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Abstract
Formal concept analysis is a tool for data analysis and knowledge processing, and granular computing is a methodology for 
knowledge discovery in database. Applying granular computing into some data analysis theories, such as formal concept 
analysis, is a new trend in recent years. The multi-level granular analysis is an essential work in formal concept analysis. In 
order to combine formal concept analysis and granular computing properly, some basic and specific granules in the framework 
of formal concept analysis are required. By collecting and organizing the existing results in the theory of lattices and formal 
concept analysis, we firstly extract five types of granules on the basis of concept lattices from different perspectives and lev-
els. They include the granules induced by objects and attributes, respectively, and the granules induced by both objects and 
attributes simultaneously. Then, we discuss the granules’ relationships and explain their semantics. The main contribution of 
this study is providing some specific granules, which are practical and can be used conveniently in formal concept analysis.

Keywords  Concept lattice · Granular computing · Object · Attribute · Granule

1  Introduction

The concept of granulation plays an essential role in human 
cognition, especially in the realm of everyday reasoning 
(Pedrycz 2013).

Originally, the notion of granulation can be rooted in 
the concept of a linguistic variable, which was introduced 
by Zadeh (1973). Zadeh (1979) contributed the first paper 
on information granularity. After that, the term of granular 
computing (GrC) was introduced by Lin (1997, 1998) and 
Zadeh (1997).

Granular computing is a computational model for infor-
mation processing. A granule is a block constituted by some 
objects through an indiscernibility relation, a similarity rela-
tion, or a functional relation. The process to find granules 
is called information granulating. The finer the granule is, 
the more knowledge we have. Therefore, to classify and 

describe granules in an appropriate way are interesting and 
central problems in granular computing. At present, granular 
computing is well-known in formation, transformation, syn-
thesis, and decomposition of granules. Granular computing 
allows us to consider problems using granularity in various 
levels. This leads to a new research area and attracts more 
and more scholars, because it is a good method for instruct-
ing our thoughts and actions.

Pedrycz (2001, 2002) introduced some research topics 
about granular computing, and then, he proposed many 
different granular computing techniques and discussed 
several principles of GrC (Pedrycz and Chen 2011, 2015a, 
b; Pedrycz 2013). Pedrycz (2014) suggested that granular 
computing has emerged as a unified and coherent platform 
of constructing, describing, and processing information 
granules, which can be treated as a definition of GrC from 
the perspective of description. Besides these contribution, 
Bargiela and Pedrycz have a deep research about GrC (Bar-
giela and Pedrycz 2003, 2005a, b; Pedrycz 2005; Bargiela 
and Pedrycz 2008). Yao (2000, 2002) discussed some basic 
problems, and described granules from the perspective of 
logic. Yao (2016b) also showed his triarchic theory of granu-
lar computing in. Miao et al. (2012) researched from the 
perspective of set theory. Liang et al. (2015) discussed the 
feasibility of granular computing in big data, and showed 
that GrC is a new approach and methodology in processing 
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big data. Ciucci (2016) reviewed the definition of orthopairs 
and a hierarchy on orthopairs in the light of granular com-
puting. Fujita et al. (2016) claimed the advances of

Granular computing. Additionally, many significant 
results were obtained (Huang and Li 2018; Wang et al. 2017; 
Min and Xu 2016; Xu and Wang 2016; Peters and Weber 
2016; Dubois and Prade 2016).

Actually, we often divide a complicated problem or infor-
mation into several simple parts on the basis of the charac-
teristics or properties of these information in our daily lives. 
The reason why we do like this is because of the limitation 
of our cognitive competence. After solving with the simple 
parts one by one, the results are combined to be the final one. 
In this process, each part can be treated as a granule. This 
idea treating a part as a granule is easy to understand and 
is widely used in our research and daily lives. That means, 
granular computing is common used in our daily lives natu-
rally. However, the idea is only a methodology and has few 
concrete definitions or models.

Furthermore, we often have some complicated prob-
lems that cannot be resolved by only one granule. In order 
to solve these problems, Qian et al. (2010) presented the 
multi-granulation in Rough set theory. On the basis of multi-
granulation, many research achievements were obtained in 
the framework of Rough sets (Qian et al. 2014; Lin et al. 
2013; Yao and She 2016; She et al. 2017; Dai and Tian 2013; 
Zhang et al. 2015; Yao et al. 2014).

For formal concept analysis (FCA), considering granular 
computing and multi-granulation analysis in FCA is also 
necessary.

Formal concept analysis, a tool for data analysis, was pro-
posed by German mathematician Wille (1982) and improved 
by Ganter and Wille (1999). The formal context is the basis 
of FCA, which can be represented in a cross table. Wille 
defined a formal concept (concept, shortly) on the basis of 
a formal context, and construct their structure using proper 
partial orders and operators. The structure is a lattice, which 
is called a concept lattice by Wille, and it is the basis of 
FCA theory. A concept lattice can visualize the potential 
information hidden in the formal context. That is one of the 
important reasons why FCA is used in data analysis and 
data mining.

