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Abstract
Cubic intuitionistic fuzzy set (IFS), handles the uncertainties by characterizing them into membership and non-membership 
interval in form of interval-valued IFS and further the degree of agreement, as well as disagreement corresponding to these 
intervals, is given in the form of an IFS. Under this environment, some series of distance measures based on Hamming, 
Euclidean, and Hausdorff metrics are proposed. Various relations among them are derived. The practical relevance of our 
work is justified by giving two real-life examples, one on medical diagnosis and other on pattern recognition. Further, com-
parison analysis has been done with the existing decision-making approaches and the advantages of the proposed approach 
are highlighted.

Keywords  Decision-making · Intuitionistic fuzzy set · Cubic intuitionistic fuzzy set · Distance measures · Interval-valued 
IFS

1  Introduction

Fuzzy set (FS) theory, introduced by Zadeh (1965), is one of 
the most successful theories to represent the uncertainty in 
the data. Since then, many scholars have utilized the FS to 
handle the uncertainties in the real fields (Chen and Tanuwi-
jaya 2011; Chen et al. 2001, 2012a; Garg 2018b; Garg and 
Ansha 2018; Wang and Chen 2008). However, FS considers 
only the degree of agreement (also named as membership) of 
each object which is lying between [0,1] and considers that 
degree of disagreement (also named as non-membership) is 
the complement of the agreement. But mere considering of 
the degree of agreement was not fetching appropriate precise 
results. Later, Atanassov (1986) extended the theory of FSs 
to an IFS which is characterized by a degree of membership 
and non-membership functions. Subsequently, Atanassov 
and Gargov (1989) presented the concept of interval-valued 

IFS (IVIFS), which is a further extension of IFSs, where 
the membership degrees are represented by interval-valued 
intuitionistic fuzzy numbers (IVIFNs).

With economic and social developments, decision-mak-
ing (DM) has been widely applied in various fields such as 
aggregation operators (AOs), pattern recognition, medical 
diagnosis, and clustering analysis, etc. However, in the past 
few decades, researchers have applied IFSs and IVIFSs to 
such fields. For instance, Garg (2016a, 2017b) presented 
some interactive AOs for different intuitionistic fuzzy num-
bers (IFNs). Garg (2018c) presented some geometric AOs 
for IVIFNs. Liu and Wang (2018) presented some ordered 
weighted AOs for solving DM problems. Mahmood et al. 
(2018) presented some hybrid AOs for solving DM problems 
under the triangular IFNs. Apart from these, several other 
AOs are developed by the scholars in the literature to solve 
the DM problems by using IFNs and/or IVIFNs information 
(Chen and Chang 2015; Chen et al. 2012b, 2016; Liu et al. 
2017).

However, in the field of an information measure, the con-
cept of distance, similarity, correlation, etc., are paying more 
attention by the scholars to solve the DM problems. Under it, 
Chen (1997) presented the similarity measure between the 
vague sets. Based on Hausdorff distance, Hung and Yang 
(2004) presented some similarity measures for IFSs. Garg 
(2016b) presented a generalized score function to rank the 
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different IVIFNs. Szmidt and Kacprzyk (2000) presented 
the distance and similarity measures between the IFSs. 
Singh and Garg (2017) developed the distance measures 
between the type-2 IFSs. Garg and Kumar (2018a) presented 
new similarity measures for IFSs using set pair analysis. 
Xu (2007) presented similarity measures between the two 
IVIFSs and applied them to solve the pattern recognition 
problems. Dugenci (2016) presented some distance meas-
ures for IVIFSs and applied them to solve the group DM 
problems. Park et al. (2009), Wei et al. (2011) presented the 
correlation coefficients for IVIFSs. Garg (2017a) presented 
the distance and similarity measures for an intuitionistic 
multiplicative preference relation. Zhang et al. (2014) pre-
sented some entropy measures based on the distance meas-
ures for IVIFSs to solve the DM problems. Rani and Garg 
(2017) presented the family of the distance measures for 
the complex IFS, which is an extension of IFSs. Kumar and 
Garg (2018a, b) presented a technique for order preference 
with respect to the similarity to the ideal solution (TOPSIS) 
approach for solving the DM problems by using connection 
number of the set pair analysis theory. However, apart from 
them, some other theories for solving the DM problems by 
using distance or similarity measures are presented in the 
literature. For them, we refer to Arora and Garg (2018b), 
Garg (2018b), Huang and Li (2018), Jamkhaneh and Garg 
(2018) and Mitchell (2003).

Since all these facilitate the uncertainties to a great 
extent, but still they cannot withstand the situations where 
the decision-maker has to consider the falsity corresponding 
to the truth value ranging over an interval. Jun et al. (2012) 
combined the theory of the interval-valued FS with the FS 
and presented the concept of a cubic fuzzy set (CFS). After 
it, Mahmood et al. (2016) extended the CFS into the cubic 
hesitant FS by combining interval-valued hesitant FS and 
hesitant FS to solve the DM problems. Since CFSs consid-
ered only acceptance region into the analysis, but it is quite 
clear that the degree of rejection/non-membership plays 
an equivalent role during the performance analysis of any 
DM problems. So, by keeping these facts in mind, Kaur and 
Garg (2018a, c) introduced the idea of the cubic intuition-
istic fuzzy set (CIFS), which is a hybrid set and formed by 
combining the features of IVIFSs and IFSs. Clearly, CIFS 
contains more information to represent the data in terms of 
IVIFNs and IFNs simultaneously. Furthermore, it allows us 
to consider the non-membership corresponding to the mem-
bership interval expressed in the form of IVIFS. Also, they 
have a fundamental characteristic of clubbing the informa-
tion varying over different time spans. For example, sup-
pose at the start of a financial year, a stock market analyst 
estimates the return on his investment to be 60–70% tending 
towards profit state and 10–15% tending towards the loss 
state. However, at the end of the financial year, the analyst 
found his returns to be 55% agreeing to the profit estimate 

and 35% disagreeing towards the loss estimate. Thus, a 
P-order CIFS is formed as (⟨[0.60, 0.70], [0.10, 0.15]⟩, 
⟨0.55, 0.35⟩) . On the other hand, if at end of the financial 
year, the analyst found the returns to be 30% disagreeing to 
the profit estimate and 20% agreeing to the loss state then 
an R-order CIFS is formed as 

�⟨[0.60, 0.70], [0.10, 0.15]⟩ , 
⟨0.30, 0.20⟩� . Thus, CIFSs have a powerful ability to express 
the uncertainty and fuzzy decision process more precisely 
and objectively during the DM process. Keeping the advan-
tages of this set, recently, Kaur and Garg (2018b) presented 
some generalized AOs for cubic IFNs to solve the DM prob-
lems. Garg and Kaur (2018) presented a TOPSIS method 
based on the distance measures under CIFS environment 
to solve the group DM problems. However, to the best of 
authors knowledge, no work has been conducted so far on 
the information measures for the different CIFSs. Thus, 
motivated by the aforementioned studies and the advantages 
of CIFSs, in this manuscript, we present a novel series of 
non-weighted as well as weighted distance measures to pro-
cess the available information. In the existing DM theories, 
the evaluation is done by processing the information con-
fined to one-time frame only whereas using the distances on 
CIFSs the analysis can be done varying over two time spans 
simultaneously. Based on all these features, the objectives 
of this work are:

1.	 To extend the theory of the cubic set to CIFS, by con-
sidering the degree of the rejection into the analysis and 
hence develops some series of distance measures for 
them.

2.	 To discuss some desirable properties on the proposed 
distance measures.

3.	 To propose an efficient decision-making approach based 
on the developed measures and illustrate them with real-
life cases associated with medical diagnosis and pattern 
recognition.

4.	 To compare the outcomes of the proposed approach 
with the existing approaches and to justify the proposed 
approach’s adaptability to the real-life cases.

To achieve the first objective, in this article, we represent 
the information towards the different objects under the 
CIFSs where the preferences related to each element are 
represented in the form of cubic intuitionistic fuzzy numbers 
(CIFNs). Then, we present a family of the distance measures 
based on Hamming, Euclidean and Hausdorff metrics. The 
desirable characteristics and relations between the various 
proposed measures are investigated to achieve the second 
objective. The third objective is achieved by establishing a 
DM approach based on the proposed measures to solve the 
problems associated with the medical diagnosis and pattern 
recognition under CIFS environment. The obtained results 
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are compared with the existing approaches under IVIFSs for 
fulfilling the objective 4.

The rest of the manuscript is summarized as follows. Sec-
tion 2 presents some basic concepts of IVIFSs, CFSs, and 
CIFSs. In Sect. 3, we present a family of distance measures 
between the two CIFSs and their desirable relations. Sec-
tion 4 describes an approach based on the proposed meas-
ures to solve the DM problems followed by an illustrative 
example. Finally, a concrete conclusion is drawn in Sect. 5.

2 � Preliminaries

Some basic concepts on IVIFS, CFS and CIFSs are sum-
marized here over the universal set U.

Definition 1  (Atanassov 1986) An IFS A in a set U is given 
as:

where �A and �A are the mappings from U to [0, 1] such that 
0 ≤ �A(x) ≤ 1 and 0 ≤ �A(x) ≤ 1 and 0 ≤ �A(x) + �A(x) ≤ 1 . 
We denote this pair as A = ⟨�A, �A⟩ and called as IFN.

