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Abstract
We propose a new multiple criteria decision-making method by combining the two types of distance aggregation methods: 
technique for order preference by similarity to ideal solution (TOPSIS) method and ordered weighted average distance 
(OWAD) operator together. The TOPSIS method measures the distance of alternatives to positive ideal and negative ideal 
solutions and then chooses the best solution according to the relative closeness. However, it does not consider the decision-
maker’s attitude. OWAD operator is a combination of OWA operator and distance measure to express the decision-maker’s 
attitude. Therefore, we combine TOPSIS and OWAD operator together into a new approach OWAD–TOPSIS method. 
The influences of weights in OWAD operator on the decision-making results are analyzed. A neat-OWAD operator-based 
OWAD–TOPSIS method is proposed where the weights dynamically change with the distance values and the preference 
parameter. Finally, a numerical example is illustrated to demonstrate the proposed approach and the results are analyzed 
with different parameter values.

Keywords Multiple criteria decision-making · OWAD operator · TOPSIS method · Neat-OWAD operator

1 Introduction

We often make decisions from a number of alternatives, 
actions, or candidates (Hwang and Yoon 1981; Pedrycz and 
Chen 2011, 2015a, b). Multiple criteria decision-making 
(MCDM) provides efficient solutions for these problems 
(Pedrycz and Chen 2015a; Lin et al. 2009a, b; Dagdeviren 
et al. 2009; Lee et al. 2009). Considering the uncertainty 
nature of the decision-making problems, fuzzy MCDM 
method is also proposed (Zadeh 1965; Blanco-Mesa et al. 
2017; Yazdanbakhsh and Dick 2018) and applied in the 
decision-making problems such as portfolio selection (Tir-
yaki and Ahlatcioglu 2005), personnel selection (Dursun and 
Karsak 2010; Safarzadegan Gilan et al. 2012) and decision 
support system (Hung et al. 2010; Noor-E-Alam et al. 2011; 
Peng et al. 2011; Li and Kao 2009; Chen and Hong 2014). 
Dheena and Mohanraj (2011) considered multiple criteria 
decision-making combining fuzzy set theory for location site 

selection. Yan et al. (2011) and Yager (2004) dealt multiple 
criteria decision-making problems with multiple priorities. 
Blanco-Mesa et al. (2017) provided a comprehensive review 
on the developments of fuzzy decision-making problems and 
their applications.

Among the various MCDM approaches, technique for 
order performance by similarity to ideal solution (TOPSIS) 
method is a popular and efficient approach to solve multiple 
criteria decision-making problems (Behzadian et al. 2012; 
Zyoud and Fuchs-Hanusch 2017; Zavadskas et al. 2016). 
The TOPSIS method which was first introduced by Hwang 
and Yoon (1981). The basic idea of TOPSIS method is 
choosing the best alternative by considering the shortest 
distance to the positive ideal solution and the longest dis-
tance from the negative ideal solution simultaneously. The 
TOPSIS method has been widely used in various decision-
making problems (Dursun et al. 2011; Chen et al. 2016; 
Wang and Chen 2017; Zyoud and Fuchs-Hanusch 2017; 
Zavadskas et al. 2016; Lee and Chen 2008). Wang and 
Elhag (2006) proposed a fuzzy TOPSIS method based on 
alpha-level sets in fuzzy numbers and applied it to bridge 
risk assessment. Kabak et al. (2012) combined fuzzy ANP 
and fuzzy TOPSIS approaches to develop a more accurate 
personnel selection methodology. Xu and Zhang (2013) 
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proposed hesitant fuzzy TOPSIS with incomplete informa-
tion. Zhang and Xu (2014, 2015) also extended TOPSIS 
to the forms of Pythagorean fuzzy sets and intuitionistic 
fuzzy sets, respectively. Behzadian et al. (2012), Zyoud and 
Fuchs-Hanusch (2017) and Zavadskas et al. (2016) gave 
comprehensive reviews of TOPSIS method and their appli-
cations in various decision-making problems. Recently, 
Liang and Xu (2017) further extended TOPSIS to the hesi-
tant pythagorean fuzzy sets case. Yoon and Kim (2017) 
incorporated the decision-maker’s behavioral tendency into 
TOPSIS by accommodating the loss aversion concept in 
behavioral economics. Wu et al. (2018) proposed interval 
type-2 fuzzy TOPSIS model for large-scale group decision-
making problems with social network information. Dwivedi 
et al. (2018) proposed a generalized fuzzy TOPSIS method 
as a versatile evaluation model by extending the calculation 
of closeness coefficients.

Obviously, TOPSIS method provides an effective way 
to aggregate decision-making information. In recent years, 
various decision-making information aggregation methods 
have been proposed (Yager 1988; Mardani et al. 2018) and 
the aggregation methods often depend upon the prefer-
ences of decision-makers (Yoon and Kim 2017; Dwivedi 
et al. 2018). The ordered weighted averaging operator 
(OWA) was introduced by Yager (1988) which is a widely 
applied and important type of aggregation operators to 
deal with decision-makers’ opinions. Various extensions 
of OWA operator such as ordered weighted geometric 
averaging operators, neated OWA operator, inducted OWA 
operator, ordered weighted average distance operator, 
and generalized OWA operator are also proposed (Laen-
gle et al. 2017; Morshedizadeh et al. 2018; Torra 2004; 
Emrouznejad and Marra 2014; He et al. 2017; Mardani 
et al. 2018; Yager et al. 2011). Emrouznejad and Marra 
(2014); He et al. (2017); Mardani et al. (2018) gave com-
prehensive reviews on this topic. Ordered weighted aver-
age distance (OWAD) operator, which was introduced by 
Xu and Chen (2008), is a combination of OWA operator 
and distance measure. Merigó and Gil-Lafuente (2010, 
2011) used Hamming distance with OWA operator in 
sport management and selection of financial products. Xu 
and Wang (2011) developed linguistic ordered weighted 
distance (LOWD) operator. He also investigated some 
families of the LOWD operator and developed a proce-
dure to the linguistic decision problem with the devel-
oped linguistic distance operators. Vizuete Luciano et al. 
(2012) introduced a new process based on the use of the 
OWAD operator in the Hungarian algorithm. Scherger 
et al. (2017) developed a goodness index based on Ham-
ming distance and ordered weighted averaging distance 
(OWAD) operator and applied to diagnose of business fail-
ure. Merigo et al. (2018) proposed probabilistic ordered 

weighted averaging distance operators and applied them 
to the asset management problem.

