indicates 
that

1.	 if an object belongs to the LA, then it must be prominent 
for the decision,

2.	 if an object belongs to the complement of UA, then it 
must be non-prominent for the decision, and

3.	 if an object belongs to the BR, then it must be indecisive 
for the decision.

From such classification of objects, one cannot state that 
the primary cause of this decision is because of this spe-
cific attribute’s value. Rough set approach is also not able 
to classify objects precisely in terms of prominent or non-
prominent if their representation is itself fuzzy. Therefore, 
in the next subsection, a novel method has been presented 
for the object classification and decision-making.

2.3 � Region level partitioning or granularization 
using proposed approach

In this subsection, we introduce the four-way interval-
valued decision space (4WIVDS) method for the object 
classification and decision-making. This method initially 
classifies the set of objects available in the IVFDT into 
the four distinct regions as (a) interval-valued fuzzy-pos-
itive region (IVFPR+) , (b) interval-valued fuzzy-negative 
region (IVFNR−) , (c) interval-valued completely fuzzy 
region (IVCFR+−) and (d) interval-valued gray fuzzy region 
(IVGFR+−) . The 4WIVDS can be defined as follows:

Definition 11  (Four-way interval-valued decision space 
(4WIVDS)) A 4WIVDS can be defined by a five-tuple � = 
⟨U, IVFPR+, IVFNR−, IVCFR+−, IVGFR+−⟩ on the IVFDT, 
where U is called the universe of discourse, IVFPR+ the 
interval-valued fuzzy-positive region, IVFNR− the interval-
valued fuzzy-negative region, IVCFR+− the interval-valued 
completely fuzzy region, and IVGFR+− is called the interval-
valued gray fuzzy region.

Definitions and mathematical representations of the four 
regions, viz., IVFPR+ , IVFNR− , IVCFR+− and GFR+− , are 
presented next.

Definition 12  (Interval-valued fuzzy-positive region 
(IVFPR+) ) The IVFPR+ region can be defined as the set of 
di(i = 1, 2,… , n) from the IVFDT that completely belongs 
to the R(di) , i.e., di ∈ R(di) . Mathematically, it can be rep-
resented by

Definition 13  (Interval-valued fuzzy-negative region 
(IVFNR−) ) The IVFNR− region can be defined as the set of 
di(i = 1, 2,… , n) from the IVFDT that completely belongs 
to the R(di) , i.e., di ∈ R(di) . Mathematically, it can be rep-
resented by

Definition 14  (Interval-valued completely fuzzy region 
(IVCFR+−) ) The IVCFR+− region can be defined as the set of 
di(i = 1, 2,… , n) from the IVFDT that not belong to either of 
the R(di) and R(di) . Mathematically, it can be represented by

Definition 15  (Interval-valued gray fuzzy region 
(IVGFR+−) ) The IVGFR+− region can be defined as the set 
of di(i = 1, 2,… , n) from the IVFDT that belongs to both 
R(di) and R(di) . Mathematically, it can be represented by

In Fig. 1, it has been demonstrated the granularization 
of three regions of rough set (i.e., LA, UA and BR) into 
four distinct regions of the 4WIVDS, viz., IVFPR+ , IVFNR− , 
IVCFR+− and IVGFR+− . These four regions are associated 
with four kinds of objects, which can be defined as

Definition 16  (Fuzzy-positive interval-valued object 
(FPIVO)) If set XP contains such di from the IVFDT that 
satisfies the property of IVFPR+ , then it is called as a fuzzy-
positive interval-valued object (FPIVO). Mathematically, it 
can be represented by

(8)IVFPR+ = {di ∈ I(U) ∣ di ∈ R(di) ∧ di ∉ R(di)}.

(9)IVFNR− = {di ∈ I(U) ∣ di ∈ R(di) ∧ di ∉ R(di)}.

(10)IVCFR+− = {di ∈ I(U) ∣ di ∉ R(di) ∨ di ∉ R(di)}.

(11)IVGFR+− = {di ∈ I(U) ∣ di ∈ R(di) ∧ di ∈ R(di)}.