Definition 2  (Atanassov and Gargov 1989) An IVIFS A in 
U is given as

where 0 ≤ �−
A
(x) ≤ �+

A
(x) ≤ 1 , 0 ≤ �−

A
(x) ≤ �+

A
(x) ≤ 1 and 

�+
A
(x) + �+

A
(x) ≤ 1 . This pair is often called as IVIFN.

Definition 3  (Jun et al. 2012) A CFS  in U is given as

where AF(x) = [A−(x),A+(x)] and �F(x) , respectively, rep-
resents the interval-valued FS and FS in x ∈ U . We denote 
these pairs as  = ⟨AF, �F⟩.

Definition 4  (Jun et  al. 2012) The complement 
of the CFS  is defined to be the cubic fuzzy set 
c = {x, ⟨Ac(x), 1 − �(x)⟩ ∣ x ∈ U}.

Definition 5  (Kaur and Garg 2018a, c) A CIFS  is an 
ordered pair given by

where A = {x, ⟨[�−(x), �+(x)], [�−(x), �+(x)]⟩ ∣ x ∈ U} repre-
sents the IVIFS over U while �(x) = {x, ⟨�(x), �(x)⟩ ∣ x ∈ U} 
represents an IFS. We denote this pair as ⨍ =

(
A, �

)
 , where 

A = ⟨[�−, �+], [�−, �+]⟩ and � = ⟨� , �⟩ and called as CIFN.

Remark 1  The special cases are to be considered from Eq. 
(4), which are summarized as follows:

(1)A = {(x, �A(x), �A(x)) ∣ x ∈ U},

(2)A = {⟨x, [�−
A
(x), �+

A
(x)], [�−

A
(x), �+

A
(x)]⟩ ∣ x ∈ U},

(3) = {(x,AF(x), �F(x)) ∣ x ∈ U},

(4) = {⟨x,A(x), �(x)⟩ ∣ x ∈ U},

	 (i)	 A CIFS  in which A(x) = ⟨[0, 0], [1, 1]⟩ and 
�(x) = ⟨1, 0⟩ for all x ∈ U is denoted by 0̈.

	 (ii)	 A CIFS  in which A(x) = ⟨[1, 1], [0, 0]⟩ and 
�(x) = ⟨0, 1⟩ for all x ∈ U is denoted by 1̈.

	 (iii)	 A CIFS  in which A(x) = ⟨[0, 0], [1, 1]⟩ and 
�(x) = ⟨0, 1⟩ for all x ∈ U is denoted by 0̂.

	 (iv)	 A CIFS  in which A(x) = ⟨[1, 1], [0, 0]⟩ and 
�(x) = ⟨1, 0⟩ for all x ∈ U is denoted by 1̂.

Definition 6  (Kaur and Garg 2018a, c) For any CIFNs 
� =

��
[�−, �+], [�−, �+]

�
,
�
� , �⟩� a n d  �i =

(⟨
[�−

i
, �+

i
], 

[�−
i
, �+

i
]
�
,
�
�i, �i⟩

�
 , i ∈ � , the following operations have 

been defined as follows:

(i)	 �c =
�⟨[�−, �+], [�−, �+]⟩, ⟨�, �⟩�;

(ii)	 ( E q u a l i t y )  �1 = �2 ⇔  [�−
1
, �+

1
] = [�−

2
, �+

2
]  , 

[�−
1
, �+

1
] = [�−

2
, �+

2
] , �1 = �2 and �1 = �2;

(iii)	 ( R - o r d e r )  𝛼1 ⊆ 𝛼2  i f  [𝜁−
1
, 𝜁+

1
] ⊆ [𝜁−

2
, 𝜁+

2
]

,[𝜗−
1
, 𝜗+

1
] ⊇ [𝜗−

2
, 𝜗+

2
] , �1 ≥ �2 and �1 ≤ �2;

(iv)	 (R-union): ⋃ �
i
=

���
sup
i∈�

�−
i
, sup
i∈�

�+
i

�
,
�
inf
i∈�

�−
i
, inf
i∈�

�+
i

��
,

⟨
inf
i∈�

�
i
, sup
i∈�

�
i

⟩)
;

(v)	 (R-intersection): 
⋂

�
i
=
���

inf
i∈�

�−
i
, inf
i∈�

�+
i

�
,[

sup
i∈�

�−
i
, sup
i∈�

�+
i

]⟩
,

⟨
sup
i∈�

�
i
, inf
i∈�

�
i

⟩)
.

3 � Proposed distance measures 
between CIFSs

Let �(U) denote the set of all CIFSs defined on U.

Definition 7  For CIFSs  ,  and  , distance measure is 
a real-valued function d ∶ �(U) ×�(U) → [0, 1] satisfying 
the following properties:

	(P1)	 0 ≤ d(,) ≤ 1;
	(P2)	 d(,) = 0 if and only if  = ;
	(P3)	 d(,) = d();
	(P4)	 I f   ⊆  ⊆   ,  t hen  d(,) ≤ d(,) and 

d(,) ≤ d(,).

For CIFSs  = (⟨[�−
A
(x), �+

A
(x)], [�−

A
(x), �+

A
(x)]⟩, ⟨[�

A
(x),

�
A
(x)]⟩)  a n d   = (⟨[�−

B
(x), �+

B
(x)] ,  [�−

B
(x), �+

B
(x)]⟩  , 

⟨[�B(x), �B(x)]⟩) over the universal set U = {x1, x2,… , xn} , 
we define some series of the distance measures as follows:

	 (i)	 Hamming distance measure: 
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	 (ii)	 Normalized Hamming distance measure: 

	 (iii)	 Euclidean distance measure: 

	 (iv)	 Normalized Euclidean distance measure: 

From them, the following results are obtained.

Theorem 1  The distance d2 , between two CIFSs  and  
satisfies the following properties (P1)–(P4):

	(P1)	 0 ≤ d2(,) ≤ 1;
	(P2)	 d2(,) = 0 if and only if  = ;
	(P3)	 d2(,) = d2(,);
	(P4)	 I f   ⊆  ⊆   ,  then  d2(,) ≤ d2(,) and 

d2(,) ≤ d2(,) , where  ∈ �(U).

Proof  For a collection of CIFSs  and  , we have

(5)d1(,) =
1

6

n∑
i=1

( ||�−A (xi) − �−
B
(xi)

|| + ||�+A (xi) − �+
B
(xi)

|| + ||�−A (xi) − �−
B
(xi)

||
+||�+A (xi) − �+

B
(xi)

|| + ||�A(xi) − �B(xi)
|| + ||�A(xi) − �B(xi)

||

)
;

(6)d2(,) =
1

6n

n∑
i=1

( ||�−A (xi) − �−
B
(xi)

|| + ||�+A (xi) − �+
B
(xi)

|| + ||�−A (xi) − �−
B
(xi)

||
+||�+A (xi) − �+

B
(xi)

|| + ||�A(xi) − �B(xi)
|| + ||�A(xi) − �B(xi)

||

)
;

(7)d3(,) =

(
1

6

n∑
i=1

( ||�−A (xi) − �−
B
(xi)

||2 + ||�+A (xi) − �+
B
(xi)

||2 + ||�−A (xi) − �−
B
(xi)

||2
+||�+A (xi) − �+

B
(xi)

||2 + ||�A(xi) − �B(xi)
||2 + ||�A(xi) − �B(xi)

||2
)
;

)1∕2

(8)d4(,) =

(
1

6n

n∑
i=1

( ||�−A (xi) − �−
B
(xi)

||2 + ||�+A (xi) − �+
B
(xi)

||2 + ||�−A (xi) − �−
B
(xi)

||2
+||�+A (xi) − �+

B
(xi)

||2 + ||�A(xi) − �B(xi)
||2 + ||�A(xi) − �B(xi)

||2
)
.

)1∕2

	(P1)	 By definition of d2 , we have d2(,) ≥ 0 , so 
for arbitrary CIFSs  and  , it is enough to 
show that d2(,) ≤ 1 . For two CIFSs  and 
  ,  we get  0 ≤ �−

A
(xi), �

+
A
(xi), �

−
A
(xi), �

+
A
(xi) ≤ 1 , 

0 ≤ �A(xi), �A(xi) ≤ 1 and  0 ≤ �−
B
(xi), �

+
B
(xi) ≤ 1 , 

0 ≤ �−
B
(xi), �

+
B
(xi) ≤ 1 and  0 ≤ �B(xi), �B(xi) ≤ 1 . 

