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Abstract
Feature selection is viewed as the problem of finding the minimal number of features from an original set with the minimum 
information loss. Due to its high importance in the fields of pattern recognition and data mining, it is necessary to investigate 
fast and effective search algorithms. In this paper, we introduce a novel fast feature selection algorithm for neighborhood 
rough set model based on Bucket and Trie structures. This proposed algorithm can guarantee to find the optimal minimal 
reduct by adopting a global search strategy. In addition, the dependence degree is subsequently used to evaluate the relevance 
of the attribute subset. Consequently, the proposed algorithm is tested on several standard data sets from UCI repository and 
compared with the most recent related approaches. The obtained theoretical and experimental results reveal that the present 
algorithm is very effective and convenient for the problem of feature selection, indicating that it could be useful for many 
pattern recognition and data mining systems.

Keywords Feature selection · Rough set theory · Neighborhood rough set · Fast algorithm · Trie structure · Bucket structure

1 Introduction

Currently, with the rapid development of modern technolo-
gies and the increasing rate of data generation, information 
sources like mobile phones, social media, imaging devices, 
and sensors automatically generate huge amount of infor-
mation that needs to be stored and processed. As a result, 
the created data always contain some attributes that are 
redundant and irrelevant for the process of data analysis 
and pattern recognition (Cai et al. 2018). Feature Selec-
tion (FS) as a pivotal step of data preprocessing, it refers 

to the process of choosing a minimal subset of attributes 
from the original set of all attributes, by removing irrelevant 
and redundant features and maintaining only those which 
are most informative and significant, according to certain 
selection criterion (García et al. 2015). Feature selection 
has been widely studied in the fields of text mining (Wang 
et al. 2017), bioinformatics data analysis (Urbanowicz et al. 
2018), image classification (Thangavel and Manavalan 
2014), and information retrieval (Lai et al. 2018). In fact, 
there are many reasons for performing feature selection: 
removing irrelevant data, increasing predictive accuracy 
of the learning models, reducing the computation cost of 
analysis process, and improving the interpretability of the 
data (García et al. 2015). In general, Feature Selection that 
is also called Attribute Reduction can be based on statistical 
approach, spars learning approach, information theory, and 
rough set theory (Cai et al. 2018; Li et al. 2017).

Rough Set Theory (RST) was originally introduced by 
Pawlak (1982), as a mathematical tool to deal with impre-
cise, uncertain, and vague information. In fact, the Rough 
Set Theory is considered as a special form of Granular 
Computing, since the equivalence relation of RST can act 
as type of granularity, where the target concept is approxi-
mated by a single granular structure. In this context, a wide 
number of research have been established to study Rough Set 
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models from the Granular Computing perspective. William-
West and Singh (2018) studied information granulation for 
Rough Fuzzy Hypergraphs. Liang et al. (2018) proposed an 
optimal granulation selection method for multi-label data 
based on Multi-granulation Rough Sets. Mandal and Ranad-
ive (2019) investigated interval-valued Fuzzy Probabilistic 
Rough Sets, based on multi-granulation approach. Skow-
ron et al. (2016) emphasized the role of Rough Set-based 
methods in Interactive Granular Computing and discussed 
some of its important applications. In general, The RST 
involves two important concepts (Fan et al. 2018). The first 
concept is approximation, where any set of objects can be 
approximated by a pair of sets known as upper and lower 
approximations, based on an equivalence relation. The sec-
ond concept is attribute reduction, which aims to reduce the 
number of attributes and preserve the same classification 
quality as the original full set of attributes (Fan et al. 2018). 
However, the classical RST is based on crisp equivalence 
relation that can only operate on discrete and categorical 
attributes. Therefore, processing continuous numerical fea-
tures requires data discretization, resulting in a large amount 
of information loss. To overcome this problem, many gener-
alization of the RST has been introduced; for instance, Fuzzy 
Rough Set (FRS) (Zhang et al. 2018b), Neighborhood Rough 
Set (NRS) (Hu et al. 2008; Yong et al. 2014), Dominance 
Rough Set (DRS) (Zhang and Yang 2017), and Variable Pre-
cision Rough Set (VPRS) (Shen and Wang 2011).

Basically, the main difference between all these RST gen-
eralizations is related with the exploitation of the equiva-
lence relation and the definition of the subset operator. The 
NRS (Yong et al. 2014) employs a neighborhood relation to 
deal with numerical features directly without discretization. 
The DRS use a dominance relation instead of an equivalence 
relation. This allows DRSA to handle the inconsistencies 
that are typical of criteria and preference-ordered deci-
sion classes (Zhang and Yang 2017). The VPRS approach 
extends the classical RST, by relaxing the subset operator 
to deal with noisy data and uncertain information, allowing 

objects to be classified with an error smaller than a given 
predefined level or probability threshold (Shen and Wang 
2011), while the FRS approach encapsulates the concepts 
of fuzziness and indiscernibility, which occurs as a result of 
uncertainty existing knowledge (Zhang et al. 2018b). The 
FRS combines fuzzy set theory and rough sets, so as to pro-
vide mathematical tools to reasoning with uncertainty for 
real-valued data. In fact, the Fuzzy Set Theory was intro-
duced by Zadeh (1965) as an extension of the classical set 
theory, by employing a membership function in the real unit 
interval (Chen and Chang 2011; Chen and Chen 2015; Chen 
et al. 2012, 2013; Cheng et al. 2016). Finally, a detailed 
summary of some existing extensions of Rough Sets Theory 
and its relationships with other approaches, such as fuzzy 
set theory, granular computing, and multi-criteria decision 
analysis, can be found in Kacprzyk and Pedrycz (2015), and 
Pawlak and Skowron (2007) (Pedrycz and Chen 2011, 2014, 
2015).

Neighborhood Rough Set (NRS) has been first proposed 
in Hu et al. (2008), to support numerical attributes using a 
neighborhood relation. This neighborhood relation can be 
used to produce a family neighborhood information gran-
ules, which are able to approximate the decision classes. In 
this regard, the notable point of the Neighborhood Rough 
Set models is their capability to control the granularity of 
data analysis by adjusting the neighborhood parameter � 
(Chen et al. 2017). Figure 1 exemplifies the notion of upper 
and lower approximations of Rough Set and Neighborhood 
Rough Set Models. In general, NRS model is considered 
as an effective tool for feature selection, especially for 
numerical data. Consequently, much effort in the literature 
has been devoted to develop different measures for feature 
evaluation, where most existing evaluation criterion can be 
divided into three main approaches: Positive region (Qian 
et al. 2010), Combined region (Parthaláin et al. 2010), and 
Entropy (Sun et al. 2012). Indeed, the positive region is one 
of the most used evaluation metrics to distinguish between 
features, since it focuses on the consistent samples that can 

Fig. 1  Schematic demonstration 
of the main components and 
the correspondence between a 
Rough Set Model and b Neigh-
borhood Rough Set Model
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be correctly classified to the decision classes, simultane-
ously, ignoring noisy and irrelevant samples that belong to 
the overlapping boundaries of classes (Li et al. 2013; Qian 
et al. 2010).

