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Abstract
This paper presents a new technique for stabilising a Takagi–Sugeno (T-S) fuzzy system with time-delay and uncertainty. A 
robust fuzzy functional observer is employed to design a controller when the system states are not measurable. The model 
uncertainty is norm bounded, and the time-delay is time-varying but bounded. The parallel distributed compensation method 
is applied for defining the fuzzy functional observer to design this controller. The proposed procedure reduces the observer 
order to the dimension of the control input. Improved stability conditions are provided for the observer compared with the 
existing results of functional observer-based stabilisation of T-S fuzzy models. Lyapunov–Krasovskii functionals are used 
to construct delay-dependent stability conditions as linear matrix inequalities. The solution of these inequalities is used for 
calculating the observer parameters. The sensitivity of the estimation error to the model uncertainty is reduced by minimis-
ing the L

2
 gain. The new design method developed is illustrated and verified using two examples.

Keywords Takagi–Sugeno fuzzy model · Functional observer · Time-delay · Robust controller design

1 Introduction

A functional observer estimates the function of states 
directly. The design problem of the functional observer 
has been an active research field for the last few decades 
for its ability to estimate the function of states in a single 
step rather than performing in two steps. It also reduces the 
observer order. The existence conditions, stability analysis 
and construction procedure of functional observers for linear 
systems are well established (Darouach 2000; Ha et al. 2003; 
Trinh and Fernando 2007; Mohajerpoor et al. 2016); the 
existence conditions are presented as rank equality condi-
tions while the stability conditions are presented as linear 
matrix inequalities (LMIs). The effects of parametric uncer-
tainty and time-delay on the functional observer for linear 
systems are studied in Darouach (2001), Teh and Trinh 
(2012), Tran et al. (2015) and Boukal et al. (2016). The 
design and application of functional observers for nonlin-
ear systems represented by fuzzy models, however, received 
less attention.

The concept of fuzzy sets proposed by Zadeh (1965) has 
started a new era in set theories. Fuzzy sets have been suc-
cessfully applied in classification and system identification 
problems (Wang and Chen 2008; Chen and Chang 2011; 
Chen et al. 2012; Wang et al. 2017; Yordanova et al. 2017; 
Lai et al. 2018; Liu and Zhang 2018). Many modern systems 
have been modeled by fuzzy reasoning. The fuzzy reasoning 
comprises fuzzy inference rules described by “IF-THEN” 
statements. “IF” statements are called premises while 
“THEN” statements are called consequents. Takagi–Sug-
eno (T-S) fuzzy modeling is an efficient way of representing 
a highly nonlinear system in a simple way by applying the 
fuzzy reasoning. The overall system dynamics is expressed 
as a fuzzy summation of the linear consequents of fuzzy 
rules of a T-S fuzzy model (Takagi and Sugeno 1985). The 
linear consequent models of a T-S fuzzy model are intercon-
nected with each other by membership functions to represent 
a nonlinear system for any degree of accuracy (Feng 2006). 
As a consequence, this modeling technique enables the use 
of existing linear tools and techniques for analysing and 
synthesising different problems of nonlinear systems. The 
stability of these model-based systems has been a vibrant 
research area for a long time.

Controller design problem for nonlinear systems using 
T-S fuzzy model has been an active research area (Sun et al. 
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2017; Shojaei et al. 2018; Jiang et al. 2018; Wang et al. 
2018). Parallel distributed compensation (PDC) approach is 
a well accepted technique for designing controller to stabilise 
a T-S fuzzy system. A PDC controller is a fuzzy blending 
of the linear feedback controllers designed for the local lin-
ear models of a T-S fuzzy model (Wang et al. 1995; Tanaka 
et al. 1998; Li et al. 1999). The stability analysis methods and 
design procedures of PDC controllers for T-S fuzzy models 
are well developed (Tanaka and Sugeno 1992; Wang et al. 
1996; Ma and Sun 2001; Nguang and Shi 2003; Guerra and 
Vermeiren 2004; Zhang et al. 2015). The effect of time-delay 
and model uncertainty on the stability of T-S fuzzy systems 
can be minimised by Lyapunov function approach (Liu and 
Zhang 2003; Chen and Liu 2005; Wu et al. 2012). Due to 
the recent advancements of numerical techniques for solv-
ing convex optimisation problems, most of the recent works 
transform the stability conditions as LMIs so that the control-
ler gains can be calculated from the solutions of the inequali-
ties. If all states are not accessible, observers are employed 
for estimating the states and designing a PDC controller. In 
most of the cases the observers are considered to be full order 
state observers. Reduced order observers are studied in Ma 
and Sun (2001), Krokavec and Filasov (2012, 2014) to con-
struct observer-based controllers for T-S fuzzy systems.

A functional observer is inherently a reduced order 
observer. A fuzzy functional observer can be constructed 
as a fuzzy summation of the linear functional observers for 
the subsystems of a T-S fuzzy model. As a PDC control-
ler is a fuzzy summation of feedback controllers, which are 
linear functions of states, this controller can be obtained 
using the fuzzy functional observer. This technique reduces 
the observer order and the real time computational effort 
of the controller. The main advantages of applying a func-
tional observer for designing a PDC controller are that this 
observer is of reduced order, and it estimates the control 
input directly. Considering these advantages, we are inter-
ested in studying the existence as well as construction proce-
dure of the robust functional observer-based PDC controller 
for an uncertain T-S fuzzy system with time-delay.

Ma and Sun (2001) studied the problem of construction of 
a functional observer for nonlinear systems represented by 
T-S fuzzy model and provided an observer construction pro-
cedure by solving inter connected algebraic equations. Fadali 
(2005) studied the application of this functional observer 
for designing a PDC controller. Both procedures, however, 
require checking the stability of the observer; if the stability 
conditions are not satisfied the functional observer needs to 
be redesigned. Improved fuzzy functional observer-based 
controller design techniques using stability conditions as 
LMIs are provided by Islam et al. (2018a, b). These works, 
however, do not consider the effect of model uncertainty on 
the error dynamics of a fuzzy functional observer. To the 
best of the authors’ knowledge, the problem of controller 

design using functional observer for uncertain T-S fuzzy 
model with time-delay is not studied yet fully. This gap moti-
vates us to carry out this work.

In this paper, we study the problem of obtaining a PDC 
controller using a robust functional observer considering the 
time-varying time-delay and model uncertainty. The model 
uncertainty is assumed to be norm bounded, and the time-
delay is assumed to be bounded above and below. The pro-
posed functional observer is robust against the model uncer-
tainty. The sensitivity of the estimation error to the model 
uncertainty is minimised by employing the L2 gain minimisa-
tion technique. The stability condition is formulated as LMIs 
by using Lyapunov–Krasovskii functional. The functional 
observer construction procedure includes two steps: first, 
calculating the PDC gain matrices by solving the stability 
condition of the plant; second, finding observer matrices by 
obtaining the solution of a minimisation problem that ensures 
the asymptotic stability and robustness of the functional 
observer. The main contributions of this paper are as follows:

1. The functional observer is used to obtain a feedback 
controller for stabilising an uncertain T-S fuzzy system 
with time-delay.