(12)XP = {(di ∈ IVFPR+) ∧ (di ∉ IVFNR−) ∣ di ∈ I(U)}.
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Definition 17  (Fuzzy-negative interval-valued object 
(FNIVO)) If set XN contains such di from the IVFDT that 
satisfies the property of IVFNR− , then it is called as a fuzzy-
negative interval-valued object (FNIVO). Mathematically, 
it can be represented by

Definition 18  (Completely fuzzy interval-valued object 
(CFIVO)) If set XC contains such di from the IVFDT that 
does not satisfy the properties of IVFPR+ and IVFNR− , 
then it is called as a completely fuzzy interval-valued object 
(CFIVO). Mathematically, it can be represented by

Definition 19  (Gray fuzzy interval-valued object (GFIV)) 
If set XG contains such di from the IVFDT that satisfies the 
properties of both IVFPR+ and IVFNR− , then it is called as a 
gray fuzzy interval-valued object (GFIVO). Mathematically, 
it can be represented by

Example 6  Information available in Table 3 can be classified 
into four distinct parts as discussed above. For example, in 
terms of the decision I51 w.r.t objects {9, 13, 14, 15, 16, 17, 
18, 19, 20} for the decision attribute “Final Price” (refer to 
Table 3), the four distinct regions can be defined as

•	 By referring to Table 3, the XP is the set of objects, which 
have decision I51 for the decision attribute “Final Price” 
and prominent for decision-making. Hence, we have 
XP ={10, 11, 12}. Based on Definition 16, all the tuples 
that belong to objects of IVFPR+ can be considered as the 
FPIVs. Now, these FPIVs constitute a region, which is 
called the IVFPR+ (based on Definition 12). This region 
can be shown in Fig. 1.

•	 By referring to Table 3, the XN is the set of objects, which 
have decision I51 for the decision attribute “Final Price” 

(13)XN = {(di ∉ IVFPR+) ∧ (di ∈ IVFNR−)∣di ∈ I(U)}.

(14)XC = {(di ∉ IVFPR+) ∧ (di ∉ IVFNR−)∣di ∈ I(U)}.

(15)XG = {(di ∈ IVFPR+) ∧ (di ∈ IVFNR−) ∣ di ∈ I(U)}.

and important and insignificant for decision-making. 
Hence, we have XN ={{9, 13}, {10, 11, 12, 14, 15, 16, 
17, 18, 19, 20}}. Based on Definition 17, all the tuples 
that belong to objects of IVFNR− can be considered as the 
FNIVs. Now, these FNIVs constitute a region, which is 
called the IVFNR− (based on Definition 13). This region 
can be shown in Fig. 1.

•	 Based on Definition 18, all other objects {3, 7, 8, {4, 5}, 
{1, 2, 6}} w.r.t. the decision I51 for the decision attrib-
ute “Final Price” can be considered as the CFIVs. It is 
the most insignificant for decision-making. Now, these 
CFIVs constitute a region, which is called the IVCFR+− 
(based on Definition 14).

•	 Based on Definition 19, the objects {10, 11, 12} can be 
considered as the GFIVs and most prominent decision 
rules, which have the decision I51 for the decision attrib-
ute “Final Price”. Now, these GFIVs constitute a region, 
which is called the IVGFR+− (based on Definition 15).

Hence, the significance of the four regions in terms of 
decision-making is given as follows:

•	 The IVFPR+ comprises those decision rules, which can 
be considered as a prominent for decision-making.

•	 The IVFNR− contains both important and insignificant 
decision rules.

•	 The IVCFR+− region constitutes of such decision rules, 
which are the most insignificant for decision-making.

•	 The IVGFR+− signifies region, which contains the most 
prominent decision rules, through which efficient deci-
sion-making can be performed.

Various properties associated with the 4WIVDS are pre-
sented in “Appendix”.