The main research topics of FCA include attribute reduc-
tion (Zhang et al. 2005; Dias and Vieira 2015; Singh et al. 
2017; Singh and Kumar 2017), combination with other 
uncertainty analysis approaches, such as Rough set theory 
and Three-way decisions (Kumar 2012; Wang and Liu 2008; 
Yao 2016a; Qi et al. 2014, 2016; Chen et al. 2014; Ma and 
Mi 2016), and others (Belohlavek and Vychodil 2010; Shao 
et al. 2014; Ren et al. 2017). Additionally, FCA plays an 
important role and is adapted to a variety of applications 
(Belohlavek et al. 2011; Poelmans et al. 2013; Kaytoue et al. 

2011; Codocedo and Napoli 2015; Tonella 2003; Li et al. 
2017).

There are many useful results in Granule analysis in FCA. 
For example, by using stability index, Zhi and Li (2016) 
classified the power set of objects into three categories, and 
named them atomic granules, basic granules, and compos-
ite granules, respectively. Then, they proposed methods for 
describing the three categories. Particularly, each kind of 
granule in (Zhi and Li 2016) is a subset of the object set. 
Li and Wu (2017b) investigated the main research topics 
of granular computing approach for FCA from different 
perspectives, such as a granular computing model based on 
Galois connection, object/attribute granule, granular rule, 
granular reduct, granular concept and learning, and concept 
granular computing systems. Li et al. (2017a) proposed a 
family of tripartition of the object set, which is related to 
three-way decisions and can be considered as multi-granu-
larity in FCA. Loia et al. (2018) studied the data granulating 
in FCA method.

Other researches related to GrC and FCA include attrib-
ute granulating, granule transformation, GrC based on 
incomplete data (Wu et al. 2009; Shao and Leung 2014; Xu 
and Li 2016; Li et al. 2015, 2016; Belohlavek et al. 2014; 
Huang et al. 2017; Gong et al. 2017).

Different from the aforementioned existing works, this 
paper provides and discusses some specific granules in dif-
ferent semantics with structural complexity.

We firstly use the equivalence class of an object in a 
formal context as a granule since a formal context can be 
considered as an information system. Moreover, a formal 
concept reflecting objects and attributes can be treated as 
a kind of granule, which is the fundamental component to 
construct the concept lattice. It is easy to see that the two 
kinds of granules show different semantics. One is from the 
perspective of objects and reflect the equivalence class, the 
other is from the perspective of both object and attribute and 
reflect the lattice structure. Therefore, to confirm some spe-
cific granules in FCA is feasible and meaningful. Motivated 
by the above analysis, this paper extracts some granules from 
different levels and angles. Since all the granules can be 
calculated, proper granules can be chosen and applied in 
accordance with the real situations and people’s objectives. 
That is, a multi-level granularity in FCA is proposed in this 
paper.

The structure of this paper is as follows. Section 2 briefly 
reviews some basic notions of FCA. Section 3 proposes five 
types of granules in FCA with respect to objects and dis-
cusses their relationships. In parallel, Sect. 4 proposes five 
types of granules from the perspective of attributes. Sec-
tion 5 gives another two granules with more information and 
semantics. Finally, the paper is concluded with a summary 
in Sect. 6.
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2 � Preliminaries

In this section, we give the associated definitions in FCA and 
the original idea of this paper.

2.1 � Notions in FCA

Definition 2.1  (Ganter and Wille 1999) A formal con-
text (G, M, I) consists of two sets G and M and a relation 
I between G and M. The elements of G are called objects 
and the elements of M are called attributes of the context. 
In order to express that an object g is in a relation I with an 
attribute m, we write gIm or (g,m) ∈ I and read it as “the 
object g has the attribute m”.

A formal context can be represented by a cross table, in 
which a cross in row g and column m means that the object 
g has the attribute m.

If there exists g ∈ G such that g has all the attributes in 
M or g does not have any attribute in M, we think the object 
g is meaningless. Similarly, we are not interested in such 
attribute that is in a relation with all objects or not in a rela-
tion with any object. A formal context that does not have 
such objects and attributes is called canonical. All formal 
contexts in this paper are canonical.

Example 2.1  Table 1 is a revised version of a commonly 
used formal context named “Living Beings and Water” in 
Ganter and Wille (1999). In the original formal context, the 
attribute a (means “needs water to live”) is possessed by all 
the objects, therefore it is deleted to ensure that the formal 
context is canonical. Now, we denote the revised data as 
(G, M, I) and show it in Table 1. In which, the object set G 
includes eight objects, namely, 1: leech, 2: bream, 3: frog, 4: 
dog, 5: spike-weed, 6: reed, 7: bean, 8: maize. The attribute 
set M includes eight attributes, they are: b: lives in water, 
c: lives no land, d: needs chlorophyll to produce foods, e: 
two seed leaves, f: one seed leaf, g: can move around, h: has 
limbs, i: suckles its offspring.

Based on the formal context (G, M, I), Wille and Ganter 
(Wille 1982; Ganter and Wille 1999) defined a pair of dual 
operators for A ⊆ G and B ⊆ M by:

The detailed properties about the dual operators can be 
found in Ganter and Wille (1999).

By using the operators, the canonical formal con-
text can be explained by the following statements: 
∀g ∈ G, g↑ ≠ �, g↑ ≠ M , and ∀m ∈ M,m↓ ≠ �,m↓ ≠ G.