2. The functional observer is derived by the proposed method.
3. The existence condition of the proposed controller is 

presented as rank equality condition.

The rest of the paper is organised as follows. The plant 
model and problem formulation are described in Sect. 2. It 
includes the description of a T-S fuzzy model with time-
delay and model uncertainty. The mathematical model of 
the functional observer is also described in this section. Sec-
tion 3 provides the main results: the existence and stability 
condition of the proposed observer and the observer con-
struction procedure. Section 4 presents illustrative examples 
to validate the results. Section 5 summarises this paper with 
concluding remarks and the scope of future works.

Notation ℝn×m denotes an n × m-dimensional real matrix 
and ℝn denotes an n-dimensional real vector. Ip represents a 
p × p identity matrix. Superscripts (.)+ , (.)⟂ and (.)− mean the 
Moore–Penrose generalised inverse, orthogonal basis, and 
inverse of corresponding matrix, respectively. ⋆ denotes the 
symmetric components of respective blocks of a symmetric 
matrix while diag(X,X,… ,X) represents a block diagonal 
matrix.

2  System description and problem 
formulation

A fuzzy set M on the universe of discourse X may be defined 
by a membership function �M such that �M(�) ∈ [0, 1] for all 
� ∈ X . The numeric value of �M(�) is called the membership 
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value or degree of membership by which � ∈ X belongs to 
fuzzy set M. A T-S fuzzy model of a dynamical system is 
described by a number of fuzzy rules described by “IF-THEN” 
statements. “IF” statement consists of premise variables that 
belong to respective fuzzy sets, and are connected to each 
other by logical operator “AND” to define a particular operat-
ing point of the system. The consequent part, “THEN” state-
ment, consists of a linear state-space model of the system at the 
particular operating point for which the rule has been stated.

The ith rule of a T-S fuzzy model with model uncer-
tainty representing a nonlinear system with time-delay can 
be expressed as

where u(t) ∈ ℝ
m is the input, y(t) ∈ ℝ

p is the output, 
x(t) ∈ ℝ

n is the state, �(t) is the time-varying time-delay, 
and �1(t),… , �l(t) are the premise variables. �k(t) belongs 
to fuzzy set Mk

i
 in the ith rule with the degree of member-

ship defined by membership function Mk
i
(�k(t)) . Ai ∈ ℝ

n×n , 
Adi ∈ ℝ

n×n , Bi ∈ ℝ
n×m and C ∈ ℝ

p×n represent the ith linear 
subsystem. �Ai(t) and �Adi(t) represent the model uncer-
tainty. Taking �(t) = [�1(t),… , �l(t)] , the fuzzy summation,

where

represents the overall nonlinear plant dynamics.
The upper and lower bounds of the time-delay are denoted 

by �M and �m , respectively. The time derivative of time-delay 
�(t) is bounded above; �̇�(t) ≤ 𝜌 < 1 . The time-varying model 
uncertainties are assumed to be

such that time-varying uncertain parameters Ui(t) and Udi(t) 
of proper dimensions satisfy 

(1)

IF 𝜉1(t) is M
1

i
AND ⋯ AND 𝜉l(t) is M

l
i

THEN ẋ(t) = (Ai + 𝛥Ai(t))x(t)

+ (Adi + 𝛥Adi(t))x(t − 𝜏(t)) + Biu(t)

y(t) = Cx(t)

x(t) = 𝜙(t), t ∈ [−𝜏(t), 0], i = 1,… , r,

(2)

ẋ(t) =

r∑
i=1

𝜇i(𝜉(t))

{
(Ai + 𝛥Ai(t))x(t)

+ (Adi + 𝛥Adi(t))x(t − 𝜏(t)) + Biu(t)

}

y(t) = Cx(t),

�i(�(t)) =

∏l

k=1
Mk

i
(�k(t))∑r

i=1

∏l

k=1
Mk

i
(�k(t))

with �i(�(t)) ≥0 and

r�
i=1

�i(�(t)) = 1,

�Ai(t) = RiUi(t)Si, i = 1, 2,… , r and

�Adi(t) = RdiUdi(t)Sdi, i = 1, 2,… , r,

 where Ri , Si , Rdi and Sdi are known real constant matrices 
of proper dimensions.

Remark 1 The plant model uncertainties, which in many 
cases may not be exactly modeled by mathematical expres-
sions, can be generally treated as uncertainties over-bounded 
by the condition UT

i
(t)Ui(t) < I . While Ui(t) carries the actual 

information of the uncertain nature of the systems, matrices 
Ri and Si link this uncertainty with the nominal system (Shi 
et al. 2003).

A PDC controller for system (1) can be expressed as

where Kj corresponds to the linear feedback gain of the 
respective subsystem. The procedure for calculating stabi-
lising feedback controller gain Kj is described in the next 
section. Considering all states are not accessible, our main 
focus is to employ a linear functional observer to estimate 
uj(t) for each linear subsystem, and to obtain u(t) using the 
fuzzy summation. The proposed functional observer-based 
PDC controller is as described below: 

 where wj(t) ∈ ℝ
m , Fj ∈ ℝ

m×p , Nij ∈ ℝ
m×m , Ndij ∈ ℝ

m×m , 
Jij ∈ ℝ

m×p , Jdij ∈ ℝ
m×p , and Hij ∈ ℝ

m×m . Here ûj(t) is the 
estimated function of states, where uj(t) is a linear combina-
tion of the states x(t) and is defined by uj(t) = Kjx(t) . The 
estimation error can be expressed as

(3a)UT
i
(t)Ui(t) ≤ I, i = 1, 2,… , r and

(3b)UT
di
(t)Udi(t) ≤ I, i = 1, 2,… , r,

u(t) =

r∑
j=1

�j(�(t))uj(t)

=

r∑
j=1

�j(�(t))Kjx(t),

(4a)
ẇj(t) =

r∑
i=1

𝜇i(𝜉(t))

{
Nijwj(t) + Ndijwj(t − 𝜏)

+ Jijy(t) + Jdijy(t − 𝜏) + Hijû(t)

}
,

(4b)ûj(t) = wj(t) + Fjy(t),

(4c)û(t) =

r∑
j=1

𝜇j(𝜉(t)){ûj(t)},

(4d)wj(t) = 0 for all t ∈ [−�, 0],

ej(t) = uj(t) − ûj(t)

= Tjx(t) − wj(t),
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where Tj = Kj − FjC.

