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Abstract
Pythagorean hesitant fuzzy set (PHFS) is a powerful tool to deal with uncertainty and vagueness. Therefore, based on 
Pythagorean hesitant fuzzy information in this paper we develop hybrid aggregation operators for Pythagorean hesitant fuzzy 
information namely, Pythagorean hesitant fuzzy hybrid weighted averaging operator, Pythagorean hesitant fuzzy hybrid 
weighted geometric operator. These developed operators can weigh both the argument and their ordered positions. Addition-
ally, some numerical examples are given to illustrate the developed operators. Moreover we develop a multi-attribute group 
decision making approach based on the proposed operators. Finally, we give a numerical example to show the effectiveness 
and flexibility of the proposed method.

Keywords  Pythagorean hesitant fuzzy sets · PHFHWA operator · PHFHWG operator · Multi-attribute group decision 
making (MAGDM)

1  Introduction

Fuzzy sets (Zadeh 1965) are considered as an important tool 
to solve multi-attribute decision making (MADM) problems 
(Bellman and Zadeh 1970; Yager 1997) and can also be 
applied to fuzzy logic and approximate reasoning (Zadeh 
1975a, b), pattern recognition (Pedrycz 1990) and decision 
making based on granular computing is studied in Pedrycz 
and Chen (2011, 2015a, b). Wang and Chen (2008) intro-
duced a new approach for evaluating students’ answer scripts 
using fuzzy numbers associated with degrees of confidence 

of the evaluator. Based on automatic clustering techniques 
and fuzzy logical relationships Chen et al. (2009) developed 
an approach for forecast enrollments. Chen and Chen (2011) 
introduced a new forecasting method based on high-order 
fuzzy logical relationships to forecast the Taiwan Stock 
Exchange Capitalization Weighted Stock Index (TAIEX). 
In Chen et al. (2014) the authors proposed a new method 
for group decision making with incomplete fuzzy prefer-
ence relations based on the constructed modified consistency 
matrices of experts which satisfy the additive consistency 
and the order consistency with consistency degrees. Chen 
and Chen (2011) proposed fuzzy risk analysis based on the 
proposed fuzzy ranking method, where the evaluating val-
ues are represented by generalized fuzzy numbers. Zulueta 
and Garcia (2018) proposed dynamic multi-attribute deci-
sion making (DMADM) problems with correlated periods, 
in which the attribute assessment values take the form of 
2-tuple linguistic values. Mandal and Ranadive (2018) pro-
posed multi-granulation interval-valued fuzzy preference 
relation probabilistic rough sets (MG-IVFPR-PRSs).

However, the fuzzy set theory is still confronted with 
some limitations when decision makers intend to deal with 
some uncertain information induced from several sources of 
vagueness. To address this situation, a series of generaliza-
tions of fuzzy set theory were proposed over the past years 
(Atanassov 1986; Torra 2010; Zhu et al. 2012; Yager 2013). 
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Among the various extension forms of fuzzy set theory, 
intuitionistic fuzzy set (IFS), due to Atanassov is generally 
assumed as an intuitively straightforward extension of fuzzy 
set theory (Atanassov 1986). Since the establishment of 
IFS, it has been successfully applied in many areas of deci-
sion making problems. Chen and Chang (2015) proposed 
similarity measure between IFSs based on transformation 
techniques and apply the proposed similarity measure 
between AIFSs to deal with pattern recognition prob-
lems. Xu (2007) developed intuitionistic fuzzy weighted 
averaging (IFWA) operator, intuitionistic fuzzy ordered 
weighted averaging (IFOWA) operator and intuitionistic 
fuzzy hybrid weighted averaging (IFHWA) operators for 
MADM problems. Xu and Yager (2006) developed some 
geometric operator’s namely intuitionistic fuzzy weighted 
geometric (IFWG) operator, the intuitionistic fuzzy ordered 
weighted geometric (IFOWG) operator and the intuitionistic 
fuzzy hybrid weighted geometric (IFHWG) operator. Tang 
and Meng (2018) proposed linguistic intuitionistic fuzzy 
Hamacher aggregation (LIFGA) operators to deal with 
MADM problems. Jamkhaneh and Garg (2017) developed 
some new operation for generalized IFS to deal with the 
MADM problems.

Since the IFS fulfill the condition that the sum of its 
memberships degrees is less than or equal to 1. However, 
the decision makers deals with the situation of particular 
attributes that the sum of its memberships degrees is greater 
than 1. To overcome this situation Yager (2013) introduced 
the notion of Pythagorean fuzzy set (PFS), which has been 
proved useful to deal with uncertain information in deci-
sion making procedures. PFS satisfy the condition that the 
square sum of membership degree and a nonmembership 
degree is less than or equal to 1. Since the introduction of 
the PFS, many scholars have explored the PFS from dif-
ferent facts and obtained plenty of meaningful results. For 
instance Yager (2014) developed various aggregation opera-
tors, namely, Pythagorean fuzzy weighted average (PFWA) 
operator, Pythagorean fuzzy weighted geometric (PFWG) 
operator, Pythagorean fuzzy power weighted average 
(PFPWA) operator, and Pythagorean fuzzy power weighted 
geometric (PFPWG) operator to aggregate the Pythagorean 
fuzzy numbers. The aggregation operators discussed above 
or of the same priority level. However, in real group deci-
sion making problems the attribute and decision makers 
may have different priority level. Due to this short coming 
Khan et al. (2018a) developed Pythagorean fuzzy prior-
itized operator for MADM problem. Rahman et al. (2017a) 
developed a MADM approach based on Pythagorean fuzzy 
weighted geometric aggregation operator (PFWG) for plant 
location selection. Rahman et al. (2017b) developed inter-
val-valued Pythagorean fuzzy geometric (IVPFG) operator 

for MADM problems. Rahman et  al. (2018) developed 
interval-valued Pythagorean fuzzy ordered weighted aver-
aging (IVPFOWA) operator for MADM problems. Based 
on Choquet integral in Khan at al. 2018a the authors devel-
oped interval-valued Pythagorean fuzzy (IVPF) TOPSIS 
method to deal with MADM problem. Extended the concept 
of traditional gray relational analysis (GRA) method Khan 
and Abdullah developed interval-valued Pythagorean fuzzy 
GRA method for MADM problems (Khan and Abdullah 
2018).

Hesitant fuzzy sets (HFSs) which are another exten-
sion of fuzzy sets are extremely useful in handling situa-
tions where decision makers are hesitate in providing their 
preferences with regard to objects in a decision making 
process and have provided a theory for solving MCDM 
problems in certain situations. HFS was first introduced by 
Torra and Narukawa (2009) and Torra (2010), and permits 
the membership degree of an element to be a set of sev-
eral possible values between 0 and 1. Xia and Xu (2011) 
developed a series of aggregation operators under hesitant 
fuzzy environment namely hesitant fuzzy weighted averag-
ing (HFWA) operator, hesitant fuzzy weighted geometric 
(HFWG) operator, hesitant fuzzy ordered weighted averag-
ing (HFOWA) operator, hesitant fuzzy ordered weighted 
averaging (HFOWG) operator, generalized hesitant fuzzy 
weighted averaging (GHFWA) operator, generalized 
hesitant fuzzy weighted geometric (GHFWG) operator, 
generalized hesitant fuzzy ordered weighted averaging 
(GHFOWA) operator, generalized hesitant fuzzy ordered 
weighted geometric (GHFOWG) operator. Indeed accord-
ing to the decision makers (DMs) preferences it is possi-
ble to extend the shorter HFN by adding any of its values 
until it is equal in length to the longer 1. Therefore, due 
to the varied preferences of DMs this may lead to a differ-
ent optimal alternative. In Liao and Xu (2015) introduced 
the concept of hesitant fuzzy hybrid weighted averaging 
(HFHWA) operator, hesitant fuzzy hybrid weighted geo-
metric aggregation operator (HFHWG). Lee and Chen 
(2015a) developed a fuzzy group decision making method 
based on the likelihood-based comparison relations of 
hesitant fuzzy linguistic term sets. Chen and Hong (2014) 
presented a new method for multi-criteria linguistic deci-
sion making based on hesitant fuzzy linguistic term sets 
using the pessimistic attitude and the optimistic attitude 
of the decision-maker. Lee and Chen (2015b) proposed 
a new fuzzy decision making method and propose a new 
fuzzy group decision making method based on the pro-
posed likelihood-based comparison relations of hesitant 
fuzzy linguistic term sets and also developed hesitant 
fuzzy linguistic weighted average (HFLWA) operator, the 
proposed hesitant fuzzy linguistic weighted geometric 
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(HFLWG) operator, the proposed hesitant fuzzy linguistic 
ordered weighted average (HFLOWA) operator, and the 
proposed hesitant fuzzy linguistic ordered weighted geo-
metric (HFLOWG) operator of hesitant fuzzy linguistic 
term sets.