Th i s  impl i e s  t ha t  0 ≤ ||�−A (xi) − �−
B
(xi)

|| ≤ 1 , 
0 ≤ ||�+A (xi) − �+

B
(xi)

|| ≤ 1 , 0 ≤ ||�−A (xi) − �−
B
(xi)

|| ≤ 1 , 
0 ≤ ||�+A (xi) − �+

B
(xi)

|| ≤ 1 , and 0 ≤ ||�A(xi) − �B(xi)
|| ≤ 1 

, 0 ≤ ||�A(xi) − �B(xi)
|| ≤ 1 . Therefore, 

which implies that d2(,) ≤ 1.
	(P2)	 For two CIFSs  and  , assume that d2(,) = 0 

which implies that 

if and only if, for all i, 

0 ≤

(||�−A (xi) − �−
B
(xi)

|| + ||�+A (xi) − �+
B
(xi)

|| + ||�−A (xi) − �−
B
(xi)

||
+ ||�+A (xi) − �+

B
(xi)

|| + ||�A(xi) − �B(xi)
|| + ||�A(xi) − �B(xi)

||

)
≤ 6

1

6n

n∑
i=1

(||�−A (xi) − �−
B
(xi)

|| + ||�+A (xi) − �+
B
(xi)

|| + ||�−A (xi) − �−
B
(xi)

||
+ ||�+A (xi) − �+

B
(xi)

|| + ||�A(xi) − �B(xi)
|| + ||�A(xi) − �B(xi)

||

)
= 0
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which is equivalent to 

 Thus, d2(,) = 0 implies that  = .
	(P3)	 For two CIFSs  and  , 

 Hence, d2(,) = d2(,).
	(P4)	 If  ⊆  ⊆  , then [𝜁−

A
(x

i
), 𝜁+

A
(x

i
)] ⊆ [𝜁−

B
(x

i
), 𝜁+

B
(x

i
)]

⊆ [𝜁−
C
(x

i
), 𝜁+

C
(x

i
)], [𝜗−

A
(x

i
), 𝜗+

A
(x

i
)] ⊇ [𝜗−

B
(x

i
), 𝜗+

B
(x

i
)] ⊇

[�−
C
(x

i
), �+

C
(x

i
)] . Also, �A(xi) ≥ �B(xi) ≥ �C(xi) and �

A
(x

i
) 

≤ �
B
(x

i
) ≤ �

C
(x

i
). Therefore, ||�−A (xi) − �−

B
(x

i
)|| ≤ ||�−A

(x
i
) − �−

C
(x

i
)||,  ||�+A (xi) − �+

B
(xi)

|| ≤ ||�+A (xi) − �+
C
(xi)

||,  
||�−A (xi) − �−

B
(xi)

|| ≤ ||�−A (xi) − �−
C
(xi)

||, ||�+A (xi) − �+
B
(x

i
)||

≤ ||�+A (xi) − �+
C
(x

i
)||, ||�A(xi) − �

B
(x

i
)|| ≤ ||�A(xi) − �

C
(x

i
)||, 

and ||�A(xi) − �B(xi)
|| ≤ ||�A(xi) − �C(xi)

|| . Thus, 

 Similarly, d2(,) ≥ d2(,).
Hence, d2 is a valid distance measure.

||�−A (xi) − �−
B
(x

i
)|| = 0,

||�+A (xi) − �+
B
(x

i
)|| = 0,

||�−A (xi) − �−
B
(x

i
)|| = 0,

||�+A (xi) − �+
B
(x

i
)|| = 0,

||�A(xi) − �
B
(x

i
)|| = 0,

||�A(xi) − �
B
(x

i
)|| = 0

�−
A
(xi) = �−

B
(xi), �

+
A
(xi) = �+

B
(xi), �

−
A
(xi) = �−

B
(xi),

�+
A
(xi) = �+

B
(xi), �A(xi) = �B(xi), �A(xi) = �B(xi)

d2(,) =
1

6n

n∑
i=1

( ||�−A (xi) − �−
B
(xi)

|| + ||�+A (xi) − �+
B
(xi)

|| + ||�−A (xi) − �−
B
(xi)

||
+||�+A (xi) − �+

B
(xi)

|| + ||�A(xi) − �B(xi)
|| + ||�A(xi) − �B(xi)

||

)

=
1

6n

n∑
i=1

( ||�−B (xi) − �−
A
(xi)

|| + ||�+B (xi) − �+
A
(xi)

|| + ||�−B (xi) − �−
A
(xi)

||
+||�+B (xi) − �+

A
(xi)

|| + ||�B(xi) − �A(xi)
|| + ||�B(xi) − �A(xi)

||

)

= d2(,).

d2(,) =
1

6n

n∑
i=1

( ||�−A (xi) − �−
C
(xi)

|| + ||�+A (xi) − �+
C
(xi)

|| + ||�−A (xi) − �−
C
(xi)

||
+||�+A (xi) − �+

C
(xi)

|| + ||�A(xi) − �C(xi)
|| + ||�A(xi) − �C(xi)

||

)

≥
1

6n

n∑
i=1

( ||�−A (xi) − �−
B
(xi)

|| + ||�+A (xi) − �+
B
(xi)

|| + ||�−A (xi) − �−
B
(xi)

||
+||�+A (xi) − �+

B
(xi)

|| + ||�A(xi) − �B(xi)
|| + ||�A(xi) − �B(xi)

||

)

≥ d2(,).

(
1

6n

n∑
i=1

( ||�−A (xi) − �−
B
(xi)

||2 + ||�+A (xi) − �+
B
(xi)

||2 + ||�−A (xi) − �−
B
(xi)

||2
+||�+A (xi) − �+

B
(xi)

||2 + ||�A(xi) − �B(xi)
||2 + ||�A(xi) − �B(xi)

||2
))1∕2

= 0

⇔ ||�−A (xi) − �−
B
(xi)

|| = 0, ||�+A (xi) − �+
B
(xi)

|| = 0, ||�−A (xi) − �−
B
(xi)

|| = 0,

||�+A (xi) − �+
B
(xi)

|| = 0, ||�A(xi) − �B(xi)
|| = 0, ||�A(xi) − �B(xi)

|| = 0

⇔ �−
A
(xi) = �−

B
(xi), �

+
A
(xi) = �+

B
(xi), �

−
A
(xi) = �−

B
(xi),

�+
A
(xi) = �+

B
(xi), �A(xi) = �B(xi), �A(xi) = �B(xi) for all i

⇔ A = B

Theorem 2  For two CIFSs  and  , the distance measure 
d4(,) satisfies the properties (P1)–(P4) as described in 
Definition 7.

Proof  For CIFSs  and  , we have

	(P1)	 S i n c e  0 ≤ �−
A
(xi), �

+
A
(xi), �

−
A
(xi), �

+
A
(xi) ≤ 1   , 

0 ≤ �A(xi), �A(xi) ≤ 1 , 0 ≤ �−
B
(xi) , �+B (xi) , �

−
B
(xi) , 

�+
B
(xi) ≤ 1 and 0 ≤ �B(xi), �B(xi) ≤ 1 . This implies that 

0 ≤ ||�−A (xi) − �−
B
(xi)

||2 ≤ 1 , 0 ≤ ||�+A (xi) − �+
B
(xi)

||2 ≤ 1 , 
0 ≤ ||�−A (xi) − �−

B
(xi)

||2 ≤ 1 , 0 ≤ ||�+A (xi) − �+
B
(xi)

||2 ≤ 1 , 
0 ≤ ||�A(xi) − �B(xi)

||2 ≤ 1 , 0 ≤ ||�A(xi) − �B(xi)
||2 ≤ 1 . 

Thus, it follows that 0 ≤ d4(,) ≤ 1.
	(P2)	 For two CIFSs  and  , assume that d4(,) = 0 

which implies that 
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	(P3)	 For any two numbers a  and b ,  we have 
||a − b|| = ||b − a|| . Thus, we have d4(,) = d4(,).

	(P4)	 If  ⊆  ⊆  , then [𝜁−
A
(x

i
), 𝜁+

A
(x

i
)] ⊆ [𝜁−

B
(x

i
), 𝜁+

B
(x

i
)]

⊆ [𝜁−
C
(x

i
), 𝜁+

C
(x

i
)], [𝜗−

A
(x

i
), 𝜗+

A
(x

i
)] ⊇ [𝜗−

B
(x

i
), 𝜗+

B
(x

i
)] ⊇

[�−
C
(x

i
), �+

C
(x

i
)]. Also, �A(xi) ≥ �B(xi) ≥ �C(xi) and 

�A(xi) ≤ �B(xi) ≤ �C(xi). Therefore, 

 Thus, 

 Similarly, d4(,) ≥ d4(,) . Hence, d4 is a valid 
distance measure.