Generally speaking, for a data set with m features, finding 
a minimal subset of features which simultaneously preserve 
suitable high accuracy in representing the original features, 
should evaluate 2m candidate subsets using exhaustive 
search, and therefore, the problem of minimal reduct gen-
eration is unfortunately NP-hard (Swiniarski and Skowron 
2003). In addition, since data set may have more than one 
reduct, most of solutions are aimed to find a reasonable short 
reduct, without exhaustively generating all possible subsets. 
In this connection, many approaches have been proposed to 
address this issue with respect to Rough Set Theory. The 
Quick Reduct (QR) algorithm, proposed by Chouchoulas 
and Shen (2001), is one of the classic methods, which is a 
greedy search algorithm using dependence of the positive 
region (Chouchoulas and Shen 2001). The QR algorithm 
provides good time performance for its fast heuristic search. 
However, it can be easily trapped in a local optimum (Jensen 
and Shen 2009), also the computational complexity of the 
QR algorithm grows exponentially with respect to the num-
ber of instance in the data set (Mannila and Räihä 1992). 
Qian et al. (2010) introduced a theoretic framework, called 
positive approximation, which is defined with respect to dif-
ferent granulation order. This approach was used to acceler-
ate a heuristic process of attribute reduction. More recently, 
to enhance the computational time of QR algorithm, Yong 
et al. (2014) proposed a quick attribute reduct algorithm 
based on neighborhood rough set model. The key idea of 
this algorithm is to divide the data set into a set of buckets 
according to their Euclidean distances, and then iterate each 
record by the sequence of buckets to calculate the positive 
region of neighborhood rough set model. Yang and Yang 
(2008) introduced a condensing tree structure to reduce the 
storage requirement of the feature selection methods based 
on rough set model. This structure aims to provide a compact 
representation of the discernibility matrix, and, therefore, 
giving the possibility to obtain the heuristic information for 
feature reduction efficiently. For more relevant studies on 
Rough Set Theory, we refer the readers to Liu et al. (2018), 
Shi et al. (2018), Xu et al. (2017), and Zhang et al. (2018a).

On other research direction that deals with enhancing 
the search strategy of attribute reduction algorithm. Chen 
et al. (2011) presented a feature selection algorithm based 
on rough set model and the power set tree structure. In 
fact, the power set tree is an ordered tree representing the 
search space of all attribute subsets, where each possible 
reduct is mapped to a node of the tree. The authors used 
tree rotation and backtracking to enhance time required for 
finding minimal reduct set. Rezvan et al. (2015) proposed 
a new feature selection algorithm based on Rough Set 

Theory and Trie structure. The proposed algorithm is exact 
and can provide the optimal solution using a breadth-first 
traversal strategy of the Trie structure (Bodon and Rón-
yai 2003), where each node of the Trie is associated with 
a possible reduct. Recently, several meta-heuristic algo-
rithms has been used to improve the search strategy of fea-
ture selection, such as genetic algorithms (Jing 2014), ant 
colony optimization (Chen et al. 2010), tabu search (Hedar 
et al. 2008), and particle swarm optimization (Wang et al. 
2007). However, all these meta-heuristic algorithms are 
not exact and their convergence cannot be guaranteed due 
to their stochastic nature. Most of the existing researches 
considered the computation aspect of Rough Set model 
and only a few works focused on improving the compu-
tational time of Neighborhood Rough Set model. There-
fore, lot of effort still needs to be done in this context. In 
addition, new algorithms can be presented to obtain better 
results when data sets become larger.

Motivated by the advantages of Trie structure, such as 
the efficient representation of the search space of feature 
selection problem, also inspired by the notion of Bucket 
structure, due to its ability to reduce the computation time 
of searching the neighbor samples (Yong et al. 2014). 
We aim, in this paper, to present a fast feature selection 
algorithm for Neighborhood Rough Set model based on 
Bucket and Trie structures. The Trie is used to store all 
the possible feature subsets in a particular order, so as to 
enhance the search and elimination for non-reduct sub-
sets, while the Bucket structure is used to reduce the time 
required for evaluating the positive region. Consequently, 
several numerical experiment are carried out, in this study, 
to evaluate the performance of the proposed algorithm in 
comparison with different existing approaches for neigh-
borhood rough set model. The proposed algorithm is 
experimented using different standard UCI data sets for 
testing the feature selection correctness and computational 
performance.

To summarize, the major contributions of the present 
paper include the following aspects: (1) The development 
of a new feature selection method based on Neighborhood 
Rough Set model. (2) Trie and Bucket structures are con-
sidered to design an efficient algorithm for searching the 
minimal feature reduct. (3) Extensive experiments on sev-
eral data sets from UCI repository, verify the efficiency, 
and the effectiveness of the proposed feature selection 
method.

The remainder of this paper is organized as follows. In 
Sect. 2, we present the fundamental concept of Neighbor-
hood Rough Set model. In Sect. 3, we introduce our pro-
posed feature selection algorithm. Section 4 is devoted to 
present the experimental results and discussions. Finally, 
Sect. 5 concludes the paper and suggests directions for future 
works.
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2  Fundamentals on neighborhood rough 
set

In this section, we briefly recall some basic concepts and 
definitions of the Neighborhood Rough Set Model with 
the Quick Reduct algorithm, which are needed for the fol-
lowing sections.

2.1  Neighborhood rough set model

As has been stated in the introduction, the classical rough 
set model introduced by Pawlak (1982) can only operate 
on data sets of nominal and categorical attributes. For real-
valued features, we will present, in this subsection, the 
Neighborhood Rough Set model (Yong et al. 2014). One 
of the most important aspects of NRS is their capability to 
control the granularity of data analysis (Chen et al. 2017). 
First, we start by defining a metric function.

Definition 1 Given a nonempty set of records 
U = {x1, x2,… , xn} , for any i and j a distance func-
tion �(xi, xj) ∶ U × U ↦ [0,+∞) satisfies the following 
properties:

(1) �(xi, xj) ≥ 0 : Distances cannot be negative;
(2) �(xi, xj) = 0 : If and only if xi = xj;
(3) �(xi, xj) = �(xj, xi) : Distance is symmetric;
(4) �(xi, xk) + �(xk, xj) ≥ �(xi, xj) : Triangular inequality.

In fact, the p-norm is one of most widely used metric 
functions, where the Euclidean distance is special case of 
the p-norm for p = 2 . The p-norm is given by:

with f (xi, a) and f (xj, a) are, respectively, the values of the 
objects xi and xj , corresponding to the attribute a with C is a 
set of attributes. Along this paper, we will use the Euclidean 
distance as metric function.

Definition 2 A neighborhood decision system is denoted 
by NDS = ⟨U,C ∪ D, �⟩ , where U = {x1, x2,… , xn} is non-
empty set of records, C ∪ D is a nonempty finite set of fea-
tures, with C ∩ D = � . C = {a1, a2,… , am} is a nonempty set 
of conditional attributes, D is the set of decision attributes 
and � is a neighborhood parameter � ≥ 0 . In addition, we 
can define a mapping function f for each x ∈ U and a ∈ C , 
as f (x, a) = Va , where Va is the value of the attribute a cor-
responding to the object x.

�C(xi, xj) =

(
∑

a∈C

|f (xi, a) − f (xj, a)|p
)1∕p

,

Table 1 presents an example of a decision system, which 
consists of four objects records U = {x1, x2, x3, x4} defined 
by four conditional features C = {a, b, c, d} of numerical 
values, and one decision attribute {e} that takes two class 
labels {1, 2} . This table will be used to illustrate the basic 
operations and concepts of the Neighborhood Rough Set 
model.

Definition 3 Let NDS = ⟨U,C ∪ D, �⟩ , we note �B(x) as 
the neighborhood granule of xi , and it can be defined as the 
hyper-sphere with center xi and radius � by:

More precisely, �B(x) , also called information granule, it 
contains all the records that share the same characteristics 
as the object x.

Example 1 According to the previous definition, using 
� = 0.15 and for P = {b} , we have: �P(x1) = {x1, x2, x3} , 
�P(x2) = {x1, x2, x3} , �P(x3) = {x1, x2, x3}, and �P(x4) = {x4}.

Similar to the Pawlak’s rough set theory (Pawlak 1982), 
we can define the neighborhood lower and upper approxi-
mations of any subset of U.

Definition 4 Let NDS = ⟨U,C ∪ D, �⟩ a neighborhood 
decision system. For B ⊆ C and X ⊆ U , the neighborhood 
lower and upper approximations of X, denoted, respectively, 
by NB(X) and NB(X) , are defined as:

In the sense of Definition 4, the lower approximation 
NB(X) is the set of all objects from U that can be correctly 
classified as elements from X with respect to the attributes 
B, while the upper approximation NB(X) is the set that 
contains all objects from U that can be probably classified 
as elements from X with respect to the attributes B.

Based on the lower and upper approximations, we can 
note that the knowledge that can be retrieved from the 

�B(x) =
{
y ∶ ∀y ∈ U,�B(x, y) ≤ �

}
.