Remark 2 In existing observer-based PDC controller 
design techniques, an observer estimates system state x(t). 
Estimated state x̂(t) is used to obtain the control input as 
û(t) =

∑r

j=1
𝜇j(𝜉(t)){Kjx̂(t)} . The observer is constructed 

by using known system matrices and an unknown observer 
gain matrix that is obtained so that estimation error, 
ex(t) = x(t) − x̂(t) , converges to zero. The observer dynam-
ics is described by x̂(t) which is of the same order of system 
state x(t). The proposed functional observer, on the other 
hand, estimates control input uj(t) directly as a function 
of states. Estimation error ej(t) of the functional observer-
based PDC controller is different from estimation error ex(t) 
of existing observers. The order of observer state wj(t) of 
the functional observer may be different from the order 
of system state x(t). Unlike existing observer construc-
tion procedures, the proposed functional observer employs 
different observer parameters, Nij , Ndij , Jij , Jdij , Hij , and Fj 
for the observer dynamics. These observer parameters are 
unknown and are to be constructed so that the estimation 
error approaches zero.

The error dynamics can be expressed as

(5)

ėj(t) =

r∑
i=1

𝜇(𝜉)

{
Nijej(t) + Ndijej(t − 𝜏(t))

+ (TjAi − NijTj − JijC + TjRiUi(t)Si)x(t)

+ (TjAdi − NdijTj − JdijC

+ TjRdiUdi(t)Sdi)x(t − 𝜏(t))

+ (TjBi − Hij)û(t)

}
.

Error dynamics (5) reduces to

if we have 

Therefore, the controller design problem for the uncer-
tain T-S fuzzy system with time-delay using the functional 
observer turns into obtaining matrices Nij , Ndij, Jij, Jdij , Hij , 
and Fij , such that error system (6) is asymptotically stable 
and conditions (7) hold.

3  Main results

PDC gain matrices Kj can be calculated by solving the LMIs 
presented in the following lemma.

Lemma 1 The fuzzy time-delay system described by (2) is 
stable if, for some given constants �̄�1 , �̄�2 , �m , �M and �, there 
exist positive definite symmetric matrices P̄1 and P̄2, and 
matrices Ȳj of proper dimension such that

(6)
ėj(t) =

r∑
i=1

𝜇(𝜉)

{
Nijej(t) + Ndijej(t − 𝜏(t))

+ TjRiUi(t)Six(t) + TjRdiUdi(t)Sdix(t − 𝜏(t))

}

(7a)TjAi − NijTj − JijC = 0,

(7b)TjAdi − NdijTj − JdijC = 0,

(7c)TjBi − Hij = 0.

(8)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

P̄2 + AiP̄1

+P̄1A
T
i
+ BiȲj

+ȲT
j
BT
i

AdiP̄1
1

2
𝜅(P̄1A

T
i
+ ȲT

j
BT
i
) Ri Rdi 0 0 P̄1S

T
i

0

⋆ −(1 − �̄�)P̄2
1

2
𝜅P̄1A

T
di

0 0 0 0 0 P̄1S
T
di

⋆ ⋆ −𝜏m�̄�2P̄1 0 0 𝜅Ri 𝜅Rdi 0 0

⋆ ⋆ ⋆ −I 0 0 0 0 0

⋆ ⋆ ⋆ ⋆ −I 0 0 0 0

⋆ ⋆ ⋆ ⋆ ⋆ −I 0 0 0

⋆ ⋆ ⋆ ⋆ ⋆ ⋆ −I 0 0

⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ −
1

2
I 0

⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ −
1

2
I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0

for i = 1, 2,… , r and j = 1, 2,… , r,
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 where 𝜅 = 𝜏M(�̄�1 + �̄�2). PDC controller gain matrices Kj 
can be obtained from the relation Ȳj = KjP̄1.

Proof Proof is given in the appendix.   □

Having obtained gain matrices Kj , our goal is to con-
struct robust functional observer (4) that estimates the 

Theorem 1 The functional observer described by (4) with 
time-varying time-delay having the upper bound �M and 
the lower bound �m is robustly asymptotically stable if, for 
given scalars �1 and �2 , there exist positive definite symmet-
ric matrices P1 , P1

2
 , P2

2
 , P3

2
 and P4

2
 , and matrices W11 , W12 , 

W21 , W22 , W31 , W33 and Yj of proper dimensions such that the 
following optimisation problem has a solution:

(9)

minimise 𝛾 > 0

subject to

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝛯
1,1

ij
𝛯

1,2

ij
−W21 W31 𝛯

1,5

ij
0 0 𝜏MW11 𝜏W21 𝜏W31 𝛯

1,11

ij
𝛯

1,12

ij
0 0

⋆ 𝛯
2,2

ij
−W22 W32 𝛯

2,5

ij
0 0 𝜏MW11 𝜏W22 𝜏W32 0 0 0 0

⋆ ⋆ −P2
2

0 0 0 0 0 0 0 0 0 0 0

⋆ ⋆ ⋆ −P3
2

0 0 0 0 0 0 0 0 0 0

⋆ ⋆ ⋆ ⋆ 𝛯
5,5

ij
0 0 0 0 0 0 0 𝛯

5,13

ij
𝛯

5,14

ij

⋆ ⋆ ⋆ ⋆ ⋆ 𝛯
6,6

ij
0 0 0 0 0 0 0 0

⋆ ⋆ ⋆ ⋆ ⋆ ⋆ 𝛯
7,7

ij
0 0 0 0 0 0 0

⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ 𝛯
8,8

ij
0 0 0 0 0 0

⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ 𝛯
9,9

ij
0 0 0 0 0

⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ 𝛯
10,10

ij
0 0 0 0

⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ −I 0 0 0

⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ −I 0 0

⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ −I 0

⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ −I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0,

fuzzy summation of the function of states Kjx(t) directly. 
The error dynamics of the observer is sensitive to the model 
uncertainty. Therefore, our goal includes two aspects: first, 
to ensure that the estimation error approaches zero asymp-
totically if there is no model uncertainty; second, to mini-
mise the sensitivity of estimation error to uncertainty. The 
sensitivity minimisation problem is formulated in the form 
of minimising a cost function subject to L2 gain bound con-
straint. We say that the functional observer is robust if there 
exists a positive scalar � such that

where ||⋅| |2 is an L2 norm as expressed below:

The following theorem describes the stability condition of 
the functional observer.

||||uj(t) − ûj(t)
||| |2

||||uj(t)
||| |2

=

||||ej(t)
||| |2

||||uj(t)
||| |2

< 𝛾 ,

||||uj(t)
||| |

2

2
= ∫

∞

0

uT
j
(t)uj(t)dt.

 where

and N1
ij
 , N2

ij
 , N1

dij
 , N2

dij
 , F1

j
 and F2

j
 are defined in (12a), (12b) 

and (12e).