A formal context (G, M, I) is called clarified if g↑ = h↑ 
implies g = h and m↓ = n↓ implies m = n for any g, h ∈ G 
and m, n ∈ M . In brief, a formal context is a clarified context 
if and only if it has neither same rows nor same columns. 
For simplicity, the formal contexts discussed in this paper 
are also clarified.

Suppose A ⊆ G , B ⊆ M , if A↑ = B and B↓ = A , then 
(A, B) is called a formal concept, where A is called the extent 
of the formal concept, and B is called the intent of the formal 
concept.

The family of all formal concepts of (G, M, I) forms a 
complete lattice, which is called the concept lattice and is 
denoted by L(G, M, I). For any (A1,B1), (A2,B2) ∈ L(G,M, I) , 
the partial order is defined by:

and the infimum and supremum of (A1,B1) and (A2,B2) are 
defined by:

For any g ∈ G , a pair (g↑↓, g↑) is a formal concept and is 
called an object concept. Similarly, for any m ∈ M , a pair 
(m↓,m↓↑) is also a formal concept and is called an attribute 
concept. We denote the set of object concepts of L(G, M, I) 
as (L) and the set of attribute concepts of L(G, M, I) as 
 (L).

A↑ ={m ∈ M|gIm for all g ∈ A},

B↓ ={g ∈ G|gIm for all m ∈ B}.

(A1,B1) ⩽ (A2,B2) ⇔ A1 ⊆ A2(⇔ B1 ⊇ B2),

(A1,B1) ∧ (A2,B2) = (A1 ∩ A2, (B1 ∪ B2)
↓↑),

(A1,B1) ∨ (A2,B2) = ((A1 ∪ A2)
↑↓,B1 ∩ B2).

Table 1   A formal context 
(G, M, I)

G b c d e f g h i

1 × ×

2 × × ×

3 × × × ×

4 × × × ×

5 × × ×

6 × × × ×

7 × × ×

8 × × ×
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Example 2.2  The formal context in Example 2.1 has 19 
formal concepts, which form a lattice shown in Fig. 1. To 
describe the concept lattice clearly, each formal concept 
in Fig. 1 is indexed by a number. They are: 1. (�,M) , 2. 
(4, cghi), 3. (3, bcgh), 4. (7, cde), 5. (6, bcdf), 6. (34, cgh), 7. 
(23, bgh), 8. (123, bg), 9. (36, bc), 10. (678, cd), 11. (68, cdf), 
12. (56, bdf), 13. (234, gh), 14. (568, df), 15. (1234, g), 16. 
(34678, c), 17. (12356, b), 18. (5678, d), 19. (G, �) . For sim-
plicity, these formal concepts are denoted by the marked 
numbers when we mention them in the rest of this paper.

In this concept lattice, the set of object concepts is 
(L) = {2, 3, 4, 5, 7, 8, 11, 12} , the set of attribute concepts 
is  (L) = {2, 4, 13, 14, 15, 16, 17, 18, 19}.

2.2 � Notions in theory of lattices

Since a concept lattice is a lattice, we introduce an important 
notion in theory of lattices, it will be one of the granules in 
our research.

Definition 2.2  (Davey and Priestley 2002)   Let L be a lat-
tice. An element x ∈ L is join-irreducible if

	 (i)	 x ≠ 0 (in case L has a zero),
	 (ii)	 x = a ∨ b implies x = a or x = b for all a, b ∈ L.

A meet-irreducible element is defined dually.
The order relation in a lattice is often denoted by ≤ , and 

we write a < b for a ≤ b and a ≠ b.

Definition 2.3  (Ganter and Wille 1999) a is called a lower 
neighbour of b if a < b and there is no element of c fulfilling 
a < c < b . In this case, b is an upper neighbour of a.

In this paper, we call the set of all upper neighbours of a 
the upper-neighbourhood of a.

The upper neighbours of the zero element in a lattice are 
called the atoms; they are always join-irreducible (if exist). 
The coatoms, i.e., the lower neighbours of the unit element, 
are always meet-irreducible.

We call the join-irreducible (meet-irreducible) elements 
and atoms (coatoms) in a concept lattice L(G, M,  I) join-
irreducible (meet-irreducible) concepts and atom (coatom) 
concepts, respectively, and denote the set of join-irreducible 
(meet-irreducible) concepts as  (L) ( (L) ) and the set of 
atom (coatom) concepts as (L) ( (L)).

Example 2.3  In Example 2.2, the set of join-irreducible 
concepts is  (L) = {2, 3, 4, 5, 7, 8, 11, 12} , the set of meet-
irreducible concepts is (L) = {2, 4, 13, 14, 15, 16, 17, 18} , 
the set of atom concepts is (L) = {2, 3, 4, 5} , and the set of 
coatom concepts is (L) = {15, 16, 17, 18}.

2.3 � Notions in information systems

A formal context can be considered as an information sys-
tem when the table is expressed by a two-value table. That 
is, the cross in the table is replaced by the number 1 and 
the space is replaced by the number 0. Under this situation, 
we can analyse the formal context from the perspective of 
information systems.