Zhu et al. (2012) developed the concept of dual hesitant 
fuzzy set (HFS) and also discussed their basic operations 
and properties. In Peng et al. (2014) the authors applied the 
concept of Intuitionistic hesitant fuzzy set (IHFS) to group 
decision making problems using fuzzy cross-entropy. How-
ever, there may be a situation where the decision maker may 
provide the degree of membership and nonmembership of 
a particular attribute in such a way that their sum is greater 
than 1. To overcome this shortcoming Khan et al. (2017), 
introduced the concept of Pythagorean hesitant fuzzy set, 
generalized the concept of intuitionistic hesitant fuzzy set 
under the restriction that the square sum of its membership 
degrees is less than or equal to 1. The authors discussed 
some basic operational laws and developed Pythagorean 
hesitant fuzzy weighted averaging (PHFWA) operator and 
Pythagorean hesitant fuzzy weighted geometric (PHFWG) 
operator under Pythagorean hesitant fuzzy environments. 
Khan et al. (2018a) developed Pythagorean hesitant fuzzy 
ordered weighted averaging (PHFOWA) operator and 
Pythagorean hesitant fuzzy ordered weighted geometric 
(PHFOWG) operator for MADM problems.

Since the aggregating operators by Khan et al. (2017, 
2018a) developed under Pythagorean hesitant fuzzy envi-
ronment cannot weight both the argument and their ordered 
positions. Therefore, motivating by the idea presented in Xu 
and Da (2003) in this paper we develop Pythagorean hesi-
tant fuzzy hybrid weighted averaging (PHFHWA) operator 
and Pythagorean hesitant fuzzy hybrid weighted geometric 
(PHFHWG) operator to deal with MADM problems. The 
main focus of this paper is the aggregation techniques given 
to aggregate the values for each alternative under the attrib-
utes. To do this, we organize the remainder of the paper as:

In Sect. 2, we discuss some basic definitions and proper-
ties. In Sect. 3 we develop some aggregation operators for 
Pythagorean hesitant fuzzy information namely, Pythago-
rean hesitant fuzzy hybrid weighted averaging (PHFHWA) 
operator, Pythagorean hesitant fuzzy hybrid weighted 
geometric (PHFHWG) operator. Based on the developed 
operators in Sect.  4 we give an application to MADM 
with Pythagorean hesitant fuzzy information. Concluding 
remarks are made in Sect. 5.

2 � Basic concepts

Zhu et  al. (2012) initiated the concept of dual hesitant 
fuzzy set (DHFS) in which each element in the DHFS is 
expressed by ĥ =

⟨
Λĥ,Γĥ

⟩
 . DHFS has its greatest use in 

practical multiple attribute decision making (MADM) prob-
lems and the academic research has achieved great develop-
ment. However, in the some practical problems the sum of 
membership degree and nonmembership degree to which 
an alternative satisfying an attribute provided by decision 
maker (DM) may be bigger than 1, but their square sum is 
less than or equal 1. Therefore, Khan et al. (2017) developed 
Pythagorean hesitant fuzzy set (PHFS) characterized by a 
membership degree and nonmembership degree, satisfies 
the condition that the square sum of its membership degree 
and nonmembership degree is less than or equal to 1. It is 
defined as follows:

Definition 1  (Khan et al. 2017) Let X be a fixed set. A 
Pythagorean hesitant fuzzy set abbreviated as PHFS PH in 
X is an object with the following notion:

 where ΛPH
(x) and ΓPH

(x) are mappings from X to [0, 1] , 
denoting a possible degree of membership and nonmember-
ship degree of element x ∈ X in PH , respectively, and for 
each element x ∈ X , ∀ hPH

(x) ∈ ΛPH
(x), ∃h�

PH
(x) ∈ ΓPH

(x) 

such that 0 ≼ h2
PH
(x) + h

�2
PH
(x) ≼ 1 , and ∀ h�

PH
(x) ∈ ΓPH

(x) , 

∃hPH
(x) ∈ ΛPH

(x) such that 0 ≼ h2
PH
(x) + h

�2
PH
(x) ≼ 1. For any 

PHFS PH =
{⟨

x,ΛPH
(x),ΓPH

(x)|x ∈ X
⟩}

 and for all x ∈ X, 

ΠPH
(x) = ∪hPH

∈ΛPH
(x),h

�

PH
(x)∈ΓPH

(x)

√
1 − h2

PH
− h

�2
PH

 is said to 

be the degree of indeterminacy of x to PH  , where 
1 − h2

PH
− h

�2
PH

≽ 0.

Moreover, PHFS(X  ) denotes the set of all elements 
of PHFSs. If X has only one element 

⟨
x,ΛPH

(x),ΓPH
(x)

⟩
 

is said to be Pythagorean hesitant fuzzy number and is 
denoted by ĥ =

⟨
Λĥ,Γĥ

⟩
 for convenience. We denote the 

set of all PHFNs by PHFNS. For all x ∈ X if ΛPH
(x) and 

ΓPH
(x) have only element. Then the PHFSs become PFSs. 

If the nonmembership degree is {0}, then PHFSs become 
a HFSs.

Definition 2  (Khan et  al. 2017) For any three PFN 
ĥ =

⟨
Λĥ,Γĥ

⟩
, ĥ1 =

⟨
Λĥ1

,Γĥ1

⟩
, ĥ2 =

⟨
Λĥ2

,Γĥ2

⟩
, and 𝜆 ≻ 0. 

The following operational laws are valid.

(1)	 ĥ1 ∪ ĥ2 =
⟨
max

{
Λĥ1

,Λĥ2

}
, min

{
Γĥ1

,Γĥ2

}⟩
,

(2)	 ĥ1 ∩ ĥ2 =
⟨
min

{
Λĥ1

,Λĥ2

}
, max

{
Γĥ1

,Γĥ2

}⟩
,

(3)	 ĥc =
⟨
Γĥ,Λĥ

⟩
,

(1)PH =
{⟨

x,ΛPH
(x),ΓPH

(x)|x ∈ X
⟩}

,
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(4)	 ĥ1 ⊕ ĥ2 =

⟨
∪
h
ĥ1
∈Λ

ĥ1
,h

ĥ2
∈Λ

ĥ2

{√
h
2

ĥ1

+ h
2

ĥ2

− h
2

ĥ1

h
2

ĥ2

}
,

∪
h
�

ĥ1

∈Γ
ĥ1
,h�

ĥ2

∈Γ
ĥ2

{
h
�

ĥ1

h
�

ĥ2

}⟩
,

(5)	 ĥ1 ⊗ ĥ2 =

⟨
∪
h
ĥ1
∈Λ

ĥ1
,h

ĥ2
∈Λ

ĥ2

{
h
ĥ1
h
ĥ2

}
,∪

h
�

ĥ1

∈Γ
ĥ1
,h�

ĥ2

∈Γ
ĥ2{√

h
�2

ĥ1

+ h
�2

ĥ2

− h
�2

ĥ1

h
�2

ĥ2

}⟩
,

(6)	 𝜆ĥ =

⟨
∪
h
ĥ
∈Λ

ĥ

{√
1 −

(
1 − (h

ĥ
)2
)𝜆}

,∪
h
�

ĥ
∈Γ

ĥ

{
(h�

ĥ
)
𝜆
}⟩

,

𝜆 ≻ 0,

(7)	 ĥ
𝜆 =

⟨
∪
h
ĥ
∈Λ

ĥ

{h𝜆
ĥ
}, ∪

h
�

ĥ
∈Γ

ĥ

{√
1 −

(
1 − (h�

ĥ
)
2
)𝜆

}⟩
,

𝜆 ≻ 0.