In addition to the separated study of TOPSIS method and 
OWA or OWAD operator, the attempts of combining TOP-
SIS method and OWA operator also appear in the recent 
years. Xu and Liu (2007) constructed the human resource 
evaluation model based on extended continuous OWA oper-
ators and TOPSIS method. Dursun and Karsak (2010) and 
Dursun et al. (2011) proposed fuzzy TOPSIS which is based 
on the principles of fusion of fuzzy information, 2-tuple lin-
guistic representation model with OWA operator, and used 
combined method to evaluate health-care waste manage-
ment and personnel selection. Chen et al. (2011) proposed a 
hybrid approach which integrates OWA operator into TOP-
SIS method to tackle multiple criteria decision-making prob-
lems. The information processing schemes are applied to a 
group decision support procedure. Liu and Zhang (2014) 
propose the TOPSIS-based consensus model for group deci-
sion-making with incomplete interval fuzzy preference rela-
tions using the induced ordered weighted averaging operator. 
Wang et al. (2016) integrated OWA–TOPSIS framework in 
intuitionistic fuzzy settings for multiple attribute decision-
making problems.

From the literature review, we can find that a restriction 
of TOPSIS method is that it is neutral in the sense toward the 
decision-maker’s attitudinal character. In addition, OWAD 
operator as an extension of OWA operator has the flexibil-
ity to obtain various aggregation results according to the 
decision-maker’s attitudinal character in different situations. 
Furthermore, both TOPSIS and OWAD use the distance 
value in the aggregation process. As far as we know, there 
are no attempts on the combination of OWAD operator and 
TOPSIS method. The purpose of this paper is to propose the 
method of combining TOPSIS method and OWAD operator 
together. TOPSIS method provides a systemic framework of 
ranking of alternatives by comparing the distance to the posi-
tive ideal and from the negative ideal solutions. While the 
OWAD operator aggregates the distance values by consider-
ing the attitudinal character of decision-maker. The specific 
computing procedures of the TOPSIS–OWAD approach are 
given, and include TOPSIS as special case. The influence of 
the weights on the final solution is analyzed and an additive 
neat-OWAD operator with influential parameter is proposed, 
in which the weights dynamically change with the aggregated 
elements without the element’s order information.

The rest of the paper is organized as follows. Section 2 
introduces the basic conceptions of OWAD operator and 
TOPSIS method. Section 3 presents the connections between 
OWAD operator and TOPSIS method, and then proposes 
a new neat-OWAD operator. Section 4 gives a numerical 
example. Section 5 summarizes the main results and draws 
conclusions.
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2  Preliminaries

Here, we will briefly introduce the basic concepts of order-
ing weighted average distance (OWAD) operator and the 
solution process of TOPSIS method.

2.1  Ordering weighted average distance operator

Ordering weighted average distance (OWAD) operator is 
an extension of ordered weighted averaging (OWA) opera-
tor (Xu and Chen 2008). In addition to the static weight 
assignment methods, OWA operator can also have dynamic 
weights that depend on the aggregated elements, which is 
called neat-OWA operator with the characteristic that the 
aggregation value is independent of the element’s orders 
(La Red et al. 2011; Liu and Lou 2006; Liu 2008).

Definition 1 (Yager 1988) Yager’s OWA operation of dimen-
sion n is a mapping ∅ ∶ ℝN → ℝ , which has an associated 
set of weights � = (w1,w2,… ,wn)

T to it, so that wi ∈ [0, 1] 
and 

∑n

i=1
wi = 1:

where yi is the ith highest value in the set {x1,… , xn}.

The definition of neat-OWA operator is given as follows.

Definition 2 (Liu 2008) For aggregated elements 
X = (x1, x2,… , xn), xi ∈ [a, b] , and f (x) ≥ 0, f (xi) ≠ 0 for 
at least one i, an additive neat-OWA (ANOWA) operator 
determined by weighting function f(x) is a neat-OWA opera-
tor with weights W = (w1,w2,… ,wn)

T defined as follows:

The neat-OWA operator aggregation result is

The ordered weighted average distance operator is an 
aggregation operator that uses OWA operators and distance 
measures in the same formulation (Xu and Chen 2008). 
OWAD operator differs from OWA operator in that reor-
dering step is developed by the arguments of the distances 
rather than individual value. It can be defined as follows for 
two sets X = {x1, x2,… , xn} , Y = {y1, y2,… , yn}.

(1)FW (X) = FW (x1, x2,… , xn) =

n∑

i=1

wiyi,

(2)wi =
f (xi)∑n

j=1
f (xj)

.

(3)Ff (X) =

n�

i=1

wixi =

n�

i=1

xif (xi)∑n

j=1
f (xj)

.

Definition 3 (Xu and Chen 2008) An OWAD operator of 
dimension n is a mapping OWAD: Rn × Rn

→ R that has 
an associated weighting vector W with 

∑n

j=1
wj = 1 and 

wj ∈ [0, 1] such that:

where dj is the jth largest distance of the |xi − yi| , and xi and 
yi are the ith arguments of the sets X and Y.

OWAD operator can provide a parameterized family of 
distance aggregation operators between the minimum and 
the maximum. The maximum distance is found when w1 = 1 
and wj = 0 for all j ≠ 1 and the minimum distance when 
wn = 1 and wj = 0 for all j ≠ n . If we would like to get the 
average distance, and then, wj =

1

n
 , 1 ≤ j ≤ n.

2.2  The TOPSIS method

The TOPSIS method is a multiple criteria method to identify 
solutions from a finite set of alternatives (Hwang and Yoon 
1981; Behzadian et al. 2012). The basic principle is that 
the chosen best alternative should have the shortest distance 
from the positive ideal solution and the farthest distance 
from negative ideal solution. The procedure of TOPSIS 
method can be expressed in a series of steps. 

Step 1  Calculate the normalized decision-matrix. 
The process of normalization often has three 
types .  For  decis ion-matr ix  A = (aij)m×n  , 
i = 1, 2,… ,m, j = 1, 2,… , n , where aij is the 
performance rating of the ith alterative, Ai , with 
respect to the jth criterion, Xj . The normalized 
value bij, i = 1, 2,… ,m, j = 1, 2,… , n is calculated 
with sum-based normalization:

Step 2  Calculate the weighted normalized decision-matrix. 
The weighted normalized value cij is calculated as 
cij = wjbij, i = 1, 2,… ,m, j = 1, 2,… , n , where wj is 
the weight of the jth criterion Gj , and 

∑n

j=1
wj = 1 . 