Proof Using the definition, Tj = Kj − FjC , and considering 
all values of i, (7a) and (7b) can be expressed as

�
1,1

ij
= Ip + P1N

1
ij
+ YjN

2
ij
+ (N1

ij
)TP1 + (N2

ij
)TYj

+P1
2
+ P2

2
+ P3

2
+W11 +WT

11
,

�
1,2

ij
= P1N

1
dij
+ YjN

2
dij
−W11 +WT

12
+W21 −W31,

�
1,5

ij
=

1

2
�M(�1 + �2)((N

1
ij
)TP1 + (N2

ij
)TYj),

�
1,11

ij
= (P1T

1
j
+ YjT

2
j
)Ri, �

1,12

ij
= (P1T

1
j
+ YjT

2
j
)Rdi,

�
2,2

ij
= −(1 − �)P1

2
−W12 −WT

12
+W22 +WT

22
−W32 −WT

32

�
2,5

ij
=

1

2
�M(�1 + �2)((N

1
dij
)TP1 + (N2

dij
)TYj),

�
5,5

ij
= −�m�2P1, �

5,13

ij
= �M(�1 + �2)(P1T

1
j
+ YjT

2
j
)Ri,

�
5,14

ij
= �M(�1 + �2)(P1T

1
j
+ YjT

2
j
)Rdi,

�
6,6

ij
= −�2KT

j
Kj +

3

2
ST
i
Si, �

7,7

ij
= −(1 − �)P4

2
+

3

2
ST
di
Sdi,

�
8,8

ij
= −�M�1P1, �

9,9

ij
= −�(�1 + �2)P1, �

10,10

ij
= −��2P1,

T1
j
= Kj − F1

j
C, T2

j
= −F2

j
C, Yj = P1Zj, � = �M − �m,
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where

The general solution of the unknown matrices of (10) can 
be given as

where �j =

⎡
⎢⎢⎢⎢⎢⎣

C Cdj 0

 0

0 j

0 

⎤⎥⎥⎥⎥⎥⎦

 and �j =
[
Kj Kjd

]
 are known, 

and Zj is an arbitrary matrix of proper dimension. Nij , Ndij , 
Mij , Mdij and Fj can be expressed as 

 where N1
ij
 , N2

ij
 , N1

dij
 , N2

dij
 , M1

dij
 , M2

dij
 , F1

j
 and F2

j
 are extracted 

from (11) by partitioning �j and �j properly.

(10)

Fj

[
C Cd

]
+
[j dj

] [j 0

0 Kj

]

+
[j dj

] [ 0

0 
]

=
[
Kj Kjd

]
,

j =

⎡
⎢⎢⎢⎣

Kj 0 … 0

0 Kj … 0

⋮ ⋮ ⋱ ⋮

0 0 … Kj

⎤
⎥⎥⎥⎦
,  =

⎡
⎢⎢⎢⎣

C 0 … 0

0 C … 0

⋮ ⋮ ⋱ ⋮

0 0 … C

⎤
⎥⎥⎥⎦
,

j =
�
N1j N2j … Nrj

�
, dj =

�
Nd1j Nd2j … Ndrj

�
,

Mij = Jij − NijFj, Mdij = Jdij − NdijFj,

j =
�
M1j M2j … Mrj

�
, dj =

�
Md1j Md2j … Mdrj

�
,

j =
�
A1 A2 … Ar

�
, dj =

�
Ad1 Ad2 … Adr

�
.

(11)
[
Fj j j dj dj

]
= �j�

+

j
− Zj(I − �j�

+

j
),

(12a)Nij = N1
ij
+ ZjN

2
ij
,

(12b)Ndij = N1
dij
+ ZjN

2
dij
,

(12c)Mij = M1
ij
+ ZjM

2
ij
,

(12d)Mdij = M1
dij
+ ZjM

2
dij
,

(12e)Fj = F1
j
+ ZjF

2
j
,

Consider a Lyapunov–Krasovskii functional

where P1 , P2 , P3 , and P4 are positive definite symmetric 
matrices, and �m and �M are lower and upper bounds of delay 
�(t) , respectively. Taking the derivative of (13) along the 
error dynamics, we have

(13)

V(t) = eT
j
(t)P1ej(t) + ∫

t

t−𝜏(t)

eT
j
(s)P1

2
ej(s)ds

+ ∫
t

t−𝜏M

eT
j
(s)P2

2
ej(s)ds

+ ∫
t

t−𝜏m

eT
j
(s)P3

2
ej(s)ds

+ ∫
t

t−𝜏(t)

xT (s)P4
2
x(s)ds

+ ∫
0

−𝜏M
∫

t

t+𝜃

ėT
j
(s)P3ėj(s)dsd𝜃

+ ∫
−𝜏m

−𝜏M
∫

t

t+𝜃

ėT
j
(s)P4ėj(s)dsd𝜃,

V̇(t) = 2eT
j
(t)P1ėj(t) + eT

j
(t)P1

2
ej(t)

− (1 − �̇�(t))eT
j
(t − 𝜏(t))P1

2
ej(t − 𝜏(t))

+ eT
j
(t)P2

2
ej(t) − eT

j
(t − 𝜏M)P

2
2
ej(t − 𝜏M)

+ eT
j
(t)P3

2
ej(t)

− eT
j
(t − 𝜏m)P

3
2
ej(t − 𝜏m) + xT (t)P4

2
x(t)

− (1 − �̇�(t))xT (t − 𝜏(t))P4
2
x(t − 𝜏(t))

+ ėT
j
(t)(𝜏MP3 + (𝜏M − 𝜏m)P4)ėj(t)

− �
t

t−𝜏M

ėT
j
(s)P3ėj(s)ds − �

t−𝜏m

t−𝜏M

ėT
j
(s)P4ėj(s)ds

≤ 2eT
j
(t)P1ėj(t) + eT

j
(t)(P1

2
+ P2

2
+ P3

2
)ej(t)

− (1 − 𝜌)eT
j
(t − 𝜏(t))P1

2
ej(t − 𝜏(t))

− eT
j
(t − 𝜏M)P

2
2
ej(t − 𝜏M)

− eT
j
(t − 𝜏m)P

3
2
ej(t − 𝜏m) + xT (t)P4

2
x(t)

− (1 − 𝜌)xT (t − 𝜏(t))P4
2
x(t − 𝜏(t))

+ ėT
j
(t)(𝜏MP3 + (𝜏M − 𝜏m)P4)ėj(t)

− �
t

t−𝜏(t)

ėT
j
(s)P3ėj(s)ds

− �
t−𝜏(t)

t−𝜏M

ėT
j
(s)(P3 + P4)ėj(s)ds

− �
t−𝜏m

t−𝜏(t)