2.4 � Granularization of the interval‑valued gray 
fuzzy region

On the basis of GrC, a new granular level of region can 
be defined based on the interval-valued gray fuzzy region 
( IVGFR+− ) (refer to Definition 15). Due to granulariza-
tion of the IVGFR+− , two more sub-regions are obtained, 
which are termed as a gray fuzzy interval-valued granular-
positive region (GFIVGPR) and gray fuzzy interval-valued 
granular-negative region (GFIVGNR). Both GFIVGPR 
and GFIVGNR are denoted as GFIVGPR+ and GFIVGNR− , 
respectively. Both these two sub-regions are defined next.

Definition 20  (GFIVGPR+ and GFIVGNR− ) If XP
G
(di) con-

tains such di from the XG (refer to Definition 19) that satisfies 
properties of the IVFPR+ , then it is called the GFIVGPR+ . 
Similarly, if XN

G
(di) contains such di from the XG (refer to 

Definition 19) that satisfies properties of the IVFNR− , then 

Fig. 1   The figure showing the granularization of three regions of 
rough set into four distinct regions of the 4WIVDS. Here, left-hand 
side of the figure indicates three regions of rough set, and right-hand 
side of the figure indicates four regions of the 4WIVDS obtained 
through the granularization
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it is called the GFIVGNR− . Mathematical representations of 
both GFIVGPR+ and GFIVGNR− are given in Eqs. (16) and 
(17), respectively.

Definition 21  (Gray fuzzy interval-valued granular bound-
ary region (GFIVGR)) It is a set XGR(di) , which contains 
those objects di from the IVGFR+− that satisfies the follow-
ing condition:

Example 7  From Example 6, we have the set of objects in 
XG as :{10, 11, 12}. Now, we select pair set of IVFEC as 
objects {10, 11} from the IVGFR+− for taking granular-level 
decision. Based on Eqs. (16) and (17), we have XP

G
(di) = 

{12} and XN
G
(di) = {10, 11, 12}. Hence, from Eq. (18), we 

get XGR(di) = {10, 11}.

Granularization of the IVFDT provides a new insight into 
the patterns inherited in the data. Therefore, more granu-
larization of objects that belong to the IVFDT may lead to 
evolve various inherited information. By summarizing the 
definitions and theories of the 4WIVDS, an algorithm is 
presented to classify objects available in the IVFDT. This 
algorithm is referred as a granular-level classification and 
decision-making algorithm (GLCDMA), which is presented 
in Fig. 2.

A complete process of information classification and 
decision-making using the proposed GLCDMA is shown 
in Fig. 3.

(16)XP
G
(di) = {di ∈ GFIVGPR+) ∣ di ∈ XG},

(17)XN
G
(di) = {di ∈ GFIVGNR−) ∣ di ∈ XG}.

(18)XGR(di) = {XN
G
(di) − XP

G
(di) ∣ X

P
G
(di),X

N
G
(di) ∈ XG}.

Fig. 2   Granular-level classification and decision-making algorithm (GLCDMA)

Fig. 3   A complete process of information classification and decision-
making based on the proposed 4WIVDS
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3 � Decision rule evaluation

To examine whether decision rules are classified accu-
rately in terms of regions associated with the 4WIVDS, 
following parameters are defined.

Definition 22  (Measure of accuracy) The measure of accu-
racy ( �R(di) ) in terms of XP and XN can be defined as

Here, ||di|| denotes the cardinality of di . Here, �B(di) lies 
between the ranges 0 ≤ �B(di) ≤ 1 . An object di can easily 
be differentiated from crisp to rough based on �B(di) value 
as follows:

–	 If �R(di) ≤ 1 , then di is prominent for decision.
–	 If �R(di) = 0 , then di is non-prominent for decision.

Example 8  Here, we demonstrate an example for Definition 
22. From Example 5, we have the XP as {10, 11, 12} and 
the XN as {{10, 11, 12, 14, 15, 16, 17, 18, 19, 20}, {9, 13}}. 
Now, based on Eq. (19), the accuracy of approximation is �R
(“Final Price”) = 3

12
= 0.25 < 1 . It indicates that the decision 

I51 for the decision attribute “Final Price” can be character-
ized partially employing conditional attributes {Open, High, 
Low, Close} w.r.t. objects {9, 13, 14, 15, 16, 17, 18, 19, 20} 
and can be considered as prominent for decision.

