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Abstract
Uncertainty is an important factor in any decision-making process. Different mathematical frameworks have been introduced 
to cope the ambiguity of decision-making. The concept of Pythagorean fuzzy sets (PFSs) is one of the latest mathematical 
frameworks that deals with uncertainty. Pythagorean fuzzy sets generalize intuitionistic fuzzy sets with a wider scope of 
applications, and hence, the motivation for investigating into its applicability in tackling uncertainty imbedded in medical 
diagnosis. This paper studies the approach of max–min–max composite relation for Pythagorean fuzzy sets, improves upon 
the approach, and applies its to medical diagnosis problem. The validity of the improved composite relation for Pythagorean 
fuzzy sets is carried out in comparison to the max–min–max composite relation for Pythagorean fuzzy sets using numerical 
experiments. The improved composite relation for Pythagorean fuzzy sets yields a better relation with a greater relational 
value when compared to the aforementioned composite relation and, hence, its choice to solving medical diagnosis problem. 
To this end, an application of the improved composite relation for Pythagorean fuzzy sets is explored in medical diagnosis 
using hypothetical medical database. This improved composite relation could be used as a sustainable approach in applying 
Pythagorean fuzzy sets to multi-criteria decision-making (MCDM) problems, multi-attribute decision-making (MADM) 
problems, pattern recognition problems, among others.

Keywords Fuzzy set · Intuitionistic fuzzy set · Medical diagnosis · Pythagorean fuzzy relation · Pythagorean fuzzy set

1 Introduction

The theory of fuzzy sets proposed by Zadeh (1965) has sev-
eral applications because of its ability to handle the impreci-
sion imbedded in real-life situations. A fuzzy set is charac-
terized by a membership function µ which takes value from 
a crisp set to a unit interval I = [0, 1] . Many researchers 
have worked on the theory of fuzzy sets and its applications 
(see Chen et al. 2001; Chen and Tanuwijaya 2011; Chen 
and Chang 2011; Chen et al. 2012; Wang and Chen 2008). 
The inevitable presence of uncertainty and imprecision in 
the real world necessitated researchers to develop some 
mathematical frameworks to cope imprecision more accu-
rately than fuzzy sets. The concept of intuitionistic fuzzy 
sets (IFSs) proposed in Atanassov (1983, 1986) is one of 
the generalizations of fuzzy sets with a better applicability.

After the introduction of IFSs theory, many studies that 
bother on its applications have been carried out, especially 
in areas like medical diagnosis, electoral system, career 
determination, appointment procedures, pattern recogni-
tion, learning techniques, among others (see Davvaz and 
Sadrabadi 2016; Chen and Chang 2015; Chen et al. 2016; De 
et al. 2001; Ejegwa et al. 2014a, b, c; Ejegwa 2015; Ejegwa 
and Modom 2015; Ejegwa et al. 2016; Hatzimichailidis 
et al. 2012; Liu and Chen 2017; Szmidt and Kacprzyk 2001, 
2004).

Although the notion of IFSs is very resourceful, there are 
cases where the sum of the membership and nonmembership 
degrees is greater than one unlike the situation captured in 
IFSs; where the sum of the membership and nonmember-
ship degrees is less than or equal to one only. This limitation 
in IFSs led to the introduction of intuitionistic fuzzy sets 
of second type (IFSST) by Atanassov (1989). The concept 
was later called Pythagorean fuzzy sets (PFSs) by Yager 
(2013a). PFS is a new tool to deal with vagueness involved 
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in decision-making. As a generalized set, PFS has close 
relationship with IFS. The concept of PFSs can be used to 
characterize uncertain information more sufficiently and 
accurately when compare to IFSs. The theory of PFSs has 
been extensively studied in the literature since inception (see 
Beliakov and James 2014; Dick et al. 2016; Gou et al. 2016; 
He et al. 2016; Peng and Yang 2015; Peng and Selvachan-
dran 2017; Yager 2013b, 2014; Ejegwa 2018).