Then, determine the positive ideal and negative 
ideal solutions:

(4)OWAD(⟨x1, y1⟩,… , ⟨xn, yn⟩) =
n�

j=1

wjdj,

(5)bij =
aij

∑m

i=1
aij

.

(6a)
C+ = c+

1
, c+

2
,… , c+

n

= {(max cij|j ∈ I).(min cij|j ∈ J)}

(6b)
C− = c−

1
, c−

2
,… , c−

n

= {(min cij|j ∈ I).(max cij|j ∈ J)},
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  where I is associated with benefit criteria, and J is 
associated with cost criteria.

Step 3  Calculate the separation measures, using the 
n-dimensional distance. The Manhattan distance 
separations of each alternative from the positive 
ideal and the negative ideal solutions are given as 
follows:

Step 4  Calculate the relative closeness degree to the 
positive ideal solution. The relative closeness of 
the alternative Ai with respect to A+ is defined as 
follows:

 Since d−
i
≥ 0 and d+

i
≥ 0 , then, clearly, Ri ∈ [0, 1].

Step 5  Rank the preference order. For ranking alternatives 
using this index, we can rank alternative in decreas-
ing order.

3  Extension the TOPSIS method to OWAD–
TOPSIS method with OWAD operator

Because the TOPSIS method aggregates the criteria with 
distance in an objective way, while the OWAD operator uses 
the distances to reflect preferences of the decision-maker in 
a subjective way. Here, we will connect the TOPSIS method 
with OWAD operator and then extend the traditional TOP-
SIS method with OWAD operator called OWAD–TOPSIS 
method, which makes the TOPSIS method can integrate the 
preference of the decision-maker.

3.1  The procedure to combination OWAD operator 
and TOPSIS method

Both OWAD operator and TOPSIS method are used to 
measure the distance to ideal and negative ideal solutions to 
choose the best choice. As we know, OWAD operator can 
modify the aggregation results according to the preferences 
of the decision-maker, but the aggregation result of TOPSIS 
method does not have this feature yet. Therefore, we try to 
combine OWAD operator with the TOPSIS method.

(7a)d+
i
=

n∑

j=1

|cij − c+
j
|, i = 1, 2,… ,m.

(7b)d−
i
=

n∑

j=1

|cij − c−
j
|, i = 1, 2,… ,m.

(8)Ri =
d−
i

d−
i
+ d+

i

, i = 1, 2,… ,m.

The new approach combines the OWAD operator and the 
TOPSIS method together. The specific procedures are given 
as follows. 

Step 1  Calculate the normalized decision-matrix. The 
normalized value bij, i = 1, 2,… ,m, j = 1, 2,… , n 
is calculated as follows:

Step 2  Calculate the weighted normalized decision-matrix. 
The weighted normalized value cij is calculated as 
cij = wjbij, i = 1, 2,… ,m, j = 1, 2,… , n , where wj is 
the weight of the jth criterion Gj , and 

∑n

j=1
wj = 1 . 

Then, determine the positive ideal and negative 
ideal solutions:

  where I is associated with benefit criteria, and J is 
associated with cost criteria.

Step 3  Calculate the separation measures, using the 
n-dimensional Manhattan distance. The distance 
separations of each alternative from the ideal and 
negative ideal solutions considering preference are 
given as follows:

  When d+
i�(j)

 is the jth largest distance of |cij − c+
j
| , 

d−
i�(j)

 is the jth largest distance of |cij − c−
j
| . wij means 

different weight corresponding to the distance to 
ideal and negative ideal solutions, respectively.

Step 4  Calculate the relative closeness degree to ideal 
solution. The relative closeness of the alternative 
Ai with respect to A+ is defined as follows:

 Since d−
i
≥ 0 and d+

i
≥ 0 , then, clearly, Ri ∈ [0, 1].

(9)bij =
aij

∑n

j=1
aij

.

(10a)
C+ = c+

1
, c+

2
,… , c+

n

= {(max cij|j ∈ I).(min cij|j ∈ J)}

(10b)
C− = c−

1
, c−

2
,… , c−

n

= {(min cij|j ∈ I).(max cij|j ∈ J)},

(11a)d+
i
=

n∑

j=1

wijd
+
i�(j)

, i = 1, 2,… ,m.

(11b)d−
i
=

n∑

j=1

wijd
−
i�(j)

, i = 1, 2,… ,m.

(12)Ri =
d−
i

d−
i
+ d+

i

, i = 1, 2,… ,m.
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Step 5  Rank the preference order. For ranking alternatives 
using this index, we can rank alternative in decreas-
ing order.

We call this method as OWAD–TOPSIS method. The 
difference between the traditional TOPSIS method and our 
new OWAD–TOPSIS method is that the new approach takes 
OWAD weights into consideration on behalf of decision-
maker’s attitude. It can represents the decision-maker’s 
preference information and can change with decision-mak-
er’s attitude dynamically. The traditional TOPSIS method 
is only a simple aggregation of distance measures. The 
OWAD–TOPSIS method provides the feature of OWAD 
operator which the weights are determined by place of dis-
tance rather than specific distance measures.

3.2  The analysis of weight values in OWAD–TOPSIS 
method

Next, we will analyze the different cases of weight values 
in OWAD–TOPSIS method, and will prove that our method 
can include TOPSIS method as special case. Then, we will 
propose a parameterized OWAD–TOPSIS model by apply-
ing the exponential function neat-OWAD operator.

The influences of weights in the OWAD operator can be 
discussed in the following different cases:

1. Under the condition of the distance to ideal solution, if 
the weight tends to descend, then the aggregation result 
will increase. The attitude of decision-maker is pessi-
mistic. If weight is extremely taken as W∗ = (1, 0,… , 0) , 
we can get the maximum distance to ideal solution. On 
the other hand, if the weight tends to ascend, then the 
aggregation result will decrease. The attitude of deci-
sion-maker is optimistic. If weight is extremely taken as 
W∗ = (0, 0,… , 0, 1) , we can get the minimum distance 
to ideal solution.