ėT
j
(s)P4ėj(s)ds.
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Using the Leibniz–Newton formula, we can obtain the fol-
lowing identities: 

 where Wkl with k = 1,… 3 and l = 1, 2 are matrices of proper 
dimensions with real entries. By using the identities in (15) 
and defining augmented vector

we obtain 

(15a)

2(eT
j
(t)W11 + eT

j
(t − 𝜏(t))W12)(

ej(t) − ej(t − 𝜏(t) − ∫
t

t−𝜏(t)

ėj(s)ds

)
= 0

(15b)

2(eT
j
(t)W21 + eT

j
(t − 𝜏(t))W22)(

ej(t − 𝜏(t)) − ej(t − 𝜏M) − ∫
t−𝜏(t)

t−𝜏M

ėj(s)ds

)
= 0

(15c)

2(eT
j
(t)W31 + eT

j
(t − 𝜏(t))W32)(

ej(t − 𝜏m) − ej(t − 𝜏(t)) − ∫
t−𝜏m

t−𝜏(t)

ėj(s)ds

)
= 0,

𝜁T
j
(t) =eT

j
(t)eT

j
(t − 𝜏(t))eT

j
(t − 𝜏M)

eT
j
(t − 𝜏m)ė

T (t)xT (t)xT (t − 𝜏(t)),

(16a)

− ∫
t

t−𝜏(t)

ėT
j
(s)P3ėj(s)ds = 2𝜁T

j
(t)W1ej(t)

− 2𝜁T
j
(t)W1ej(t − 𝜏(t)) + 𝜏(t)𝜁T

j
(t)W1P

−1
3
WT

1
𝜁j(t)

− ∫
t

t−𝜏(t)

(𝜁T
j
(t)W1 + ėT

j
(s)P3)P

−1
3

(
WT

1
𝜁j(t) + P3ėj(s)

)
ds,

(16b)

− ∫
t−𝜏(t)

t−𝜏M

ėT
j
(s)(P3 + P4)ėj(s)ds

= 2𝜁T
j
(t)W2ej(t − 𝜏(t)) − 2𝜁T

j
(t)W2ej(t − 𝜏M)

+ (𝜏M − 𝜏(t))𝜁T
j
(t)W2(P3 + P4)

−1WT
2
𝜁j(t)

− ∫
t−𝜏(t)

t−𝜏M

(𝜁T
j
(t)W2 + ėT

j
(s)(P3 + P4))(P3 + P4)

−1(WT
2
𝜁j(t)

+ (P3 + P4)ėj(s))ds and

(16c)

− ∫
t−𝜏m

t−𝜏(t)

ėT
j
(s)P3ėj(s)ds = 2𝜁T

j
(t)W3ej(t − 𝜏m)

− 2𝜁T
j
(t)W3ej(t − 𝜏(t))

+ (𝜏(t) − 𝜏m)𝜁
T
j
(t)W3P

−1
4
WT

3
𝜁j(t) − ∫

t−𝜏m

t−𝜏(t)

(𝜁T
j
(t)W3

+ ėT
j
(s)P4)P

−1
4
(WT

3
𝜁j(t) + P4ėj(s))ds,

 where

Using assumptions UT
i
(t)Ui(t) < I and UT

di
(t)Udi(t) < I , the 

following inequalities can be obtained: 

 Applying inequalities (17), it can be shown that

and

W1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

W11

W12

0

0

0

0

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, W2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

W21

W22

0

0

0

0

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, andW3 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

W31

W32

0

0

0

0

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

(17a)
2eT

j
(t)P1TjRiUi(t)Six(t) ≤ eT

j
(t)(P1TjRi)

(P1TjRi)
Tej(t) + xT (t)ST

i
Six(t)

(17b)
2eT

j
(t)P1TjRdiUdi(t)Sdix(t) ≤ eT

j
(t)(P1TjRdi)

(P1TjRdi)
Tej(t) + xT (t)ST

di
Sdix(t).

(18)

2eT
j
(t)P1ėj(t) ≤

r∑
i=1

𝜇i(𝜉(t))
{
eT
j
(t)
(
P1Nij + NT

ij
P1

)
ej(t)

+ 2eT
j
(t)P1Ndijej(t − 𝜏(t))

+ eT
j
(t)P1TjRi(P1TjRi)

Tej(t)

+ eT
j
(t)P1TjRdi(P1TjRdi)

Tej(t)

+ xT (t)ST
i
Six(t) + xT (t − 𝜏(t))

ST
di
Sdix(t − 𝜏(t))

}

(19)

ėT
j
(t)(𝜏MP3 + (𝜏M − 𝜏m)P4)ėj(t)

=

r∑
i=1

𝜇i(𝜉(t))
{
ėT
j
(t)𝛬(N̄ijēj(t)

+
[
TjRiUi(t)Si TjRdiUdi(t)Sdi

]
x̄(t)) − 𝜏mė

T
j
(t)P4ėj(t)

}

≤
r∑

i=1

𝜇i(𝜉(t))
{
ėT
j
(t)𝛬N̄ijēj(t)

+
1

2
ėT
j
(t)𝛬

[
TjRi TjRdi

] [
TjRi TjRdi

]T
𝛬ėj(t)

+
1

2
x̄T (t)

[
ST
i
Si 0

0 ST
di
Sdi

]
x̄(t) − 𝜏mė

T
j
(t)P4ėj(t)

}
,
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where ēT
j
(t) = [eT

j
(t) eT

j
(e − 𝜏(t))] , x̄T (t) = [xT (t) x

T (e − 𝜏(t))] , 

N̄ij = [Nij Ndij] and � = �M(P3 + P4) . Using the identities in 
(16), and the inequalities in (18) and (19), we can write

where

with

Now, to minimise the effect of parameter uncertainties on the 
error dynamics, we assume a positive scalar � and consider

By integration we can write

V̇(t) ≤
r∑

i=1

𝜁T
j
(t)
(ij + 𝜏MW1P

−1
3
WT

1

+(𝜏M − 𝜏m)W2(P3 + P4)
−1WT

2

+(𝜏M − 𝜏m)W3P
−1
4
WT

3
+ ΓijΓ

T
ij

)
𝜁j(t),

ij =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

11 12 −W21 W31 15
ij

0 0

⋆ 23 −W22 W32 25
ij

0 0

⋆ ⋆ −P2
2

0 0 0 0

⋆ ⋆ ⋆ −P3
2

0 0 0

⋆ ⋆ ⋆ ⋆ −𝜏mP4 0 0

⋆ ⋆ ⋆ ⋆ ⋆ 66
ij

0

⋆ ⋆ ⋆ ⋆ ⋆ ⋆ 77
ij

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Γij =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

P1TjRi P1TjRdi 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0
1

2
𝛬TjRi

1

2
𝛬TjRdi

0 0 0 0

0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

1
ij
= P1Nij + NT

ij
P1 + P1

2
+ P2

2
+ P3

2
+W11 +WT

11
,

12
ij

= P1Ndij −W11 +WT
12
+W21 −W31,

15
ij

=
1

2
NT
ij
�,

22
ij

= −(1 − �)P1
2
−W12 −WT

12
+W22 +WT

22
−W32 −WT

32
,

25
ij

=
1

2
NT
dij
�,

66
ij

=
3

2
ST
i
Si + P4

2
, 77

ij
= −(1 − �)P4

2
+

3

2
ST
di
Sdi.

(20)
dV(t)

dt
+ eT

j
(t)ej(t) − 𝛾2xT (t)KT

j
Kjx(t) < 0.