2.3.1 � Object/attribute equivalence class

A basic notion in information systems is the equivalence 
class. There are two kinds of equivalence class in a formal 
context that is treated as an information system. One is 
object equivalence class, and the other is attribute equiva-
lence class. An object equivalence class is constituted by 
the objects that have the same attributes, that is, the objects 
that have the same values for each attribute. Therefore, the 
objects with the same row can compose an object equiva-
lence class. Dually, the attribute equivalence class is com-
posed by the attributes with the same column.

For a formal context (G, M, I), the equivalence class 
of an object g is denoted by (g) , and the equivalence 
class of an attribute m is denoted by  (m) . Thus, we use 
(L) and  (L) to denote the set of all object equiva-
lence classes and the set of attribute equivalence classes of 
the concept lattice L(G, M, I), respectively.

In Example 2.1, since the formal context is a clarified 
context, each singleton set that contains one object is an 
object equivalence class, and each singleton set contain-
ing one attribute is an attribute equivalence class. Thus, we 
have (L) = {{1}, {2}, {3}, {4}, {5} , {6}, {7}, {8}} , and 
 (L) = {{b}, {c}, {d}, {e}, {f } , {g}, {h}, {i}}.

1

2
3 4 5

6

7

8 9 10

11

12

13 14 

15 16 17 18

19

Fig. 1   Concept lattice of Example 2.1
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2.3.2 � Object/attribute‑induced pair

Although equivalence class is the most important and basic 
notion, it is composed by objects or attributes singularly. 
What we want to find and discuss is a set that can show 
the information about objects and attributes simultane-
ously. Therefore, we introduce the notion of object/attribute-
induced pair.

For an object g ∈ G , we generalize it into a pair (g, g↑) 
using the operator ↑ in FCA. We call such pair an object-
induced pair, and denote it as (g) . Similarly, for an 
attribute m ∈ M , an attribute-induced pair is the pair (m↓,m) , 
and is denoted by  (m) . It should be noticed that most of 
these pairs are just pairs with the form of a pair (object set, 
attribute set) rather than formal concepts except atom con-
cepts and coatom concepts. For a concept lattice L(G, M, I), 
the set of object-induced pairs is denoted by (L) and the 
set of attribute-induced pairs is denoted by  (L).

The terms of object/attribute-induced pair were proposed 
firstly by Qi et al. (2005) to research the transformation 
between equivalence classes and extents of formal con-
cepts. Later, Wei and Wan (2016) used such pairs to produce 
object/property pictorial diagram for a formal context, and 
studied a kind of granule transformation. The definitions of 
object/property pictorial diagram of a formal context are as 
follows.

Definition 2.4  (Wei and Wan 2016) Let (G, M, I) be a for-
mal context, L(G,  M,  I) be its concept lattice. Denote 
(L) = {(g, g↑)|g ∈ G} ,  (L) = {(m↓,m)| m ∈ M} . 
For any gi, gj ∈ G  ,  if  g

↑

i
⊆ g

↑

j
 ,  then we denote 

(gi, g
↑

i
) ≤ (gj, g

↑

j
) , and call ((L),≤) the object pictorial 

diagram of (G, M, I). Dually, for any ms,mt ∈ M , if m↓
s
⊆ m

↓

t  , 
then we denote (m↓

s
,ms) ≤ (m

↓

t ,mt) , and call ( (L),≤) the 
property pictorial diagram of (G, M, I).

Example 2.4  For the formal context shown in Example 2.1, 
we have (L) = {(1, bg) , (2, bgh), (3, bcgh), (4,  cghi), 
(5, bdf), (6, bcdf), (7, cde), (8, cdf )} ,  (L) = {(12356, b) , 
(34678, c), (5678, d), (7, e), (568, f), (1234,  g), (234, h), 
(4, i)} . The Hasse graphs of (L) and  (L) are given 
in Figs. 2 and 3, respectively.

3 � Multi‑granule analysis from the viewpoint 
of objects

For a formal context (G,  M,  I) and its concept lattice 
L(G, M, I), the previous section gives ten kinds of sets, or, 
five pairs of sets. We review them in order: (1) the set of 

object concepts (L) and the set of attribute concepts 
 (L) , (2) the set of join-irreducible concepts  (L) and 
the set of meet-irreducible concepts (L) , (3) the set of 
atom concepts (L) and the set of coatom concepts (L) , 
(4) the object equivalence class (L) and the attribute 
equivalence class  (L) , (5) the set of object-induced pair 
(L) and the set of attribute-induced pair  (L) . These 
sets have different meanings and functions. Generally, they 
are different sets, but some of them are included by others, 
some of them have intersection. We discuss their relation-
ships in the following subsections.

Essentially, every element in these sets can be treated as 
a granule with different levels from different perspectives in 
formal concept analysis.

We give new names shown in Table 2 for the five pairs of 
sets mentioned above. These names use granular description 
that help us describe them clearly and conveniently.

In the ten granules, there are five of them oriented to 
objects, since they are related to objects. They are: object 
concepts, join-irreducible concepts, atom concepts, object 
equivalence class, and object-induced pair. The other five 
granules are related to attributes.

We can discuss these granules from the viewpoint of 
objects (i.e., extents) or attributes (i.e., intents). This sec-
tion first investigates it from the objects’ viewpoint, and then 
investigates from attributes’ perspective.