2. Under the condition of the distance to negative ideal 
solutions, if the weight tends to descend, then the 
aggregation result will increase. The attitude of deci-
sion-maker is optimistic. If weight is extremely taken 
as W∗ = (1, 0,… , 0) , we can get the maximum distance 
to negative ideal solution. On the other hand, if the 
weight tends to ascend, then the aggregation result will 
decrease. The attitude of decision-maker is pessimistic. 
If weight is extremely taken as W∗ = (0, 0,… , 0, 1) , we 
can get the minimum distance to negative ideal solution.

3. Under the condition of the distance to ideal or nega-
tive ideal solution, if the weight is equal that is 
WA = (

1

n
,
1

n
,… ,

1

n
) , then the aggregation result is equal 

to the initial result, and the decision-maker’s attitude is 
neutral.

Next, we will prove that the neutral attitude of the decision-
maker in the OWAD–TOPSIS method can include the tra-
ditional TOPSIS method as a special case.

As

If we try to add the weight vector W = (
1

n
,
1

n
,… ,

1

n
) to each 

distance, then aggregation result will be modified to

The relative closeness of the alternative Ai with respect to 
A+ can be expressed as follows:

which demonstrates that the traditional TOPSIS method 
is a special case of the OWAD–TOPSIS method with 
wi =

1

n
, 1 ≤ i ≤ n.

3.3  Weight assignment method with neat‑OWAD 
operator

Like the OWAD operator is an extension of OWA operator, 
neat-OWAD operator can be seen an extension of neat-OWA 
operator. Neat-OWA operator is more flexible to aggregate 
information than OWA operator. Furthermore, the weights of 
neat-OWA operator can dynamically change with the aggre-
gated elements. In aggregating the distance values, neat-OWA 
operator can implement the idea that big standard deviations 
should be given more important weights than those with small 
standard deviations. Therefore, we propose neat-OWAD oper-
ator with the combination of neat-OWA operator and distance. 
The aggregation result can be dynamically changed with dis-
tance weights. The neat-OWAD operator can be defined as 
follows for two sets X = {x1, x2,… , xn} , Y = {y1, y2,… , yn}.

(13)d+
i
=

n∑

j=1

|cij − c+
j
|, i = 1, 2,… ,m,

(14)d−
i
=

n∑

j=1

|cij − c−
j
|, i = 1, 2,… ,m.

(15)d+
i
=

n∑

j=1

1

n
|cij − c+

j
| = 1

n

n∑

j=1

|cij − c+
j
|, i = 1, 2,… ,m,

(16)d−
i
=

n∑

j=1

1

n
|cij − c−

j
| = 1

n

n∑

j=1

|cij − c−
j
|, i = 1, 2,… ,m.

(17)Ri =
d−
i

d−
i
+ d+

i

=

1

n

∑n

j=1
�cij − c−

j
�

1

n

∑n

j=1
�cij − c−

j
� + 1

n

∑n

j=1
�cij − c−

j
�

(18)=

∑n

j=1
�cij − c−

j
�

∑n

j=1
�cij − c+

j
� +∑n

j=1
�cij − c−

j
�
, i = 1, 2,… ,m,
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Definition 4 A neat-OWAD operator of dimension n is a 
mapping neat-OWAD: Rn × Rn

→ R that has an associated 
weighting vector W. With 

∑n

j=1
wj = 1 and wj ∈ [0, 1] , such 

that:

where di = |xi − yi| , and xi and yi are the ith arguments of 
the sets X and Y.

If we set function f (x) = x� to express the influence on 
the distance weight, then we have

Next, we will discuss the behavior of neat-OWAD operator 
with the change of parameter �(� ≥ 0).

1. When � = 0 , W = (
1

n
,
1

n
,… ,

1

n
) . All the weights values 

become the same, neat-OWAD operator becomes the 
simple average operator. Furthermore, the OWAD–TOP-
SIS method becomes the traditional TOPSIS method.

2. When 0 < 𝛼 , the weights have the same order of the 
distance information; the bigger the distance is, the big-
ger the corresponding weight becomes. For neat-OWAD 
operator, the aggregation result is bigger than the aver-
age value, and increases with the value of �.

3. When � → +∞ , all the weights approach zero except the 
weights of the biggest distance value.

The distance weight depends on the distance values and 
parameter � . When decision-maker’s attitude is neutral, 
� = 0 and all the weights are the same. In the other condi-
tions, � can be seen as a parameterized amplifier with the 
weight values to the standard distance values.

For simplification, we take � = 1 as an example in the 
following discussions. As different distances should be 
corresponding to different weights, weight of neat-OWAD 
operator can be expressed with the change of distance. If 
we try to integrate neat-OWAD operator into the TOPSIS 
approach, the weight is more reasonable and flexible. Steps 
for this new approach are listed as follows. 

Step 1  Calculate the normalized decision-matrix. The 
normalized value bij, i = 1, 2,… ,m, j = 1, 2,… , n 
is calculated as follows:

(19)

neat − OWAD(⟨x1, y1⟩,… , ⟨xn, yn⟩) =
n�

i=1

widi =

n�

i=1

dif (di)∑n

j=1
f (dj)

,

wi =
f (xi)∑n

i=1
f (xi)

=
x�
i∑n

j=1
x�
j

neat − OWAD(⟨x1, y1⟩,… , ⟨xn, yn⟩) =
n�

i=1

widi =

n�

i=1

d�+1
i∑n

j=1
d�
j

.

Step 2  Calculate the weighted normalized decision-matrix. 
The weighted normalized value cij is calculated as 
cij = wjbij, i = 1, 2,… ,m, j = 1, 2,… , n , where wj is 
the weight of the jth criterion Gj , and 

∑n

j=1
wj = 1 . 

Then, determine the ideal and negative ideal 
solutions:

  where I is associated with benefit criteria, and J is 
associated with cost criteria.

Step 3  Calculate the separation measures, using the 
n-dimensional Manhattan distance. When � = 1 , 
the separations of each alternative from the ideal 
and negative ideal solutions considering preference 
are given as follows:

Step 4  Calculate the relative closeness degree to ideal 
solution. The relative closeness of the alternative 
Ai with respect to A+ is defined as follows:

 Since d−
i
≥ 0 and d+

i
≥ 0 , then, clearly, Ri ∈ [0, 1].

Step 5  Rank the preference order. For ranking alternatives 
using this index, we can rank alternative in decreas-
ing order.

4  Numerical example

The new OWAD–TOPSIS model can be applied in a wide 
range of problems. A numerical example based on Shih et al. 
(2007) is used to illustrate the process of the neat-OWAD 
operator and TOPSIS method combination.

(20)bij =
aij

∑n

j=1
aij

.