Pythagorean fuzzy set has attracted great attentions of 
many researchers and subsequently, the concept has been 
applied to many application areas such as decision-making, 
aggregation operators, information measures, among others. 
Perez-Dominguez et al. (2018) presented a multi-objective 
optimization on the basis of ratio analysis (MOORA) under 
PFS setting and applied it to multi-criteria decision-making 
(MCDM) problems. Liang and Xu (2017) proposed the 
idea of PFSs in hesitant environment and its multi-criteria 
decision-making (MCDM) by employing the technique for 
order preference by similarity to ideal solution (TOPSIS) 
using energy project selection model. Rahman et al. (2017) 
worked on some geometric aggregation operators on inter-
val-valued PFSs (IVPFSs) and applied the same to group 
decision-making problem. Mohagheghi et al. (2017) offered 
a novel last aggregation group decision-making process for 
the weight of decision makers using PFSs.

Rahman et al. (2018b) proposed some approaches to 
multi-attribute group decision-making based on induced 
interval-valued Pythagorean fuzzy Einstein aggregation 
operator. Garg (2018a) discussed a decision-making prob-
lem under Pythagorean fuzzy environment by proposing 
some generalized aggregation operators. Garg (2018b) pro-
posed an improved score function for solving multi-criteria 
decision-making (MCDM) problem with partially known 
weight information, such that the preferences related to the 
criteria are taken in the form of interval-valued Pythagorean 
fuzzy sets. Garg (2018d, e) developed a new decision-mak-
ing model with probabilistic information, using the concept 
of immediate probabilities to aggregate the information 
under the Pythagorean fuzzy set environment, and defined 
two new exponential operational laws about IVPFS and 
their corresponding aggregation operators with application 
to multi-criteria decision-making (MCDM). See Gao and 
Wei (2018); Rahman et al. (2018a); Rahman and Abdullah 
(2018); Khan et al. (2018a, b); Garg (2016, 2017, 2018c); 
Du et al. (2017); Hadi-Venchen and Mirjaberi (2014); Yager 
and Abbasov (2013); Yager (2016) for more applications of 
PFSs and IVPFSs, respectively.

In this paper, we propose an improved version of 
max–min–max composite relation for Pythagorean 
fuzzy sets with application to medical diagnosis. A 

juxtapositional analysis of the improved composite rela-
tion for Pythagorean fuzzy sets and the max–min–max 
composite relation for Pythagorean fuzzy sets is carried 
out using some numerical experiments. It follows that the 
improved version provides a reliable Pythagorean fuzzy 
relation when compared to max–min–max composite rela-
tion for Pythagorean fuzzy sets. Finally, an application of 
the improved composite relation for Pythagorean fuzzy 
sets is carried out in medical diagnosis because of its reli-
able output when compared to max–min–max composite 
relation. The paper is organized by presenting some math-
ematical preliminaries of fuzzy sets, IFSs and PFSs, in 
Sect. 2. In Sect. 3, we present max–min–max composite 
relation for PFSs, its improved version, and their numeri-
cal verifications. An application of the improved compos-
ite relation for PFSs to medical diagnosis is explored in 
Sect. 4. Finally, Sect. 5 concludes the paper and provides 
direction for future studies.

2  Some basic notions of Pythagorean fuzzy 
sets

In this section, we recall some mathematical preliminaries 
of fuzzy sets, IFSs and PFSs.

Definition 1 (See Zadeh 1965) Let X be a nonempty set. A 
fuzzy set A of X is characterized by a membership function:

That is:

Alternatively, a fuzzy set A of X is an object having the form:

where the function

defines the degree of membership of the element x ∈ X.

�A ∶ X → [0, 1].

�A(x) =

⎧
⎪⎨⎪⎩

1, if x ∈ X

0, if x ∉ X

(0, 1) if x is partly inX

A =
�⟨x,�A(x)⟩ ∣ x ∈ X

�
orA =

��
�A(x)

x

�
∣ x ∈ X

�
,

�A(x) ∶ X → [0, 1]
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Definition 2 (See Atanassov 1983, 1986) Let a nonempty 
set X be fixed. An IFS A of X is an object having the form:

or

where the functions

define the degree of membership and the degree of nonmem-
bership, respectively, of the element x ∈ X to A, which is a 
subset of X, and for every x ∈ X:

For each A in X:

is the intuitionistic fuzzy set index or hesitation margin of 
x ∈ X . The hesitation margin �A(x) is the degree of non-
determinacy of x ∈ X , to the set A and �A(x) ∈ [0, 1] . The 
hesitation margin is the function that expresses the lack of 
knowledge of whether x ∈ X or x ∉ X . Thus:

Example 3 Let X = {x, y, z} be a fixed universe of discourse 
and

be the intuitionistic fuzzy set in X. The hesitation margins 
of the elements x, y, z to A are

Definition 4 (See Yager 2013a, b) Let X be a universal set. 
Then, a Pythagorean fuzzy set A which is a set of ordered 
pairs over X, is defined by the following:

or

A = {⟨x,�A(x), �A(x)⟩ ∣ x ∈ X}

A =

{⟨
�A(x), �A(x)

x

⟩
∣ x ∈ X

}
,

�A(x) ∶ X → [0, 1] and �A(x) ∶ X → [0, 1]

0 ≤ �A(x) + �A(x) ≤ 1.

�A(x) = 1 − �A(x) − �A(x)

�A(x) + �A(x) + �A(x) = 1.

A =

{⟨
0.70, 0.10

x

⟩
,

⟨
0.85, 0.05

y

⟩
,

⟨
0.50, 0.20

z

⟩}

�A(x) = 0.20, �A(y) = 0.10 and �A(z) = 0.30.

A = {⟨x,�A(x), �A(x)⟩ ∣ x ∈ X}

where the functions

define the degree of membership and the degree of nonmem-
bership, respectively, of the element x ∈ X to A, which is a 
subset of X, and for every x ∈ X:

Supposing that (�A(x))
2 + (�A(x))

2 ≤ 1 ; then, there is 
a degree of indeterminacy of x ∈ X  to A defined by 
�A(x) =

√
1 − [(�A(x))

2 + (�A(x))
2] and �A(x) ∈ [0, 1] . In 

what follows, (�A(x))
2 + (�A(x))

2 + (�A(x))
2 = 1 . Otherwise, 

�A(x) = 0 whenever (�A(x))
2 + (�A(x))

2 = 1.
We denote the set of all PFSs over X by PFS(X).

Example 5 Let A ∈ PFS(X) . Suppose that �A(x) = 0.70 
and �A(x) = 0.50 for X = {x} . Clearly, 0.70 + 0.50 ≰ 1 , 
but 0.702 + 0.502 ≤ 1 . Thus, �A(x) = 0.5099 , and hence, 
(�A(x))

2 + (�A(x))
2 + (�A(x))

2 = 1.

Table 1 explains the difference between Pythagorean 
fuzzy sets and intuitionistic fuzzy sets (Ejegwa 2018).

Definition 6 (See Yager 2013a, b, 2014) Let A,B ∈ PFS(X) . 
Then, we have the following:

(i) Ac = {⟨x, �A(x),�A(x)⟩�x ∈ X}.
(ii) A ∪ B = {⟨x,max(�A(x),�B(x)),min(�A(x), �B(x))⟩�x ∈ X}.
(iii) A ∩ B = {⟨x,min(�A(x),�B(x)),max(�A(x), �B(x))⟩�x ∈ X}.
(iv) A⊕ B = {⟨x,√(𝜇

A
(x))2 + (𝜇

B
(x))2 − (𝜇

A
(x))2(𝜇

B
(x))2,

�
A
(x)�

B
(x)⟩�x ∈ X}.

(v) A⊗ B = {⟨x,𝜇
A
(x)𝜇

B
(x),√

(�
A
(x))2 + (�

B
(x))2 − (�

A
(x))2(�

B
(x))2⟩�x ∈ X}.

A =

{⟨
�A(x), �A(x)

x

⟩
∣ x ∈ X

}
,

�A(x) ∶ X → [0, 1] and �A(x) ∶ X → [0, 1]

0 ≤ (�A(x))
2 + (�A(x))

2 ≤ 1.

Table 1  Pythagorean fuzzy sets and Intuitionistic fuzzy sets

Intuitionistic fuzzy sets Pythagorean fuzzy sets

� + � ≤ 1 � + � ≤ 1 or � + � ≥ 1

0 ≤ � + � ≤ 1 0 ≤ �2 + �2 ≤ 1

� = 1 − (� + �) � =
√
1 − [�2 + �2]

� + � + � = 1 �2 + �2 + �2 = 1
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Remark 7 (Ejegwa 2018) Let A,B,C ∈ PFS(X) . By Defini-
tion 6, the following properties hold:

3  Pythagorean fuzzy relations

The author has proposed the notion of max–min–max com-
posite relation for PFSs in the other communication. Albeit, 
in this section, we introduce an improved composite relation 
for PFSs.