3.1 � Relationship among (L) ,  (L) , and (L)

From the definition of atom, the following theorem can be 
induced directly.

(1, bg)

(2, bgh)

(3, bcgh)

(4, cghi) (5, bdf)

(6, bcdf)

(8, cdf) (7, cde)

Fig. 2   Object pictorial diagram of Example 2.1

(12356, b)

(5678, d)

(7, e)(568, f)

(34678, c)
(1234, g)

(234, h)

(4, i)

Fig. 3   Property pictorial diagram of Example 2.1
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Theorem 3.1  For any lattice L, we have (L) ⊆  (L).

For a clarified and canonical formal context (G, M, I), 
Theorem 3.1 indicates that each atom concept in the concept 
lattice L(G, M, I) is a join-irreducible concept.

Theorem 3.2  For any concept lattice L(G, M, I), we have 
 (L) ⊆ (L).

Proof  From the theory of lattices, we have the follow-
ing result: Q ⊆ L is join-dense in a lattice L if and only if 
 (L) ⊆ Q . From the Basic Theorem on Concept Lattices 
(Ganter and Wille 1999), we also know that the set of 
object concepts (L) is join-dense in the concept lattice 
L(G, M, I). Therefore, we have  (L) ⊆ (L) . 	�  □

Theorem 3.2 shows that every join-irreducible concept is 
an object concept.

Therefore, the relationship among the three kinds of con-
cepts can be described in Fig. 4.

Example 3.1  For the formal context shown in Exam-
ple 2.1, we can obtain the following results from Exam-
ples   2 .2  and 2 .3:  (L) = {2, 3, 4, 5, 7, 8, 11, 12} , 
 (L) = {2, 3, 4, 5, 7, 8, 11, 12} , (L) = {2, 3, 4, 5} . It is easy 
to get (L) ⊆  (L) = (L) , which illustrates Fig. 4.

Based on the relationship among (L) ,  (L) , and (L) , 
we can obtain the following results from the quantity 
viewpoint.

Corollary 3.1  For any concept lattice L(G, M, I), we have 
|(L)| ≤ | (L)| ≤ |(L)|.

3.2 � Relationship among (L) , (L) and (L)

Generally, an object-induced pair in a formal context 
(G, M, I) is a pair (a certain object g, a set of attributes g↑ ), 
and an object equivalence class is a set [g]R , where R is an 
equivalence relation on G. However, when we consider a 
clarified context, the object equivalence class of an object g 
is a singleton set {g} . Now, we generalize the form of object 
equivalence class into a pair (objects, attributes) and denote 
it as P(g) , thus, it must be (g, g↑) . So, in this case, every 
object’s equivalence class is the same with the second part 
of the object-induced pair. Denoting all the generalized form 
of object equivalence class as P(L) , we obtain the fol-
lowing theorems.

Theorem 3.3  Suppose (G, M, I) is a clarified formal con-
text, and L(G, M, I) is its concept lattice. For each g ∈ G , we 
have P(g) = (g) ; thus, P(L) = (L).

Theorem 3.4  Suppose (G, M, I) is a clarified formal context, 
and L(G, M, I) is its concept lattice. For each atom concept 
(X, B), {B|(X,B) ∈ (L)} ⊆ {g↑|(g, g↑) ∈ (L)} = {g↑|
(g, g↑) ∈ P(L)} holds.

Proof  Since any atom concept must be an object concept, 
for an atom concept (X, B), there must exist an object g0 such 
that g↑↓

0
= X and g↑

0
= B . Furthermore, g↑

0
 is the second ele-

ment of the object-induced pair produced by g0 . Thus, the 
result is obtained. 	�  □

Theorems 3.3 and 3.4 are shown in Fig. 5, and Exam-
ples 2.3 and 2.4 confirm the results.

It is easy to obtain the following result based on the above 
theorems.

Corollary 3.2  For any concept lattice L(G,  M,  I), 
|(L)| ≤ |(L)| = |(L)| holds.

Table 2   Granules in a formal context (G, M, I)

Set of such things Symbol Name of granule

1 Object concept (L) Elementary granule
1

′ Attribute concept  (L) Elementary granule
2 Join-irreducible concept  (L) Essential granule
2

′ Meet-irreducible concept (L) Essential granule
3 Atom concept (L) Atomic granule
3

′ Coatom concept (L) Atomic granule
4 Object equivalence class (L) Classified granule
4

′ Attribute equivalence class  (L) Classified granule
5 Object-induced pair (L) Pictorial granule
5

′ Attribute-induced pair  (L) Pictorial granule

( )L

( )L

( )L

Fig. 4   Results of Theorems 3.1 and 3.2

( ) ( )P L L

( )L

Fig. 5   Results of Theorems 3.3 and 3.4
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We give a result presented in Wei and Wan (2016) to 
complete our discussion.

Theorem  3.5  (Wei and Wan 2016) For any (g, g↑) 
∈ (L) , if |g↑| = 1 , then (g↑↓, g↑) ∈  (L).

This result reveals the relationship between an object-
induced pair and an attribute concept.

3.3 � Granule chain and level from the viewpoint 
of objects

This section explains the meanings of the granule names 
shown in Table 2.