To compare PHFNs Khan et al. (2017) introduced the 
concept of score function and accuracy function as follows:

Definition 3  (Khan et  al. 2017) Let ĥ = (Λĥ,Γĥ) be a 
PHFN. Then we define the score function S(ĥ) and the accu-
racy function A(ĥ) is defined as follows:

 where S(ĥ) ∈ [− 1, 1] , lhĥ denotes the number of elements in 
Λĥ and lh′

ĥ

 denotes the number of elements in Γĥ . Here we can 

see that S(ĥ) is just the mean value in statistics, and A(ĥ) is 
just the standard variance, which reflects the accuracy func-
tion between all values in the PHFN ĥ and their mean value. 
Inspired by this idea, based on the score S(ĥ) and the accu-
racy function A(ĥ) , we can compare and rank, two PHFNs 
as follows:

Definition 4  (Khan et  al. 2017) Let ĥ1 and ĥ2 be two 
PHFNs, S(ĥ1) be the score of ĥ1 , S(ĥ2) be the score of ĥ2, 
and A(ĥ1) be the deviation degree of ĥ1 , A(ĥ2) be the accu-
racy function of ĥ2 . Then

1.	 If S(ĥ1) ≺ S(ĥ2), then ĥ1 ≺ ĥ2.

2.	 If S(ĥ1) ≻ S(ĥ2), then ĥ1 ≻ ĥ2.

3.	 If S(ĥ1) = S(ĥ2), then ĥ1 ∼ ĥ2.	
i.	   If A(ĥ1) ≺ A(ĥ2), then ĥ1 ≺ ĥ2.

(2)S(ĥ) =

�
1

lhĥ∈Λĥ

�
hĥ∈Λĥ

hĥ

�2

−

⎛⎜⎜⎝
1

lh�
ĥ
∈Γĥ

�
h�
ĥ
∈Γĥ

h�
ĥ

⎞⎟⎟⎠

2

(3)

A(ĥ) =

�
1

lhĥ∈Λĥ

�
hĥ∈Λĥ

hĥ − s(ĥ)

�2

+

⎛⎜⎜⎝
1

lh�
ĥ
∈Γĥ

�
h�
ĥ
∈Γĥ

h�
ĥ
− s(ĥ)

⎞⎟⎟⎠

2

,

	 ii.	 If A(ĥ1) ≻ A(ĥ2), then ĥ1 ≻ ĥ2.

iii.	 If A(ĥ1) = A(ĥ2), then ĥ1 ∼ ĥ2.

Based on the operational laws we defined the following 
aggregation operators under Pythagorean hesitant fuzzy 
environments.

Definition 5  (Khan et al. 2017) Let ĥ
i
= (Λ

ĥ
i

,Γ
ĥ
i

)(i = 1,

2, 3,… , n) be a collection of all PHFN′s , and w = (w1,w2,

… ,w
n
)T be the weight vector of ĥi (i = 1, 2, 3,… , n) with 

wi ≥ 0 (i = 1, 2, 3,… , n), where wi ∈ [0, 1] and 
∑n

i=1
wi = 1 . 

Then Pythagorean hesitant fuzzy weighted averaging 
(PHFWA) operator is a mapping

PHFWA ∶ PHFNn
→ PHFN can be defined as:

 and the PHFWA operator is said to be a Pythagorean hesi-
tant fuzzy weighted averaging operator.

Definition 6  (Khan et  al. 2017) Let ĥ
i
=

(
Λ

ĥ
i

,Γ
ĥ
i

)

(i = 1, 2, 3,… , n) be a collection of all PHFNs, and 
w = (w1,w2,… ,wn)  b e  t h e  we i g h t  ve c t o r  o f 
ĥi(i = 1, 2, 3,… , n) with wi ≽ 0(i = 1, 2,… , n) such that wi ∈ 
[0, 1] and 

∑n

i=1
wi = 1 . Then, Pythagorean hesitant fuzzy 

ordered weighted geometric ( PHFWG ) operator is a 
mapping

PHFWG ∶ PHFNn
→ PHFN can be defined as:

 and the PHFWG operator is said to be a Pythagorean hesi-
tant fuzzy weighted geometric operator.

Definition 7  (Khan et  al. 2018b) Let ĥ
i
=

(
Λ

ĥ
i

,Γ
ĥ
i

)

(i = 1, 2, 3,… , n) be a collection of all PHFN′s , and 

(4)

PHFWA(ĥ1, ĥ2,… , ĥ
n
) =

n

⊕
i=1

(w
i
ĥ
i
)

=

�∪
h
ĥ1
∈Λ

ĥ1
,h

ĥ2
∈Λ

ĥ2
,…,h

ĥn
∈Λ

ĥn

⎧⎪⎨⎪⎩

����
1 −

n�
i=1

(1 − h
2

ĥ
i

)
w
i

⎫⎪⎬⎪⎭
,

∪
h
�

ĥ1

∈Γ
ĥ1
,h�

ĥ1

∈Γ
ĥ2
,…h

�

ĥn

∈Γ
ĥn

�
n�
i=1

�
h
�

ĥ
i

�w
i

�

�

(5)

PHFWG(ĥ1, ĥ2,… , ĥ
n
) =

n

⊗
i=1

(ĥ
w
i

i
)

=

�∪
h
ĥ1
∈Λ

ĥ1
,h

ĥ2
∈Λ

ĥ2
,…,h

ĥn
∈Λ

ĥn

�
n�
i=1

�
h
ĥ
i

�w
i

�
,

∪
h
�

ĥ1

∈Γ
ĥ1
,h�

ĥ2

∈Γ
ĥ2
,…,h�

ĥn

∈Γ
ĥn

⎧⎪⎨⎪⎩

����
1 −

n�
i=1

�
1 − h

�2

ĥ
i

�w
i

⎫⎪⎬⎪⎭

�
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w = (w1,w2,… ,wn)
T  be the weight vector of ĥ

i
(i = 1, 2,

3,… , n) with wi ≽ 0 (i = 1, 2,… n), where wi ∈ [0, 1] and ∑n

i=1
wi = 1 . Then Pythagorean hesitant fuzzy ordered 

weighted averaging (PHFOWA) operator is a mapping
PHFOWA ∶ PHFNn

→ PHFN can be defined as:

(6)PHFOWA(ĥ1, ĥ2,… , ĥn) =
n

⊕
i=1

�
wiĥ𝜎(i)

�
=

�∪hĥ𝜎(1)
∈Λĥ𝜎(1)

,hĥ𝜎(2)
∈Λĥ𝜎(2)

,…,hĥ𝜎(n)
∈Λĥ𝜎(n)

⎧
⎪⎨⎪⎩

����1 −

n�
i=1

�
1 − h2

ĥ𝜎(i)

�wi

⎫
⎪⎬⎪⎭
,

∪h�
ĥ𝜎(1)

∈Γĥ𝜎(1)
,h�

ĥ𝜎(2)
∈Γĥ𝜎(2)

,…,h�
ĥ𝜎(n)

∈Γĥ𝜎(n)

�
n�
i=1

�
h�
ĥ𝜎(i)

�wi

�

�

weight vector of ĥi(i = 1, 2, 3,… , n) with w
i
≽ 0(i = 1,

2,… , n) where wi ∈ [0, 1] and 
∑n

i=1
wi = 1 , n is the balancing 

coefficient which plays a role of balance. Then Pythagorean 
hesitant fuzzy hybrid weighted averaging PHFHWA operator 
is a mapping PHFHWA∶PHFNn

→ PHFN with an aggrega-
tion-associated vector � = (�1,�2,… ,�n)

T  such that 

�i ∈ [0, 1] , 
∑n

i=1
�i = 1 and can be defined as follows:

and the mapping PHFHWA is said to be a Pythagorean 
hesitant fuzzy hybrid weighted averaging operator where 
̇̂
h𝜎(i) is the ith largest of ̇̂h𝜎(i) = nwkĥk(k = 1, 2,… , n).