Example 1  Let  and  be two known pattern 
e x p r e s s e d  a s   =

��
x1,

�⟨[0.2, 0.4] ,  [0.3, 0.5]⟩  , 
⟨0.3, 0.4⟩�� ,  

�
x2,

�⟨[0.3, 0.4] ,  [0.2, 0.6]⟩ ,  ⟨0.1, 0.3⟩��� 
a n d   =

��
x1,

�⟨[0.3, 0.4], [0.1, 0.2]⟩, ⟨0.25, 0.40⟩��, �
x2,

�⟨[0.15, 0.25] , [0.30, 0.45]⟩ , ⟨0.4, 0.2⟩��� , then

and

Theorem 3  The measures d1 and d3 satisfies the following 
inequalities:

||�−A (xi) − �−
B
(xi)

||2 ≤||�−A (xi) − �−
C
(xi)

||2, ||�+A (xi) − �+
B
(xi)

||2 ≤ ||�+A (xi) − �+
C
(xi)

||2,
||�−A (xi) − �−

B
(xi)

||2 ≤||�−A (xi) − �−
C
(xi)

||2, ||�+A (xi) − �+
B
(xi)

||2 ≤ ||�+A (xi) − �+
C
(xi)

||2,
||�A(xi) − �B(xi)

||2 ≤||�A(xi) − �C(xi)
||2, ||�A(xi) − �B(xi)

||2 ≤ ||�A(xi) − �C(xi)
||2.

d4(,) =

(
1

6n

n∑
i=1

( ||�−A (xi) − �−
C
(xi)

||2 + ||�+A (xi) − �+
C
(xi)

||2 + ||�−A (xi) − �−
C
(xi)

||2
+||�+A (xi) − �+

C
(xi)

||2 + ||�A(xi) − �C(xi)
||2 + ||�A(xi) − �C(xi)

||2
))1∕2

≥

(
1

6n

n∑
i=1

( ||�−A (xi) − �−
B
(xi)

||2 + ||�+A (xi) − �+
B
(xi)

||2 + ||�−A (xi) − �−
B
(xi)

||2
+||�+A (xi) − �+

B
(xi)

||2 + ||�A(xi) − �B(xi)
||2 + ||�A(xi) − �B(xi)

||2
))1∕2

= d4(,).

d2(,) =
1

6 × 2

⎛
⎜⎜⎜⎝

��0.20 − 0.30�� + ��0.40 − 0.40�� + ��0.30 − 0.10�� + ��0.50 − 0.20��
+��0.30 − 0.25�� + ��0.40 − 0.40�� + ��0.30 − 0.15�� + ��0.40 − 0.25��
+��0.20 − 0.30�� + ��0.60 − 0.45�� + ��0.10 − 0.40�� + ��0.30 − 0.20��

⎞⎟⎟⎟⎠
= 0.1333

d4(,) =

⎛⎜⎜⎜⎝
1

6 × 2

⎛⎜⎜⎜⎝

��0.20 − 0.30��2 + ��0.40 − 0.40��2 + ��0.30 − 0.10��2 + ��0.50 − 0.20��2
+��0.30 − 0.25��2 + ��0.40 − 0.40��2 + ��0.30 − 0.15��2 + ��0.40 − 0.25��2
+��0.20 − 0.30��2 + ��0.60 − 0.45��2 + ��0.10 − 0.40��2 + ��0.30 − 0.20��2

⎞⎟⎟⎟⎠

⎞⎟⎟⎟⎠

1∕2

= 0.1633

	 (i)	 0 ≤ d1 ≤ n,
	 (ii)	 0 ≤ d3 ≤

√
n.

Proof  Let  and  be any two CIFSs. Clearly, d
1

(,) = nd
2

(,) . By Theorem 1, we have 0 ≤ d2(,) ≤ 1 . It implies 
that 0 ≤

d1(,)

n
≤ 1 and hence 0 ≤ d1(,) ≤ n . Similarly, 

we can prove that 0 ≤ d3(,) ≤
√
n . As  and  are arbi-

trary, so we get 0 ≤ d1 ≤ n and 0 ≤ d3 ≤
√
n.

Theorem 4  The measures d1, d3 and d2, d4 satisfy the follow-
ing inequalities:

	 (i)	 d3 ≤
√
d1

	 (ii)	 d4 ≤
√
d2

Proof  Let  and  be two CIFSs.

	 (i)	 Since 0 ≤ �−
A
(xi), �

+
A
(xi), �

−
A
(xi), �

+
A
(xi) ≤ 1 , 

0 ≤ �A(xi), �A(xi) ≤ 1 , 0 ≤ �−
B
(xi) , �+B (xi) , �

−
B
(xi) , 

�+
B
(xi) ≤ 1 and 0 ≤ �B(xi), �B(xi) ≤ 1 . Then, by 

using the property, 𝜂2 < 𝜂 , for any � ∈ [0, 1] , 
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we have ||�−A (xi) − �−
B
(xi)

||2 ≤ ||�−A (xi) − �−
B
(xi)

|| , ||�+A (xi) − �+
B
(xi)

||2 ≤ ||�+A (xi) − �+
B
(xi)

|| , ||�−A (xi) − �−
B
(xi)

||2 ≤ ||�−A (xi) − �−
B
(xi)

|| , 

||�+A (xi) − �+
B
(xi)

||2 ≤ ||�+A (xi) − �+
B
(xi)

|| 

, ||�A(xi) − �B(xi)
||2 ≤ ||�A(xi) − �B(xi)

|| and 
||�A(xi) − �B(xi)

||2 ≤ ||�A(xi) − �B(xi)
|| , for all i. This 

implies that, 

 Therefore, for all i, we have 

 which implies that d3(,) ≤
√
d1(,) . Since, 

 and  are arbitrary CIFSs thus, d3 ≤
√
d1 is true 

for all CIFSs.
	 (ii)	 This can be proceeded in the similar manner as 

above.

As in practical situations, many times we have to deal 
with such situations in which various CIFSs may have 
weights assigned to them. So, taking into account weights 

( ||�−A (xi) − �−
B
(x

i
)||2 + ||�+A (xi) − �+

B
(x

i
)||2 + ||�−A (xi) − �−

B
(x

i
)||2

+||�+A (xi) − �+
B
(x

i
)||2 + ||�A(xi) − �

B
(x

i
)||2 + ||�A(xi) − �

B
(x

i
)||2

)

≤

( ||�−A (xi) − �−
B
(x

i
)|| + ||�+A (xi) − �+

B
(x

i
)|| + ||�−A (xi) − �−

B
(x

i
)||

+||�+A (xi) − �+
B
(x

i
)|| + ||�A(xi) − �

B
(x

i
)|| + ||�A(xi) − �

B
(x

i
)||

)
.

1

6

n∑
i=1

( ||�−A (xi) − �−
B
(xi)

||2 + ||�+A (xi) − �+
B
(xi)

||2 + ||�−A (xi) − �−
B
(xi)

||2
+||�+A (xi) − �+

B
(xi)

||2 + ||�A(xi) − �B(xi)
||2 + ||�A(xi) − �B(xi)

||2
)

≤
1

6

n∑
i=1

( ||�−A (xi) − �−
B
(xi)

|| + ||�+A (xi) − �+
B
(xi)

|| + ||�−A (xi) − �−
B
(xi)

||
+||�+A (xi) − �+

B
(xi)

|| + ||�A(xi) − �B(xi)
|| + ||�A(xi) − �B(xi)

||

)
,

�i(i = 1, 2,… , n) , where each 𝜅i > 0 and 
∑n

i=1
�i = 1 , we 

define weighted Hamming as well as weighted Euclidean 
distances between two CIFSs  and  as follows:

	 (i)	 Weighted Hamming distance measure: 

	 (ii)	 Weighted Euclidean distance measure: 

Especially, when �i = 1∕n , for i = 1, 2,… , n , then distances 
d5 and d6 reduces to d2 and d4 , respectively.

Theorem 5  The weighted measures dk(,), (k = 5, 6) sat-
isfy the following properties for ,, ∈ �(U):

	(P1)	 0 ≤ dk(,) ≤ 1;
	(P2)	 dk(,) = 0 if and only if  = ;
	(P3)	 dk(,) = dk(,).

	(P4)	 I f   ⊆  ⊆   then  dk(,) ≤ dk(,) and 
dk(,) ≤ dk(,).

Proof  Since 𝜅i > 0 and 
∑n

i=1
�i = 1 , then we can easily get 

the proof of above theorem. Hence, we omit it here.

Theorem 6  The measures d5 and d1 satisfy the inequality 
d5 ≤ d1.

Proof  Since 𝜅i > 0 and 
∑n

i=1
�i = 1 , then for any two CIFSs 

 and  , we have

(9)d5(,) =
1

6

n∑
i=1

�i

( ||�−A (xi) − �−
B
(xi)

|| + ||�+A (xi) − �+
B
(xi)

|| + ||�−A (xi) − �−
B
(xi)

||
+||�+A (xi) − �+

B
(xi)

|| + ||�A(xi) − �B(xi)
|| + ||�A(xi) − �B(xi)

||

)

(10)d6(,) =

(
1

6

n∑
i=1

�i

( ||�−A (xi) − �−
B
(xi)

||2 + ||�+A (xi) − �+
B
(xi)

||2 + ||�−A (xi) − �−
B
(xi)

||2
+||�+A (xi) − �+

B
(xi)

||2 + ||�A(xi) − �B(xi)
||2 + ||�A(xi) − �B(xi)

||2
))1∕2

d5(,) =
1

6

n∑
i=1

�i

( ||�−A (xi) − �−
B
(xi)

|| + ||�+A (xi) − �+
B
(xi)

|| + ||�−A (xi) − �−
B
(xi)

||
+||�+A (xi) − �+

B
(xi)

|| + ||�A(xi) − �B(xi)
|| + ||�A(xi) − �B(xi)

||

)

≤
1

6

n∑
i=1

( ||�−A (xi) − �−
B
(xi)

|| + ||�+A (xi) − �+
B
(xi)

|| + ||�−A (xi) − �−
B
(xi)

||
+||�+A (xi) − �+

B
(xi)

|| + ||�A(xi) − �B(xi)
|| + ||�A(xi) − �B(xi)

||

)

= d1(,).
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Since,  and  are arbitrary, therefore we obtain d5 ≤ d1.

Theorem 7  The measures d6 and d3 satisfy the inequality 
d6 ≤ d3.

Proof  Similar to Theorem 6, so we omit here.