When we consider the granules in a formal context from 
the viewpoint of objects, the first granule we think about 
naturally is the object equivalence class, since it is the most 
elementary unit in a data set.

Since the formal context in this paper is clarified context, 
every equivalence class is a singleton set containing one 
object. However, such singleton set has two disadvantages. 
One is that the related attribute information of this object is 
not reflected, the other is that its form is not the same as a 
formal concept. Thus, we generalize the singleton set into a 
pair: (an object, a set of attributes), in which the second part 
contains the attributes possessed by this object. Such pair 
can be considered as a kind of classified granule.

For a clarified formal context, the previous generalized 
pair is just the object-induced pair. Since the object-induced 
pair can form a pictorial graph, it can be treated as a picto-
rial granule.

In these object-induced pairs, atom concepts are special 
cases. In a concept lattice, atom concepts are at the bottom 
of the lattice; they are the upper neighbours of the bottom 
element (�,M) . In other words, atom concepts are basic in 
the lattice structure. Therefore, we call atom concepts atomic 
granules.

Since atom concepts are join-irreducible concepts and 
each formal concept can be expressed by the join of join-
irreducible concepts, join-irreducible elements are very 
important in a lattice structure. Thus, the join-irreducible 
concept is another granule. We call the join-irreducible con-
cept essential granule.

Moreover, we can consider a more complicated concept: 
the object concept. In some situations, an object concept is 
the simplest formal concept in a concept lattice since it is 
produced by an object g using the form (g↑↓, g↑) directly. If 
we want to find a formal concept by using an object, the cor-
responding object concept will be the first concept we con-
sider. Furthermore, each formal concept can be expressed by 
the join of object concepts, which leads the object concept 
to an important role, and we consider it as an elementary 
granule.

Finally, we have the following granule chain shown in 
Fig. 6 with respect to objects.

From the granule level’s perspective, the relationship 
among these granules is shown in Fig. 7.

4 � Multi‑granule analysis from the viewpoint 
of attributes

In parallel with Sect. 3, this section gives granules and 
shows their relationships from the viewpoint of attributes. 
Since the status of objects and attributes are similar and 
dual, the results in this section are given directly and all the 
proofs are omitted.

4.1 � Relationship among (L) , (L) and  (L)

Similar to Theorems 3.1 and 3.2, the following theorem is 
induced directly by using the definition of coatom and the 
Basic Theorem on Concept Lattices.

Theorem  4.1  For any concept lattice L, we have 
(L) ⊆ (L) ⊆  (L).

The theorem suggests that for any formal context (G, M, I) 
and its concept lattice L(G, M, I), each coatom concept is 
a meet-irreducible concept, and each meet-irreducible con-
cept is an attribute concept. The relationship among (L) , 
(L) , and  (L) is described in Fig. 8.

Corollary 4.1  For any concept lattice L(G, M, I), we have 
|(L)| ≤ |(L)| ≤ | (L)|.

4.2 � Relationship among  (L) ,  (L) 
and (L)

In a clarified formal context, an attribute equivalence class is 
a singleton set {m} . We also generalize the form of attribute 
equivalence class into a pair (objects, attribute) and denote 
it as  P(m) , which must be (m↓,m) . We denote all the 

object
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class

object
induced
pair

atom
concept

join-
irreducible
concept

object
concept

Fig. 6   Granule chain with respect to objects
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granule
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Fig. 7   Granule level with respect to objects
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generalized form of attribute equivalence class as  P(L) , 
and obtain the following theorems.

Theorem 4.2  Suppose (G, M, I) is a clarified formal con-
text, and L(G, M, I) is its concept lattice. For each m ∈ M , 
we have  P(m) =  (m) ; thus,  P(L) =  (L).

Theorem 4.3  Suppose (G, M, I) is a clarified formal context, 
and L(G, M, I) is its concept lattice. For each coatom concept 
(X,  B), {X|(X,B) ∈ (L)} ⊆ {m↓|(m↓

,m) ∈  (L)} =

{m↓|(m↓
,m) ∈  P(g) (L)} holds.

The results of Theorems 4.2 and 4.3 are illustrated in 
Fig. 9.

Furthermore, the relationship among their quantity is as 
follows.

Corollary 4.2  For any concept lattice L(G,  M,  I), 
|(L)| ≤ | (L)| = | (L)| holds.

The following theorem reveals the relationship between 
an attribute-induced pair and an object concept.

Theorem  4.4  (Wei and Wan 2016) For any (m↓, 
m) ∈  (L) , if |m↓| = 1 , then (m↓,m↓↑) ∈ (L).

4.3 � Granule chain and level from the viewpoint 
of attributes

Granule chain and level from the viewpoint of attributes is 
similar to Sect. 3.3, we just give the final results and omit the 
analysis process. The granule chain is shown in Fig. 10, and 
granule level is the same as Fig. 7 since each granule’s type 
is the same as the granules from the viewpoint of objects.

5 � Integrated granules

Sections 3 and 4 investigate the granules from the view-
points of objects and attributes, respectively. Actually, we 
can consider granules from both objects and attributes simul-
taneously. In this section, we discuss formal concepts and 
sublattices, by treating them as common granules and lat-
tice granules, respectively. We call them integrated granules 
since they show the information about objects and attributes 
simultaneously. To some extent, these two kinds of granules 
are more complicated in structure and more meaningful in 
semantics than the granules proposed in previous sections.