Definition 8 Let X and Y be two nonempty sets. A Pythago-
rean fuzzy relation (PFR) R from X to Y is a PFS of X × Y  
characterized by the membership function �R and nonmem-
bership function �R . A PF relation or PFR from X to Y is 
denoted by R(X → Y).

Definition 9 Let A ∈ PFS(X) . Then, the max–min–max 
composite relation of

with A is a PFS B of Y denoted by B = R◦A , such that its 
membership and nonmembership functions are defined by 
the following:

(Ac)c = A

A ∩ A = A

A ∪ A = A

A⊕ A ≠ A

A⊗ A ≠ A

A ∩ B = B ∩ A

A ∪ B = B ∪ A

A⊕ B = B⊕ A

A⊗ B = B⊗ A

A ∩ (B ∩ C) = (A ∩ B) ∩ C

A ∪ (B ∪ C) = (A ∪ B) ∪ C

A⊕ (B⊕ C) = (A⊕ B)⊕ C

A⊗ (B⊗ C) = (A⊗ B)⊗ C

A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C)

A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C)

A⊕ (B ∪ C) = (A⊕ B) ∪ (A⊕ C)

A⊕ (B ∩ C) = (A⊕ B) ∩ (A⊕ C)

A⊗ (B ∪ C) = (A⊗ B) ∪ (A⊗ C)

A⊗ (B ∩ C) = (A⊗ B) ∩ (A⊗ C)

(A ∩ B)c = Ac ∪ Bc

(A ∪ B)c = Ac ∩ Bc

(A⊕ B)c = Ac ⊗ Bc

(A⊗ B)c = Ac ⊕ Bc.

R(X → Y)

and

∀x ∈ X and y ∈ Y  , where 
⋁

= maximum; 
⋀

= minimum.

Definition 10 Let Q(X → Y) and R(Y → Z) be two PFRs. 
Then, the max–min–max composite relation R◦Q is a PFR 
from X to Z, such that its membership and nonmembership 
functions are defined by the following:

and

∀(x, z) ∈ X × Z and ∀y ∈ Y .

Definition 11 Let A ∈ PFS(X) . Then, the improved com-
posite relation of

with A is a PFS � of Y denoted by B = R◦A , such that its 
membership and nonmembership functions are defined by 
the following:

and

∀x ∈ X and y ∈ Y  , where 
⋁

= maximum; 
⋀

= minimum.

Definition 12 Let Q(X → Y) and R(Y → Z) be two PFRs. 
Then, the improved composite relation �◦� is a PFR from 
X to Z, such that its membership and nonmembership func-
tions are defined by the following:

�B(y) =
⋁
x

{min[�A(x),�R(x, y)]}

�B(y) =
⋀
x

{max[�A(x), �R(x, y)]}

�R◦Q(x, z) =
⋁
y

{min[�Q(x, y),�R(y, z)]}

�R◦Q(x, z) =
⋀
y

{max[�Q(x, y), �R(y, z)]}

R(X → Y)

��(y) =
⋁
x

{
�A(x) + �R(x, y)

2

}

��(y) =
⋀
x

{
�A(x) + �R(x, y)

2

}

��◦�(x, z) =
⋁
y

{
�Q(x, y) + �R(y, z)

2

}
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and

∀(x, z) ∈ X × Z and ∀y ∈ Y .

Remark 13 From Definitions 11 and 12, the improved com-
posite relation � or �◦� is calculated by the following:

∀y ∈ Y  or

∀(x, z) ∈ X × Z.

Proposition 14 If R and S are two PFRs on X × Yand Y × Z , 
respectively. Then:

 (i) (R−1)−1 = R.
 (ii) (S◦R)−1 = R−1

◦S−1.

3.1  Numerical examples

Before applying this relation to medical diagnosis, we 
discuss the procedures of the approach step-wisely. First, 
we use max–min–max composite relation and, then, the 
improved composite relation. A reliability analysis is con-
ducted to ascertain which of the composite relation provides 
the best relation by comparing the relational values.