Theorem 8  The measures d6 and d1 satisfy the inequality 
d6 ≤

√
d1.

Proof  Since,  0 ≤ �−
A
(xi), �

+
A
(xi), �

−
A
(xi), �

+
A
(xi) ≤ 1 and  

0 ≤ �−
B
(xi), �+

B
(xi), �−

B
(xi), �+

B
(xi) ≤ 1 .  and hence 

0 ≤ ||�−A (xi) − �−
B
(xi)

|| ≤ 1 . Now for any real number � ∈ [0, 1] , 
we know that ||�||2 ≤ ||�|| . Thus, it follows that ||�−A (xi) − �−

B
(x

i
)||2 ≤||�−A (xi) − �−

B
(x

i
)|| .  S i m i l a r l y ,  ||�+A (xi) − �+

B
(x

i
)||2 ≤||�+A (xi) − �+

B
(x

i
)|| ,  ||�+A (xi) − �+

B
(xi)

||2 ≤ ||�+A (xi) − �+
B
(xi)

|| , ||�A(xi) − �B(xi)
||2 ≤ ||�A(xi) − �B(xi)

|| and ||�A(xi) − �
B
(x

i
)||2 ≤||�A(xi) − �

B
(x

i
)|| . Now, for 𝜅i > 0 such that 

∑n

i=1
�i = 1 , we have

d6(,) =

�
1

6

n�
i=1

�i

� ���−A (xi) − �−
B
(xi)

��2 + ���+A (xi) − �+
B
(xi)

��2 + ���−A (xi) − �−
B
(xi)

��2
+���+A (xi) − �+

B
(xi)

��2 + ���A(xi) − �B(xi)
��2 + ���A(xi) − �B(xi)

��2
��1∕2

≤

�
1

6

n�
i=1

� ���−A (xi) − �−
B
(xi)

�� + ���+A (xi) − �+
B
(xi)

�� + ���−A (xi) − �−
B
(xi)

��
+���+A (xi) − �+

B
(xi)

�� + ���A(xi) − �B(xi)
�� + ���A(xi) − �B(xi)

��

��1∕2

≤
√
d1(,)

As  and  are arbitrary, so we get d6 ≤
√
d1.

Theorem 9  The measures d6 and d5 have the inequality 
d6 ≤

√
d5.

Proof  Similar to Theorem 8.

Next, we propose Hausdorff measures for two CIFSs  
and  as follows:

	 (i)	 Hausdorff hamming distance measure: 

	 (ii)	 Hausdorff normalized hamming distance measure: 

	 (iii)	 Hausdorff Euclidean distance measure: 

	 (iv)	 Hausdorff normalized Euclidean distance measure: 

	 (v)	 Hausdorff weighted hamming distance measure: 

(11)dH
1
(,) =

1

6

n∑
i=1

(
max

(||�−A (xi) − �−
B
(xi)

||, ||�+A (xi) − �+
B
(xi)

||, ||�−A (xi) − �−
B
(xi)

||,
||�+A (xi) − �+

B
(xi)

||, ||�A(xi) − �B(xi)
||, ||�A(xi) − �B(xi)

||

))
;

(12)dH
2
(,) =

1

6n

n∑
i=1

(
max

(||�−A (xi) − �−
B
(xi)

||, ||�+A (xi) − �+
B
(xi)

||, ||�−A (xi) − �−
B
(xi)

||,
||�+A (xi) − �+

B
(xi)

||, ||�A(xi) − �B(xi)
||, ||�A(xi) − �B(xi)

||

))
;

(13)dH
3
(,) =

(
1

6

n∑
i=1

(
max

(||�−A (xi) − �−
B
(xi)

||2, ||�+A (xi) − �+
B
(xi)

||2, ||�−A (xi) − �−
B
(xi)

||2,
||�+A (xi) − �+

B
(xi)

||2, ||�A(xi) − �B(xi)
||2, ||�A(xi) − �B(xi)

||2
)))1∕2

;

(14)dH
4
(,) =

(
1

6n

n∑
i=1

(
max

(||�−A (xi) − �−
B
(xi)

||2, ||�+A (xi) − �+
B
(xi)

||2, ||�−A (xi) − �−
B
(xi)

||2,
||�+A (xi) − �+

B
(xi)

||2, ||�A(xi) − �B(xi)
||2, ||�A(xi) − �B(xi)

||2
)))1∕2

;
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	 (vi)	 Hausdorff weighted Euclidean distance measure: 

Theorem  10   For  ,, ∈ �(U) ,  the  measures 
dH
k
(,), (k = 2, 4) satisfies the following properties.

	(P1)	 0 ≤ dH
k
(,) ≤ 1;

	(P2)	 dH
k
(,) = 0 if and only if A = B;

	(P3)	 dH
k
(,) = dH

k
(,);

	(P4)	 I f   ⊆  ⊆   then  dH
k
(,) ≤ dH

k
(,) and 

dH
k
(,) ≤ dH

k
(,).

(15)dH
5
(,) =

(
1

6

n∑
i=1

�i max

(||�−A (xi) − �−
B
(xi)

||, ||�+A (xi) − �+
B
(xi)

||, ||�−A (xi) − �−
B
(xi)

||,
||�+A (xi) − �+

B
(xi)

||, ||�A(xi) − �B(xi)
||, ||�A(xi) − �B(xi)

||

))
;

(16)dH
6
(,) =

(
1

6

n∑
i=1

�i max

(||�−A (xi) − �−
B
(xi)

||2, ||�+A (xi) − �+
B
(xi)

||2, ||�−A (xi) − �−
B
(xi)

||2,
||�+A (xi) − �+

B
(xi)

||2, ||�A(xi) − �B(xi)
||2, ||�A(xi) − �B(xi)

||2
))1∕2

.

Proof  Let ,, ∈ �(U) be any three CIFSs. Then, for 
q = 1, 2 , we have

	(P1)	 Since  and  are two CIFSs, so by the definitions of 
C I F S s ,  we  h ave  0 ≤∣ �−

A
(xi) − �−

B
(xi) ∣

q≤ 1 , 
0 ≤∣ �+

A
(xi) − �+

B
(xi) ∣

q≤ 1 , 0 ≤∣ �−
A
(xi) − �−

B
(xi) ∣

q≤ 1 , 
0 ≤∣ �+

A
(xi) − �+

B
(xi) ∣

q≤ 1 , 0 ≤∣ �A(xi) − �B(xi) ∣
q≤ 1 

and 0 ≤∣ �A(xi) − �B(xi) ∣
q≤ 1 which implies that 

0 ≤ max

(||�−A (xi) − �−
B
(x

i
)||q, ||�+A (xi) − �+

B
(x

i
)||q, ||�−A

(x
i
) − �−

B
(x

i
)||q, ||�+A (xi) − �+

B
(x

i
)||q, ||�A(xi) − �

B
(x

i
)||q,

||�A(xi) − �
B
(x

i
)||q

)
≤ 1 . Thus, 0 ≤ dH

k
(,) ≤ 1.

	(P2)	 Assume that dH
k
(,) = 0 if and only if 

	(P3)	 For two CIFSs  and  , we have 

max

(||�−A (xi) − �−
B
(xi)

||q, ||�+A (xi) − �+
B
(xi)

||q, ||�−A (xi) − �−
B
(xi)

||q,
||�+A (xi) − �+

B
(xi)

||q, ||�A(xi) − �B(xi)
||q, ||�A(xi) − �B(xi)

||q
)

= 0

⇔ ||�−A (xi) − �−
B
(xi)

||q = 0, ||�+A (xi) − �+
B
(xi)

||q = 0, ||�−A (xi) − �−
B
(xi)

||q = 0,

||�+A (xi) − �+
B
(xi)

||q = 0, ||�A(xi) − �B(xi)
||q = 0, ||�A(xi) − �B(xi)

||q = 0 for all i

⇔ �−
A
(xi) = �−

B
(xi), �

+
A
(xi) = �+

B
(xi), �

−
A
(xi) = �−

B
(xi),

�+
A
(xi) = �+

B
(xi), �A(xi) = �B(xi), �A(xi) = �B(xi) for all i,

⇔  = 

dH
k
(,) =

(
1

6n

n∑
i=1

max

(||�−A (xi) − �−
B
(xi)

||q, ||�+A (xi) − �+
B
(xi)

||q, ||�−A (xi) − �−
B
(xi)

||q,
||�+A (xi) − �+

B
(xi)

||q, ||�A(xi) − �B(xi)
||q, ||�A(xi) − �B(xi)

||q
))1∕q

=

(
1

6n

n∑
i=1

max

(||�−B (xi) − �−
A
(xi)

||q, ||�+B (xi) − �+
A
(xi)

||q, ||�−B (xi) − �−
A
(xi)

||q,
||�+B (xi) − �+

A
(xi)

||q, ||�B(xi) − �A(xi)
||q, ||�B(xi) − �A(xi)

||q
))1∕q

= dH
k
(,)
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	(P4)	 If  ⊆  ⊆  , then [𝜁−
A
(x

i
), 𝜁+

A
(x

i
)] ⊆ [𝜁−

B
(x

i
), 𝜁+

B
(x

i
)] ⊆

[�−
C
(x

i
), �+

C
(x

i
)],  [𝜗−

A
(x

i
), 𝜗+

A
(x

i
)] ⊇ [𝜗−

B
(x

i
), 𝜗+

B
(x

i
)] ⊇

[�−
C
(x

i
), �+

C
(x

i
)]. Also, �A(xi) ≥ �B(xi) ≥ �C(xi) and 

�A(xi) ≤ �B(xi) ≤ �C(xi). Therefore, ||�−A (xi) − �−
B
(x

i
) 

|| ≤ ||�−A (xi) − �−
C
(x

i
)||, ||�+A (xi) − �+

B
(x

i
)|| ≤ ||�+A (xi) − �+

C

(x
i
)||,  ||�−A (xi) − �−

B
(xi)

|| ≤ ||�−A (xi) − �−
C
(xi)

||,  ||�+A (xi) − �+
B
(xi)

|| ≤ ||�+A (xi) − �+
C
(xi)

||, ||�A(xi) − �B(xi)
|| ≤ ||�A(xi) − �C(xi)

||, ||�A(xi) − �B(xi)
|| ≤ ||�A(xi) − �C(xi)

||.  T h u s , 

 H e n c e ,  dH
2
(,) ≥ dH

2
(,)  .  S i m i l a r ly, 

dH
2
(,) ≥ dH

2
(,).