NB(X) =
{
x ∈ U ∶ 𝜃B(x) ⊆ X

}
,

NB(X) =
{
x ∈ U ∶ 𝜃B(x) ∩ X ≠ �

}
.

Table 1  An example of a decision system

Samples a b c d e

x
1

0.10 0.20 0.61 0.20 1
x
2

0.13 0.22 0.56 0.10 1
x
3

0.14 0.23 0.40 0.31 2
x
4

0.16 0.41 0.30 0.16 2
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universe U are about the elementary granules NB(X) and 
NB(X) , instead of about the individual elements of X.

Definition 5 Let NDS = ⟨U,C ∪ D, �⟩ , with B ⊆ C and 
X ⊆ U . The universe U can be divided into three different 
regions: the positive region, the boundary region, and the 
negative region, with respect to X according to the set of 
attributes B. These regions are, respectively, defined by the 
following relations:

Let U∕D = {D1,D2,… ,Dr} be a decision partition of 
the universe U, where Di is composed of all the objects 
associated with the class label i. For any subset B ⊆ C , we 
give the following definition.

Definition 6 The neighborhood positive region of the deci-
sion system, denoted by NPOSB(D) , which is a subset the 
records whose neighborhoods consistently belong to one of 
the decision classes Di , is given by:

where n is the total number of decision partitions.

Noting that the neighborhood positive region is defined 
as the union of all lower approximations of each decision 
partition.

Example 2 Based on decision attribute {e} in Table 1, we can 
divide the set of records into two decision partitions 
U∕D = {D1,D2} , which are D1 = {x1, x2} and D2 = {x3, x4} , 
assuming that � = 0.15 and the set of features is P = {b} . 
First, we can calculate the lower approximations with respect 
to D1 and D2 as: NP(D1) = {�} and NP(D2) = {x4} . NP(D1) 
gives an empty set, since x1 , x2 , and x3 belong to the same 
information granule, but with different decision labels 
(Example  1). Thus, NPOSB(D) can be computed as: 
NPOSB(D) = NP(D1) ∪ NP(D2) = {x4}.

Definition 7 Let NDS = ⟨U,C ∪ D, �⟩ be a neighborhood 
decision system, with B ⊆ C . The dependence degree �B(D) , 
also called the quality of classification, can be defined as:

NPOSB(X) = NB(X),

NBNDB(X) = NB(X) − NB(X),

NNEGB(X) = U − NB(X).

NPOSB(D) =

n⋃

i=1

NB(Di),

It is worth mentioning that the greater the dependence 
degree �B(D) , the stronger is the classification quality of 
the attribute subset B. If �B(D) = 1 , then D depends totally 
on B. If 0 < 𝜇B(D) < 1 , then D depends partially on B. 
While if �B(D) = 0 then D does not depends on B. In fact, 
the dependence degree can be used as relevance measure 
in greedy algorithm to compute the attribute reduct.

Example 3 Considering Table 1, let � = 0.15 and P1 = {b} 
and P2 = {c} . Based on (Example 2) and the definition of 
the dependence degree, it is easy to verify that: 
�p1

(D) = |NPOSP1
(D)|∕|U| = 0.25 . While, for �P2

(D) , we 
can first compute NPOSP1

(D) based on NP2
(D1) = {x1, x2} 

and NP2
(D2) = {x3, x4} , and by simple calculations, we can 

demonstrate that �P2
(D) = 1 . As a conclusion, we can con-

firm that the attribute {c} is more relevant than {b} , and can 
preserve the same classification quality as the original full 
set of features.

Definition 8 Given the NDS = ⟨U,C ∪ D, �⟩ , with R ⊆ C . 
The set R is called a reduct if:

In addition, R is called a minimal reduct if:

Indeed, this property shows that removing any attribute 
from the minimal reduct will lead to decreasing the sig-
nificance of the present minimal reduct.

Proposition 1 Given a neighborhood decision system 
NDS = ⟨U,C ∪ D, �⟩ , with B1,B2 ⊆ C and B1 ⊆ B2 , we 
have:

Proof Given B1 ⊆ B2 , with U∕D = {D1,D2,… ,Dr} is the 
decision par tition of the universe U ,  we have 
NB1

(D1) ⊆ NB2
(D1) , NB1

(D2) ⊆ NB2
(D2) , … and N

B
1
(D

r
)

⊆ N
B
2
(D

r
) . Using Definition 6, we can write NPOS

B
1
(D)

⊆ NPOS
B
2
(D) . Therefore, we have �B1

(D) ≤ �B2
(D) . The 

proof is completed.   □

�B(D) =
|NPOSB(D)|

|U| .

�R(D) = �C(D).

(i) 𝜇R(D) = 𝜇C(D),

(ii) ∀a ∈ R 𝜇R−{a}(D) < 𝜇C(D).

�B1
(D) ≤ �B2

(D).
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This proposition is called the monotonicity property 
and it is very important for designing a forward feature 
selection algorithms, which guarantee that adding any new 
attribute into the existing subset does not lead to decrease 
in the classification quality of the new subset.

2.2  Feature selection based on quick reduct 
algorithm

The main objective of attribute reduction is to find a small 
subset of relevant attributes, which can provide the same 
quality of classification as the original set of attributes. In 
this respect, Quick Reduct algorithm, also called hill-climb-
ing algorithm, usually employ rough set dependence degree 
as quality measure for selecting the attribute reduct.

In this subsection, we present the Quick Reduct algorithm 
given in Chen and Jensen (2004), which attempts to calculate 
a minimal reduct without exhaustively generating all pos-
sible subsets, by applying a forward selection and starting 
from an empty set of features. This algorithm tries to add in 
each iteration the most significant feature from the candidate 
set based on the dependence degree of its positive region. 
Accordingly, Algorithm 1 describes the steps involved in the 
generation of the neighborhood positive region according to 
a set of conditional attributes. Brief comments are provided 
after ”;” with italic text style.

Algorithm 1: Neighborhood Positive Region
(U,B,D, θ)
Input: U the set of all objects records. B the set of con-
ditional features. D = {d} the set of decision features. θ
the neighborhood parameter
1: P ← {}; P is a set of samples in the positive region.
2: For each x in U do:
3: Flag ← 1; we suppose that x is in the positive re-

gion (x ∈ NPOSB(D)).
4: For each y in U do:
5: If ∆B(x, y) ≤ θ and f(x, d) �= f(y, d) then:
6: Flag ← 0; find a neighbor with different deci-

sion values, means that x is not in the positive region
(x /∈ NPOSB(D)).

7: break; stop searching for other elements in U .
8: If Flag �= 0 then:
9: P ← P ∪ {x}; we add x to the positive region.
Output: P the neighborhood positive region.

In the following, the whole procedure for the feature 
selection based on quick reduct method is given in Algo-
rithm 2. This algorithm will be named as Neighborhood 
Rough Set Feature Selection based on Quick Reduct, and 
denoted by NRSFSQR along this paper.

Algorithm 2: NRSFSQR (U,C,D, θ)
Input: U the set of all objects records. C, the set of all
conditional features. D = {d} the set of decision features.
θ the neighborhood parameter
1: R ← {}; R is used to contain the selected attributes.
2: Do:
3: T ← {}; T is a temporary set of attributes.
4: For each a in (C −R) do:
5: If µR∪{a}(D) > µT (D) then:
6: T ← R∪{a}; by adding the attribute {a}, we

obtain a subset with higher dependency degree.
7: break; stop searching for other subset.
8: R ← T ; the reduct is best temporary set of at-

tributes.
9: Until µR(D) = µC(D).; we continue searching for

reduct until we obtain the same dependency degree
as the original set of features C.

Output: R the attributes reduct.

Although, the Quick Reduct algorithm have been exten-
sively used due to its simplicity, the major limitation of QR 
algorithm, is it does not guarantee to find minimal reduct 
as long as it employs a greedy algorithm that can be easily 
stuck in a local optimum (Jensen and Shen 2009).

3  Proposed neighborhood rough set feature 
selection method

In this section, we first present the basic definitions, proper-
ties and operations of Bucket and Trie structure. Then, we 
introduce our proposed method for feature selection based 
on these two structures.