Using the different manifestation of weighting vector, the 
PHFHWA operator can be reduced into some special cases. 
For instance, if the associated-weighting vector 
� =

(
1

n
,
1

n
,… ,

1

n

)T

 , then the PHFHWA operator reduces to 

the PHFWA operator; if w =

(
1

n
,
1

n
,… ,

1

n

)T

 , then the 

PHFHWA operator reduces to the PHFOWA operator. It must 
be pointed out that the weighing operation of the ordered 
position can be synchronized with the weighing operation 
of the given importance by the PHFHWA operator. This 
characteristic is different from the PHFHWA operator.

(8)
PHFHWA(ĥ1, ĥ2,… , ĥ

n
) =

n

⊕
i=1

(
𝜔
i

̇̂
h𝜎(i)

)

=

(
𝜔1

̇̂
h𝜎(1) ⊕𝜔1

̇̂
h𝜎(2) ⊕⋯⊕𝜔

n

̇̂
h𝜎(n)

)

Definition 8  (Khan et  al. 2018b) Let ĥi =
(
Λĥi

,Γĥi

)
 

(i = 1, 2, 3,… , n) be a collection of all PHFNs ĥ𝜎(i) be the 
largest in them, w = (w1,w2,… ,wn) be the weight vector of 
ĥi (i = 1, 2, 3,… , n) with wi ≽ 0 (i = 1, 2, 3,… , n) such that 
wi ∈ [0, 1] and 

∑n

i=1
wi = 1 . Then Pythagorean hesitant fuzzy 

ordered weighted geometric ( PHFOWG ) operator is a 
mapping

PHFOWG ∶ PHFNn
→ PHFN can be defined as:

3 � Pythagorean hesitant fuzzy hybrid 
aggregation operators

From Definitions 5 to 8, we know that the PHFWA operator 
and PHFWG operator weighs only the Pythagorean hesitant 
fuzzy numbers, respectively, while the PHFOWA operator 
and PHFOWG operator weighs only the ordered positions 
of the Pythagorean hesitant fuzzy numbers, respectively, 
instead of weighing the Pythagorean hesitant fuzzy num-
bers themselves. In the following, we develop a PHFHWA 
operator, PHFHWG operator which weighs both the given 
Pythagorean hesitant fuzzy number and its ordered position.

Definition 9  Let ĥi =
(
Λĥi

,Γĥi

)
(i = 1, 2, 3,… , n) be a col-

lection of all PHFN′s , and w = (w1,w2,… ,wn)
T  be the 

(7)PHFOWG(ĥ1, ĥ2,… , ĥn) =
n

⊗
i=1

�
ĥ
wi

𝜎(i)

�
=

�∪hĥ𝜎(1)
∈Λĥ𝜎(1)

,hĥ𝜎(2)
∈Λĥ𝜎(2)

,…,hĥ𝜎(n)
∈Λĥ𝜎(n)

�
n�
i=1

�
hĥ𝜎(i)

�wi

�
,

∪h�
ĥ𝜎(1)

∈Γĥ𝜎(1)
,h�

ĥ𝜎(2)
∈Γĥ𝜎(2)

,…,h�
ĥ𝜎(n)

∈Γĥ𝜎(n)

⎧
⎪⎨⎪⎩

����1 −

n�
i=1

�
1 − h�2

ĥ𝜎(i)

�wi

⎫
⎪⎬⎪⎭

�
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Theorem 1  Let ĥi =
(
Λĥi

,Γĥi

)
(i = 1, 2, 3,… , n) be a col-

lection of all PHFNs, and w = (w1,w2,… ,wn)
T  be the 

weight vector of ĥi(i = 1, 2, 3,… , n) with w
i
≽ 0(i = 1,

2,… , n) where wi ∈ [0, 1] and 
∑n

i=1
wi = 1 . Then the aggre-

gation result using PHFHWA operator with an aggregation-
associated vector � = (�1,�2,… ,�n)

T such that �i ∈ [0, 1] , ∑n

i=1
�i = 1 is also a PHFN and

where ̇̂h𝜎(i) is the ith largest of ̇̂h𝜎(i) = nwkĥk(k = 1, 2,… , n).

(9)

PHFHWA(ĥ1, ĥ2,… , ĥ
n
) =

�
n

⊕
i=1

�
𝜔

i

̇̂
h𝜎(i)

��

=

�∪
ḣ ̇̂
h𝜎(i)

∈Λ ̇̂
h𝜎(i)

,ḣ ̇̂
h𝜎(i)

∈Λ ̇̂
h𝜎(i)

,…,ḣ ̇̂
h𝜎(i)

∈Λ ̇̂
h𝜎(i)

����
1 −

n�
i=1

�
1 − ḣ

2

ĥi

�𝜔i

,

∪
ḣ
�
̇̂
h𝜎(i)

∈Γ ̇̂
h𝜎(i)

,ḣ�
̇̂
h𝜎(i)

∈Γ ̇̂
h𝜎(i)

,…,ḣ�
̇̂
h𝜎(i)

∈Γ ̇̂
h𝜎(i)

�
n∏
i=1

�
ḣ
�
̇̂
h𝜎(i)

�𝜔i
�

�

Proof  By mathematical induction we prove that Eq. (9) hold 
for all n . For this first we show that Eq. (9) holds for n = 2 . 
Since,

 and

So,

𝜔1

̇̂
h𝜎(1) =

�
∪
ḣ ̇̂
h𝜎(1)

∈Λ ̇̂
h𝜎(1)

⎧
⎪⎨⎪⎩

�
1 −

�
1 −

�
ḣ ̇̂
h𝜎(1)

�2
�𝜔1

⎫
⎪⎬⎪⎭
,

∪
ḣ
�
̇̂
h𝜎(1)

∈Γ ̇̂
h𝜎(1)

��
ḣ
�
̇̂
h𝜎(1)

�𝜔1
��

𝜔2

̇̂
h𝜎(2) =

�
∪
ḣ ̇̂
h𝜎(2)

∈Λ ̇̂
h𝜎(2)

⎧
⎪⎨⎪⎩

�
1 −

�
1 −

�
ḣ ̇̂
h𝜎(2)

�2
�𝜔2

⎫
⎪⎬⎪⎭
,

∪
ḣ
�
̇̂
h𝜎(2)

∈Γ ̇̂
h𝜎(2)

��
ḣ
�
̇̂
h𝜎(2)

�𝜔2
��

PHFHWA(ĥ1, ĥ2) = 𝜔1

̇̂
h𝜎(1) ⊕𝜔2

̇̂
h𝜎(2)

=

�
∪
ḣ ̇̂
h𝜎(1)

∈Λ ̇̂
h𝜎(1)

⎧⎪⎨⎪⎩

�
1 −

�
1 −

�
ḣ ̇̂
h𝜎(1)

�2
�𝜔1

⎫⎪⎬⎪⎭
,∪

ḣ
�
̇̂
h𝜎(1)

∈Γ ̇̂
h𝜎(1)

��
ḣ
�
̇̂
h𝜎(1)

�𝜔1
��

⊕

�
∪
ḣ ̇̂
h𝜎(2)

∈Λ ̇̂
h𝜎(2)

⎧⎪⎨⎪⎩

�
1 −

�
1 −

�
ḣ ̇̂
h𝜎(2)