Theorem 11  The measures dH
5

 and dH
6

 are also the valid dis-
tance measures.

Proof  Similar to Theorem 10.

dH
2
(,) =

1

6n

n∑
i=1

max

(||�−A (xi) − �−
C
(xi)

||, ||�+A (xi) − �+
C
(xi)

||, ||�−A (xi) − �−
C
(xi)

||,
||�+A (xi) − �+

C
(xi)

||, ||�A(xi) − �C(xi)
||, ||�A(xi) − �C(xi)

||

)

≥
1

6n

n∑
i=1

max

(||�−A (xi) − �−
B
(xi)

||, ||�+A (xi) − �+
B
(xi)

||, ||�−A (xi) − �−
B
(xi)

||,
||�+A (xi) − �+

B
(xi)

||, ||�A(xi) − �B(xi)
||, ||�A(xi) − �B(xi)

||

)

= dH
2
(,).

Theorem 12  The Hausdorff measures dH
1

 and dH
5

 satisfy the 
inequality dH

5
≤ dH

1
.

Proof  For two CIFSs  and  and 𝜅i > 0 be such that ∑n

i=1
�i = 1 . Then, we have

As  and  are arbitrary CIFSs, so we get dH
5
≤ dH

1
.

Theorem 13  The Hausdorff measures dH
3

 and dH
6

 satisfy the 
inequality dH

6
≤ dH

3
.

Proof  Similar to Theorem 12.

Theorem 14  The measure dH
1

 , dH
2

 , dH
3

 and dH
4

 satisfy the fol-
lowing relations:

	 (i)	 dH
3
≤

√
dH
1

;

	 (ii)	 dH
4
≤

√
dH
2

.

dH
5
(,) =

1

6

n∑
i=1

�i max

(||�−A (xi) − �−
B
(xi)

||, ||�+A (xi) − �+
B
(xi)

||, ||�−A (xi) − �−
B
(xi)

||,
||�+A (xi) − �+

B
(xi)

||, ||�A(xi) − �B(xi)
||, ||�A(xi) − �B(xi)

||

)

≤
1

6

n∑
i=1

max

(||�−A (xi) − �−
B
(xi)

||, ||�+A (xi) − �+
B
(xi)

||, ||�−A (xi) − �−
B
(xi)

||,
||�+A (xi) − �+

B
(xi)

||, ||�A(xi) − �B(xi)
||, ||�A(xi) − �B(xi)

||

)

= dH
1
(,).

Table 1   Computed distance measures values for medical diagnosis problem

Measures Measurement values of  from Ranking


1


2


3


4

d
1

0.6833 0.5833 0.4417 0.5000 
3

≻ 
4

≻ 
2

≻ 
1

d
2

0.1708 0.1458 0.1104 0.1250 
3

≻ 
4

≻ 
2

≻ 
1

d
3

0.4601 0.3591 0.3011 0.3124 
3

≻ 
4

≻ 
2

≻ 
1

d
4

0.2300 0.1795 0.1506 0.1562 
3

≻ 
4

≻ 
2

≻ 
1

d
H

1

0.2667 0.1967 0.1600 0.1683 
3

≻ 
4

≻ 
2

≻ 
1

d
H

2

0.0667 0.0492 0.0400 0.0421 
3

≻ 
4

≻ 
2

≻ 
1

d
H

3

0.3317 0.2420 0.2164 0.2082 
4

≻ 
3

≻ 
2

≻ 
1

d
H

4

0.1658 0.1210 0.1082 0.1041 
4

≻ 
3

≻ 
2

≻ 
1
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Proof  We will prove part (i) only, while other can be proven 
similarly.

Let  and  be two CIFSs and for any number 
� ∈ [0, 1] , we know that ∣ � ∣2≤∣ � ∣ . Thus, by the defini-
tion of dH

3
 , we have ||�−A (xi) − �−

B
(xi)

||2 ≤ ||�−A (xi) − �−
B
(xi)

|| , ||�+A (xi) − �+
B
(xi)

||2 ≤ ||�+A (xi) − �+
B
(xi)

||, ||�−A (xi) − �−
B
(xi)

||2 ≤ ||�−A (xi) − �−
B
(xi)

|| , ||�+A (xi) − �+
B
(xi)

||2 ≤ ||�+A (xi) − �+
B
(xi)

|| , ||�A(xi) − �B(xi)
||2 ≤ ||�A(xi) − �B(xi)

|| and 
||�A(xi) − �B(xi)

||2 ≤ ||�A(xi) − �B(xi)
|| . Thus,

Since,  and  are arbitrary, so we get dH
3
≤

√
dH
1

.

Theorem 15  The measures dH
2

 and d2 satisfy the inequality 
dH
2
≤ d2.

Proof  Since for any positive numbers ai(i = 1, 2,… , n) , we 
know that maxi{ai} ≤

∑n

i=1
ai and hence by the definition 

of dH
2

 , we get

Since,  and  are arbitrary, therefore, dH
2
≤ d2.

dH
3
(,) =

(
1

6

n∑
i=1

max

(||�−A (xi) − �−
B
(xi)

||2, ||�+A (xi) − �+
B
(xi)

||2, ||�−A (xi) − �−
B
(xi)

||2,
||�+A (xi) − �+

B
(xi)

||2, ||�A(xi) − �B(xi)
||2, ||�A(xi) − �B(xi)

||2
))1∕2

≤

(
1

6

n∑
i=1

max

(||�−A (xi) − �−
B
(xi)

||, ||�+A (xi) − �+
B
(xi)

||, ||�−A (xi) − �−
B
(xi)

||,
||�+A (xi) − �+

B
(xi)

||, ||�A(xi) − �B(xi)
||, ||�A(xi) − �B(xi)

||

))1∕2

=

√
dH
1
(,).

dH
2
(,) =

1

6n

n∑
i=1

max

(||�−A (xi) − �−
B
(xi)

||, ||�+A (xi) − �+
B
(xi)

||, ||�−A (xi) − �−
B
(xi)

||,
||�+A (xi) − �+

B
(xi)

||, ||�A(xi) − �B(xi)
||, ||�A(xi) − �B(xi)

||

)

≤
1

6n

n∑
i=1

( ||�−A (xi) − �−
B
(xi)

|| + ||�+A (xi) − �+
B
(xi)

|| + ||�−A (xi) − �−
B
(xi)

||
+||�+A (xi) − �+

B
(xi)

|| + ||�A(xi) − �B(xi)
|| + ||�A(xi) − �B(xi)

||

)

= d2(,).

Theorem 16  The measures dH
k

 and dk , (k = 1, 2,… , 6) satisfy 
the inequality dH

k
≤ dk.

Proof  Similar to Theorem 15.

Theorem 17  The measures dH
5

 and d1 satisfy the inequality 
dH
5
≤ d1.

Proof  Since from the above theorems, we get dH
5
≤ d5 and 

d5 ≤ d1 . Therefore, dH
5
≤ d1.

Theorem 18  The measures dH
6

 and d3 satisfy the inequality 
dH
6
≤ d3.

Proof  From Theorem 16, we get dH
6
≤ d6 while from Theo-

rem 7, we get d6 ≤ d3 . Hence, dH
6
≤ d3.

Theorem 19  Distance measures d5 , d1 , dH1  and d3 , d6 , dH3  
satisfy the following relations:

	 (i)	 d1 ≥
d5+d

H
1

2
 and d1 ≥

√
d5 ⋅ d

H
1

;

	 (ii)	 d3 ≥
d6+d

H
3

2
 and d3 ≥

√
d6 ⋅ d

H
3

.

Proof  Since dH
1
≤ d1 and d5 ≤ d1 . So, by adding these ine-

qualities, we get d5+d
H
1

2
≤ d1 while by multiplying we get √

d5 ⋅ d
H
1
≤ d1.