3.1  Bucket structure

The Bucket structure, also called bin structure, has been effi-
ciently used in the distribution sort paradigm (Cormen et al. 
2009). The concept of Bucket structure is very simple and its 
utility relies on distributing the elements of the universe into 
a finite number of regions, named buckets, according to a 
given criterion. Consequently, the content of each bucket can 
be processed individually. In this respect, the Bucket struc-
ture constitutes a basic component for the proposed attribute 
selection algorithm, since it can be used to reduce the time 
complexity of neighborhood positive region generation from 
O(mN2) to O(mN2∕K) for the average case, where K, N, and 
m are, respectively, is the total number of used buckets, the 
number of conditional attributes, and the total number of 
records in U (Yong et al. 2014).

Definition 9 Let NDS = ⟨U,C ∪ D, �⟩ be a neighborhood 
decision system, with S ⊆ C . The set of records U can be 
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divided into a finite number of buckets B0,B1,… , Bk . These 
buckets are constructed as follows:

where ⌈r⌉ is the largest integer lesser than or equal to 
r, and x0 is a minimal record constructed from U as 
∀a ∈ S, f (x0, a) = minx∈Uf (x, a)

Remark 1 It is obvious that the neighborhood granule �S(x) 
of any record x is within the union of three adjacent buckets 
Bk−1,Bk and Bk+1 , where k = ⌈�S(x,x0)

�
⌉ with S ⊆ C . In fact, 

this remark is very important for time optimization of the 
proposed method, since it can reduce the time required for 
computing the neighborhood positive region NPOSS(D) . 
This remark is illustrated in Fig. 2.

According to the previous definition, the bucket genera-
tion is exemplified bellow.

Example 4 Considering the data set of Table 1, the corre-
sponding Bucket structure, for the set of features R = {d} , 
x0 = x2 and � = 0.1 , is given by: B0 = {x2, x4} , B1 = {x1}, 
and B2 = {x3} . Therefore, based on the definition of Bucket, 
the neighborhood granule of the record x2 is contained only 
in the union B0 ∪ B1 (𝜃R(x2) ⊆ B0 ∪ B1).

As mentioned above, the time complexity of positive 
region generation, using Algorithm 1, is O(mN2) for a deci-
sion table with N records and m conditional features. If the 
number m is fixed, Algorithm 1 for positive region genera-
tion becomes impracticable when the number N of sample 
is very large. Hence, based on the definition of Bucket struc-
ture, we present the fast algorithm for the evaluation of the 
neighborhood positive region as follows:

Bi =

{
x ∶ x ∈ U and

⌈
�S(x, x0)

�

⌉
= i

}
,

Algorithm 3: Neighborhood Positive Region based
on Bucket structure (U, S,D, θ)
Input: U the set of all objects records. S the set of condi-
tional features. D = {d} the set of decision features. θ the
neighborhood parameter
1: P ← {}; P is a set of samples in the positive region.
2: For each x in U do:

; we construct the Bucket structure.
3: Assign x to its corresponding bucket Bk.
4: For each x in U do:
5: Flag ← 1; we suppose that x is in the positive re-

gion (x ∈ NPOSB(D)).
6: For each y in Bk−1 ∪Bk ∪Bk+1 do:
7: If ∆S(x, y) ≤ θ and f(x, d) �= f(y, d) then:
8: Flag ← 0; find a neighbor with different deci-

sion values, means that x is not in the positive region
(x /∈ NPOSB(D)).

9: break; stop searching for other elements in U .
10: If Flag �= 0 then:
11: P ← P ∪ {x}; we add x to the positive region.
Output: P the neighborhood positive region.

3.2  Trie structure

Trie structure has been first introduced by Fredkin (1960), 
and have been effectively used for dictionary representation 
and for storing associative arrays, where the keys are usually 
strings. The original idea behind using Trie structure is that 
they could be a good compromise between running time and 
memory (Bodon and Rónyai 2003). Moreover, a Trie has a 
number of advantages over binary search trees and other 
data structures (Bodon and Rónyai 2003), this is due to the 
fact that Trie structure stores data in particular fashion, so 
that the search and the insertion of a node are very fast, more 
precisely, in the worst case O(m) time, where m is the length 
of the key string.

In this paper, we will employ Trie structure for the repre-
senting the attribute searching domain. Accordingly, we pro-
pose a search strategy that exploits the important properties 
of Trie structure to enhance the computational cost of the 
selection algorithm and to significantly reduce the number 
of evaluated subsets.

Definition 10 Let C = {a1, a2,… , am} a set of m condi-
tional attributes. The Trie structure of attributes set C, 
denoted by T, is a search tree that is composed of 2m nodes 
and m levels, where each node in a level i contains a unique 
set of m − i attributes. The nodes in the Trie structure are rep-
resented by binary code of the attribute bc = {b1, b2,… , bm} 
and a list of children nodes l = {n1, n2,… , nt} with bi takes 
the values 1 or 0, meaning, respectively, the existence or 
the absence of the attribute ai in the set corresponding to 
the node.

The root node of the Trie represents the full set of attrib-
ute C, and therefore, bc is composed of m ones, where the 
child nodes order is defined in particular fashion that opti-
mize the search and the elimination of given set of attributes.Fig. 2  Illustration of the Bucket structure
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According to the previous definition, Algorithm 4 gives 
the generation algorithm of the Trie structure.

Algorithm 4: Generation of the attributes Trie
structure (C)
Input: C the set of all conditional features and m is |C|.
1: T ← new Trie node; T is the root node.
2: T.bc ← vector of m ones; bc is a binary code of the set

of attributes.
3: T.l ← {}; l is a list of child nodes.
4: S ← {}; S is a stack of nodes to be visited.
5: Push T in S; add new element to the stack.
6: While S in not empty do:
7: Pull S in N ; get the first element of S.
8: j ← m.
9: While N.bc(j) �= 0 and j �= 0 do:
10: j ← j − 1; find the last position of zero in the

binary code.
11: For i = j + 1 to m do:; generate all subsets of the

node N .
12: CN ← a new Trie node;
13: CN.bc ← copy of N.bc.
14: CN.bc(i) ← 0; eliminate attribute corresponding

to the position i.
15: Add CN to N.l; add CN to the children list of

N .
16: Push CN to S; we should also generate the chil-

dren of NC.
Output: T the Trie structure of the attribute set.

Example 5 Considering a set of conditional attributes 
C = {a, b, c, d} . According to the generation procedure 
described in Algorithm 4, the Trie structure corresponding 
to set C is exemplified by Fig. 2. Indeed, the process for Trie 
generation can be simplified in two steps: First, the root node 
represents the full set of attributes and, therefore, its binary 
code is composed of 4 ones, bc = {1, 1, 1, 1} . Then, we cre-
ate the childes of root node, one by one, in the same order 
as in C, by deleting each time one attribute. This process 

is repeated iteratively for each of the child nodes, until we 
reach an empty set of attributes (i.e bc = {0, 0, 0, 0}).

Remark 2 One can notice from Fig. 3 that the Trie is imbal-
anced and its left branches are larger than its right branches. 
Therefore, based on breadth-first traversal, the Trie structure 
allows us to eliminate a large number of possible candidate 
if a father node is not a reduct.

As previously mentioned, the Trie structure supports two 
basic operations, search and insert. Since the Trie structure 
is completely generated by Algorithm 4, we are not con-
cerned by adding or searching for any new node and, there-
fore, the pseudocode for search and insert operations are not 
included in this paper.

3.3  Neighborhood rough set feature selection 
based on Bucket and Trie structure

In general, for constructing a feature selection algorithm, we 
should consider two main aspects: (1) attribute evaluation 
measures and (2) the search strategy. In this respect, our 
proposed fast attribute reduct algorithm adopts the depend-
ence degree of the neighborhood positive region as an evalu-
ation metric for attribute selection. In addition, we employ 
breadth-first search on the Trie structure as a search strategy.