(21)

V(∞) − V(0) < ∫
∞

0

(
−eT

j
(s)ej(s) + 𝛾2xT (s)KT

j
Kjx(s)

)
ds.

Under zero initial condition, (21) eventually implies

Therefore, a sufficient condition for the error dynamics 
to approach zero asymptotically with minimised effect of 
parameter uncertainty on the convergence of error can be 
given as minimising � subject to (20). Considering P3 = �1P1 
and P4 = �2P1 and applying the Schur complement, it can 
be shown that the inequalities in (20) hold if the inequalities 
in (9) hold, where Nij and Ndij are obtained from (12a) and 
(12b), respectively. This completes the proof.   □

The robust functional observer-based controller construc-
tion procedure for stabilising a T-S fuzzy system with model 
uncertainty and time-delay is outlined below.

Synthesising steps for the robust functional observer:

Step 1: calculate Kj from the solution of (8). Obtain N1
ij
 , N2

ij
 , 

N1
dij

 , N2
dij

 , M1
ij
 , M2

ij
 , M1

dij
 , M2

dij
 , F1

j
 and F2

j
 from (12).

Step 2: specify the ranges of �1 and �2 , and increments ��1 
and ��2 . Take the minimum value of the ranges of �1 and 
�2.

Step 3: solve the minimising problem in (9). If no solution 
is obtained increase �1 and �2 by their respective incre-
ments and repeat Step 3, else follow the next step.

Step 4: calculate Zj using the values of Yj . Then, calculate 
Nij , Ndij , Fj , Mij , and Mdij as defined in (12).

Step 5: calculate Jij  and Jdij  using the relations 
Jij = Mij + NijFj and Jdij = Mdij + NdijFj , respectively.

Step 6: obtain Hij using (7c).

Remark 3 It is evident that (10) requires to have a solu-
tion for some Zj such that Nij , Ndij , Mij , Mdij and Fj can be 
expressed by (12). Therefore, one necessary condition for 
the existence of the functional observer is given as the rank 
equality as below (Rao and Mitra 1971):

Remark 4 The solution of the optimisation problem in (9) 
depends on choosing two scalars �1 and �2 . This solution 
depends on the ranges and the increments of these two 

(22)
∫

∞

0

(
eT
j
(s)ej(s) − 𝛾2xT (s)KT

j
Kjx(s)

)
ds < 0

⟺

||||ej(t)
||| |2

||||uj(t)
||| |2

< 𝛾 .

rank

⎡
⎢⎢⎢⎢⎢⎢⎣

Kj Kjd

C Cdj 0

 0

0 j

0 

⎤
⎥⎥⎥⎥⎥⎥⎦

= rank

⎡⎢⎢⎢⎢⎢⎣

C Cdj 0

 0

0 j

0 

⎤⎥⎥⎥⎥⎥⎦

.



63Granular Computing (2020) 5:55–69 

1 3

scalars. We can increase the solution domain by choosing 
smaller increments and larger ranges.

Remark 5 This paper considers an uncertain T-S fuzzy 
model of a delayed nonlinear system for obtaining the func-
tional observer-based PDC controller. If there is no model 
uncertainty in the system, this problem reduces to the prob-
lem investigated in Islam et al. (2018a). Therefore, this 
paper investigates a more generalised problem compared 
with existing results. Moreover, the equality constraints of 
the stability conditions for the observer presented in Islam 
et al. (2018a) are eliminated in the proposed stability condi-
tion in this paper.

4  Illustrative examples

4.1  Example 1

In this subsection, we apply the proposed method to a two-
rule T-S fuzzy model for illustrating the main results pre-
sented in Sect. 3. The matrices of the linear systems repre-
senting the two rules are as below:

State variable x1(t) is considered to be the premise variable. 
Membership functions for the x1(t) are displayed in Fig. 1.

We consider �M = 0.85 , �m = 0.05 , and � = 0.95 . By fol-
lowing the steps given in Sect. 3, we obtain the observer 
parameters. SOSTOOLS toolbox in MATLAB has been used 
to obtain the results of the optimisation problem of (9). The 
observer parameters are as follows:

A1 =

[
1 −0.5

1 0

]
,

A2 =

[
−1 −0.5

1 0

]
,

B1 =

[
1

0

]
,

Ad1 =

[
0 −0.2

0.2 0

]
,

Ad2 =

[
0 −0.1

0.1 0

]
,

B2 =

[
0.6

0

]
,

C =
[
1 1

]
,

R1 = R2 = Rd1 = Rd1 =

[
−0.3 0

0 0.3

]
,

S1 = S2 =

[
−0.05 0.02

0 0.04

]
,

Sd1 = Sd2 =

[
−0.05 −0.05

0.08 −0.05

]
.

Considering two input conditions �(t) = [4 2]T  and 
�(t) = [−2 −4]T , simulations are run in MATLAB. Fig-
ures 2 and 3 display the state responses of the system with 
the proposed functional observer-based PDC controller and 
the conventional PDC controller (Wang et al. 1995). It can 
be observed that the proposed functional observer-based PDC 
controller stabilises the system asymptotically. Figures 4 and 
5 compare the control signals for these two methods under two 
initial conditions. In these figures u(t) is the desired control 
input generated using the conventional PDC controller consid-
ering all states are measurable while û(t) is the estimated con-
trol input obtained by the functional observer. It can be seen 
that û(t) converges with desired u(t) as expected. The conver-
gence is depicted with enlarged graphs in Fig. 4. In comparison 
with the conventional PDC controller, the proposed method 
can stabilise the fuzzy system satisfactorily. Nevertheless, its 
performance can be enhanced by choosing suitable stabilisa-
tion conditions. Future work may consider this point.

4.2  Example 2

In this subsection, we apply the proposed method to the 
benchmark problem of truck trailer system represented by 
the delayed uncertain T-S fuzzy model (Chen and Liu 2005) 
for verifying its applicability. The system is expressed as a 
two-rule T-S fuzzy model with the following matrices:

K1 =
[
−9.7763 −2.4474

]
, N11 = −0.3084, N21 = −0.7320,

J11 = 2.3363, J21 = 5.5453, F1 = −7.5760,

Nd11 = −0.0799, Nd21 = −0.0400, Jd11 = 0.6054,

H11 = −2.2003, H21 = −1.3202, Jd21 = 0.3027

K2 =
[
−9.7763 −2.4474

]
, N12 = −0.3084, N21 = −0.7320,

J12 = 2.3363, J22 = 5.5453, F2 = −7.5760,

Nd12 = −0.0799, Nd22 = −0.0400, Jd12 = 0.6054

H12 = −2.2003, H22 = −1.3202 Jd22 = 0.3027.