(21a)
C+ = c+

1
, c+

2
,… , c+

n
= {(max cij|j ∈ I).(min cij|j ∈ J)}

(21b)
C− = c−

1
, c−

2
,… , c−

n
= {(min cij|j ∈ I).(max cij|j ∈ J)},

(22a)

d+
i
=

n�

j=1

�cij − c+
j
�wij =

n�

j=1

�cij − c+
j
��+1

∑n

j=1
�cij − c+

j
��

=

n�

j=1

�cij − c+
j
�2

∑n

j=1
�cij − c+

j
�

(22b)

d−
i
=

n�

j=1

�cij − c−
j
�wij =

n�

j=1

�cij − c−
j
��+1

∑n

j=1
�cij − c−

j
��

=

n�

j=1

�cij − c−
j
�2

∑n

j=1
�cij − c−

j
�
.

(23)Ri =
d−
i

d−
i
+ d+

i

, i = 1, 2,… ,m.
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A local chemical company tries to recruit an online man-
ager. The company’s human resources department provides 
some relevant selection tests, as the benefit attributes to be 
evaluated. There are 17 qualified candidates on the list, and 
four decision-makers are responsible for the selection. In this 

paper, we consider TOPSIS method to solve single decision-
maker’s problem rather than group decision-making problem. 
Thus, we have dealt with these initial data. The basic data 
including objective and subjective attributes (only quantitative 
information here) for the decision are listed in Tables 1 and 2.

Table 1  Criteria for personnel 
selection

Symbol C1 C2 C3 C4 C5 C6 C7

Criteria Language Professional Safety rule Professional Computer Panel 1-on-1
Weight 0.0538 0.1378 0.0590 0.1515 0.1073 0.2253 0.2655

Table 2  Alternatives for 
personnel selection

Alternative C1 C2 C3 C4 C5 C6 C7

A1 80 70 87 77 76 83 78
A2 85 65 76 80 75 64 73
A3 78 90 72 80 85 85 89
A4 75 84 69 85 65 63 69
A5 84 67 60 75 85 68 73
A6 85 78 82 81 79 77 81
A7 77 83 74 70 71 67 69
A8 78 82 78 80 78 76 69
A9 85 90 80 88 90 89 87
A10 89 75 79 67 77 70 76
A11 65 55 68 62 70 59 65
A12 70 64 65 65 60 55 63
A13 95 80 70 75 70 73 76
A14 70 90 79 80 85 78 72
A15 60 78 87 70 70 68 68
A16 92 85 88 90 90 89 89
A17 86 87 80 70 80 75 79

Table 3  Normalization of 
alternatives

Alternative C1 C2 C3 C4 C5 C6 C7

A1 0.1455 0.1273 0.1582 0.1400 0.1382 0.1500 0.1409
A2 0.1642 0.1255 0.1468 0.1545 0.1449 0.1231 0.1410
A3 0.1348 0.1555 0.1244 0.1382 0.1469 0.1469 0.1533
A4 0.1473 0.1650 0.1356 0.1670 0.1277 0.1228 0.1346
A5 0.1644 0.1311 0.1174 0.1468 0.1663 0.1321 0.1419
A6 0.1512 0.1387 0.1458 0.1441 0.1405 0.1365 0.1432
A7 0.1507 0.1624 0.1448 0.1370 0.1389 0.1306 0.1355
A8 0.1459 0.1533 0.1346 0.1496 0.1459 0.1412 0.1295
A9 0.1397 0.1479 0.1315 0.1446 0.1479 0.1459 0.1426
A10 0.1672 0.1409 0.1484 0.1259 0.1447 0.1306 0.1423
A11 0.1463 0.1238 0.1531 0.1396 0.1576 0.1334 0.1463
A12 0.1586 0.1450 0.1472 0.1472 0.1359 0.1246 0.1416
A13 0.1763 0.1485 0.1299 0.1392 0.1299 0.1346 0.1415
A14 0.1265 0.1627 0.1428 0.1446 0.1536 0.1401 0.1297
A15 0.1210 0.1573 0.1754 0.1411 0.1331 0.1361 0.1361
A16 0.1490 0.1377 0.1425 0.1457 0.1377 0.1437 0.1437
A17 0.1567 0.1585 0.1458 0.1276 0.1312 0.1367 0.1435



142 Granular Computing (2020) 5:135–148

1 3

Now, we begin to explain the specific steps applying in 
personnel selection. 

Step 1  Normalize the alternatives elements values with 
results in Table 3. Due to all criteria which are ben-
efit criteria, we choose sum-based normalization 
method here.

Step 2  Calculate the weighted normalized decision-matrix. 
With the eights listed in Table 1, the positive ideal 

and negative ideal solutions are determined in 
Table 4.

Step 3  Calculate the separation measures, using the 
n-dimensional Manhattan distance. When � = 1 , 
the separations of each alternative from the posi-
tive ideal and negative ideal solutions are given in 
Tables 5 and 6. The results for other values of � are 
given in the “Appendix”.

Table 4  Find the positive ideal 
and negative ideal solutions

Alternative C1 C2 C3 C4 C5 C6 C7

A1 0.0078 0.0175 0.0093 0.0212 0.0148 0.0338 0.0374
A2 0.0088 0.0173 0.0087 0.0234 0.0155 0.0277 0.0374
A3 0.0072 0.0214 0.0073 0.0209 0.0158 0.0331 0.0407
A4 0.0079 0.0227 0.0080 0.0253 0.0137 0.0277 0.0357
A5 0.0088 0.0181 0.0069 0.0222 0.0178 0.0298 0.0377
A6 0.0081 0.0191 0.0086 0.0218 0.0151 0.0307 0.0380
A7 0.0081 0.0224 0.0085 0.0208 0.0149 0.0294 0.0360
A8 0.0078 0.0211 0.0079 0.0227 0.0156 0.0318 0.0344
A9 0.0075 0.0204 0.0078 0.0219 0.0159 0.0329 0.0379
A10 0.0090 0.0194 0.0088 0.0191 0.0155 0.0294 0.0378
A11 0.0079 0.0171 0.0090 0.0211 0.0169 0.0300 0.0388
A12 0.0085 0.0200 0.0087 0.0223 0.0146 0.0281 0.0376
A13 0.0095 0.0205 0.0077 0.0211 0.0139 0.0303 0.0376
A14 0.0068 0.0224 0.0084 0.0219 0.0165 0.0316 0.0344
A15 0.0065 0.0217 0.0103 0.0214 0.0143 0.0307 0.0361
A16 0.0080 0.0190 0.0084 0.0221 0.0148 0.0324 0.0382
A17 0.0084 0.0218 0.0086 0.0193 0.0141 0.0308 0.0381
Ideal 0.0095 0.0227 0.0103 0.0253 0.0178 0.0338 0.0407
Negative ideal 0.0065 0.0171 0.0069 0.0191 0.0137 0.0277 0.0344