Based on this accuracy of approximation concept, 
a four-way decision evaluation function is defined as 
follows:

Definition 23  (Degree of association (DA)) Any di can be 
associated with one of the four regions of the decision space � 
with a certain degree of percentage, which can be evaluated as

Condition 1:	 If 
⋃n

i=1
d̃i = K ⊆ � , and DA(%) = ∣K∩XP ∣

∣XP ∣
> 0 , 

then the objects of K belong to the IVFPR+ with the 
certain degree of percentage (obtained through the DA).

Condition 2:	 If 
⋃n

i=1
d̃i = K ⊆ � , and DA(%) = ∣K∩X

N
∣

∣X
N
∣

> 0 , 
then the objects of K belong to the IVFNR− with the 
certain degree of percentage (obtained through the DA).

Condition 3:	 If 
⋃n

i=1
d̃i = K ⊆ � , and DA(%) = ∣K∩XC ∣

∣XC ∣
> 0 , 

then the objects of K belong to the IVCFR+− with the 
certain degree of percentage (obtained through the DA).

Condition 4:	 If 
⋃n

i=1
d̃i = K ⊆ � , and DA(%) = ∣K∩XG ∣

∣XG ∣
> 0 , 

then the objects of K belong to the IVGFR+− with the 
certain degree of percentage (obtained through the DA).

(19)�R(di) =
||XP

||
||XN

||
.

Example 9  Here, we demonstrate an example for Definition 
23. From Example 6, we have the objects in the following 
4WIVDS as (a) {10, 11, 12} ∈ XP , (b) {{10, 11, 12, 14, 15, 
16, 17, 18, 19, 20}, {9, 13}} ∈ XN , (c) {10, 11, 12} ∈ XG , 
and (d) {3, 7, 8, {4, 5}, {1, 2, 6}} ∈ XC . Now, we will take 
K ={10, 11} to verify that the objects {10, 11} are classified 
correctly or not into the ∈ XP . By following Condition 1 of 
the DA, we have DA(%) = ∣K∩XP∣

∣XP∣
=

2

3
= 0.67 > 0 . This 0.67 

value indicates the association of the objects {10, 11} with 
the IVFPR+ having 67% of DA.

The term cardinality helps to measure the uniqueness 
of the objects di ∈ U contained in an IVFDT. The higher 
the cardinality, the less replicated objects di ∈ U in the 
4WIVDS. Thus, if any of the four regions of the 4WIVDS 
have the identical cardinality, then these objects di that are 
classified into these four regions can have almost same fea-
ture patterns.

Definition 24  The cardinality of two different regions, viz., 
IVFPR+ and IVFNR− can be represented by �(XP) and �(XN) , 
respectively, and can be defined as follows:

Here, these two objects di and dj belong to the IVFPR+ and 
IVFNR− , respectively. The cardinality for the remaining two 
regions can be calculated in a similar manner.

Example 10  From Table (3), we have the objects in the four 
regions of the 4WIVDS as follows: (a) {10, 11, 12} ∈ XP , 
(b) {{10, 11, 12, 14, 15, 16, 17, 18, 19, 20}, {9, 13}} ∈ XN , 
(c) {10, 11, 12} ∈ XG , and (d) {3, 7, 8, {4, 5}, {1, 2, 6}} 
∈ XC . Now, based on Eqs. (20) and (21), we have the cardi-
nality for the above discussed four regions as

(20)�(XP) =
||di||
|U| ,

(21)phi(XN) =

|||dj
|||

|U| .

�(XP) =
∣ 3 ∣

∣ 20 ∣
= 0.15

�(XN) =
∣ 12 ∣

∣ 20 ∣
= 0.6

�(XG) =
∣ 3 ∣

∣ 20 ∣
= 0.15

�(XC) =
∣ 8 ∣

∣ 20 ∣
= 0.4.
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Here, the cardinality of the XP and XG is identical to each 
other. It indicates that these two distinct regions have the 
similar feature patterns in their corresponding regions.

