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Abstract
In this paper, we study  interval-valued fuzzy probabilistic rough sets (IVF-PRSs) based on multiple interval-valued fuzzy 
preference relations (IVFPRs) and consistency matrices, i.e., the multi-granulation interval-valued fuzzy preference relation 
probabilistic rough sets (MG-IVFPR-PRSs). First, in the proposed study, we convert IVFPRs into fuzzy preference relations 
(FPRs), and then construct the consistency matrix, the collective consistency matrix, the weighted collective preference rela-
tions, and the group collective preference relation (GCPR). Using this GCPR, four types of MG-IVFPR-PRSs are founded in 
terms of different constraints on parameter. Finally, to find a suitable way of explaining and determining these parameters in 
each model, three-way decisions are studied based on Bayesian minimum-risk procedure, i.e., the multi-granulation interval-
valued fuzzy preference relation decision-theoretic rough set approach. An example is included to show the feasibility and 
potential of the theoretic results obtained.

Keywords  Interval-valued fuzzy probabilistic rough set · Interval-valued fuzzy preference relation · Multi-granulation · 
Three-way decisions

1  Introduction

The idea of rough set theory was basically proposed by Paw-
lak in (1982). A key notion of that theory is the approxima-
tion of a subset of objects by a pair of definable sets called 
lower and upper approximations. It is characterized by a zero 
tolerance of errors; that is, an object in the lower approxi-
mation which certainly belongs to set and an object in the 
complement of the upper approximation which certainly 
does not belongs to the set. For that reason, many different 
generalizations of rough sets are proposed. By introducing 
certain levels of errors, probabilistic rough sets (PRSs) (Yao 
2008) are quantitative generalization of rough sets. Although 

several specific models of PRSs had been considered by 
some studies (Yao 1998, 2003; Ma and Sun 2012; Ziarko 
2005, 2008; Wang and Xu 2002; Yao et al. 2008; Pawlak 
et al. 1988; Polkowski 1996), a more general model, called 
decision-theoretic rough set (DTRS) model, was proposed 
by Yao and Wong (1992) and Yao (2009). With the aid of 
Bayesian minimum-risk decision procedure, DTRS model 
offers mathematical way to interpret and determine the 
required thresholds in PRS. This model is fulfilled by split-
ting the approximated set into three regions, conducted by 
the idea of 3WDs (Yao 2010). The 3WDs consists of three 
different kinds of rules—positive rules (corresponding to 
positive region), negative rules (corresponding to the nega-
tive region), and boundary rules (corresponding to boundary 
region). In DTRS model, based on Bayesian minimum risk, 
conditional probability and loss function play an important 
role in determining thresholds from the given cost function. 
Different thresholds for different PRSs can be deduced from 
appropriate cost functions.

However, the PRSs and DTRS model cannot deal with 
numerical data directly. For that reason, many studies usu-
ally adopted in real applications, which define all types of 
relations rather than equivalence relations, e.g., tolerance 
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relations (Liang et al. 2012), similarity measures (Liu et al. 
2016), dominance relations (Du and Hu 2016), covering 
(Wang et al. 2015), inclusion measures (Zhang et al. 2016), 
fuzzy relations (Wei and Zhang 2004; Sun et al. 2014; Yang 
et al. 2013), intuitionistic fuzzy relations (Liang and Liu 
2015; Zhang et al. 2017), and bipolar-valued fuzzy relations 
(Mandal and Ranadive 2017). They can be used to measure 
and represent various real values.

To handling all types of real data, Zadeh (1965) intro-
duced fuzzy sets. The remarkable applications of fuzzy sets 
are done in Horng et al. (2005), Chen and Kao (2013), Chen 
and Hong (2014), Chen (1996), Chen and Chen (2011), and 
Chen et al. (2009). However, it is well known that interval-
valued fuzzy set (IVFS) is more effective than fuzzy set for 
imprecise evaluation (Chen and Horng 1996; Chen 1997; 
Chen et al. 1997; Chen and Hsiao 2000; Chen and Chen 
2008, 2009; Wei and Chen 2009; Chen and Wang 2009; 
Chen and Sanguansat 2011; Mendel et al. 2006; Chen and 
Lee 2010; Lee and Chen 2008). Thus, studies on combina-
tion of IVFS and rough set theory have been considered 
to be significant approach to rough set theory. Liang and 
Liu 2014 combined IVFS and DTRS, and then study on 
3WDs with interval-valued decision-theoretic rough sets 
(IVDTRS). Zhao and Hu (2015, 2016) study interval-valued 
fuzzy decision-theoretic rough set (IVF-DTRS) approaches 
based on fuzzy probability measure and IVF-PRSs and their 
corresponding 3WDs.