-1 -0.5 0 0.5 1
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0.5

1

1.5

D
eg
re
e
of

m
em

be
rs
hi
p

M 1
1 (x1)M 1

2 (x1)

Fig. 1  Membership functions of fuzzy sets M1

2
 and M1

1



64 Granular Computing (2020) 5:55–69

1 3

Fig. 2  Time response of state 
x
1
(t)

Fig. 3  Time response of state 
x
2
(t)

Fig. 4  Control signals generated 
for initial condition � = [4 2]T



65Granular Computing (2020) 5:55–69 

1 3

where a = 0.7 , v = −1.0 , t̄ = 2.0 , t0 = 0.5 , L = 5.5 , l = 2.8 , 
d =

10t0

�
 . By solving the LMIs in Lemma 1 for �M = 0.5 , 

�m = 0.1 , � = 0.4 , �̄�1 = 0.01 , and �̄�2 = 0.02 , we find PDC 
gain matrices K1 = K2 =

[
7.0648 −30.1913 0.7873

]
 . This 

PDC controller uses state vector x(t) to obtain control law 
u(t) =

∑r

j=1
�i(�(t))Kjx(t) , where

A
1
=

⎡⎢⎢⎢⎣

−a
vt̄

Lt
0

0 0

a
vt̄

Lt
0

0 0

−a
v
2
t̄
2

2Lt
0

vt̄

t
0

0

⎤⎥⎥⎥⎦
,

A
2
=

⎡⎢⎢⎢⎣

−a
vt̄

Lt
0

0 0

a
vt̄

Lt
0

0 0

−ad
v
2
t̄
2

2Lt
0

dvt̄

t
0

0

⎤⎥⎥⎥⎦
,

A
d1

=

⎡⎢⎢⎢⎣

−(1 − a)
vt̄

Lt
0

0 0

(1 − a)
vt̄

Lt
0

0 0

(1 − a)
v
2
t̄
2

2Lt
0

0 0

⎤⎥⎥⎥⎦
,

A
d2

=

⎡⎢⎢⎢⎣

−(1 − a)
vt̄

Lt
0

0 0

(1 − a)
vt̄

Lt
0

0 0

(1 − a)
dv

2
t̄
2

2Lt
0

0 0

⎤⎥⎥⎥⎦
,

R
1
= R

2
= R

d1
= R

d2
=

⎡⎢⎢⎣

0.255

0.255

0.255

⎤⎥⎥⎦
,

B
1
= B

2
=

⎡⎢⎢⎣

vt̄

lt
0

0

0

⎤⎥⎥⎦
,

S
1
= S

2
= S

d1
= S

d2
=
�
0.1 0.1 0.1

�
,

Our objective is to design a functional observer-based PDC 
controller so that the control input is estimated directly with-

out estimating the states. Considering C =

[
0 1 0

0 0 1

]
 and fol-

lowing the steps described in Sect. 3, we find the functional 
observer parameters as below:

A simulation is run in MATLAB for an initial condition 
�(t) =

[
3 −2 5

]T . The time-varying delay is considered 
to be �(t) = 0.4 + 0.1 sin(t) , and the the model uncertainty 
is emulated by MATLAB random number generator. Both 
conventional fuzzy control law and proposed functional 

�1(�(t)) =

(
1 −

1

1 + exp(3(−�(t) − 0.5�))

)

1

1 + exp(3(−�(t) + 0.5�))
,

�2(�(t)) = 1 − �1(�(t)).
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Fig. 5  Control signals gener-
ated for initial condition 
� = [−2 − 4]T
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observer-based fuzzy control law are applied to the closed-
loop system. The state responses for both cases are displayed 
in Fig. 6. The system is stable under the effect of model 
uncertainty and time-delay. The functional observer-based 
controller is compared with the conventional PDC controller 
in Fig. 7. û(t) obtained by the functional observer converges 
with the desired control input u(t) as expected.

5  Conclusion

A systematic synthesis procedure for obtaining a robust 
fuzzy functional observer for an uncertain fuzzy system 
with time-varying time-delay is presented. This func-
tional observer is employed for designing a fuzzy control-
ler that stabilises the system asymptotically. The proposed 
observer is inherently a reduced order observer compared 

with existing observer-based fuzzy controllers. More 
importantly, the observer estimates the control input vec-
tor directly. The stability of the observer is guaranteed 
in the sense that the estimation error approaches zero 
asymptotically. The sensitivity of the estimation error to 
the uncertainty of the model is minimised using a per-
formance index. Lyapunov–Krasovskii functionals are 
used to ensure asymptotic stability of the observer and the 
system; the stability conditions are formulated as LMIs. 
Solutions of these LMIs are used to construct the observer. 
The proposed design methodology is illustrated using two 
examples. Future work may consider improving the stabil-
ity conditions to guarantee the finite-time convergence of 
the observer. Application of this fuzzy functional observer 
for fault diagnosis scheme of nonlinear systems can also be 
an interesting topic of research.

Fig. 7  Control law for the 
closed-loop truck–trailer system
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Fig. 6  State responses of the 
close loop truck–trailer system
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Appendix

Proof of Lemma 1

By applying PDC controller u =
∑r

j=1
�j(�(t))Kjx(t) , the 

dynamics of closed-loop system (2) can be expressed as

Consider a Lyapunov–Krasovskii functional for the stability 
analysis of closed-loop system (23)

(23)

r∑
i=1

r∑
j=1

�i(�(t))�j(�(t))

{
(Ai + �Ai + BiKj)x(t)

+ (Adi + �Adi)x(t − �(t))

}
.

V(t) = xT (t)P1x(t) + ∫
t

t−�(t)

xT (s)P2x(s)ds

+ ∫
0

−�M
∫

t

t+�

xT (s)P3x(s)dsd�

+ ∫
−�m

−�M
∫

t

t+�

xT (s)P4x(s)dsd�.