Theorem 1  Every object di(i = 1, 2,… , n) of U that also 
belongs to the IVFPR+ and IVGFR+− have always similar 
cardinality.

Proof  It is obvious from Example (10). 	�  ◻

4 � Experimental results

The proposed 4WIVDS method can be applicable in deci-
sion-making of various kinds of real-world problems. In this 
section, we demonstrate the applications of the proposed 
4WIVDS method by employing real-world datasets of (a) 
Pima Indians diabetes dataset, (b) Thyroid disease dataset, 
and (c) Fisher’s Iris dataset, and (d) Spambase dataset. These 
datasets are obtained from the UCI repository (Lichman 2013).

To evaluate the performance of the proposed 4WIVDS, it 
has been compared with various well-known classification 
methods, such as PART, JRip, Decision table, NaiveBayes, 
BayesNet, OneR, ZeroR, J48, LMT and rough set (Witten 
et al. 2016). Statistics which are adopted to compare the per-
formance of the proposed 4WIVDS with existing competing 
methods are Kappa ( � ), mean absolute error (MAE), root 
mean square error (RMSE), relative absolute error (RAE) and 
root relative squared error (RRSE) (Witten et al. 2016). All 
these parameters are defined as follows:

(22)� =
po − pe

1 − pe
,

(23)MAE =
1

n

n∑

i=1

∣ po − pe ∣,

In Eqs. (22–26), po indicates observed value and pe indicates 
expected value for the same. In Eq. (22), the value of the 
kappa � is interpreted as value near to 1 is almost perfect fit 
model compared to the model having � ≈ 0 . The MAE in 
Eq. (23) measures the average of absolute value of the errors 
present in classification. The RMSE (refer to Eq. 24) shows 
the average error, and if RMSE > 0 then it shows that there 
is an error present in classification. The RMSE will always 
be larger or equal to the MAE. In Eq. (25), p̄e is the mean 
value of all pe values. For a perfect classification, the RAE 
is equal to 0 and 0 < RAE < ∞ . Similarly, in Eq. (26), p̄e is 
the mean value of all pe values. For a perfect fit of the model, 
the RRSE is equal to 0 and 0 < RRSE < ∞.

Tables 4, 5, 6 and 7 present various statistics of the dif-
ferent classification methods, such as PART, JRip, decision 
table, NaiveBayes, BayesNet, OneR, ZeroR, J48, LMT, 
rough set and the proposed 4WIVDS. From Tables 4, 5, 6 
and 7, it has been shown that the proposed 4WIVDS gives 
maximum correctly classified instances and minimum incor-
rectly classified instances. Hence, amongst all the existing 
methods, the proposed 4WIVDS performs effectively in 
classification. For the proposed method, Kappa statistics for 

(24)RMSE =

√√√√1

n

n∑

i=1

(po − pe)
2,

(25)RAE =

∑n

i=1
∣ po − pe�∑n

i=1
∣ pe − p̄e ∣

%,

(26)RRSE =

�∑n

i=1
(po − pe)

2

∑n

i=1
(pe − p̄e)

2
%.

Table 4   A comparison of the proposed 4WIVDS with existing classification models for the Pima Indians diabetes dataset

Algorithm Correctly 
classified 
instances

Correctly clas-
sified instances 
(%)

Incorrectly 
classified 
instances

Incorrectly clas-
sified instances 
(%)

Kappa MAE RMSE RAE (%) RRSE (%)

NaiveBayes 30 71.42 12 28.57 0.28 0.28 0.3 35.45 87.86
BayesNet 32 76.19 10 23.8 0.29 0.29 0.31 48.51 86.73
JRip 19 45.23 23 54.76 0.33 0.36 0.37 99.3 100.3
OneR 21 50 21 50 0.38 0.31 0.33 68.58 74.12
ZeroR 15 35.71 27 64.28 0.41 0.36 0.38 98.34 99.95
Decision table 17 40.47 25 59.52 0.45 0.22 0.23 70.34 74.32
PART​ 33 78.57 9 21.42 0.32 0.22 0.23 71.45 79.56
J48 34 80.95 8 19.04 0.8 0.25 0.25 43.67 50.23
LMT 18 42.85 24 57.14 0.58 0.43 0.45 72.54 76.89
Rough set 20 47.61 22 52.38 0.7 0.28 0.3 88.91 91.34
The proposed 4WIVDS 41 97.61 1 2.38 0.99 0.061 0.072 20.13 23.48
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Table 5   A comparison of the proposed 4WIVDS with existing classification models for the Thyroid disease dataset