As well known, the monotonicity property of the depend-
ence degree (Proposition 1) is a suitable criterion to stop the 
search algorithm for attribute reduction, simultaneously, it 
guarantees that the minimal attribute subset has the same 
discrimination power as the original set of attributes. There-
fore, it will be used in our proposed algorithm to greatly 
improve the computation speed.

Let NDS = ⟨U,C ∪ D, �⟩ be a neighborhood decision 
system and T be the Trie structure corresponding to C. For 

Fig. 3  The result of the attributes Trie structure generation for C = {a, b, c, d} . In the left, the Trie with the binary codes of features set, while the 
Trie in the right corresponds to the names of features
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a given node n of T having an attributes set B ( B ⊆ C ), we 
can distinguish between two cases:

∙ Case 1: �B(D) = �C(D) , the dependence degree of D to 
B is equal to the dependence degree of D to the root node C. 
In this case, B is a reduct, and therefore, we should test all 
the children associated with the node n.

∙ Case 2: 𝜇B(D) < 𝜇C(D) , the dependence degree of D to 
B is lower than the dependence degree of D to the root node 
C. In this case, B is not a reduct, and using the monotonicity 
property, this guarantee that any subset of B is, consequently, 
not a reduct. Therefore, we can eliminate all the child nodes 
of the node n.

It is important to note that we will employ a breadth-first 
search, and thus, we are conducted to evaluate the nodes of 
the Trie, level by level, starting from the root node. There-
fore, we will use a lookup table to store all the non-reduct set 
of features. In fact, this lookup table allows us to eliminate 
any node that is a subset of at least one of the elements of 
the lookup table.

Based on the above analysis, the whole procedure of 
the proposed feature selection algorithm is given in Algo-
rithm 5. This algorithm will be denoted as NRSFSBT along 
this paper.

Algorithm 5: Neighborhood Rough Set-Feature
selection based on Bucket and Trie structures
(U,C,D, θ)
Input: U the set of all objects records. S the set of condi-
tional features. D = {d} the set of decision features. θ the
neighborhood parameter
1: T ← Generate the Trie structure of C; using Algo-

rithm 4
2: S ← {}; S is a stack of nodes to be visited.
3: L ← {}; L is a lookup table for non-reduct subsets.
4: Push root node of T in S; add new element to the

stack.
5: R ← C; suppose that the full set of attributes is best

reduct.
6: While S in not empty do:
7: Pull S in N ; get the first element of S.
8: B ← the set of attributes corresponding to N.bc;

bc is the binary code of the feature set of N .
9: If B is a subset of at least one element of L then:
10: ;B is not a reduct and should be eliminated.
11: Else:
12: If µB(D) = µR(D) then:
13: R ← B; change the current reduct with B,

that have lower cardinality.
14: For each child node CN in N.l do:
15: Push CN in S; add new element to the

stack.
16: Else:; meaning that µB(D) < µR(D)

; and the set B is not a reduct.
17: Add B to L; All the subsets of B should be

eliminated according to (Proposition 1).
Output: R the attribute reduct.

As a last remark of this subsection, if the number of fea-
tures in the minimal reduct is very small compared to the 

total number of features, then the corresponding minimal 
solution is located at the low levels of the Trie structure. 
Thus, the algorithm may take more time to find the best 
reduct.

4  Experimental results and discussion

In this section, several numerical experiments are performed 
to validate the effectiveness of our proposed feature selection 
algorithm in comparison with different existing methods that 
are based on Rough Set Theory. Therefore, this section is 
divided into five subsections. In the first one, we provide a 
comparison in terms of feature selection exactitude between 
the newly introduced feature selection algorithms and the 
other existing ones. Then, we demonstrate the computa-
tional performance of our feature selection method, with 
regard to running time and the number of evaluated subsets 
in the second subsection. In the third one, we focus on the 
evaluation of the neighborhood parameter effects. And in 
the fourth one, we depict the influence of the number of 
samples in the data set on different algorithms. Finally, the 
classification performance induced by the selected feature 
of the newly introduced algorithm is evaluated using differ-
ent learning methods. In what follows, to demonstrate the 
performance and the accuracy of the proposed algorithm 
NRSFSBT, we used three feature selection methods for 
comparison: the Neighborhood Rough Set Feature Selec-
tion based on the Quick Reduct algorithm (Yong et al. 2014), 
the Neighborhood Rough Set Feature Selection based on the 
Power Set Tree (Chen et al. 2011), and Neighborhood Rough 
Set Feature Selection based on the Trie structure (Rezvan 
et al. 2015). For convenience to the readers, the three feature 
selection algorithms are denoted as NRSFSQR, NRSFSPST, 
and NRSFST, respectively.

For the experiments, we selected nine data sets from the 
UCI Machine Learning Repository (Dheeru and Karra Tani-
skidou 2017). The information details of the selected data 
sets are summarized in Table 2. Since some data sets do not 
have the same scale of values for the attributes, we decided 
to normalize the values of each of attributes to be within 
the numerical range of [0, 1]. Finally, it is important to note 
that all the experimental simulations were conducted on a 
personal computer under Windows operating system, with 
Intel Core i7 3.4 GHz processor and 8 GB RAM, and all the 
algorithms were coded on Python 3.3.

4.1  Exactitude evaluation

In this experiment, the exactitude of the proposed feature 
selection algorithm is evaluated against the other three 



338 Granular Computing (2020) 5:329–347

1 3

algorithms. For this, we will focus in this subsection on the 
correctness aspect of each algorithm and how they are able 
to identify the relevant features appropriately. In addition, 
we will employ a complete search algorithm as reference for 
the exact minimal reduct, since it can examine all the pos-
sible attributes subsets (Zhong et al. 2001). Consequently, 
Table 3 presents the selection results of each method for 
some values of the neighborhood parameter � , where the 
selected attribute sequence is given with respect to UCI data 
description for each data set.

Considering the results presented in Table 3, we can 
observe that the selected features by the proposed algorithm 
NRSFSBT are identical to the complete search minimal 
reducts for all the cases. In fact, this remark can be also 
generalized for the NRSFST. However, the results obtained 
by the existing algorithms, NRSFSQR and NRSFSPST, are 
slightly different from the minimal reduct of the complete 
search algorithm. More precisely, we can notice that NRS-
FSQR and NRSFSPST are not able to obtain the correct 
results for Cancer, Ecoli, Glass, Pima, and Australian data 
sets. This is caused by the local search behavior of NRSF-
SQR, which is a very greedy algorithm (Yong et al. 2014). 
While, for NRSFSPST, this issue is resulting from the rota-
tion procedure on the Power Set Tree (Chen et al. 2011). 
Eventually, we can conclude that our proposed method 
NRSFSBT shows sufficient exactitude to be used for fea-
ture selection problems and it is able to exhibit very accurate 
results, as well as the complete search algorithm.

4.2  Computational performance

This subsection is devoted to demonstrate the computational 
efficiency of the introduced algorithm, with regard to the 
number of evaluated reduct candidates and the computa-
tional time.

In the first part of this subsection, we present a compari-
son between different algorithms, in terms of the number 
of tested candidates for minimal reduct; in other words, the 
number of generated neighborhood positive regions. The 

corresponding results of this experiment are summarized in 
Table 4, where columns from 4 to 8 present, respectively, the 
obtained results for the complete search algorithm, NRSF-
SQR, NRSFSPST, NRSFST, and the proposed NRSFSBT.

It is evident from Table 4 that the number of tested 
attributes subsets is greatly reduced using NRSFSBT in 
comparison with the other algorithms for many data set. 
In fact, the used Trie structure and the proposed elimina-
tion process, which is based on a lookup table of the non-
reduct subsets, lead to decreasing the number of evaluated 
subsets, and therefore, directly reducing the number of 
tested neighborhood positive regions for each data set.

In the second part of this subsection, we will com-
pare the running time of five trials, for each algorithm 
with some values of the neighborhood parameter � . The 
results for this experiment are presented in Table 5. In 
addition, the value between brackets (⋅) denotes the rank 
of each method with respect to its running time. As can 
be observed from the results of Table 5, the computational 
cost of the NRSFSBT is significantly lower than the other 
algorithms for many cases. Furthermore, the average rank 
is the best among all the tested algorithms.