Granular computing (Pedrycz and Chen 2011, 2015a, 
b) is an emerging computing paradigm of information pro-
cessing. It concerns the processing of complex information 
entities called granules, which arise in the process of data 
abstraction and derivation of knowledge from information 
or data. Therefore, in the viewpoint of granular computing, 
Qian et al. (2010b) generalized Pawlak rough set model to a 
multi-granulation rough set (MGRS) model using multiple 
equivalence relations instead of single equivalence relation. 
In the MGRS model, two basic models are mainly pro-
posed, such as optimistic and pessimistic MGRS (Qian et al. 
2010b). Since then, MGRSs have been developed quickly 
(Qian et al. 2010a; Liu et al. 2014; Lin et al. 2012; Xu et al. 
2011, 2012, 2013, 2014). The combination of MGRSs and 
DTRSs is an important topic among these developments (Lv 
et al. 2013; Feng and Mi 2016; Qian et al. 2014).

However, preference analysis is a class of important 
issues in group decision-making for pairwisely comparing 
alternatives. The decision makers are expressed his/her opin-
ions as preference relations. Then, they are used to deriving 
the weights of alternatives, and thus, the best alternative is 
chosen. Based on fuzzy set theory (Zadeh 1965), the prefer-
ence degree of the alternative xi over the alternative xj can 
be expressed as rij ∈ [0, 1] . Then, a fuzzy binary relation 
on U = {x1, x2,… , xn} is defined and a preference matrix 
R(xi, xj) = (rij)n×n with the entries rij is given. The preference 

matrix is called an FPR (Tanio 1984; Chen and Niou 2011), 
where rij ∈ [0, 1] and rii = 0.5 , since the preference value is 
exact real numbers. However, owing to the complexity and 
uncertainty of the real-world decision-making problems, it 
is difficult to provide precise preference value to evaluate the 
judgments. For that reason, it is popular to study decision-
making models and their applications, where the judgments 
of decision makers are expressed as interval-valued com-
parison matrix (Xu 2011; Chen et al. 2015; Liu et al. 2018).

On the basis of above-mentioned analysis, IVF-PRSs 
considered the incomplete available information and the 
possible existence of random available information of the 
objects, while it cannot consider multi-granulation and pref-
erence analysis. In group decision-making problem using 
IVFPRs, the decision results are obtained pairwise compar-
ing the objects according to derive its weights, while it can-
not consider the incomplete available information and the 
possible existence of random available information of the 
objects. Therefore, the motivation of this paper is to study 
IVF-PRSs based on multiple IVFPRs and consistency matri-
ces, i.e., MG-IVFPR-PRSs. In fact, the consistency matrices 
are constructed to avoid the self-contradiction of the objects. 
Based on MG-IVFPR-PRSs, we develop a new approach 
for group decision-making which is considered the incom-
plete available information, the possible existence of ran-
dom available information, and preference analysis. First, 
a multi-granulation interval-valued fuzzy preference rela-
tion probabilistic approximation space (MG-IVFPR-PAS) is 
defined using m IVFPRs. Then, we aggregate the m IVFPRs 
given by m experts and construct the group collective prefer-
ence relation (GCPR) according to the method as given in 
Chen et al. (2015). Second, we investigate four types of MG-
IVFPR-PRSs within the frameworks of MG-IVFPR-PAS and 
GCPR in terms of different constraints on parameters. Third, 
Bayesian decision procedure within the MG-IVFPR-PRS, 
i.e., the MG-IVFPR-DTRS approach is studied. Finally, we 
develop a new approach for group decision-making using 
MG-IVFPR-PRSs and their corresponding 3WDs. What we 
want to do is shown in Fig. 1.

The paper is organized as follows: in Sect. 2, some basic 
concepts about fuzzy probability and FPRs are briefly repre-
sented. Section 3 is devoted to MG-FPR-PRS models as well 
as associated 3WDs in the framework of MG-IVFPR-PAS. 
In Sect. 4, we propose a new approach for group decision-
making based on MG-IVFPR-PRSs including practical 
applications. Section 5 concludes the paper.

2 � Preliminaries

In this section, we will review some basic concepts such as 
interval-valued fuzzy sets, interval-valued fuzzy probability, 
and interval-valued fuzzy preference relations, which have 
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been addressed in Zadeh (1965, 1968), Zhao and Hu (2015, 
2016), Tanio (1984), Lee (2012), and Chen et al. (2014).