Table 2   Distance measurement values using weighted distance meas-
ures

Distance 
measures

Measurement values of  from Ranking


1


2


3


4

d
5

0.1825 0.1445 0.1318 0.1057 
4

≻ 
3

≻ 
2

≻ 
1

d
6

0.2529 0.1816 0.1776 0.1403 
4

≻ 
3

≻ 
2

≻ 
1

d
H

5

0.0725 0.0498 0.0500 0.0397 
4

≻ 
2

≻ 
3

≻ 
1

d
H

6

0.1796 0.1226 0.1312 0.0983 
4

≻ 
2

≻ 
3

≻ 
1

Also, dH
3
≤ d3 and d6 ≤ d3 . So, by adding these inequali-

ties, we get d6+d
H
3

2
≤ d3 and by multiplying, we get √

d6 ⋅ d
H
3
≤ d3.
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Table 4   Proposed measures 
results for pattern recognition

Distance meas-
ures

Measurement values of  from Ranking


1


2


3


4

d
1

0.5967 0.2117 0.5900 0.7683 
2

≻ 
3

≻ 
1

≻ 
4

d
2

0.1492 0.0529 0.1475 0.1921 
2

≻ 
3

≻ 
1

≻ 
4

d
3

0.4472 0.1439 0.3969 0.4741 
2

≻ 
3

≻ 
1

≻ 
4

d
4

0.2236 0.0720 0.1985 0.2371 
2

≻ 
3

≻ 
1

≻ 
4

d
H

1

0.2633 0.0683 0.2500 0.2783 
2

≻ 
3

≻ 
1

≻ 
4

d
H

2

0.0658 0.0171 0.0625 0.0696 
2

≻ 
3

≻ 
1

≻ 
4

d
H

3

0.3452 0.0967 0.3175 0.3437 
2

≻ 
3

≻ 
4

≻ 
1

d
H

4

0.1726 0.0483 0.1588 0.1719 
2

≻ 
3

≻ 
4

≻ 
1

Table 5   Measurement values 
corresponding to the weighted 
distance measures for pattern 
recognition

Distance meas-
ures

Measurement values of  from Ranking


1


2


3


4

d
5

0.1491 0.0552 0.1504 0.1867 
2

≻ 
1

≻ 
3

≻ 
4

d
6

0.2271 0.0765 0.2050 0.2320 
2

≻ 
3

≻ 
1

≻ 
4

d
H

5

0.0679 0.0186 0.0651 0.0689 
2

≻ 
3

≻ 
1

≻ 
4

d
H

6

0.1773 0.0526 0.1651 0.1700 
2

≻ 
3

≻ 
4

≻ 
1

Table 6   Comparative analysis 
of pattern recognition example

Existing approaches Measurement values of  from Ranking


1


2


3


4

Dugenci (2016) 0.4352 0.1882 0.3299 0.5301 
2

≻ 
3

≻ 
1

≻ 
4

Park et al. (2009) 0.8614 0.9748 0.9141 0.7814 
2

≻ 
3

≻ 
1

≻ 
4

Wei et al. (2011) 0.8801 0.9904 0.9267 0.7897 
2

≻ 
3

≻ 
1

≻ 
4

Zhang et al. (2014) 0.1760 0.0630 0.1397 0.2336 
2

≻ 
3

≻ 
1

≻ 
4

Xu (2007) 0.7412 0.9219 0.8343 0.6855 
2

≻ 
3

≻ 
1

≻ 
4

Table 3   Comparative study of 
Example 1

Existing studies Measurement values of  from Ranking


1


2


3


4

Dugenci (2016) 0.2677 0.2888 0.3439 0.2751 
1

≻ 
4

≻ 
2

≻ 
3

Park et al. (2009) 0.9196 0.9005 0.9222 0.8563 
3

≻ 
1

≻ 
2

≻ 
4

Wei et al. (2011) 0.9270 0.9181 0.9263 0.8969 
1

≻ 
3

≻ 
2

≻ 
4

Zhang et al. (2014) 0.1369 0.1444 0.1381 0.1620 
1

≻ 
3

≻ 
2

≻ 
4

Xu (2007) 0.8701 0.8643 0.8473 0.8621 
1

≻ 
2

≻ 
4

≻ 
3
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4 � Decision‑making based on the proposed 
distance measure of CIFSs

In this section, a decision-making method by using the above 
defined distance measures for CIFSs has been presented 
followed by an illustrative example for demonstrating the 
approach.

4.1 � Decision‑making approach

For this, assume that there are m alternatives, denoted by 
A1,A2,… ,Am , which are evaluated by an expert under the 
set of n criteria, denoted by C1,C2,… ,Cn , and gave his 
preferences in the form of the CIFNs �pq =

�⟨[�−
pq
, �+

pq
] , 

[�−
pq
, �+

pq
]⟩, ⟨�pq, �pq⟩

�
; p = 1, 2,… ,m; q = 1, 2,… , n . Thus, 

the rating values corresponding to each alternative are sum-
marized in terms of CIFNs as follows:

Let �q(q = 1, 2,… , n) be the weight of the criteria Cq such 
that 𝜅q > 0 and 

∑n

q=1
�q = 1 . Then, the following steps 

are proposed to solve the DM problems using proposed 
measures:

Step 1	 Collect all the information corresponding to each 
alternative in terms of CIFNs and hence an overall deci-
sion matrix D is expressed as 

Ap =

��
xq, ⟨[�−pq(xq), �+pq(xq)], [�−pq(xq), �+pq(xq)]⟩, ⟨�pq(xq), �pq(xq)⟩

�
∣ xq ∈ U

�
.

(17)

Step 2	 Utilize the proposed distance measures ‘d’ to com-
pute the measurement value of each alternative from its 
reference set.

Step 3	 Find the index value of rp = argmin1≤p≤m{d} and 
hence select the best one(s) accordingly.

4.2 � Numerical examples

Two examples, related to pattern recognition and medical 
diagnosis are taken to demonstrate the approach.

Example 2  Consider a set of diseases  = {1(Viral fever) , 
2(Malaria) , 3(Typhoid) , 4 (Stomach problem)} and a set 
of symptoms S = {s1(Temperature) , s2(Headache) , s3 (Stom-
ach-ache), s4(Cough)} which are represented in the form of 
CIFSs (where the IVIFS set represents the probable disease 
during initial stage, i.e., before diagnosis and IFS represents 
the corresponding measure after diagnosis) as below:

Suppose a patient  , has been evaluated by an expert in 
order to find that his symptoms has maximum compliance 
with that of diseases 1,2,3 or 4 . For it, they have 
recorded the preferences of patient  with respect to all the 
symptoms in terms of CIFN represented by the following 
set:

1 =
��

s1,
�⟨[0.10, 0.20], [0.30, 0.60]⟩, ⟨0.40, 0.20⟩��, �s2,

�⟨[0.25, 0.30], [0.45, 0.50]⟩, ⟨0.60, 0.30⟩��,�
s3,

�⟨[0.30, 0.45], [0.20, 0.25]⟩, ⟨0.10, 0.80⟩��, �s4,
�⟨[0.40, 0.50], [0.10, 0.30]⟩, ⟨0.30, 0.70⟩���

2 =
��

s1,
�⟨[0.15, 0.45], [0.25, 0.30]⟩, ⟨0.40, 0.60⟩��, �s2,

�⟨[0.20, 0.25], [0.30, 0.35]⟩, ⟨0.15, 0.20⟩��,�
s3,

�⟨[0.45, 0.60], [0.20, 0.25]⟩, ⟨0.29, 0.63⟩��, �s4,
�⟨[0.16, 0.20], [0.25, 0.30]⟩, ⟨0.15, 0.30⟩���

3 =
��

s1,
�⟨[0.20, 0.30], [0.25, 0.35]⟩, ⟨0.15, 0.25⟩��, �s2,

�⟨[0.30, 0.40], [0.35, 0.45]⟩, ⟨0.35, 0.40⟩��,�
s3,

�⟨[0.15, 0.25], [0.30, 0.35]⟩, ⟨0.18, 0.35⟩��, �s4,
�⟨[0.19, 0.36], [0.20, 0.40]⟩, ⟨0.30, 0.25⟩���

4 =
��

s1,
�⟨[0.14, 0.28], [0.15, 0.30]⟩, ⟨0.20, 0.30⟩��, �s2,

�⟨[0.16, 0.32], [0.17, 0.34]⟩, ⟨0.18, 0.20⟩��,�
s3,

�⟨[0.50, 0.55], [0.20, 0.30]⟩, ⟨0.40, 0.30⟩��, �s4,
�⟨[0.30, 0.40], [0.50, 0.55]⟩, ⟨0.35, 0.55⟩���.
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Now, the aim of the problem is to identify the disease of 
patient  among 1,2,3,4 . For it, the proposed non-
weighted measures are utilized to compute the measurement 
values of k(k = 1, 2, 3, 4) from  . The results correspond-
ing to these measures values are summarized in Table 1 
and conclude that the 3 is the disease by which patient  
suffers.

If we assign weights 0.10, 0.30, 0.45 and 0.15 to set 
sk(k = 1, 2, 3, 4) and utilize weighted measures d5 , d6 , dH5  
and dH

6
 , we get their measurement values and summarize in 

Table 2. Based on step 3 of proposed approach, we get that 
the patient  suffers from the disease 4.