�2
�𝜔2

⎫⎪⎬⎪⎭
,∪

ḣ
�
̇̂
h𝜎(2)

∈Γ ̇̂
h𝜎(2)

��
ḣ
�
̇̂
h𝜎(2)

�𝜔2
��

=

�
∪
ḣ ̇̂
h𝜎(1)

∈Λ ̇̂
h𝜎(1)

,ḣ ̇̂
h𝜎(2)

∈Λ ̇̂
h𝜎(2)

�
1 −

�
1 − ḣ

2
̇̂
h𝜎(1)

�𝜔1

+ 1 −

�
1 − ḣ

2
̇̂
h𝜎(2)

�𝜔2

−

��
1 − ḣ

2
̇̂
h𝜎(1)

�w1
�
1 − ḣ

2
̇̂
h𝜎(2)

�𝜔2
�
,

∪
ḣ
�
̇̂
h𝜎(1)

∈Γ ̇̂
h𝜎(1)

,ḣ�
̇̂
h𝜎(2)

∈Γ ̇̂
h𝜎(2)

��
ḣ
�
̇̂
h𝜎(1)

�w1
�
ḣ
�
̇̂
h𝜎(2)

�𝜔2
�

�

=

�
∪
ḣ ̇̂
h𝜎(1)

∈Λ ̇̂
h𝜎(1)

,ḣ ̇̂
h𝜎(2)

∈Λ ̇̂
h𝜎(2)

⎧⎪⎨⎪⎩

����
1 −

2�
i=1

�
1 − ḣ

2
̇̂
h𝜎(1)

�𝜔
i

⎫⎪⎬⎪⎭
,∪

ḣ
�
̇̂
h𝜎(1)

∈Γ ̇̂
h𝜎(1)

,ḣ�
̇̂
h𝜎(2)

∈Γ ̇̂
h𝜎(2)

�
2�
i=1

�
ḣ
�
̇̂
h𝜎(i)

�w
i

��
.

Thus, the equation is hold for n = 2 . Suppose the equation 
is hold for n = k , i.e.,

PHFHWA(ĥ1, ĥ2,… , ĥk) =

�∪ḣ ̇̂
h𝜎(1)

∈Λ ̇̂
h𝜎(1)

,ḣ ̇̂
h𝜎(2)

∈Λ ̇̂
h𝜎(2)

,…,ḣ ̇̂
h𝜎(k)

∈Λ ̇̂
h𝜎(k)

⎧
⎪⎨⎪⎩

����
1 −

k�
i=1

�
1 − ḣ2

̇̂
h𝜎(i)

�𝜔i

⎫
⎪⎬⎪⎭
,

∪
ḣ�
̇̂
h𝜎(1)

∈Γ ̇̂
h𝜎(1)

,ḣ�
̇̂
h𝜎(2)

∈Γ ̇̂
h𝜎(2)

,…,ḣ�
̇̂
h𝜎(k)

∈Γ ̇̂
h𝜎(k)

�
k∏

i=1

�
ḣ�
̇̂
h𝜎(i)

�𝜔i
�

�
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We show that the equation is hold for n = k + 1. i.e,

 which is the required result.

Example 1  Let ĥ1 = ⟨{0.4, 0.7, 0.9}, {0.4, 0.8}⟩, ĥ2 = ⟨{0.5,
0.6}, {0.6, 0.7, 0.8}⟩ and ĥ3 = ⟨{0.6, 0.7, 0.9}, {0.4, 0.7}⟩ 
be two Pythagorean HFS with w = (0.3, 0.25, 0.45)T is the 
weighted vector of ĥi(i = 1, 2) and the aggregation-associ-
ated vector is � = (0.25, 0.4, 0.35)T . Then using Pythagorean 
hesitant fuzzy hybrid weighted averaging operator we can 
obtain,

Definition 10  Let ĥi =
(
Λĥi

,Γĥi

)
(i = 1, 2, 3,… , n) be a 

collection of all PHFN′s , and w = (w1,w2,… ,wn)
T be the 

weight vector of ĥi(i = 1, 2, 3,… , n) with w
i
≽ 0(i = 1,

2, 3,… , n) where wi ∈ [0, 1] and 
∑n

i=1
wi = 1 , n is the balanc-

ing coefficient which plays a role of balance. Then Pythago-
rean hesitant fuzzy hybrid weighted geometric (PHFHWG) 

PHFHWA(ĥ1, ĥ2,… , ĥ
k+1) =

�∪
ḣ ̇̂
h𝜎(1)

∈Λ ̇̂
h𝜎(1)

,ḣ ̇̂
h𝜎(2)

∈Λ ̇̂
h𝜎(2)

,…,ḣ ̇̂
h𝜎(k)

∈Λ ̇̂
h𝜎(k)

⎧
⎪⎨⎪⎩

����
1 −

k�
i=1

�
1 − ḣ

2
̇̂
h𝜎(i)

�𝜔
i

⎫
⎪⎬⎪⎭
,

∪
ḣ
�
̇̂
h𝜎(1)

∈Γ ̇̂
h𝜎(1)

,ḣ�
̇̂
h𝜎(2)

∈Γ ̇̂
h𝜎(2)

,…,ḣ�
̇̂
h𝜎(k)

∈Γ ̇̂
h𝜎(k)

�
k�

i=1

�
ḣ
�
̇̂
h𝜎(i)

�𝜔
i

�

�

⊕

�
∪
ḣ ̇̂
h𝜎(k+1)

∈Λ ̇̂
h𝜎(k+1)

⎧
⎪⎨⎪⎩

�
1 −

�
1 − ḣ

2
̇̂
h𝜎(k+1)

�𝜔
k+1

⎫
⎪⎬⎪⎭
,∪

ḣ
�
̇̂
h𝜎(k+1)

∈Γ ̇̂
h𝜎(k+1)

��
ḣ
�
̇̂
h𝜎(k+1)

�𝜔
k+1
��

=

�

∪
ḣ ̇̂
h𝜎(1)

∈Λ ̇̂
h𝜎(1)

,ḣ ̇̂
h𝜎(2)

∈Λ ̇̂
h𝜎(2)

,…,ḣ ̇̂
h𝜎(k)

∈Λ ̇̂
h𝜎(k)

,ḣ ̇̂
h𝜎(k+1)

∈Λ ̇̂
h𝜎(k+1)������1 −

k�
i=1

�
1 − ḣ

2
̇̂
h𝜎(i)

�𝜔
i

+ 1 −

�
1 − ḣ

2
̇̂
h𝜎(k+1)

�𝜔
k+1

−

⎛
⎜⎜⎝

����
1 −

k�
i=1

�
1 − ḣ

2
̇̂
h𝜎(i)

�𝜔
i
�
1 −

�
1 − ḣ

2
̇̂
h𝜎(k+1)

�𝜔
k+1
�⎞
⎟⎟⎠
,

∪
ḣ
�
̇̂
h𝜎(1)

∈Γ ̇̂
h𝜎(1)

,ḣ�
̇̂
h𝜎(2)

∈Γ ̇̂
h𝜎(2)

,…,ḣ�
̇̂
h𝜎(k)

∈Γ ̇̂
h𝜎(k)

,ḣ�
̇̂
h𝜎(k+1)

∈Γ ̇̂
h𝜎(k+1)

�
k∏
i=1

�
ḣ
�
̇̂
h𝜎(i)

�𝜔i
���

ḣ
�
̇̂
h𝜎(k+1)

�𝜔k+1
�

�

=

�∪
ḣ ̇̂
h𝜎(1)

∈Λ ̇̂
h𝜎(1)

,ḣ ̇̂
h𝜎(2)

∈Λ ̇̂
h𝜎(2)

,…,ḣ ̇̂
h𝜎(k)

∈Λ ̇̂
h𝜎(k)

,ḣ ̇̂
h𝜎(k+1)

∈Λ ̇̂
h𝜎(k+1)

⎧⎪⎨⎪⎩

����
1 −

k+1�
i=1

�
1 − ḣ

2
̇̂
h𝜎(i)