2.1 � Fuzzy sets and probability theory

Let U  be a universe of  discourse.  A fuzzy 
set A  is a mapping from U  into [0,  1], i .e., 
A ∶ U → [0, 1], x ↦ A(x) ∈ [0, 1], ∀x ∈ U . The family of 
all fuzzy sets on U is denoted by F(U). Given a fuzzy set 
A ∈ F(U) and � ∈ [0, 1] , the �-cut set of A is defined as 
A� = {x ∈ U ∶ A(x) ≥ �} , which is a classical subset of U.

Definition 1  (Zadeh 1968) Let (U, �,P) be a probability 
space in which U is a sample space of events, � is a �-alge-
bra of events (i.e., the measurable subsets of U), and P is a 
probability measure defined on � . For a fuzzy set A ∈ F(U) , 
if A ∈ �(�) = {A ∈ F(U) ∶ A� ∈ �, � ∈ [0, 1]} , then A is a 
fuzzy event on U. The probability of fuzzy event A (called 
the fuzzy probability of A) is P(A) = ∫

U
A(x)dP.

If U = {x1, x2,… , xn} , and pi = P({xi}) (i = 1, 2,… , n) , 
then

Definition 2  (Zadeh 1968) Let (U, �,P) be a probability 
space and A, B be two fuzzy events on U. If P(B) ≠ 0 , then 

(1)P(A) =

n∑

i=1

A(xi)pi.

the conditional probability of A given B (called fuzzy con-
ditional probability) is defined as P(A ∣ B) =

P(AB)

P(B)
.

If U = {x1, x2,… , xn} , and pi = P({xi}) (i = 1, 2,… , n) , 
then

for all fuzzy events A,B ∈ �(�).

Proposition 1  (Zhao and Hu 2016) Let (U, � , P) be a 
probability space and A, B, C be three fuzzy events on U. If 
P(A) ≠ 0 , then the following conclusions hold.

(1)	 P(� ∣ A) = 0,P(U ∣ A) = 1;
(2)	 If B ⊆ C , then P(B) ≤ P(C) and P(B ∣ A) ≤ P(C ∣ A);
(3)	 P(B ∣ A) + P(Bc ∣ A) = 1.

2.2 � Interval‑valued fuzzy sets and probability 
theory

Let �
ℝ+ = {[a−, a+] ∶ 0 ≤ a− ≤ a+, a−, a+ ∈ ℝ

+} be the 
family of all positive interval numbers. We denote by 
ã = [a, a] the degenerate interval numbers. The arithmetic 

(2)

P(A ∣ B) =
P(AB)

P(B)

=

∑n

i=1
A(xi)B(xi)pi

∑n

i=1
B(xi)pi

Fig. 1   Proposed work in this paper
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operation of interval numbers is defined as follows: for all 
[a−, a+], [b−, b+] ∈ �

ℝ+,

and if b− ≠ 0 , the division is defined as follows:

For simplicity, symbol ⊗ is omitted in the sequel.
I f  0 ≤ a− ≤ a+ ≤ 1 ,  i t  i s  d e f i n e d  t h a t 

1 − [a−, a+] = [1 − a+, 1 − a−].
The order relation on �

ℝ+ is defined as: for all 
[a−, a+], [b−, b+] ∈ �

ℝ+,

Obviously, the order on �
ℝ+ is partial. The strict order of 

interval numbers is defined as: [a−, a+] < [b−, b+] if and only 
if a− < b− , a+ ≤ b+ or a− ≤ b− , a+ < b+.

Based on the order relation defined in   (6) for posi-
tive interval numbers, the corresponding join, ∨ , and 
meet, ∧ , are defined, respectively, as follows: for all 
[a−, a+], [b−, b+] ∈ �

ℝ+ .

Let �[0,1] = {[a−, a+] ∶ 0 ≤ a− ≤ a+ ≤ 1} be the set of all 
interval numbers on [0, 1]. Let U be a universe of discourse. 
An interval-valued fuzzy set (IVFS) on U is a mapping that 
assigns each object in U a unique interval value from �[0,1] , 
that is

 Let (x) = [a−, a+] ≜ [A−(x),A+(x)] for each x ∈ U  . 
Then, two fuzzy sets A− and A+ on U, called lower and upper 
fuzzy sets of  , are derived with A− ⊆ A+ . Subsequently, an 
IVFS  is always denoted by [A−,A+] . Let F

�[�,�]
(U) be the 

family of all IVFSs on U. The operators for IVFSs are 
defined through respective operations on lower and upper 
fuzzy sets. For all IVFSs , ∈ F

�[�,�]
(U) and each x ∈ U,

(3)[a−, a+]⊕ [b−, b+] = [a− + b−, a+ + b+],

(4)[a−, a+]⊗ [b−, b+] = [a−b−, a+b+],

(5)
[a−, a+]

[b−, b+]
=

[
a−

b−
∧
a+

b+
,
a−

b−
∨
a+

b+

]

.