Algorithm Correctly 
classified 
instances

Correctly clas-
sified instances 
(%)

Incorrectly 
classified 
instances

Incorrectly clas-
sified instances 
(%)

Kappa MAE RMSE RAE (%) RRSE (%)

NaiveBayes 159 66.25 81 33.75 0.25 0.26 0.27 81.85 83.56
BayesNet 154 64.16 86 35.83 0.3 0.3 0.33 48.43 50.12
JRip 147 61.25 93 38.75 0.35 0.33 0.35 98.1 100.2
OneR 186 77.5 54 22.5 0.39 0.31 0.32 68.7 71.23
ZeroR 170 70.83 70 29.16 0.42 0.35 0.37 98.59 100.9
Decision table 176 73.33 64 26.66 0.46 0.24 0.26 71.47 73.77
PART​ 168 70 72 30 0.33 0.24 0.26 73.65 76.33
J48 190 79.16 50 20.83 0.76 0.27 0.29 45.79 40.33
LMT 190 79.16 50 20.83 0.59 0.38 0.4 78.93 79.89
Rough set 198 82.5 42 17.5 0.68 0.3 0.35 90.21 93.44
The proposed 4WIVDS 213 88.75 27 11.25 0.99 0.068 0.072 24.85 25.84

Table 6   A comparison of the proposed 4WIVDS with existing classification models for the Fisher’s Iris dataset

Algorithm Correctly 
classified 
instances

Correctly clas-
sified instances 
(%)

Incorrectly 
classified 
instances

Incorrectly clas-
sified instances 
(%)

Kappa MAE RMSE RAE (%) RRSE (%)

NaiveBayes 100 58.82 70 41.17 0.52 0.24 0.26 70.65 73.45
BayesNet 99 58.23 71 41.76 0.49 0.28 0.31 53.32 68.33
JRip 87 51.17 83 48.82 0.34 0.3 0.33 98.91 101.23
OneR 103 60.58 67 39.41 0.45 0.33 0.35 69.23 70.23
ZeroR 108 63.52 62 36.47 0.56 0.34 0.34 97.92 98.34
Decision table 97 57.05 73 42.94 0.32 0.26 0.28 71.45 94.56
PART​ 115 67.64 55 32.35 0.68 0.26 0.28 72.66 77.32
J48 120 70.58 50 29.41 0.79 0.27 0.28 51.56 53.34
LMT 120 70.58 50 29.41 0.89 0.45 0.46 69.34 71.45
Rough set 112 65.88 58 34.11 0.87 0.29 0.31 89.13 92.67
The proposed 4WIVDS 147 86.47 23 13.52 0.99 0.053 0.065 21.43 24.56

Table 7   A comparison of the proposed 4WIVDS with existing classification models for the Spambase dataset

Algorithm Correctly 
classified 
instances

Correctly clas-
sified instances 
(%)

Incorrectly 
classified 
instances

Incorrectly clas-
sified instances 
(%)

Kappa MAE RMSE RAE (%) RRSE (%)