Finally, a careful analysis of the results of Tables 4 and 
5, we can observe that, even though the number of evalu-
ated features subsets are quite close for the three algo-
rithms NRSFSBT, NRSFSPST, and NRSFST, the com-
putational time of the proposed algorithm is significantly 
lower than the other algorithms. This leads to an interest-
ing remark, is that the Bucket structure plays significant 
role in reducing the computation cost required for calculat-
ing the positive region for each reduct candidate.

4.3  The influence of the neighborhood parameter

To further justify the efficiency and effectiveness of the 
proposed feature selection algorithm, we have performed a 
detailed experimental analysis using various parameters set-
tings. In this respect, Fig. 4 shows the running time graphs 
of different algorithms, on the selected nine data sets, for an 

Table 2  Description of data sets 
used in the experiments

Data set Abbreviation Number of

Samples Features Classes

Breast cancer coimbra Cancer 116 9 2
Ecoli Ecoli 337 7 8
Glass identification Glass 214 9 7
Pima Indians diabetes Pima 768 8 2
Australian credit approval Australian 690 14 2
Occupancy detection (training) Occupancy 8143 5 2
Contraceptive method choice Cmc 1473 9 3
Image segmentation Segment 2310 19 7
Wireless indoor localization Wireless 2000 7 4
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increasing value of the neighborhood parameter � from 0.05 
to 0.225 with interval 0.025. These graphs depict the influ-
ence of the neighborhood parameter on the computational 
performance of the tested algorithms.

According to the results of Fig. 4, the computational 
times of the proposed NRSFSBT algorithm are much lesser 
than the other tested algorithms for most of the values of the 
neighborhood parameter and under all the used data sets. 
In particular, the NRSFSBT performs considerably better 
than the other three algorithms in the data sets of Ecoli, 
Glass, Australian, Occupancy, Cmc, and Segment. Moreo-
ver, although some compared algorithms, NRSFSPST and 
NRSFST, have a very close number of evaluated attribute 
subsets to the proposed method (see Table 4), their com-
putation costs are less stable, and the plots corresponding 
to NRSFSPST and NRSFST demonstrate large variation 
between two adjacent values of the neighborhood parameter.

Finally, from this experiment, we can conclude that the 
proposed algorithm presents a significant improvement in 
terms of computation time and can be very useful for fea-
ture selection. In addition, the value of the neighborhood 

parameter can be determined based on finding compromise 
between running time and dependence degree, which exhib-
its good feature subset in a reasonable time (Pacheco et al. 
2017; Yong et al. 2014).

4.4  The influence of the number of samples

It is well known that many practical applications of data 
mining and pattern recognition include a large number of 
attributes as well as involve a variety of volumes of data. 
Therefore, it is important to understand the effect of number 
samples in data sets on the used feature selection algorithm. 
In this subsection, we carry out other comparative experi-
ments that depict the influence of the number of records 
in each data set on the computational performance of the 
proposed NRSFSBT in comparison with the existing algo-
rithm. Figures 5 and 6 show the running time graphs of dif-
ferent algorithms for two values of � = 0.1 and � = 0.125 , 
respectively. Furthermore, we used a varying numbers of 
records starting from 10 to 100% with step of 10% of the 

Table 3  Comparison of the selected minimal reduct for different values of the neighborhood parameter � on each data set; the attribute sequence 
is given with respect to UCI data description

*The complete search algorithm cannot find minimal reduct at a time less than 24 hours

Data set � Selected features by each of the algorithms

Complete search NRSFSQR (Yong 
et al. 2014)

NRSFSPST (Chen 
et al. 2011)

NRSFST (Rezvan et al. 
2015)

NRSFSBT (Proposed)

Cancer 0.1 0,1,2,3,5,8 2,1,0,5,8,3 2,0,1,3,4,5,6,7 0,1,2,3,5,8 0,1,2,3,5,8
0.125 0,1,2,3,5,7,8 7,0,1,6,2,5,8 7,5,2,1,0,3,4,6 0,1,2,3,5,7,8 0,1,2,3,5,7,8

Ecoli 0.1 0,1,2,4,5,6 4,5,0,1,6,2 6,5,4,2,1,0 0,1,2,4,5,6 0,1,2,4,5,6
0.125 0,1,2,4,5,6 3,4,1,5,0,6,2 6,5,4,2,1,0 0,1,2,4,5,6 0,1,2,4,5,6

Glass 0.1 0,1,2,3,4,6,7,8 7,3,6,4,8,2,0,1 8,7,6,4,3,2,1,0 0,1,2,3,4,6,7,8 0,1,2,3,4,6,7,8
0.125 0,1,2,3,4,5,6,8 7,3,6,4,8,1,2,0,5 8,6,5,4,3,2,1,0 0,1,2,3,4,5,6,8 0,1,2,3,4,5,6,8

Pima 0.1 0,1,2,3,4,5,6,7 1,5,0,7,6,3,2,4 0,1,2,3,4,5,6,7 0,1,2,3,4,5,6,7 0,1,2,3,4,5,6,7
0.125 0,1,2,3,4,5,6,7 0,1,5,7,6,3,2,4 0,1,2,3,4,5,6,7 0,1,2,3,4,5,6,7 0,1,2,3,4,5,6,7

Australian 0.1 0,1,2,3,4,5,6,7,8,9, 
10,11,12

13,6,9,4,1,7,2,12,3, 
10,5,0,11

12,11,10,9,7,6,5,4,3, 
2,1,0,8

0,1,2,3,4,5,6,7,9, 
10,11,12

0,1,2,3,4,5,6,7,8,9, 
10,11,12

0.125 0,1,2,3,4,5,6,7,8,9, 
10,11,12,13

6,9,1,5,4,7,2,10,12,3, 
0,8,11,13

0,1,2,3,4,5,6,7,8,9, 
10,11,12,13

0,1,2,3,4,5,6,7,8,9, 
10,11,12,13

0,1,2,3,4,5,6,7,8,9, 
10,11,12,13

Occupancy 0.1 0,1,2,3,4 2,4,0,3,1 0,1,2,3,4 0,1,2,3,4 0,1,2,3,4
0.125 0,1,2,3,4 2,4,0,1,3 0,1,2,3,4 0,1,2,3,4 0,1,2,3,4

Cmc 0.1 0,1,2,3,4,5,6,7,8 3,6,0,7,1,2,5,4,8 0,1,2,3,4,5,6,7,8 0,1,2,3,4,5,6,7,8 0,1,2,3,4,5,6,7,8
0.125 0,1,2,3,4,5,6,7,8 3,0,2,7,1,6,5,4,8 0,1,2,3,4,5,6,7,8 0,1,2,3,4,5,6,7,8 0,1,2,3,4,5,6,7,8

Segment 0.1 * 11,1,15,13,0,16,17,5, 
7,18,14,3,9,6,2,4

18,17,16,15,14,13,11, 
7,5,3,1,0,2,4,6,8,9,10

0,1,3,5,6,7,9,10,11,12,1
3,14,15,16,17,18

0,1,3,5,7,9,10,11,12, 
13,14,15,16,17,18

0.125 * 11,1,15,13,0,17,5,18, 
3,14,7,9,16,12,4,10

18,17,16,15,14,13,12, 
11,10,9,7,5,4,3,1, 
0,2,6

0,1,3,4,5,6,7,9,10,11, 
12,13,14,15,16,17,18

0,1,3,4,5,7,9,10,11, 
12,13,14,15,16,17,18

Wireless 0.1 0,1,2,3,4,5,6 4,0,2,6,3,5,1 0,1,2,3,4,5,6 0,1,2,3,4,5,6 0,1,2,3,4,5,6
0.125 0,1,2,3,4,5,6 4,3,0,2,6,1,5 0,1,2,3,4,5,6 0,1,2,3,4,5,6 0,1,2,3,4,5,6
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Table 4  Comparative results with respect to the number of evaluated attribute subsets for different values of the neighborhood parameter � on 
each data set

Values with bold text style indicate the best results. *The complete search algorithm cannot find minimal reduct at a time less than 24 hours