�𝜔
i

⎫⎪⎬⎪⎭
,

∪
ḣ
�
̇̂
h𝜎(1)

∈Γ ⋅

ĥ𝜎(1)

,ḣ�
̇̂
h𝜎(2)

∈Γ ̇̂
h𝜎(2)

,…,ḣ�
̇̂
h𝜎(k)

∈Γ ̇̂
h𝜎(k)

,ḣ�
̇̂
h𝜎(k+1)

∈Γ ̇̂
h𝜎(k+1)

�
k+1�
i=1

�
h
�

ĥ𝜎(i)

�𝜔
i

�

�

PHFHWA(ĥ1, ĥ2, ĥ2) =
3

⊕
i=1

�
𝜔

i

̇̂
h𝜎(i)

�
=

�∪
ḣ ̇̂
h𝜎(2)

∈Λ ̇̂
h𝜎(2)

,ḣ ̇̂
h𝜎(2)

∈Λ ̇̂
h𝜎(2)

⎧
⎪⎨⎪⎩

����
1 −

3�
i=1

�
1 − ḣ

2

̇̂
h𝜎(i)

�𝜔i

⎫
⎪⎬⎪⎭
,

∪
ḣ
�
̇̂
h𝜎(2)

∈Γ ̇̂
h𝜎(2)

,ḣ�
̇̂
h𝜎(2)

∈Γ ̇̂
h𝜎(2)

�
3�
i=1

�
ḣ
�
̇̂
h𝜎(i)

�𝜔i

�

�

=

�⎧⎪⎨⎪⎩

0.5009, 0.5305, 0.6116, 0.6322, 0.7492, 0.7611,

0.5533, 0.5784, 0.6483, 0.6663, 0.7705, 0.3812,

0.7091, 0.7233, 0.7646, 0.7756, 0.8419, 0.8490

⎫
⎪⎬⎪⎭
,

�
0.4616, 0.4806, 0.4978, 0.5924, 0.6168, 0.6389,

0.5575, 0.5805, 0.6012, 0.7155, 0.7451, 0.7716

��
.

operator is a mapping PHFHWG ∶ PHFNn
→ PHFN with 

an aggregation-associated vector � = (�1,�2,… ,�n)
T such 

that �i ∈ [0, 1] , 
∑n

i=1
�i = 1 and can be defined as follows:

(10)
PHFHWG(ĥ1, ĥ2,… , ĥn) =

n

⊗
i=1

(
̈̂
h
𝜔i

i

)
=

(
̈̂
h
𝜔1

1
⊗

̈̂
h
𝜔2

2
⊗,… ,⊗

̈̂
h𝜔n

n

)

 and the mapping PHFHWG is said to be a Pythagorean 
hesitant fuzzy hybrid weighted geometric operator, where 
̈̂
h𝜎(i) is the ith largest of ̈̂h𝜎(i) = ĥ

nwk

k
(k = 1, 2,… , n).

Using the different manifestation of weighting vector, the 
PHFHWG operator can be reduced into some special cases. 
For instance, if the associated-weighting vector 
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� =

(
1

n
,
1

n
,… ,

1

n

)T

 , then the PHFHWG operator reduces to 

the PHFWG operator; if w =

(
1

n
,
1

n
,… ,

1

n

)T

 , then the 

PHFHWG operator reduces to the PHFOWG operator. It 
must be pointed out that the weighing operation of the 
ordered position can be synchronized with the weighing 
operation of the given importance by the PHFHWG operator. 
This characteristic is different from the PHFHWG operator.

Theorem 2  Let ĥi =
(
Λĥi

,Γĥi

)
(i = 1, 2, 3,… , n) be a col-

lection of all PHFNs, and w = (w1,w2,… ,wn)
T  be the 

weight vector of ĥi(i = 1, 2, 3,… , n) with w
i
≽ 0(i = 1,

2,… , n) where wi ∈ [0, 1] and 
∑n

i=1
wi = 1 . Then the aggre-

gation result using PHFHWG operator with an aggregation-
associated vector � = (�1,�2,… ,�n)

T such that �i ∈ [0, 1] , ∑n

i=1
�i = 1 is also a PHFN , and

(11)

PHFHWG(ĥ1, ĥ2,… , ĥ
n
) =

n

⊗
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�
̈̂
h
𝜔
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i
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̈̂
h𝜎(n)

∈Γ ̈̂
h𝜎(n)

⎧
⎪⎨⎪⎩

����
1 −

n�
i=1

�
1 −

̈̂
h
�2
̈̂
h𝜎(i)

�𝜔
i

⎫
⎪⎬⎪⎭

�
.

 where ̈̂h𝜎(i) is the ith largest of ̈̂h𝜎(i) = ĥ
nwk

k
(k = 1, 2,… , n).

Proof  By mathematical induction we prove that Eq. (11) 
holds for all n . For this first we show that Eq. (11) holds for 
n = 2 . Since,

 and

So,
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Thus, the equation is holds for n = 2 . Suppose the equa-
tion is holds for n = k,

Suppose it is hold for n = k , we show that the equation is 
hold for n = k + 1. i.e., 

Hence the equation is true for n = k + 1 . Therefore, the equa-
tion is true for all n.
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Example 2  Consider the Pythagorean hesitant fuzzy num-
bers with weighted vector and aggregation-associated vec-

tor given in Example (1). Using Pythagorean hesitant fuzzy 
weighted geometric operator we obtained.

Then we have, 
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0.5458, 0.5726, 0.6676, 0.7004, 0.7309, 0.7667,
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0.4495, 0.4982, 0.5603, 0.6417, 0.6677, 0.7030,

0.5478, 0.5836, 0.6310, 0.6957, 0.7169, 0.7459
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.
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Lemma 1  Let  ĥi ≻ 0, wi ≻ 0 (i = 1, 2, 3,… n) and ∑n

i=1
wi = 1 Then, 

∏n

i=1

�
ĥi
�wi

≼
∑n

i=1
wiĥi, where the equal-

ity holds if and only if ĥ1 = ĥ2 = ĥ3 = ⋯ = ĥn.

Theorem 3  Let ĥi =
(
Λĥi

,Γĥi

)
(i = 1, 2, 3,… , n) be a col-

lection of all PHFNs ĥ𝜎(i) be the largest in them, w = (w1,

w2,… ,w
n
) be the weight vector of ĥi(i = 1, 2, 3,… , n) with 

wi ≽ 0 (i = 1, 2,… , n) such that wi ∈ [0, 1] and 
∑n

i=1
wi = 1 . 

Then

Proof  Proof of the Theorem follows from Lemma [1].

4 � Decision making based on Pythagorean 
hesitant fuzzy hybrid aggregation 
operators

In this section, we forward a framework for determining 
attribute weights and the ranking orders for all the alterna-
tives with under Pythagorean hesitant fuzzy environment.

A multi-attribute decision making problem can be stated 
as a decision matrix whose elements show the evaluation 
information of all alternatives with respect to an attribute. 
We construct a Pythagorean hesitant fuzzy decision matrix, 
whose elements are PHFNs, which are given not only the 
information that the alternative Xi satisfies the attributes Aj , 
but also the information that the alternative Xi does not sat-
isfies the attributes Aj may initiate from a doubt between a 
few different values.