NaiveBayes 3000 62.5 1800 37.5 0.78 0.25 0.26 88.73 90.01
BayesNet 3203 66.72 1597 33.27 0.53 0.31 0.34 49.51 52.12
JRip 2700 56.25 2100 43.75 0.43 0.33 0.34 98.45 99.91
OneR 3108 64.75 1692 35.25 0.49 0.28 0.3 65.68 75.21
ZeroR 3204 66.75 1596 33.25 0.64 0.35 0.36 98.01 99.92
Decision table 3300 68.75 1500 31.25 0.45 0.23 0.25 72.56 73.12
PART​ 3130 65.2 1670 34.79 0.7 0.24 0.29 73.56 80.34
J48 3800 79.16 1000 20.83 0.8 0.27 0.29 45.67 47.67
LMT 4000 83.33 800 16.66 0.91 0.45 0.48 73.45 79.45
Rough set 4105 85.52 695 14.47 0.92 0.29 0.32 89.32 92.34
The proposed 4WIVDS 4551 94.81 249 5.18 0.98 0.087 0.092 25.21 29.34
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all four datasets are closer to 1 in comparison with existing 
methods. It indicates that the proposed 4WIVDS is better for 
classification compared to all other existing methods. While 
comparing the performance of the proposed 4WIVDS with 
the existing methods, it seems that the MAE and RMSE val-
ues for all four datasets are closer to 0 as well as less than the 
other existing methods. Hence, the proposed method is far 
better than all existing methods of classification. In Tables 4, 
5, 6 and 7, values of other parameters, such as RAE (%), 
and RRSE (%) are very less as compared to all other clas-
sification methods that are considered for the comparison 
purpose. Hence, the proposed 4WIVDS outperforms and 
generates effective results in comparison with the well-
known classification methods (as listed in Tables 4, 5, 6, 7).

5 � Conclusion

This study presented a new method for solving the problem 
of object classification and decision-making. The proposed 
method, which is entitled as the 4WIVDS, is designed based 
on the IVFS, rough set and GrC concepts. The rough set 
theory can only classify the objects into three regions as 
lower approximation, upper approximation and boundary 
region. On the other hand, the proposed 4WIVDS can able to 
classify the objects into four distinct regions as interval-val-
ued fuzzy-positive region (IVFPR+) , interval-valued fuzzy-
negative region (IVFNR−) , interval-valued completely fuzzy 
region (IVCFR+−) and interval-valued gray fuzzy region 
(IVGFR+−).

In real world, most of the objects are overlapped to each 
other in terms of decision attributes. The rough set theory 
simply classifies such kind of objects as partially accepted 
and rejected objects. But, the 4WIVDS classified such kind 
of unclear boundary objects as the IVGFR+− . This study 
applied the GrC approach on this particular region to dis-
cover a precise level of decision rules, which could help 
the decision makers to filter the prominent decision rules 
from the non-prominent decision rules. Experimental results 
showed that the four regions of the 4WIVDS have their own 
distinct classified objects. Based on these classified objects, 
various decision rules can be generated. Applicability of 
the proposed 4WIVDS was shown in various benchmark 
datasets (Lichman 2013), such as Pima Indians diabetes, 
Thyroid disease, Fisher’s Iris and Spambase datasets. The 
main advantage of the proposed 4WIVDS is its ability of 
preserving the property of fuzziness by crisply classify-
ing the uncertain boundary information into the four well-
defined regions.
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Appendix

The 4WIVDS exhibits various properties, which are dis-
cussed as follows:

	 (i)	 RSB ∈ XN

	 (ii)	 XN ≠ ∅

	 (iii)	 For IVFPR+ , it has the following conditions: 

	 (iv)	 XP ⊆ XN

	 (v)	 XP ∪ XN ∪ XC ∪ XG = U

	 (vi)	 RSB ∩ XG = �

	(vii)	 XP ∩ XC = �

	(viii)	 XN ∩ XC = �

	 (ix)	 RSB ∩ XC = �

	 (x)	 (XP ∪ XN ∪ XG) = XC

	 (xi)	 If RSB ⊆ XN , then each di ∈ RSB and di ∈ XN.

Theorem 2  For each of the non-empty sets XP, XN, and XG, 
there exists a set XC if it holds

Proof  With reference to Fig. 1, it is considered that XP ≠ ∅ , 
XN ≠ ∅ , and XG ≠ ∅ . Now, we define three different regions 
in the 4WIVDS as �1 , �2 , and �3 , based on the following set-
theoretic operations:

Here, �3 represents the XC in the 4WIVDS, where 
�1 ∩ �2 ∩ �3 = XC.	� ◻
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