Table 5  Distances to positive 
ideal solution for � = 1

Alternative C1 C2 C3 C4 C5 C6 C7 Sum

A1 0.00015 0.00148 0.00006 0.00091 0.00050 0.00000 0.00060 0.00370
A2 0.00002 0.00139 0.00013 0.00017 0.00025 0.00172 0.00050 0.00418
A3 0.00036 0.00013 0.00066 0.00139 0.00032 0.00004 0.00000 0.00289
A4 0.00013 0.00000 0.00029 0.00000 0.00090 0.00196 0.00130 0.00457
A5 0.00002 0.00116 0.00062 0.00050 0.00000 0.00086 0.00049 0.00365
A6 0.00010 0.00070 0.00016 0.00065 0.00041 0.00049 0.00039 0.00290
A7 0.00009 0.00001 0.00016 0.00103 0.00043 0.00095 0.00111 0.00378
A8 0.00014 0.00014 0.00031 0.00037 0.00026 0.00021 0.00213 0.00356
A9 0.00024 0.00035 0.00042 0.00071 0.00024 0.00005 0.00051 0.00253
A10 0.00001 0.00052 0.00012 0.00182 0.00025 0.00090 0.00040 0.00403
A11 0.00013 0.00167 0.00009 0.00089 0.00005 0.00073 0.00018 0.00374
A12 0.00004 0.00037 0.00013 0.00044 0.00052 0.00160 0.00048 0.00359
A13 0.00000 0.00026 0.00037 0.00090 0.00077 0.00061 0.00050 0.00342
A14 0.00039 0.00001 0.00020 0.00063 0.00010 0.00027 0.00217 0.00378
A15 0.00046 0.00006 0.00000 0.00080 0.00066 0.00051 0.00109 0.00358
A16 0.00012 0.00082 0.00022 0.00059 0.00054 0.00011 0.00037 0.00278
A17 0.00006 0.00004 0.00016 0.00187 0.00075 0.00047 0.00036 0.00371
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Step 4  Calculate the relative closeness degree. The cal-
culation results are given in Table 7. If the relative 
closeness comes near to zero, it means the solution 
is close to positive ideal solution. If the relative 
closeness comes near to one, it means that the solu-
tion is far from positive ideal solution.

Step 5  Rank the preference order in Table 8.

(a) When � = 0 , all the weight values are the same and the 
method is equivalence to the TOPSIS method. Accord-
ing to the ranking place A3 > A9 > A16 , A3 is the best 
person matching the position.

(b) When � = 0.5 , according to the ranking place 
A3 > A9 > A16 , A3 is the best person matching the 
position.

Table 6  Distances to negative 
ideal solutions for � = 1

Alternative C1 C2 C3 C4 C5 C6 C7 Sum

A1 0.00010 0.00001 0.00035 0.00028 0.00008 0.00226 0.00055 0.00363
A2 0.00040 0.00000 0.00022 0.00138 0.00025 0.00000 0.00068 0.00294
A3 0.00003 0.00090 0.00001 0.00017 0.00020 0.00139 0.00189 0.00458
A4 0.00013 0.00205 0.00007 0.00246 0.00000 0.00000 0.00012 0.00483
A5 0.00034 0.00006 0.00000 0.00062 0.00107 0.00027 0.00067 0.00305
A6 0.00016 0.00026 0.00017 0.00047 0.00012 0.00059 0.00081 0.00258
A7 0.00017 0.00191 0.00018 0.00019 0.00010 0.00021 0.00017 0.00294
A8 0.00011 0.00103 0.00006 0.00080 0.00024 0.00107 0.00000 0.00331
A9 0.00005 0.00059 0.00004 0.00043 0.00025 0.00143 0.00064 0.00343
A10 0.00045 0.00041 0.00025 0.00000 0.00024 0.00023 0.00085 0.00242
A11 0.00012 0.00000 0.00028 0.00028 0.00066 0.00036 0.00128 0.00298
A12 0.00028 0.00059 0.00021 0.00073 0.00005 0.00001 0.00071 0.00259
A13 0.00058 0.00076 0.00004 0.00027 0.00000 0.00046 0.00067 0.00278
A14 0.00001 0.00172 0.00013 0.00048 0.00046 0.00091 0.00000 0.00371
A15 0.00000 0.00136 0.00075 0.00034 0.00002 0.00057 0.00020 0.00323
A16 0.00013 0.00021 0.00013 0.00052 0.00007 0.00127 0.00082 0.00314
A17 0.00023 0.00144 0.00018 0.00000 0.00001 0.00062 0.00087 0.00336

Table 7  Relative closeness degree

Alternative � = 0 � =
1

2

� = 1 � = 2

A1 0.4761 0.4682 0.4955 0.5348
A2 0.3896 0.4157 0.4127 0.4034
A3 0.6074 0.6012 0.6129 0.6116
A4 0.4510 0.4889 0.5139 0.5291
A5 0.4592 0.4538 0.4551 0.4620
A6 0.4642 0.4670 0.4711 0.4802
A7 0.4235 0.4187 0.4373 0.4915
A8 0.4615 0.4964 0.4818 0.4398
A9 0.5392 0.5604 0.5756 0.5937
A10 0.3910 0.3953 0.3752 0.3543
A11 0.4466 0.4603 0.4434 0.4305
A12 0.4128 0.4206 0.4192 0.4048
A13 0.4360 0.4340 0.4488 0.4560
A14 0.4788 0.5037 0.4951 0.4692
A15 0.4486 0.4641 0.4746 0.4886
A16 0.5003 0.5163 0.5302 0.5489
A17 0.4543 0.4759 0.4749 0.4588

Table 8  Rank results of the alternatives

Alternative � = 0 (TOPSIS) � =
1

2

� = 1 � = 2

A1 5 8 5 4
A2 17 16 16 16
A3 1 1 1 1
A4 10 6 4 5
A5 8 12 11 10
A6 6 9 10 8
A7 14 15 14 6
A8 7 5 7 13
A9 2 2 2 2
A10 16 17 17 17
A11 12 11 13 14
A12 15 14 15 15
A13 13 13 12 12
A14 4 4 6 9
A15 11 10 9 7
A16 3 3 3 3
A17 9 7 8 11
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(c) When � = 1 , according to the ranking place 
A3 > A9 > A16 , A3 is the best person matching the 
position.