Example 15 Let E,F ∈ PFS(X) for X = {x1, x2, x3} . Suppose

and

We find the composite relation B using Definitions 9 and 
10, respectively:

implying that

��◦�(x, z) =
⋀
y

{
�Q(x, y) + �R(y, z)

2

}

� = ��(y) − ��(y)��(y)

�◦� = �R◦Q(x, z) − �R◦Q(x, z)�R◦Q(x, z)

E =

{⟨
0.6, 0.2

x1

⟩
,

⟨
0.4, 0.6

x2

⟩
,

⟨
0.5, 0.3

x3

⟩}

F =

{⟨
0.8, 0.1

x1

⟩
,

⟨
0.7, 0.3

x2

⟩
,

⟨
0.6, 0.1

x3

⟩}
.

min[�R(ei, xj),�S(xj, fk)] = 0.6, 0.4, 0.5,

�B(ei, fk) =
⋁
xj∈X

{0.6, 0.4, 0.5} = 0.6.

Clearly, min[�R(ei, xj),�S(xj, fk)] is gotten by synthesizing 
Definitions 9 and 10. Applying this to E and F as given in 
the above example, we observe that the minimum value of 
the membership values of the elements (i.e., x1, x2, x3 ) in E 
and F, respectively, is 0.6, 0.4, and 0.5.

Again:

implying that

By explanation, max[�R(ei, xj), �S(xj, fk)] is gotten by syn-
thesizing Definitions 9 and 10. Applying this to E and F as 
given in the above example, we observe that the maximum 
value of the nonmembership values of the elements (i.e., 
x1, x2, x3 ) in E and F, respectively, is 0.2, 0.6, and 0.3.

Then:

Again, finding � using Definitions 11 and 12 with applica-
tion to E and F, we obtain the following:

implying that

Again:

implying that

Then:

From the aforesaid, the improved composite relation yields a 
better relation with greater relational value when compared 
to max–min–max composite relation.

Now, we consider a situation where the elements of PFSs 
are not equal.

Example 16 Let G,H ∈ PFS(X) for X = {x1, x2, x3, x4, x5} . 
Suppose that

and

max[�R(ei, xj), �S(xj, fk)] = 0.2, 0.6, 0.3,

�B(ei, fk) =
⋀
xj∈X

{0.2, 0.6, 0.3} = 0.2.

B = 0.6 − (0.2 × 0.7746) = 0.4451.

�R(ei, xj) + �S(xj, fk)

2
= 0.7, 0.55, 0.55,

�B(ei, fk) =
⋁
xj∈X

{0.7, 0.55, 0.55} = 0.7.

�R(ei, xj) + �S(xj, fk)

2
= 0.15, 0.45, 0.2,

�B(ei, fk) =
⋀
xj∈X

{0.15, 0.45, 0.2} = 0.15.

� = 0.7 − (0.15 × 0.6982) = 0.5953.

G =

{⟨
0.8, 0.4

x1

⟩
,

⟨
0.5, 0.7

x2

⟩
,

⟨
0.8, 0.4

x3

⟩
,

⟨
0.7, 0.2

x5

⟩}
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Before calculating the composite relations, we rewrite 
the PFSs; thus:

and

Now, we find B using Definitions 9 and 10, respectively, as 
follows:

implying that

Again,

implying that

Thus:

In addition, finding � using Definitions 11 and 12, we obtain 
the following:

implying that

Again:

H =

{⟨
0.7, 0.3

x1

⟩
,

⟨
0.4, 0.7

x3

⟩
,

⟨
0.9, 0.2

x4

⟩}
.

G =

{⟨
0.8, 0.4

x1

⟩
,

⟨
0.5, 0.7

x2

⟩
,

⟨
0.8, 0.4

x3

⟩
,

⟨
0.0, 1.0

x4

⟩
,

⟨
0.7, 0.2

x5

⟩}

H =

{⟨
0.7, 0.3

x1

⟩
,

⟨
0.0, 1.0

x2

⟩
,

⟨
0.4, 0.7

x3

⟩
,

⟨
0.9, 0.2

x4

⟩
,

⟨
0.0, 1.0

x5

⟩}
.

min[�R(gi, xj),�S(xj, hk)] = 0.7, 0.0, 0.4, 0.0, 0.0,

�B(gi, hk) =
⋁
xj∈X

{0.7, 0.5, 0.4, 0.9, 0.7} = 0.7.

max[�R(gi, xj), �S(xj, hk)] = 0.4, 1.0, 0.7, 1.0, 1.0,

�B(gi, hk) =
⋀
xj∈X

{0.4, 1.0, 0.7, 1.0, 1.0} = 0.4.