Taking derivative along the state dynamics and applying the 
assumption �̇�(t) ≤ 𝜌 , we can obtain

By (23) and the assumption of (3), it can be shown that

where x̄T (t) =
[
xT (t) xT (t − 𝜏(t))

]
 and � = �M(P3 + P4) . It 

can also be shown that

Therefore, using (24), (25) and (26) we get

(24)

V̇(t) = 2xT (t)P1ẋ(t) + xT (t)P2x(t)

− (1 − �̇�(t))xT (t − 𝜏(t))P2x(t − 𝜏(t))

+ ẋT (t)(𝜏MP3 + (𝜏M − 𝜏m)P4)ẋ(t)

− �
t

t−𝜏M

ẋT (s)P3ẋ(s)ds

− �
t−𝜏m

t−𝜏M

ẋT (s)P4ẋ(s)ds

≤ 2xT (t)P1ẋ(t) + xT (t)P2x(t)

− (1 − 𝜌)xT (t − 𝜏(t))P2x(t − 𝜏(t))

+ ẋT (t)(𝜏MP3 + (𝜏M − 𝜏m)P4)ẋ(t).

(25)

ẋT (t)(𝜏MP3 + (𝜏M − 𝜏m)P4)ẋ(t)

=

r∑
i=1

r∑
j=1

𝜇i(𝜉(t))𝜇j(𝜉(t))
{
ẋT (t)𝛬

[
Ai + BiKj Adi

]
x̄(t)

+ẋT (t)
[
𝛬Ri 𝛬Rdi

] [Ui(t)Si 0

0 Udi(t)Sdi

]
x̄(t) − 𝜏mẋ

T (t)P4ẋ(t)

}

≤
r∑

i=1

r∑
j=1

𝜇i(𝜉(t))𝜇j(𝜉(t))
{
ẋT (t)𝛬

[
Ai + BiKj Adi

]
x̄(t)

+ẋT (t)
[
𝛬Ri 𝛬Rdi

] [
𝛬Ri 𝛬Rdi

]T
ẋ(t) + x̄T (t)

[
ST
i
Si 0

0 ST
di
Sdi

]
x̄(t)

−𝜏mẋ
T (t)P4ẋ(t)

}
,

(26)

2xT (t)P1ẋ(t)

≤
r∑

i=1

r∑
j=1

𝜇i(𝜉(t))𝜇j(𝜉(t))x̄
T (t)

{[
P1(Ai + BiKj) + (Ai + BiKj)

TP1 P1Adi

⋆ 0

]

+

[
P1Ri P1Rdi

0 0

] [
(P1Ri)

T 0

(P1Rdi)
T 0

]
+

[
ST
i
Si 0

0 ST
di
Sdi

]}
x̄(t).

V̇(t) ≤
r�

i=1

r�
j=1

𝜇i(𝜉(t))𝜇j(𝜉(t))𝜂
T (t)

⎛
⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎣

P2 + P1Ai + AT
i
P1

+P1BiKj + KT
j
BT
i
P1

P1Adi
1

2
(Ai + BiKj)

T𝛬

⋆ −(1 − 𝜌)P2
1

2
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di
𝛬

⋆ ⋆ −𝜏mP4

⎤⎥⎥⎥⎥⎦

+2

⎡⎢⎢⎣

ST
i
Si 0 0

0 ST
di
Sdi 0

0 0 0

⎤⎥⎥⎦
+

⎡⎢⎢⎣

P1Ri P1Rdi 0 0

0 0 0 0

0 0 𝛬Ri 𝛬Rdi

⎤⎥⎥⎦

⎡⎢⎢⎢⎣

(P1Ri)
T 0 0

(P1Rdi)
T 0 0

0 0 RT
i
𝛬

0 0 RT
di
𝛬

⎤⎥⎥⎥⎦

⎞⎟⎟⎟⎠
𝜂(t),
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where 𝜂T (t) =
[
xT (t) xT (t − 𝜏(t)) ẋT (t)

]
 . As a consequence, 

an asymptotic stability condition of the fuzzy system can 
be given as

By the Schur complement, (27) can be expressed as

 Considering P3 = �̄�1P1 and P4 = �̄�2P1 , and pre-multiplying 
and post-multiplying (28) by block-diagonal matrix

we obtain

(27)

⎡
⎢⎢⎢⎢⎣

P2 + P1Ai + AT
i
P1

+P1BiKj + KT
j
BT
i
P1

P1Adi
1

2
(Ai + BiKj)

T𝛬

⋆ −(1 − 𝜌)P2

1

2
AT
di
𝛬

⋆ ⋆ −𝜏mP4

⎤
⎥⎥⎥⎥⎦
+ 2

⎡
⎢⎢⎣

ST
i
Si 0 0

0 ST
di
Sdi 0

0 0 0

⎤
⎥⎥⎦
+

⎡
⎢⎢⎣

P1Ri P1Rdi 0 0

0 0 0 0

0 0 𝛬Ri 𝛬Rdi

⎤
⎥⎥⎦

×

⎡
⎢⎢⎢⎣

(P1Ri)
T 0 0

(P1Rdi)
T 0 0

0 0 RT
i
𝛬

0 0 RT
di
𝛬

⎤
⎥⎥⎥⎦
< 0.

(28)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

P2 + P1Ai + AT
i
P1

+P1BiKj + KT
j
BT
i
P1

P1Adi
1

2
(AT

i
+ KT

j
BT
i
)𝛬 P1Ri P1Rdi 0 0 ST

i
0

⋆ −(1 − 𝜌)P̄2
1

2
AT
di
𝛬 0 0 0 0 0 ST

di

⋆ ⋆ −𝜏mP4 0 0 𝛬Ri 𝛬Rdi 0 0

⋆ ⋆ ⋆ −I 0 0 0 0 0

⋆ ⋆ ⋆ ⋆ −I 0 0 0 0

⋆ ⋆ ⋆ ⋆ ⋆ −I 0 0 0

⋆ ⋆ ⋆ ⋆ ⋆ ⋆ −I 0 0

⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ −
1

2
I 0

⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ −
1

2
I

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0.

diag(P−1
1

P−1
1

P−1
1

I I I I I I),

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

P̄2 + AiP̄1

+P̄1A
T
i
+ BiȲj

+ȲT
j
BT
i

AdiP̄1
1

2
𝜅(P̄1A

T
i
+ ȲT

j
BT
i
) Ri Rdi 0 0 P̄1S

T
i

0

⋆ −(1 − 𝜌)P̄2
1

2
𝜅P̄1A

T
di

0 0 0 0 0 P̄1S
T
di

⋆ ⋆ −𝜏m𝜎2P̄1 0 0 𝜅Ri 𝜅Rdi 0 0

⋆ ⋆ ⋆ −I 0 0 0 0 0

⋆ ⋆ ⋆ ⋆ −I 0 0 0 0

⋆ ⋆ ⋆ ⋆ ⋆ −I 0 0 0

⋆ ⋆ ⋆ ⋆ ⋆ ⋆ −I 0 0

⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ −
1

2
I 0

⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ −
1

2
I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0,

where P̄1 = P−1
1

 , P̄2 = P̄1P2P̄1 , Ȳj = KjP̄1 , 𝜅 = 𝜏M(�̄�1 + �̄�2) 
with some given scalars �̄�1 and �̄�2.
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