(d) When � = 2 , according to the ranking place 
A3 > A9 > A16 , A3 is the best person matching the 
position.

We can see that, despite the weights are different, A3, 
A9, A16 always rank as the first, second, and third ones, 
and A2, A10, A12 are always rank as the last three ones. 
The reason is due to these candidates’s overall perfor-
mances are obviously much better or worse than the other 
ones. The other alternatives’ ranking positions change with 
the weights corresponding to the decision-maker’s atti-
tude. Combination of neat-OWAD operator and TOPSIS 
method takes the decision-maker’s preference information 
into account. Furthermore, the weight values are deter-
mined by the distance to positive ideal and negative ideal 
solutions dynamically. When � = 0 , all the weights are 
equal and the combination approach is TOPSIS method, 
which is shown with bold in Table 8. When 𝛼 > 0 , the 
aggregation value changes with the weight dynamically.

5  Conclusions

In this paper, we analyze the connection between the 
TOPSIS method and the OWAD operator for multiple 
criteria decision-making. A new decision model that 
combines the TOPSIS method and the OWAD operator 
is proposed and included TOPSIS special cases. The new 

approach keeps the good framework of TOPSIS method 
and also integrates decision attitude flexibility of OWAD 
operator. A dynamic neat-OWAD operator with param-
eterized attitude character is proposed. which can inte-
grate objective information and subjective preference of 
the problems.

In the future, we will develop other extensions of math-
ematical function types of neat-OWA operator to express 
weights. Furthermore, we will investigate this process 
aggregation to fuzzy scope such as interval sets, intui-
tionistic fuzzy sets, and linguistic environments.
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Appendix

1. When � = 0 , then weight = 1∕7 . At this time, the 
weights are equal, and the combination of neat-OWAD 
and TOPSIS method is equivalent to the TOPSIS 
method. The distance to positive ideal and negative ideal 
solutions in Tables 9 and 10.

2. When � = 0.5 , the distance to positive ideal and negative 
ideal solutions in Tables 11 and 12.

3. When � = 2 , the distance to positive ideal and negative 
ideal solutions in Tables 13 and 14. As the normalized 
distance is between 0 and 1, the weight and aggregation 
value will be very small with the decreasing value of 
� . We keep 4 decimal and stop discussing the greater 
value.

Table 9  Distance to positive 
ideal solution for� = 0

Alternative C1 C2 C3 C4 C5 C6 C7 Sum

A1 0.0017 0.0052 0.0010 0.0041 0.0030 0.0000 0.0033 0.0183
A2 0.0007 0.0054 0.0017 0.0019 0.0023 0.0061 0.0033 0.0213
A3 0.0022 0.0013 0.0030 0.0044 0.0021 0.0007 0.0000 0.0137
A4 0.0016 0.0000 0.0024 0.0000 0.0041 0.0061 0.0050 0.0192
A5 0.0006 0.0047 0.0034 0.0031 0.0000 0.0040 0.0030 0.0189
A6 0.0014 0.0036 0.0017 0.0035 0.0028 0.0030 0.0027 0.0187
A7 0.0014 0.0004 0.0018 0.0045 0.0029 0.0044 0.0047 0.0201
A8 0.0016 0.0016 0.0024 0.0026 0.0022 0.0020 0.0063 0.0188
A9 0.0020 0.0024 0.0026 0.0034 0.0020 0.0009 0.0029 0.0161
A10 0.0005 0.0033 0.0016 0.0062 0.0023 0.0044 0.0029 0.0213
A11 0.0016 0.0057 0.0013 0.0042 0.0009 0.0037 0.0019 0.0193
A12 0.0010 0.0028 0.0017 0.0030 0.0033 0.0057 0.0031 0.0205
A13 0.0000 0.0023 0.0027 0.0042 0.0039 0.0035 0.0031 0.0197
A14 0.0027 0.0003 0.0019 0.0034 0.0014 0.0022 0.0063 0.0182
A15 0.0030 0.0011 0.0000 0.0039 0.0036 0.0031 0.0046 0.0192
A16 0.0015 0.0038 0.0019 0.0032 0.0031 0.0014 0.0026 0.0174
A17 0.0011 0.0009 0.0017 0.0060 0.0038 0.0030 0.0026 0.0191



145Granular Computing (2020) 5:135–148 

1 3

Table 10  Distance to negative 
ideal solutions when � = 0

Alternative C1 C2 C3 C4 C5 C6 C7 Sum

A1 0.0013 0.0005 0.0024 0.0021 0.0011 0.0061 0.0030 0.0166
A2 0.0023 0.0002 0.0017 0.0043 0.0018 0.0001 0.0031 0.0136
A3 0.0007 0.0044 0.0004 0.0019 0.0021 0.0054 0.0063 0.0212
A4 0.0014 0.0057 0.0011 0.0062 0.0000 0.0000 0.0013 0.0157
A5 0.0023 0.0010 0.0000 0.0032 0.0041 0.0021 0.0033 0.0160
A6 0.0016 0.0021 0.0017 0.0028 0.0014 0.0031 0.0036 0.0162
A7 0.0016 0.0053 0.0016 0.0017 0.0012 0.0018 0.0016 0.0148
A8 0.0013 0.0041 0.0010 0.0036 0.0019 0.0041 0.0000 0.0161
A9 0.0010 0.0033 0.0008 0.0028 0.0022 0.0052 0.0035 0.0188
A10 0.0025 0.0024 0.0018 0.0000 0.0018 0.0018 0.0034 0.0136
A11 0.0014 0.0000 0.0021 0.0021 0.0032 0.0024 0.0045 0.0156
A12 0.0020 0.0029 0.0018 0.0032 0.0009 0.0004 0.0032 0.0144
A13 0.0030 0.0034 0.0007 0.0020 0.0002 0.0027 0.0032 0.0152
A14 0.0003 0.0054 0.0015 0.0028 0.0028 0.0039 0.0001 0.0167
A15 0.0000 0.0046 0.0034 0.0023 0.0006 0.0030 0.0017 0.0157
A16 0.0015 0.0019 0.0015 0.0030 0.0011 0.0047 0.0038 0.0175
A17 0.0019 0.0048 0.0017 0.0003 0.0004 0.0031 0.0037 0.0159