To compare the proposed results with the existing 
approaches (Dugenci 2016; Park et al. 2009; Wei et al. 2011; 
Xu 2007; Zhang et al. 2014) under IVIFS environment, we 
first convert the preferences of the decision-maker from 
CIFNs to IVIFNs. For it, we have taken the fuzzy judgment 
as zero in CIFS so that it gets reduced to IVIFS and then the 
various existing approaches have been utilized to compute 
the most desirable diseases. The result corresponding to 
their approaches is summarized in Table 3. From it, the rela-

tivity of CIFS to the real-life scenario can be noticed. Since 
it facilitates us to study the symptoms for a prolonged time 
period and relating it to the existing IVIFS environment, it 

has been found that under it, the patient is found to be suf-
fering from 1 disease, i.e., Viral fever, but on analyzing the 
symptoms and its effect after diagnosis (under CIFS envi-
ronment), the patient is found to be suffering from disease 

 =

��
s1,

�⟨[0.20, 0.30], [0.40, 0.50]⟩, ⟨0.10, 0.40⟩�
�
,
�
s2,

�⟨[0.30, 0.40], [0.10, 0.60]⟩, ⟨0.20, 0.40⟩�
�
,

�
s3,

�⟨[0.40, 0.50], [0.20, 0.30]⟩, ⟨0.60, 0.30⟩�
�
,
�
s4,

�⟨[0.10, 0.50], [0.20, 0.30]⟩, ⟨0.40, 0.30⟩�
��

.

3 , i.e., Typhoid whereas under the weighted criteria, the 
patient is diagnosed with disease 4 , i.e., stomach problem.

The comparison analysis clearly shows that from the 
information available during the initial stage (recorded in 
form of IVIFS) shows the patient to be suffering from dis-
ease 1 , i.e., Viral Fever. However, if we consider the infor-
mation of post-diagnosis period clubbed together with the 
initial symptoms, i.e., in form of CIFS, then the patient is 
diagnosed with the disease 

3

 , i.e., Typhoid and from 4 , 
i.e., stomach problem under the suitable weighted criteria. 
This shows the effect of the time frame during which the 
information is recorded from the patient and CIFS allows us 
to handle the complete opinion of a patient of both pre-diag-
nosis and post-diagnosis stages. Thus, the results obtained 
from our approach show a significant difference from the 
existing ones because, in the prevailing approaches, the deci-
sion is made only on the basis of initial symptoms assessed 
before the diagnosis while our approach takes into account 
both the pre-diagnosis as well as the post-diagnosis stages.

Example 3  Consider four known patterns 1 , 2 , 3 and 4 
whose rating values are given as

Consider an unknown pattern  , which will be recognized 
as:

In these preference values, the IVIFN in each CIFN shows 
the probable interval of belongingness as well as non-
belongingness of the pattern P to the classes 1,2,3 and 4 
using Pattern-classifier 1. However, the IFS portion, shows 

1 =
��

x1,
�⟨[0.15, 0.30], [0.35, 0.40]⟩, ⟨0.20, 0.65⟩��, �x2,

�⟨[0.13, 0.25], [0.40, 0.45]⟩, ⟨0.30, 0.60⟩��,�
x3,

�⟨[0.30, 0.45], [0.25, 0.30]⟩, ⟨0.55, 0.33⟩��, �x4,
�⟨[0.10, 0.30], [0.25, 0.35]⟩, ⟨0.11, 0.20⟩���

2 =
��

x1,
�⟨[0.10, 0.15], [0.35, 0.40]⟩, ⟨0.40, 0.20⟩��, �x2,

�⟨[0.15, 0.22], [0.27, 0.30]⟩, ⟨0.15, 0.60⟩��,�
x3,

�⟨[0.40, 0.45], [0.21, 0.33]⟩, ⟨0.16, 0.40⟩��, �x4,
�⟨[0.50, 0.60], [0.15, 0.20]⟩, ⟨0.35, 0.28⟩���,

3 =
��

x1,
�⟨[0.14, 0.25], [0.35, 0.65]⟩, ⟨0.10, 0.40⟩��, �x2,

�⟨[0.35, 0.45], [0.15, 0.20]⟩, ⟨0.30, 0.50⟩��,�
x3,

�⟨[0.45, 0.55], [0.15, 0.25]⟩, ⟨0.20, 0.80⟩��, �x4,
�⟨[0.30, 0.50], [0.10, 0.30]⟩, ⟨0.20, 0.35⟩���,

4 =
��

x1,
�⟨[0.30, 0.35], [0.25, 0.45]⟩, ⟨0.20, 0.30⟩��, �x2,

�⟨[0.20, 0.55], [0.40, 0.45]⟩, ⟨0.20, 0.45⟩��,�
x3,

�⟨[0.15, 0.25], [0.20, 0.35]⟩, ⟨0.60, 0.20⟩��, �x4,
�⟨[0.10, 0.29], [0.40, 0.50]⟩, ⟨0.30, 0.40⟩���

 =
��

x1,
�⟨[0.10, 0.30], [0.35, 0.45]⟩, ⟨0.60, 0.10⟩��, �x2,

�⟨[0.15, 0.20], [0.25, 0.29]⟩, ⟨0.18, 0.66⟩��,�
x3,

�⟨[0.44, 0.50], [0.20, 0.30]⟩, ⟨0.18, 0.35⟩��, �x4,
�⟨[0.60, 0.70], [0.20, 0.30]⟩, ⟨0.40, 0.25⟩���.
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the extent of agree-ness and disagree-ness shown by the 
Pattern-classifier 2 to that of Classifier 1. Now, the aim of 
the problem is to classify the pattern  with 1 , 2 , 3 and 4.

Initially, by using non-weighted measures d1 , d2 , d3 , 
d4 , dH1  , dH

2
 and dH

3
 , the measurement values of  from k , 

(k = 1, 2, 3, 4) are computed and their results are summa-
rized in Table 4. Thus, based on the maximum recogni-
tion principle, it has been concluded that unknown pattern 
 belongs to the pattern 2 . Later on, if we assign weight 
0.33, 0.23, 0.24 and 0.20 to x1, x2, x3 and x4 , then by using 
weighted measures d5 , d6 , dH5  and dH

6
 , the measurement val-

ues of each pattern k(k = 1, 2, 3, 4) from the unknown pat-
tern  are computed and summarized in Table 5. From these 
tabulated values, we see that the pattern  can be classified 
to the class of pattern 2.

To compare the proposed results with the existing 
approaches (Dugenci 2016; Park et al. 2009; Wei et al. 
2011; Xu 2007; Zhang et al. 2014) under IVIFS environ-
ment, we have taken the fuzzy judgments as zero in CIFS so 
that it gets reduced to IVIFS and hence their corresponding 
results are summarized in Table 6. It is clearly seen from 
their measurement values that the unknown pattern  rec-
ognized with the known pattern 2 and their results coincide 
with the proposed approach’s result.

Noticeably, although the proposed approach’s results 
coincide with the results of existing approaches, still the 
results obtained from the proposed method are superior 
because they bring the surety of the pattern  , to be clas-
sified under Class 2 , verified by two pattern-classifiers, 
whereas the existing approaches only give an outlook of the 
pattern recognized by the classifier 1 only. Moreover, by 
employing the proposed approach it is also found that both 
the Pattern-classifiers 1 and 2 recognizes the pattern  to be 
similar to class 2.

5 � Conclusion

In the present manuscript, we have extended the theory of 
the IFS to the cubic IFS which is an extension of the cubic 
set. In this set, preference corresponding to an element is 
expressed by means of the IVIFS and IFS which shows the 
importance of IVIFS to get the more appropriate results 
through IFS. Then, based on it, some family of distance 
measures based on Hamming, Euclidean, and Hausdorff 
measures, have been proposed along with their desired rela-
tions. These measures are advantageous over distance meas-
ures associated with CFS in the manner that these enhance 
our scope of analysis beyond the membership degrees. 
Instead of remaining confined to perform all the analysis 
sticking to only the membership portion, distance measures 
on CIFSs provide us with a wide perspective of handling 

the non-membership degrees too. Unlike all the existing and 
developed distance measures, measures in CIFSs allow us 
to consider the degree of disagreement (in form of IFS val-
ues) corresponding to the agreed interval region (in form of 
IVIFS) which clearly incline our results more towards the 
practically feasible values. To demonstrate the efficiency of 
the proposed operators, two illustrative examples have been 
taken into account. From the studies, it has been concluded 
that these distance measures employed together with the 
decision-making approach can model the uncertainties in 
a much better way than that of the existing approaches and 
provide us with a deep analysis of the real-life situations. As 
in the medical recognition example, the proposed approach 
not only provides us with the disease to which the patient 
is prone to, but also analyzes the patient’s state both dur-
ing the pre-diagnosis and post-diagnosis states and in the 
pattern recognition example, it classifies the pattern to its 
most similar class and meanwhile provides us with the veri-
fication of uniform working of both the classifiers 1 and 2. 
Thus, it is clear that using the proposed method, we reach 
the desired results along with some additional information 
about the real-life scenarios. In the future, the result of this 
paper can be extended to a linguistic environment under the 
Pythagorean, neutrosophic and other uncertain and fuzzy 
environment (Arora and Garg 2018a; Chen et al. 2012a, 
2016; Garg 2018a; Garg and Kumar 2018b; Garg and Nancy 
2018; Liu et al. 2018, 2017; Rani and Garg 2018; Singh and 
Garg 2018; Wang and Chen 2008).
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