Data set Number of 
feature m

� The number of evaluated attributes subsets

Complete search 2m NRSFSQR (Yong 
et al. 2014)

NRSFSPST (Chen 
et al. 2011)

NRSFST (Rezvan 
et al. 2015)

NRSFSBT 
(Proposed)

Cancer 9 0.1 512 39 59 96 55
0.125 42 20 28 17

Ecoli 7 0.1 128 28 10 12 9
0.125 28 10 12 9

Glass 9 0.1 512 45 12 14 11
0.125 45 12 12 11

Pima 8 0.1 256 36 10 10 10
0.125 36 10 10 10

Australian 14 0.1 16384 105 18 21 16
0.125 105 16 16 16

Occupancy 5 0.1 32 15 7 7 7
0.125 15 7 7 7

Cmc 9 0.1 512 45 11 11 11
0.125 45 11 11 11

Segment 19 0.1 524288* 136 48 48 32
0.125 185 26 26 25

Wireless 7 0.1 128 29 9 9 9
0.125 29 9 9 9

Average 60306.00 57.58 17.41 20.58 15.64

Table 5  Running time (s) on the 
used data set for various values 
of the neighborhood parameter 
� using different attribute 
selection algorithms

Values with bold text style indicate the best results

Data set � Elapsed CPU time in second with (rank)

NRSFSQR 
(Yong et al. 
2014)

NRSFSPST 
(Chen et al. 
2011)

NRSFST (Rez-
van et al. 2015)

NRSFSBT (Proposed)

Cancer 0.1 1.10 (1) 9.24 (3) 12.40 (4) 1.77 (2)
0.125 1.18 (2) 3.20 (3) 3.57 (4) 0.62 (1)

Ecoli 0.1 25.92 (2) 64.38 (4) 53.90 (3) 15.56 (1)
0.125 24.70 (2) 59.10 (4) 50.09 (3) 17.43 (1)

Glass 0.1 157.19 (3) 169.74 (4) 137.27 (2) 28.39 (1)
0.125 150.32 (3) 153.71 (4) 126.38 (2) 31.13 (1)

Pima 0.1 8.18 (2) 12.20 (4) 11.93 (3) 2.73 (1)
0.125 8.77 (2) 12.10 (4) 11.59 (3) 3.25 (1)

Australian 0.1 30.24 (2) 105.13 (4) 95.06 (3) 10.98 (1)
0.125 29.69 (2) 87.90 (4) 69.66 (3) 13.51 (1)

Occupancy 0.1 970.05 (2) 2827.27 (4) 2290.91 (3) 381.85 (1)
0.125 934.55 (2) 2684.60 (4) 2124.93 (3) 438.64 (1)

Cmc 0.1 3.55 (2) 4.30 (4) 4.23 (3) 1.96 (1)
0.125 3.59 (3) 3.80 (4) 3.20 (2) 1.87 (1)

Segment 0.1 267.27 (1) 3978.71 (3) 4209.65 (4) 315.06 (2)
0.125 288.09 (1) 2118.72 (3) 2465.01 (4) 289.27 (2)

Wireless 0.1 235.71 (2) 497.90 (4) 403.97 (3) 76.47 (1)
0.125 244.95 (2) 481.61 (4) 388.59 (3) 88.36 (1)

Average rank (2.00) (3.72) (3.06) (1.22)
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original size of each data set, where the records are ran-
domly selected.

From the results of Figs. 5 and 6, we can notice strong 
relationship between the running time and the number of 
records in each data set, as the number of samples increases 
the computation time increases. In addition, the computation 
cost of NRSFSBT performs competitively with the existing 
NRSFSQR for lower data set sizes, while, for the higher 
number of samples, it is very obvious that the proposed algo-
rithm performs significantly better than all of the existing 
algorithms. On the contrary, the NRSFSPST and NRSFST 
present a large gap in the computation time and exhibit the 
highest running time for most of the testing cases, especially 
on Occupancy, Australian, Segment, and Wireless data sets.

Finally, we can conclude that the results obtained by 
NRSFSBT are more stable than those produced by the other 
algorithms. In addition, the proposed method runs rapidly 
and is applicable to data sets with different sizes, which 
ensures the usefulness of the proposed feature selection 

algorithm and validates the theoretical framework developed 
previously.

4.5  Classification performance

The purpose of this subsection is to evaluate the classifica-
tion quality induced by the proposed feature selection algo-
rithm NRSFSBT in comparison with the existing methods. 
As we know, all the tested feature selection algorithms 
exhibit almost the same attribute reducts when using large 
values of 𝜃 > 0.15 . Therefore, we will consider, in this 
experiment, only the cases when � ≤ 0.15 , more precisely 
� = 0.1 and � = 0.125 , where these algorithms could obtain 
different attribute reductions.

In fact, the classification performance of different selec-
tion algorithms is measured through three learning algo-
rithms, which are commonly used by the scientific commu-
nity. The first algorithm is The k-Nearest Neighbor (k-NN) 
that is considered as one of the simplest machine learning 
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Fig. 4  Comparative analysis in terms of running time (second) 
between the proposed feature selection algorithm NRSFSBT and 
the existing NRSFSQR (Yong et al. 2014), NRSFSPST (Chen et al. 

2011), and NRSFST (Rezvan et al. 2015), with a varying values the 
neighborhood parameter � for different data sets
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algorithms, which belongs to the class of instance-based 
learning. The purpose of the k-NN is to classify any new 
object based on a plurality vote of its k nearest neighbors 
using a similarity measure. For the case of k = 1 , it simply 
assigns the object to the class of the single nearest neighbor. 
One of the most advantages of the k-NN is that it does not 
make any assumptions on the underlying data distribution 
(Cover and Hart 1967). The second one is Linear Support 
Vector Machine (LSVM). The goal of this type of algo-
rithms is to find the hyperplane that better separate between 
two classes, where it can be generalized to handle case of 
multiclasses by applying one-vs-the rest scheme. One of the 
most important advantages of LSVM is associated with its 
suitability for the problems when the number of features and 
training samples is very large (Chang and Lin 2011). The 
last one is the Classification and Regression Tree (CART), 
which aims to builds a tree structure composed of deci-
sion nodes and leaf nodes, based on a recursive partition-
ing method. The CART model can be used for predicting 

categorical variables (classification) or predicting continu-
ous variables (regression), where one can easily understand 
and interpret the resulted decision. In addition, the pruning 
mechanism allows to avoid the problem of overfitting and 
to better generalize the data in less complex tree (Breiman 
2017).

Basically, this experiment is designed as follows: first, we 
use the fivefold cross validation approach to randomly split 
the data sets samples into ten approximately equal parts, 
where one of the ten parts is used as the test set, while the 
rest is used for the training. Then, three learning algorithms, 
k-NN (with k = 1 ), LSVM, and CART, were used to evaluate 
the classification performance of different reduction algo-
rithms. All the parameters of the classifiers are set to default 
(Pedregosa et al. 2011). Finally, the recognition results for 
each of the classification algorithms, from the five-fold 
cross-validation experiment, are obtained and the means of 
the classification accuracies are summarized in Tables 6, 7, 
and 8. It is important to mention that the value | ⋅ | denotes 
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Fig. 5  Comparative results with regards to running time (second) 
between the proposed feature selection algorithm NRSFSBT and 
the existing NRSFSQR (Yong et al. 2014), NRSFSPST (Chen et al. 

2011), and NRSFST (Rezvan et  al. 2015), for an increasing num-
ber of samples in each data set, where the neighborhood parameter 
� = 0.1
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the average cardinality of the feature subsets acquired by 
each feature selection algorithm. In addition, we have com-
pared the obtained results with those of the original full set 
of attributes of each data set.

It can be clearly seen from Tables 6, 7, and 8, that, for 
many of the data sets, the proposed NRSFSBT outper-
forms the three existing feature selection algorithms in 
terms of both cardinality and accuracy of the feature sub-
set. Moreover, the NRSFSBT algorithm exhibits the best 
overall performances simultaneously in terms of acquiring 
few features and achieving high accuracy, with respect to 
the three learning algorithms. More specifically, as pre-
sented in Table 8, the NRSFSBT achieves the smallest 
features subset cardinalities and maintained high accuracy 
for the three data sets, Ecoli, Occupancy, and Cmc.