B = 0.7 − (0.4 × 0.5916) = 0.4634.

�R(gi, xj) + �S(xj, hk)

2
= 0.75, 0.25, 0.6, 0.45, 0.35,

�B(gi, hk) =
⋁
xj∈X

{0.75, 0.25, 0.6, 0.45, 0.35} = 0.75.

�R(gi, xj) + �S(xj, hk)

2
= 0.35, 0.85, 0.55, 0.6, 0.6,

implying that

Then:

In this case also, the improved composite relation gives 
a better relation compared to max–min–max composite 
relation.

Table 2 gives the comparative analysis of the improved 
composite relation � and max–min–max composite relation 
B for Pythagorean fuzzy sets. In what follows, the relational 
value of � is greater than that of B. This shows that � provides 
a better Pythagorean fuzzy relation when compared to B.

4  Improved composite relation 
for Pythagorean fuzzy sets in medical 
diagnosis

In this section, we present an application of Pythagorean fuzzy 
set theory to medical diagnosis using the proposed composite 
relation for PFSs. In a given pathology, suppose that S is a set 
of symptoms, D is a set of diseases, and P is a set of patients. 
We define Pythagorean medical knowledge as a Pythagorean 
fuzzy relation R from the set of symptoms S to the set of dis-
eases D (i.e., on S × D ) which reveals the degree of associa-
tion and the degree of nonassociation between symptoms and 
diseases.

Now, we discuss the notion of Pythagorean fuzzy medical 
diagnosis via the following methodology:

 (i) determination of symptoms;
 (ii) formulation of medical knowledge based on Pythago-

rean fuzzy relations;
 (iii) determination of diagnosis on the basis of composi-

tion of Pythagorean fuzzy relations.

Let A be a PFS of the set S, and R be a PFR from S to D. 
Then, the improved composite relation � for PFS A with the 
IFR R(S → D) denoted by

�B(gi, hk) =
⋀
xj∈X

{0.35, 0.85, 0.55, 0.6, 0.6} = 0.35.

� = 0.75 − (0.35 × 0.5612) = 0.5536.

� = A◦R
Table 2  Comparative analysis PFR Example 15 Example 16

B 0.4451 0.4634
� 0.5953 0.5536
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signifies the state of the patient in terms of diagnosis as 
a PFS � of D with the membership function given by the 
following:

and the nonmembership function is given by the following:

∀d ∈ D.
If the state of a given patient P is described in terms of 

a PFS A of S, then P is assumed to be assigned diagnosis 
in terms of PFS � of D, through a PFR R of Pythagorean 
medical knowledge from S to D which is assumed to be given 

��(d) =
⋁
s∈S

{
�A(s) + �R(s, d)

2

}
,

��(d) =
⋀
s∈S

{
�A(s) + �R(s, d)

2

}

by a doctor who is able to translate his own observation of 
the fuzziness involved in degrees of association and nonas-
sociation, respectively, between symptoms and diagnosis.

Now, we extend this concept to a finite number of 
patients. Let there be n patients pi for i = 1, 2,… , n in a 
given laboratory. Thus, pi ∈ P (or simply, p ∈ P ). Let R be a 
PFR ( S → D ) and construct a PFR Q from the set of patients 
P to the set of symptoms S. Clearly, the composite relation � 
of PFRs R and Q(� = R◦Q) designates the state of patients 
p in terms of the diagnosis as a PFR from P to D given by 
the membership function:

and the nonmembership function is given by the following:

∀p ∈ P and ∀d ∈ D.
For a given R and Q, the relation � = R◦Q can be com-

puted. From the knowledge of Q and R, one may find � of 
the PFR for which

is the greatest.