5.1 � A formal concept as a granule

This section discusses the relationship between the com-
mon granule and the previous granules in the object/attribute 
granule chain.

5.1.1 � Relationship between the common granule 
and the object granule chain

In formal concept analysis, we have the following impor-
tant lemma, which is contained in the Basic Theorem on 
Concept Lattices (Ganter and Wille 1999) and shows that 
{(g↑↓, g↑)|g ∈ G} is join-dense in L(G, M, I).

Lemma 5.1  Suppose (G, M, I) is a formal context, and 
L(G, M, I) is its concept lattice. Then, (X,B) = ∨g∈X(g

↑↓, g↑) 
holds for any concept (X, B).

Since Lemma 5.1 shows the relationship between a for-
mal concept and its extent, and the object concept is the 
final granule in object granule chain we discussed above, 
Lemma 5.1 also reveals the relationship between a common 
granule and each granule in the object granule chain.

The following theorem shows the relationship between 
object-induced pairs and join-irreducible concepts.

Theorem 5.1  (Wei and Wan 2016) Let (G, M,  I) be a 
formal context, ((L),≤) be its object pictorial dia-
gram, and Max((L)) be the set of maximal elements in 
((L),≤) . Thus,

(1)	 Max((L)) ⊆  (L);

( )L

( )L

( )L

Fig. 8   Result of Theorem 4.1

( ) ( )P L L

( )L

Fig. 9   Results of Theorems 4.2 and 4.3
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(2)	 if (g, g↑) ∉ Max((L)) and ∩gj∈UNg
g
↑

j
− g↑ ≠ � , then 

(g↑↓, g↑) ∈  (L) , where UNg is the upper-neighbour-
hood of g.

Corollary 5.1  (Wei and Wan 2016) Let (G, M, I) be a for-
mal context, ((L),≤) be its object pictorial diagram. 
For any (g, g↑) ∈ (L) , UNg is the upper-neighbourhood 
of g. Thus,

(1)	 if |UNg| ≤ 1 , then (g↑↓, g↑) ∈  (L);
(2)	 i f  |UNg| ≥ 2  a n d  ∩gj∈UNg

g
↑

j
− g↑ ≠ �  ,  t h e n 

(g↑↓, g↑) ∈  (L).

5.1.2 � Relationship between the common granule 
and the attribute granule chain

The following lemma from the Basic Theorem on Con-
cept Lattices    (Ganter and Wille 1999) shows that{(m↓, 
m↓↑)|m ∈ M} is meet-dense in L(G, M, I).

Lemma 5.2  Suppose (G,  M,  I) is a formal context, 
L(G, M, I) is its concept lattice. Then, (X,B) = ∧m∈B(m

↓,m↓↑) 
holds for any concept (X, B).

Since the result reveals the relationship between a formal 
concept and its intent, attribute concepts is the final granule 
in attribute granule chain, Lemma 5.2 also shows the rela-
tionship between a common granule and each granule in the 
attribute granule chain.

Then, the relationship between attribute-induced pairs 
and meet-irreducible concepts is given in Theorem 5.2 and 
Corollary 5.2.

Theorem 5.2  (Wei and Wan 2016) Let (G, M,  I) be a 
formal context, ( (L),≤) be its property pictorial dia-
gram, and Max( (L)) be the set of maximal elements in 
( (L),≤) . Thus,

(1)	 Max( (L)) ⊆ (L);
(2)	 if (m↓,m) ∉ Max( (L)) and ∩mt∈UNm

m
↓

t − m↓ ≠ � , 
then (m↓,m↓↑) ∈ (L) , where UNm is the upper-neigh-
bourhood of m.

Corollary 5.2  (Wei and Wan 2016) Let (G, M, I) be a for-
mal context, ( (L),≤) be its property pictorial diagram. 
For any (m↓,m) ∈  (L) , UNm is the upper-neighbour-
hood of m. Thus,

(1)	 if |UNm| ≤ 1 , then (m↓,m↓↑) ∈ (L);
(2)	 i f  |UNm| ≥ 2  and  ∩mt∈UNm

m
↓

t − m↓ ≠ �  ,  t hen 
(m↓,m↓↑) ∈ (L).

5.2 � A sublattice as a granule

The concept of sublattice given in Definition 5.1 is a com-
mon notion in the theory of lattices.

Definition 5.1  (Davey and Priestley 2002) Let L be a lattice 
and ∅ ≠ S ⊆ L . Then S is a sublattice of L if a, b ∈ S imply 
a ∨ b ∈ S and a ∧ b ∈ S.

A sublattice is a part of concept lattice, and it reveals 
some information about the lattice or the original data. 
Meanwhile, it is also a lattice, which means that it has a 
good structure and some good properties.

Since there may have many sublattices in a lattice, to find 
a specific one with meaningful semantics is important. Luck-
ily, the sublattice generated by a nonempty set S ⊆ L is a 
special one.