Table 11  Distance to positive 
ideal solution when � = 0.5

Alternative C1 C2 C3 C4 C5 C6 C7 Sum

A1 0.00021 0.00117 0.00010 0.00081 0.00052 0.00000 0.00059 0.00340
A2 0.00005 0.00109 0.00019 0.00022 0.00030 0.00128 0.00051 0.00365
A3 0.00038 0.00017 0.00060 0.00104 0.00035 0.00007 0.00000 0.00260
A4 0.00020 0.00000 0.00038 0.00000 0.00089 0.00159 0.00117 0.00423
A5 0.00005 0.00098 0.00061 0.00052 0.00000 0.00079 0.00052 0.00346
A6 0.00014 0.00061 0.00020 0.00057 0.00041 0.00047 0.00039 0.00280
A7 0.00014 0.00002 0.00022 0.00086 0.00045 0.00081 0.00092 0.00342
A8 0.00019 0.00018 0.00034 0.00038 0.00029 0.00025 0.00143 0.00307
A9 0.00026 0.00035 0.00040 0.00060 0.00027 0.00009 0.00046 0.00242
A10 0.00003 0.00052 0.00017 0.00134 0.00031 0.00079 0.00043 0.00359
A11 0.00018 0.00122 0.00014 0.00076 0.00008 0.00065 0.00023 0.00327
A12 0.00080 0.00040 0.00018 0.00045 0.00051 0.00118 0.00048 0.00327
A13 0.00000 0.00032 0.00041 0.00080 0.00071 0.00060 0.00051 0.00335
A14 0.00041 0.00002 0.00025 0.00059 0.00015 0.00031 0.00148 0.00322
A15 0.00049 0.00011 0.00000 0.00074 0.00064 0.00053 0.00093 0.00342
A16 0.00016 0.00067 0.00025 0.00053 0.00050 0.00015 0.00038 0.00264
A17 0.00010 0.00008 0.00021 0.00132 0.00066 0.00047 0.00038 0.00323
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Table 12  Distance to negative 
ideal solution when � = 0.5

Alternative C1 C2 C3 C4 C5 C6 C7 Sum

A1 0.00015 0.00003 0.00037 0.00031 0.00012 0.00150 0.00052 0.00300
A2 0.00040 0.00001 0.00026 0.00103 0.00028 0.00000 0.00061 0.00260
A3 0.00006 0.00081 0.00002 0.00023 0.00026 0.00112 0.00142 0.00392
A4 0.00020 0.00164 0.00013 0.00188 0.00000 0.00000 0.00019 0.00405
A5 0.00037 0.00011 0.00000 0.00059 0.00088 0.00032 0.00062 0.00288
A6 0.00020 0.00028 0.00021 0.00044 0.00015 0.00052 0.00066 0.00245
A7 0.00021 0.00125 0.00021 0.00022 0.00013 0.00024 0.00021 0.00246
A8 0.00016 0.00086 0.00011 0.00072 0.00029 0.00089 0.00000 0.00302
A9 0.00009 0.00055 0.00007 0.00043 0.00029 0.00107 0.00059 0.00309
A10 0.00044 0.00040 0.00028 0.00000 0.00027 0.00026 0.00070 0.00235
A11 0.00017 0.00000 0.00032 0.00031 0.00060 0.00039 0.00099 0.00279
A12 0.00030 0.00052 0.00024 0.00060 0.00009 0.00003 0.00060 0.00237
A13 0.00053 0.00064 0.00007 0.00029 0.00001 0.00044 0.00059 0.00257
A14 0.00002 0.00129 0.00019 0.00050 0.00048 0.00080 0.00000 0.00327
A15 0.00000 0.00106 0.00068 0.00038 0.00005 0.00056 0.00025 0.00297
A16 0.00017 0.00025 0.00017 0.00049 0.00010 0.00096 0.00069 0.00282
A17 0.00028 0.00108 0.00022 0.00001 0.00002 0.00057 0.00074 0.00293

Table 13  Distance to positive ideal solution when � = 2

Alternative C1 C2 C3 C4 C5 C6 C7 Sum

A1 0.00006765 0.00208152 0.00001552 0.00101197 0.00040752 0.00000000 0.00053289 0.00411707
A2 0.00000313 0.00180531 0.00005398 0.00007581 0.00013722 0.00248764 0.00039578 0.00495888
A3 0.00028141 0.00005696 0.00068761 0.00208923 0.00022993 0.00000886 0.00000000 0.00335400
A4 0.00004321 0.00000000 0.00014842 0.00000000 0.00081307 0.00263055 0.00141401 0.00504925
A5 0.00000385 0.00148044 0.00058145 0.00041760 0.00000000 0.00095274 0.00040997 0.00384606
A6 0.00004555 0.00087618 0.00009774 0.00077241 0.00039187 0.00051749 0.00036302 0.00306427
A7 0.00003446 0.00000061 0.00007731 0.00123567 0.00033364 0.00109295 0.00139491 0.00416953
A8 0.00006572 0.00006241 0.00020805 0.00027361 0.00015864 0.00011700 0.00379686 0.00468210
A9 0.00018807 0.00032303 0.00042855 0.00095871 0.00019023 0.00002009 0.00057760 0.00268828
A10 0.00000137 0.00042778 0.00004704 0.00281903 0.00014648 0.00097680 0.00029277 0.00471127
A11 0.00005814 0.00253419 0.00003167 0.00099342 0.00001152 0.00072724 0.00009012 0.00444629
A12 0.00001188 0.00028732 0.00006249 0.00036532 0.00047319 0.00255425 0.00041655 0.00417099
A13 0.00000000 0.00017573 0.00028705 0.00110848 0.00088514 0.00062399 0.00045899 0.00353938
A14 0.00027895 0.00000050 0.00010354 0.00056768 0.00003676 0.00016211 0.00360312 0.00475265
A15 0.00038246 0.00001780 0.00000000 0.00087316 0.00065963 0.00044649 0.00139624 0.00377579
A16 0.00006547 0.00110588 0.00015070 0.00068748 0.00060058 0.00005823 0.00034385 0.00301219
A17 0.00001658 0.00001010 0.00007549 0.00301612 0.00075688 0.00038261 0.00025225 0.00451002
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