��(p, d) =
⋁
s∈S

{
�Q(p, s) + �R(s, d)

2

}

��(p, d) =
⋀
s∈S

{
�Q(p, s) + �R(s, d)

2

}

� = ��(p, d) − ��(p, d)��(p, d)

Table 3  Q(P → S)

Q Tempera-
ture

Headache Stomach 
pain

Cough Chest pain

Lil ⟨0.8, 0.1⟩ ⟨0.6, 0.1⟩ ⟨0.2, 0.8⟩ ⟨0.6, 0.1⟩ ⟨0.1, 0.6⟩
Jones ⟨0.0, 0.8⟩ ⟨0.4, 0.4⟩ ⟨0.6, 0.1⟩ ⟨0.1, 0.7⟩ ⟨0.1, 0.8⟩
Deby ⟨0.8, 0.1⟩ ⟨0.8, 0.1⟩ ⟨0.0, 0.6⟩ ⟨0.2, 0.7⟩ ⟨0.0, 0.5⟩
Inas ⟨0.6, 0.1⟩ ⟨0.5, 0.4⟩ ⟨0.3, 0.4⟩ ⟨0.7, 0.2⟩ ⟨0.3, 0.4⟩

Table 4  R(S → D) R Viral fever Malaria fever Typhoid fever Stomach problem Chest problem

Temperature ⟨0.4, 0.0⟩ ⟨0.7, 0.0⟩ ⟨0.3, 0.3⟩ ⟨0.1, 0.7⟩ ⟨0.1, 0.8⟩
Headache ⟨0.3, 0.5⟩ ⟨0.2, 0.6⟩ ⟨0.6, 0.1⟩ ⟨0.2, 0.4⟩ ⟨0.0, 0.8⟩
Stomach pain ⟨0.1, 0.7⟩ ⟨0.0, 0.9⟩ ⟨0.2, 0.7⟩ ⟨0.8, 0.0⟩ ⟨0.2, 0.8⟩
Cough ⟨0.4, 0.3⟩ ⟨0.7, 0.0⟩ ⟨0.2, 0.6⟩ ⟨0.2, 0.7⟩ ⟨0.2, 0.8⟩
Chest pain ⟨0.1, 0.7⟩ ⟨0.1, 0.8⟩ ⟨0.1, 0.9⟩ ⟨0.2, 0.7⟩ ⟨0.8, 0.1⟩

Table 5  ��(p, d) and ��(p, d) �� , �� Viral fever Malaria fever Typhoid fever Stomach problem Chest problem

Lil ⟨0.60, 0.05⟩ ⟨0.75, 0.05⟩ ⟨0.60, 0.10⟩ ⟨0.50, 0.25⟩ ⟨0.45, 0.35⟩
Jones ⟨0.35, 0.40⟩ ⟨0.40, 0.35⟩ ⟨0.50, 0.25⟩ ⟨0.70, 0.05⟩ ⟨0.45, 0.45⟩
Deby ⟨0.60, 0.05⟩ ⟨0.75, 0.05⟩ ⟨0.70, 0.10⟩ ⟨0.50, 0.25⟩ ⟨0.45, 0.30⟩
Inas ⟨0.55, 0.05⟩ ⟨0.70, 0.05⟩ ⟨0.55, 0.20⟩ ⟨0.55, 0.20⟩ ⟨0.55, 0.25⟩

Table 6  � = �� − ���� � Viral fever Malaria fever Typhoid fever Stomach problem Chest problem

Lil 0.5601 0.7170 0.5206 0.2927 0.1624
Jones 0.0112 0.1035 0.2927 0.6644 0.1029
Deby 0.5601 0.7170 0.6293 0.2927 0.1977
Inas 0.5083 0.6644 0.3878 0.3878 0.3508
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Obviously, R is a significant IFR translating the higher 
degrees of association and lower degrees of nonassociation 
of symptoms as well as degrees of hesitation to the diseases, 
an approach to Pythagorean medical Knowledge. From this 
approach, one may infer diagnosis from symptoms in the 
sense of a paired value: one being the degree of association 
and other the degree of nonassociation.

4.1  Application example

Suppose that four patients, viz, Lil, Jones, Deby, and Inas, 
visit a given laboratory for medical diagnosis. They are 
observed to have the following symptoms: temperature, 
headache, stomach pain, cough, and chest pain. That is, the 
set of patients P is as follows:

and the set of symptoms S is as follows:

The Pythagorean fuzzy relation Q(P → S) is given hypotheti-
cally, in Table 3.