Consider a MADM with anonymity where there is a dis-
crete set of m alternatives {X1,X2,… ,Xm} be a set of alterna-
tives and let {A1,A2,… ,An} be a set of attributes whose 
weighting vector is  w = (w1,w2,… ,wn)

T  ,  where 
wi ≽ 0, i = 1, 2,… ,m , and 

∑m

i=1
wi = 1 . To evaluate the per-

formance of the ith alternative Xi under the jth attribute Aj , 
let {D1,D2,… ,Dt} be a set of decision makers and 
� = (�1,�2,… ,�t) be the weighting vector of the decision 
makers with 𝜔k ≽ 0(k = 1, 2,… , t) , 

∑t

k=1
�k = 1 and is 

required to provide not only the information that the alterna-
tive Xi satisfies the attribute Aj , but also the information that 
the alternative Xi does not satisfy the attribute Aj . These two 
part information can be expressed by Λij and Γij which 
denote the degrees of membership that the alternative Xi 
satisfy the attribute Aj and nonmembership that the alterna-
tive Xi does not satisfy the attribute Aj , then the performance 
of the alternative Xi under the attribute Aj can be expressed 
by an PHFN ĥij = ⟨Λij,Γij⟩ with the condition that for all 
hij ∈ Λij∃h

�
ij
∈ Γij such that 0 ≼ (hij)

2 + (h�
ij
)2 ≼ 1 , and for all 

hij ∈ Γij∃h
�
ij
∈ Λij , such that 0 ≼ (hij)

2 + (h�
ij
)2 ≼ 1 (i = 1, 2, 

PHFHWG(ĥ1, ĥ2, ĥ3,… , ĥn) ≼ PHFHWA(ĥ1, ĥ2, ĥ3,… , ĥn)

…, m; j = 1, 2, …, n). The Pythagorean hesitant fuzzy deci-
sion matrix H, can be written as:

Main steps of the proposed multi-attribute group decision 
making (MAGDM) problem are as follows:

Step 1 In this step we construct the Pythagorean hesi-
tant fuzzy decision matrices C = [ĥij]m×n for decision where 
ĥij = ⟨Λij,Γij⟩ (i = 1, 2, …, m; j = 1, 2, …, n).

If the attribute have two types, such as cost and benefit 
attributes. Then the Pythagorean hesitant decision matrix 
can be converted into the normalized Pythagorean hesitant 
f u z z y  d e c i s i o n  m a t r i x .  DN = [�ij]m×n, W h e r e 

𝛾ij =

{
ĥij if the attribute is of benefit type

ĥc
ij

if the attribute is of cost type
.

Where ĥc
ij
= ⟨Γij,Λij⟩ (i = 1, 2, …, m; j = 1, 2, …, n). If all 

the attributes have the same type than there is no need to 
normalized the decision matrix.

Step 2 Utilize the developed aggregation operators to 
obtain the PHFN ĥi(i = 1, 2,… ,m) for the alternatives Xi . 
That is the developed operators to derive the collective 
overall preference values ĥi(i = 1, 2,… ,m) of the alterna-
tive Xi , where w = (w1,w2,…wn)

T is the weighting vec-
tor of the attributes and aggregation-associated vector 
� = (�1,�2,… ,�n)

T.
Step 3 Using Eqs. (2) we calculate the scores S(ĥ

i
)(i = 1,

2,… ,m) and the deviation degrees A
(
ĥi
)
(i = 1, 2,… ,m) of 

all the overall values ĥi(i = 1, 2,… ,m).
Step 4 Rank the alternatives Xi(i = 1, 2,… ,m) and then 

select the best one.

5 � Illustrative example

To demonstrate the application of the proposed MAGDM 
method, we give an example shown for talent recruitment 
problem.

Example 3  Suppose Hazara University Mansehra Pakistan 
was intended to recruit a dean of Science. The recruitment 
process was as follows. First, the university released an 
opening recruitment announcement on the website. Any 
people who satisfied the basic recruitment conditions could 
apply for the position using the online application system 
before the deadline. After receiving applications from 
candidates at home and abroad, the staffs of the personnel 
department made a strict selection by checking the applica-
tion documents. Finally, four candidates X1, X2, X3, X4 and 
X5 entered the interview for further selection based on the 
following three attributes:

H =

⎡⎢⎢⎣

ĥ11 ĥ12 ⋯ ĥ1n
⋮ ⋱ ⋮

ĥm1 ĥm2 ⋯ ĥmn

⎤⎥⎥⎦
.
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A1	 IAcademic background and influence.
A2	Leadership.
A3	Research and teaching experiences.

Assume that the attribute weighting vector is 
w = (0.25, 0.35, 0.4)T and the associated-weighting vector is 
� = (0.35, 0.40, 0.25)T . Assume that the decision makers D1 , 
D2 and D3 give the decision matrix shown in Table 1. To make 
a rational decision, the interrelationships between attributes 
should be considered. In the following, we use the proposed 
method presented above to solve this MAGDM problem.

Step 1 To avoid influence each other, the decision makers 
are required to evaluate the five candidates Xi(i = 1, 2, 3, 4, 5) 
under the above three attributes in anonymity and the deci-
sion matrix C = (

̇̂
hij)m×n is presented in Table  1, where 

̇̂
hij(i = 1, 2, 3, 4, 5) and j = 1, 2, 3) are in the form of PHFNs.

For PHFHWA operator

Step 2 Utilize the PHFHWA operator to obtain the 
Pythagorean hesitant fuzzy matrix (see Table 2).

Step 3 Compute the score values S(ĥi)(i = 1, 2, 3, 4, 5) of 
ĥi(i = 1, 2, 3, 4, 5) by Definition 3. The score values for the 
alternatives are:

Step 4 Since, S(ĥ4) ≻ S(ĥ1) ≻ S(ĥ2) ≻ S(ĥ5) ≻ S(ĥ3) . 
Therefore, X1 ≻ X4 ≻ X2 ≻ X5 ≻ X3 and the most desirable 
alternative is X4.

For PHFHWG operator
Step 2′ Utilize the PHFHWG operator to obtain the 

Pythagorean hesitant fuzzy matrix (See Table 3).

S(ĥ1) = 0.2176, S(ĥ2) = 0.1038, S(ĥ3) = −0.0214,

S(ĥ4) = 0.14738, S(ĥ5) = 0.0906.

Table 1   Pythagorean hesitant 
fuzzy decision matrix

A1 A2 A3

X1 〈{0.6, 0.7, 0.9}, {0.4, 0.5, 0.8}〉 〈{0.8, 0.9}, {0.4, 0.6, 0.7}〉 〈{0.5, 0.6, 0.8}, {0.7, 0.8}〉
X2 〈{0.3, 0.7, 0.9}, {0.8, 0.9}〉 〈{0.4, 0.7, 0.8}, {0.5, 0.7, 0.9}〉 〈{0.6, 0.9}, {0.4, 0.6, 0.8}〉
X3 〈{0.40.9}, {0.7, 0.8}〉 〈{0.5, 0.6, 0.7}, {0.7, 0.8}〉 〈{0.6, 0.7, 0.8}, {0.5, 0.8}〉
X4 〈{0.5, 0.6, 0.9}, {0.6, 0.7, 0.8}〉 〈{0.4, 0.8}, {0.6, 0.7, 0.9}〉 〈{0.8, 0.9}, {0.4, 0.6}〉
X5 〈{0.7, 0.9}, {0.4, 0.5, 0.8}〉 〈{0.6, 0.8}, {0.5, 0.7}〉 〈{0.4, 0.5, 0.7}, {0.7, 0.9}〉