In addition, it is noticeable from the three Tables 6, 7, 
and 8, that the results obtained by the proposed feature 
algorithm with the LSVM classifier with respect to the 
average classification are higher than those of the other 
two learning algorithms k-NN and CART. In addition, we 

can see that the NRSFSQR did not always perform better 
than the original full set of attributes.

As a last remark of this experiment, by taking the 
results obtained on Cancer data set from Table 7, as an 
illustration, we can observe that the proposed NRSFSBT 
achieves good average cardinality of the feature subsets 
(5.2) in comparison with the original data (9). Neverthe-
less, the classification result induced by the selected fea-
ture is lesser than which of the original data. In fact, this 
similar behavior also holds for Segment and Pima data 
sets from Tables 7 and 8, respectively. This observation 
shows that the proposed feature selection algorithm does 
not always guarantee improvement in classification accu-
racy, since the criterion of selection is based on depend-
ence degree and some of the data sets have been already 
carefully selected by domain experts (Post et al. 2016). 
However, our feature selection approach could certainly 
provide significant improvement on raw data from pro-
duction environments. The experimental results generally 
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Fig. 6  Comparative results with regards to running time (second) 
between the proposed feature selection algorithm NRSFSBT and 
the existing NRSFSQR (Yong et al. 2014), NRSFSPST (Chen et al. 

2011), and NRSFST (Rezvan et  al. 2015), for an increasing num-
ber of samples in each data set, where the neighborhood parameter 
� = 0.125
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Table 6  Classification 
accuracies (%) of k-NN 
classifier, induced by different 
feature selection algorithms for 
� = 0.1 and � = 0.125

Values with bold text style indicate the best results

� Data set Original data NRSFSQR 
(Yong et al. 
2014)

NRSFSPST 
(Chen et al. 
2011)

NRSFST 
(Rezvan et al. 
2015)

NRSFSBT 
(Proposed)

| ⋅ | % | ⋅ | % | ⋅ | % | ⋅ | % | ⋅ | %

0.1 Cancer 9.0 65.25 5.2 60.84 6.8 65.39 5.2 61.10 5.2 65.63
Ecoli 7.0 78.03 5.2 78.67 6.0 78.62 5.0 78.60 5.0 78.42
Glass 9.0 65.93 8.8 64.42 8.0 64.34 8.0 64.74 8.0 66.11
Pima 8.0 71.14 7.2 70.90 7.6 70.95 7.2 71.30 7.0 71.04
Australian 14.0 80.57 12.4 79.94 13.2 80.47 11.8 79.78 12.0 80.57
Occupancy 5.0 92.50 4.4 92.31 4.6 92.73 4.2 92.73 4.2 92.59
Cmc 9.0 46.94 8.8 46.72 9.0 46.86 8.8 47.12 8.5 47.20
Segment 19.0 97.24 15.2 97.37 17.0 97.27 15.8 97.08 15.4 97.46
Wireless 7.0 97.58 5.8 97.86 6.4 98.00 6.2 97.60 6.2 97.67

0.125 Cancer 9.0 65.25 6.4 68.21 7.6 65.33 6.2 67.46 6.4 67.25
Ecoli 7.0 78.03 6.4 78.25 6.0 78.23 5.8 78.62 5.6 78.20
Glass 9.0 65.93 8.8 66.15 8.4 64.54 8.4 64.56 8.4 64.61
Pima 8.0 71.14 7.6 70.88 7.8 71.23 7.4 71.17 7.4 71.18
Australian 14.0 80.57 13.2 80.24 13.6 80.52 12.8 80.20 13.0 80.57
Occupancy 5.0 92.50 4.6 92.52 4.8 92.70 4.6 92.61 4.6 92.56
Cmc 9.0 46.94 8.8 46.87 9.0 46.20 8.5 47.09 8.5 46.18
Segment 19.0 97.24 15.8 97.29 17.4 97.07 16.4 97.27 16.2 97.38
Wireless 7.0 97.58 5.8 98.11 6.6 97.96 6.4 98.05 6.4 98.25

Average 9.67 77.24 8.36 77.09 8.88 77.13 8.26 77.06 8.22 77.44

Table 7  Classification 
accuracies (%) of LSVM 
classifier, induced by different 
feature selection algorithms for 
� = 0.1 and � = 0.125

Values with bold text style indicate the best results

� Data set Original data NRSFSQR 
(Yong et al. 
2014)

NRSFSPST 
(Chen et al. 
2011)

NRSFST 
(Rezvan et al. 
2015)

NRSFSBT 
(Proposed)

| ⋅ | % | ⋅ | % | ⋅ | % | ⋅ | % | ⋅ | %

0.1 Cancer 9.0 68.30 5.2 68.01 6.8 68.06 5.2 68.00 5.2 68.12
Ecoli 7.0 77.19 5.2 77.44 6.0 77.38 5.0 77.29 5.0 77.13
Glass 9.0 56.14 8.8 56.40 8.0 56.60 8.0 54.92 8.0 56.94
Pima 8.0 77.36 7.2 77.54 7.6 77.57 7.2 77.52 7.0 77.53
Australian 14.0 86.69 12.4 86.13 13.2 86.64 11.8 85.96 12.0 86.80
Occupancy 5.0 96.09 4.4 96.06 4.6 95.88 4.2 95.83 4.2 95.99
Cmc 9.0 46.96 8.8 46.92 9.0 46.70 8.8 47.00 8.5 46.99
Segment 19.0 95.08 15.2 94.98 17.0 95.06 15.8 94.91 15.4 94.89
Wireless 7.0 97.50 5.8 97.70 6.4 97.57 6.2 97.45 6.2 97.81

0.125 Cancer 9.0 68.30 6.4 61.72 7.6 69.74 6.2 71.27 6.4 71.29
Ecoli 7.0 77.19 6.4 77.27 6.0 77.10 5.8 77.11 5.6 77.34
Glass 9.0 56.14 8.8 57.14 8.4 54.89 8.4 54.77 8.4 56.81
Pima 8.0 77.36 7.6 77.30 7.8 77.22 7.4 77.56 7.4 77.44
Australian 14.0 86.69 13.2 86.67 13.6 86.10 12.8 86.29 13.0 86.87
Occupancy 5.0 96.09 4.6 95.87 4.8 95.96 4.6 95.97 4.6 95.75
Cmc 9.0 46.96 8.8 46.98 9.0 46.69 8.5 46.68 8.5 46.79
Segment 19.0 95.08 15.8 95.11 17.4 95.22 16.4 94.93 16.2 94.98
Wireless 7.0 97.50 5.8 98.23 6.6 97.89 6.4 98.19 6.4 97.83

Average 9.67 77.92 8.36 77.64 8.88 77.90 8.26 77.87 8.22 78.18
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indicate that the proposed algorithm shows its effective-
ness in selecting relevant attributes.

5  Conclusion

Feature selection with the NRS Model is an interesting topic 
in data mining and pattern recognition, and has shown to 
be very convenient for handling numerical data. The main 
contributions of this work are three-fold. First, we have pre-
sented a new fast feature selection algorithm for Neighbor-
hood Rough Set Model. Second, we employ the Bucket and 
Trie structures to design the feature selection algorithm, 
which does not only reduce the computational complexity 
of the search process, but also guarantee to find a compact 
subset of relevant features. Third, numerous experiments 
on different standard data sets from UCI repository are 
carried out to verify the effectiveness of our algorithm in 
comparison with the related approaches. The experimental 
results showed that the proposed algorithm is very effec-
tive with respect to computational time and classification 
performance, and is able to select relevant attributes accu-
rately. In future works, we will focus on multi-label feature 
selection based on our proposed algorithm. In addition, 
we aim to develop an approach for adjusting the neighbor-
hood parameter, according to the properties of the data set. 

Finally, we plan to employ new data structure that could 
improve the results for heterogeneous and mixed data types’ 
feature selection problems.
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