Let the set of diseases D be

The Pythagorean fuzzy relation R(S → D) is given hypothet-
ically, in Table 4. The values of the membership and non-
membership functions of the composite relation � = R◦Q 
are given in Table 5. Note that, the data in Tables 3 and 4 are 
extracted from De et al. (2001). After finding the degree of 
hesitation in Pythagorean fuzzy sense ( � =

√
1 − [�2 + �2] ), 

we calculate � , and is given in Table 6.

4.2  Decisions on the patients medical conditions

With the aid of Table 6, we present the decision-making. 
Decisions are made based on the greatest value of relation 
between patients and diseases. In doing this, we present 
two forms of decision-making approaches.

4.2.1  Horizontal decision

This approach is with respect to the patient against dis-
eases. From the horizontal view of Table 6, we see that:

1. Lil is suffering from malaria fever (0.7170) with some 
elements of viral fever (0.5601) and typhoid fever 
(0.5206), respectively.

2. Jones is suffering from stomach problem (0.6644).

P = {Lil, Jones, Deby, and Inas},

S = {temperature, headache, stomach pain, cough, and chest pain}.

D = {viral fever, malaria, typhoid, stomach problem,

and heart problem}.

3. Deby is suffering from malaria fever (0.7170) with 
some elements of typhoid fever (0.6293) and viral fever 
(0.5601), respectively.

4. Inas is suffering from malaria fever (0.6644) with some 
element of viral fever (0.5083).

4.2.2  Vertical decision

This approach is taken from the vertical view of Table 6, 
thus:

1. Lil and Deby are suffering from malaria fever with equal 
severity (0.7170), follows by Inas (0.6644) with less 
severity compare to Lil and Deby’s cases.

2. Deby is also suffering from typhoid fever (0.6293) and 
likewise, Lil (0.5206). Clearly, the severity of Deby’s 
case is more acute than Lil’s case.

3. Lil and Deby are also suffering from viral fever with 
equal severity (0.5601). Inas is also suffering from viral 
fever (0.5083) with less severity compare to the cases of 
Lil and Deby.

4. Jones is suffering from stomach problem with relational 
value 0.6644.

4.3  Some observations

1. From both horizontal and vertical decision approaches, 
we notice a similarity among malaria fever, typhoid 
fever, and viral fever, which conforms to the practice in 
human medicine.

2. None of the patients is suffering from chest problem, 
since the relational values are less than 0.5.

3. With the exception to Jones, none of the patients is suf-
fering from stomach problem. It shows the lack of simi-
larity between stomach problem and the set of diseases 
like malaria fever, typhoid fever, and viral fever.

4. For a better diagnosis, it is expedient to consider 
and synthesize both horizontal and vertical decision 
approaches together.

5  Conclusion

The concept of Pythagorean fuzzy sets is a novel math-
ematical framework in the fuzzy family with higher abil-
ity to tackle uncertainty imbedded in decision-making. 
Some applications of Pythagorean fuzzy sets have been 
discussed in the literature using different approaches (see 
Perez-Dominguez et al. 2018; Liang and Xu 2017; Rah-
man et al. 2017; Mohagheghi et al. 2017; Garg 2018a; Gao 
and Wei 2018; Khan et al. 2018b; Du et al. 2017; Hadi-
Venchen and Mirjaberi 2014; Yager 2016). In this paper, the 
notion of max–min–max composite relation for Pythagorean 
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fuzzy sets was studied, and the approach was improved and 
applied to medical diagnosis. A juxtapositional analysis 
of the improved composite relation for Pythagorean fuzzy 
sets and the max–min–max composite relation for Pythago-
rean fuzzy sets was carried out with the aid of numerical 
experiments. It was shown that the improved version pro-
vides a better Pythagorean fuzzy relation when compared 
to max–min–max composite relation and, hence, the need 
for its usage to solve medical diagnosis problem. Finally, an 
application of the improved composite relation for Pythago-
rean fuzzy sets was carried out in medical diagnosis case 
using medical database extracted from De et al. (2001), 
but in Pythagorean fuzzy context. The improved composite 
relation proposed in this paper could be used as a viable 
tool in applying Pythagorean fuzzy sets to multi-criteria 
decision-making (MCDM) problems, multi-attribute deci-
sion-making (MADM) problems, pattern recognition prob-
lems, etc. Albeit, it is suggestible to consider this approach 
from object-oriented perspective for quick output in further 
research.
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