Theorem 5.3  (Davey and Priestley 2002) Let L be a lattice. 
For each S ⊆ L(S ≠ �) , let ⟨S⟩ = ⋂

{K ∈ ���0L�S ⊆ K} , 
then, ⟨S⟩ is the smallest sublattice of L which contains S. 
Where ���L is the collection of all sublattices of L and 
���0L = ���L ∪ {�} , both are ordered by inclusion.

The sublattice ⟨S⟩ is called the sublattice generated by S. 
Compared to other sublattices, this is the smallest sublattice 
containing S.

All the granules in Sects. 3 and 4 are easy to obtain. How-
ever, the definition of the sublattice generated by S in terms 
of set-intersection does not give a viable method for calculat-
ing ⟨S⟩ in a finite lattice. A special calculation method was 
given by Davey and Priestley (2002) by adding elements to 
S. Therefore, computing a sublattice is not as easy as other 
granules.

5.3 � Semantics differences among the granules

The granules in FCA are proposed from the perspectives of 
single object and single attribute, respectively, which sug-
gests that there are two types of granules. One regards to 
objects, the other regards to attributes. And then, the gran-
ules’ form is generalized and more meaningful granules are 
introduced by combining the information of objects and 
attributes together. Finally, more complicated granules, such 
as formal concepts and sublattices, are given to show more 
information of the formal context. The detailed semantics of 
each granules are discussed as follows.

For single object/attribute, due to the clarified formal con-
text, the single object/attribute represents the corresponding 
object/attribute equivalence class, which has information for 
classification.

Using operators from FCA, the object/attribute equiva-
lence class can be generalized to a pair (an object set, an 
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attribute set). We call them an object/attribute-induced pair, 
which shows the information of a formal context intuitively. 
Most of these pairs are not formal concepts, but there are 
some special granules: atom/coatom concepts that reflect 
the atomic characteristics of formal concepts.

Then, the most basic and important notions, i.e., join/
meet-irreducible concepts, that can determine the structure 
of a concept lattice are considered. Due to their importance 
in lattice structure, we call them essential granules.

Taking into account of join/meet-irreducible concepts and 
the Basic Theorem in FCA, we consider object/attribute con-
cepts as elementary granules. Object/Attribute concepts not 
only have concise meaning but also are easy to compute.

Object/Attribute concepts are special formal concepts, so 
we consider general formal concepts as common granules in 
FCA. Further, we promote these granules to a higher level, 
sublattice, which has a lattice structure. The sublattice is 
the only one granule that has structure, while other granules 
do not have.

Therefore, the granules we proposed have different 
semantics and complexities, and they reflect different levels 
and information contained in a formal context.

5.4 � An example

We consider Example 2.2 again to explain the idea shown 
in Sect. 5.3 from the perspective of objects. We choose the 
object 3 to start discussion.

The singleton set {3} is an equivalence class on the object 
set G in this formal context, and its object-induced pair 
is (3, bcgh). This pair is the object concept produced by 
the object 3, and it is not only an atom concept but also a 
join-irreducible concept (this concept is marked as No.3 in 
Example 2.2).

Therefore, this concept has different status and plays dif-
ferent roles. As an object-induced pair, the concept shows 
the original binary relation between the object 3 and the 
attributes. As an atom concept, the concept is an upper 
neighbour of the bottom and shows the basic information 
about the lattice. As a join-irreducible concept, the concept 
is indispensable to construct the lattice. As an object con-
cept, the concept is a kind of important basic concept to form 
a common concept, and the method is shown in Lemma 5.1.

There are three common concepts related to the concept 
No.3. They are No.6, No.7, and No.9. These three concepts 
reflect general information about the lattice since they can 
be created by other concepts.

Furthermore, the minimal sublattice containing the four 
concepts is the set that not only contains these four con-
cepts but also contains No.13, No.16, No.17, and No.19. 
The sublattice that is marked as the solid points is shown in 
Fig. 11. A sublattice is a kind of composite information, and 

it has the lattice structure. It seems a “reduced” version of 
the original concept lattice.

6 � Conclusion

In this paper, we review relevant literatures and give five 
types of singular specific granules and two types of inte-
grated granules in the framework of FCA. We explain them 
from the perspective of granular computing. All the granules 
are existing notions in FCA or theory of lattices, they are 
concrete and easy to understand.

We investigate the granules and their relationships from 
two perspectives. One is the source producing granules, the 
other is complexity of granule structure. The granules with 
respect to source are shown in Fig. 12. The chain shows 
the relationships between the lower granules and the higher 
ones. The granules with respect to structure complexity are 
shown in Fig. 13, which reveals their different levels.

These different granules not only are meaningful and cor-
related but also can be calculated and transformed. This is 
consistent with the essential idea of granular computing.

The contributions of this paper include proposing differ-
ent granules with different meaning and giving a multi-level 
granularity in FCA, which is an essential work when we 
study FCA using the idea of GrC.

Actually, these granules we proposed in this paper can 
be used solely or combined together according to differ-
ent situations and purposes. In addition, the measure and 
quantification of these granules are profound because they 
can directly tell us which granule is “bigger” or “smaller”. 
Different from the granular transformation, we can further 
discuss the composition and decomposition of these gran-
ules. All these topics are important in the research of FCA 
and GrC, and need to be studied in the future.
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Fig. 11   A marked sublattice
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