Table 2   Pythagorean hesitant 
fuzzy hybrid averaging matrix

A1 A2 A3

X1 〈{0.8111, 0.9084}, {0.3821, 
0.5849, 0.6876}〉

〈{0.5334, 0.6297, 0.8439}, 
{0.5030, 0.5946, 0.8459}〉

〈{0.5403, 0.6439, 0.8406}, 
{0.6518, 0.7651}〉

X2 〈{0.6439, 0.9294}, {0.3330, 
0.5417, 0.7651}〉

〈{0.4090, 0.7120, 0.8111}, 
{0.4830, 0.6876, 0.8953}〉

〈{0.2613, 0.6297, 0.8439}, 
{0.8459, 0.9240}〉

X3 〈{0.6439, 0.7445, 0.8406}, 
{0.4353, 0.7651}〉

〈{0.5106, 0.6117, 0.7120}, 
{0.6876, 0.7911}〉

〈{0.2613, 0.8439}, 
{0.7653, 0.8459}〉

X4 〈{0.6406, 0.9294}, {0.3330, 
0.5417}〉

〈{0.4090, 0.8111}, {0.5849, 
0.6876, 0.8953}〉

〈{0.4405, 0.5334, 0.7316}, 
{0.6817, 0.7653, 
0.8459}〉

X5 〈{0.6117, 0.8111}, {0.4830, 
0.6876}〉

〈{0.6297, 0.8439}, {0.5030, 
0.5946, 0.8459}〉

〈{0.4345, 0.5403, 0.7445}, 
{0.6518, 0.8812}〉

Table 3   Pythagorean hesitant 
fuzzy hybrid weighted 
geometric matrix

A1 A2 A3

X1 〈{0.7911, 0.8953}, {0.4090, 
0.6117, 0.7120}〉

〈{0.6817, 0.7653, 0.9240}, 
{0.3501, 0.4405, 0.7316}〉

〈{0.4353, 0.5417, 0.7651}, 
{0.7445, 0.8406}〉

X2 〈{0.5417, 0.8812}, {0.4345, 
0.6439, 0.8406}〉

〈{0.3821, 0.6876, 0.7911}, 
{0.5106, 0.7120, 0.9084}〉

〈{0.4054, 0.7653, 0.9240}, 
{0.7316, 0.8439}〉

X3 〈{0.5030, 0.9240}, {0.6297, 
0.7316}〉

〈{0.5417, 0.6518, 0.7651}, 
{0.5403, 0.8406}〉

〈{0.4830, 0.5849, 0.6876}, 
{0.7120, 0.8111}〉

X4 〈{0.7651, 0.8812}, {0.4345, 
0.6439}〉

〈{0.5946, 0.6817, 0.8459}, 
{0.5334, 0.6297, 0.7316}〉

〈{0.3821, 0.7911}, 
{0.6117, 0.7120, 
0.9084}〉

X5 〈{0.7653, 0.9240}, {0.3501, 
0.4405, 0.7316}〉

〈{0.5849, 0.7911}, {0.5106, 
0.7120}〉

〈{0.3330, 0.4353, 0.6518}, 
{0.7445, 0.9294}〉
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Step 3′ Compute the score values S(ĥi)(i = 1, 2, 3, 4, 5) of 
ĥi(i = 1, 2, 3, 4, 5) by Definition 3. The score values for the 
alternatives are:

Step 4′ Since, S(ĥ1) ≻ S(ĥ4) ≻ S(ĥ2) ≻ S(ĥ5) ≻ S(ĥ3) . 
Therefore, X1 ≻ X4 ≻ X2 ≻ X5 ≻ X3 and the most desirable 
alternative is X1.

5.1 � Comparison analysis

In this subsection we compare our approach to the existing 
methods of PFNs, introduced by Yager (2013) and HFNs 
introduced by Torra (2010), which are the special cases of 
PHFNs to verify the validity and effectiveness of the pro-
posed approach.

5.1.1 � A comparison analysis with the existing MCDM 
method with PFNs

PFNs can be considered as a special case of PHFNs when 
there is only one element in membership and nonmember-
ship degree. For comparison, the PHNs can be transformed 

S(ĥ1) = 0.1324, S(ĥ2) = −0.1220, S(ĥ3) = −0.1023,

S(ĥ4) = 0.0580, S(ĥ5) = −0.0360.

to PFNs by calculating the average value of the member-
ship and nonmembership degrees. After transformation, the 
Pythagorean information presented in Tables 2 and 3 can be 
shown in Tables 4 and 5, respectively.

Now we calculate the comprehensive evaluation val-
ues using the Pythagorean fuzzy hybrid weighted aver-
age (PFHWA) operator and the Pythagorean fuzzy hybrid 
weighted geometric (PFHWG) operator (Rahman et  al. 
2016). The score values and the ranking of the alternatives 
using PFHWA operator and PFHWG operator are given in 
Table 6, respectively, which are the same as the proposed 
approach. But PHFSs are more flexible than PFSs because 
they consider the situations where decision makers would 
like to use several possible values to express the membership 
and nonmembership degrees.

5.1.2 � A comparison analysis with the existing MCDM 
method with PFNs,

HFNs can be considered as a special case of PHFNs when 
there is only membership degree. For comparison, the PHNs 
can be transformed to HFNs by removing the nonmember-
ship degrees. After transformation, the hesitant fuzzy infor-
mation can be shown in Tables 6 and 7, respectively.

Now we calculate the comprehensive evaluation values 
using the hesitant fuzzy hybrid weighted average (HFHWA) 
operator (Liao and Xu 2015) and the hesitant fuzzy hybrid 
weighted geometric (HFHWG) operator (Liao and Xu 
2015). The score values and the ranking of the alternatives 
using HFHWA operator and HFHWG operator are given in 
Table 8, respectively, which are the same as the proposed 
approach. But PHFSs are more flexible than HFSs because 
they consider the situations where decision makers would 
like to use several possible values to express the membership 
and nonmembership degrees.

6 � Conclusion

During the process of solving the real problems, the decision 
maker always encounters the evaluation information of alter-
natives which is incomplete, indeterminate and inconsistent. 
Fortunately, the Pythagorean hesitant fuzzy set PHFS is a 
better tool to depict this kind of information. Therefore, in 

Table 4   Pythagorean fuzzy hybrid averaging matrix

A1 A2 A3

X1 〈0.86, 0.55〉 〈0.67, 0.65〉 〈0.68, 0.71〉
X2 〈0.79, 0.55〉 〈0.64, 0.69〉 〈0.58, 0.89〉
X3 〈0.74, 0.60〉 〈0.61, 0.74〉 〈0.55, 0.81〉
X4 〈0.79, 0.44〉 〈0.61, 0.72〉 〈0.57, 0.76〉
X5 〈0.71, 0.59〉 〈0.74, 0.65〉 〈0.57, 0.77〉

Table 5   Pythagorean fuzzy hybrid weighted geometric matrix

A1 A2 A3

X1 〈0.84, 0.58〉 〈0.79, 0.50〉 〈0.58, 0.79〉
X2 〈0.71, 0.64〉 〈0.62, 0.71〉 〈0.69, 0.79〉
X3 〈0.71, 0.68〉 〈0.65, 0.69〉 〈0.59, 0.76〉
X4 〈0.79, 0.44〉 〈0.61, 0.72〉 〈0.59, 0.74〉
X5 〈0.85, 0.51〉 〈0.69, 0.61〉 〈0.47, 0.84〉

Table 6   hesitant fuzzy hybrid 
averaging matrix

A1 A2 A3

X1 {0.8111, 0.9084} {0.5334, 0.6297, 0.8439} {0.5403, 0.6439, 0.8406}
X2 {0.6439, 0.9294} {0.4090, 0.7120, 0.8111} {0.2613, 0.6297, 0.8439}
X3 {0.6439, 0.7445, 0.8406} {0.5106, 0.6117, 0.7120} {0.2613, 0.8439}
X4 {0.6406, 0.9294} {0.4090, 0.8111} {0.4405, 0.5334, 0.7316}
X5 {0.6117, 0.8111} {0.6297, 0.8439} {0.4345, 0.5403, 0.7445}
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this paper we considered Pythagorean hesitant fuzzy infor-
mation and on the basis of hybrid aggregation operators. 
Since, we know that the PHFWA operator and PHFWG oper-
ator weights only the Pythagorean hesitant fuzzy numbers, 
respectively, while the PHFOWA operator and PHFOWG 
operator weights only the ordered positions of the Pythago-
rean hesitant fuzzy numbers respectively instead of weight-
ing the Pythagorean hesitant fuzzy numbers themselves. We 
developed PHFHWA operator and PHFHWG operator which 
weight both the given Pythagorean hesitant fuzzy number 
and its ordered position. Furthermore, we have given a 
decision making method based on the developed operators. 
Moreover, we have given a numerical example to show the 
validity and effectiveness of the proposed approach. Finally 
we compared our approach to existing methods.
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