(6)[a−, a+] ≤ [b−, b+] ⇔ a− ≤ b−, a+ ≤ b+.

[a−, a+] ∧ [b−, b+] = [a− ∧ b−, a+ ∧ b+],

[a−, a+] ∨ [b−, b+] = [a− ∨ b−, a+ ∨ b+].

 ∶ U → �[0,1], x ↦ (x) = [a−, a+].

( ∩ )(x)
= [(A− ∩ B−)(x), (A+ ∩ B+)(x)]

= [A−(x) ∧ B−(x),A+(x) ∧ B+(x)],

( ∪ )(x)
= [(A− ∪ B−)(x), (A+ ∪ B+)(x)]

= [A−(x) ∨ B−(x),A+(x) ∨ B+(x)],

The order of IVFSs is defined as: for all , ∈ F
�[�,�]

(U) , 

 ⊆  ⇔ A−(x) ≤ B−(x),A+(x) ≤ B+(x) , ∀x ∈ U.

Definition 3  (Zadeh 1968) Let (U, �,P) be a probability 
space in which U is a sample space of events, � is a �-alge-
bra of events (i.e., the measurable subsets of U), and P is a 
probability measure defined on � . For an IVFS  on U, if

where (A−)� and (A+)� are �-cut sets of lower and upper 
fuzzy sets of  , respectively, and then,  is an interval-val-
ued fuzzy event on U. The probability of an interval-valued 
fuzzy event  (called the interval-valued fuzzy probability 
of  ) is

where  = [A−,A+].

If U = {x1, x2,… , xn} , and pi = P({xi}) (i = 1, 2,… , n) , 
then Definition 1 that

for each interval-valued fuzzy event  = [A− , 
A+] ∈ F

�[�,�]
(U).

Definition 4  (Zhao and Hu 2015) Let (U, �,P) be a proba-
bility space and  = [A−,A+] ,  = [B−,B+] be two interval-
valued fuzzy events on U with P(B−) ≠ 0 . The conditional 
probability of  given  (called interval-valued fuzzy con-
ditional probability) is defined by

c(x) = [1 − A+(x), 1 − A−(x)],

()(x) = [A−(x)B−(x),A+(x)B+(x)].

(7)
 ∈ �[0,1](�) = { ∈ F

�[�,�]
(U) ∶  = [A−,A+],

(A−)� , (A
+)� ∈ �, � ∈ [0, 1]},

(8)

P() = �U

(x)dP

=

[

�U

A−(x)dP,�U

A+(x)dP

]

= [P(A−),P(A+)],

(9)

P() =

n∑

i=1

(xi)pi

=

[
n∑

i=1

A−(xi)pi,

n∑

i=1

A+(xi)pi

]

(10)P( ∣ ) = P()
P() .



93Granular Computing (2019) 4:89–108	

1 3

Proposition 2  (Zhao and Hu 2015) Let (U, � , P) be a 
probability space and  = [A−,A+] ,  = [B−,B+] be two 
interval-valued fuzzy events on U with P(B−) ≠ 0, the fol-
lowing holds:

If U = {x1, x2,… , xn} , and pi = P({xi}) (i = 1, 2,… , n) , 
then

Proposition 3  (Zhao and Hu 2016) Let (U, � , P) be a 
probability space and  = [A−,A+] ,  = [B−,B+] and 
 = [C−,C+] be three interval-valued fuzzy events on U. If 
P(A−) ≠ 0 , then the following conclusions hold.

(1)	 P(� ∣ ) = 0̃,P(U ∣ ) = 1̃; and
(2)	 If  ⊆  , then P( ∣ ) ≤ P( ∣ ).

According to Propositions 1 and  2 that

2.3 � Fuzzy and interval‑valued fuzzy preference 
relations

Definition 5  (Tanio 1984) Let R be a fuzzy preference rela-
tion (FPR) for the set U = {x1 , x2 , ⋯ , xn} , shown as follows:

where rij denotes the degree of preference of alternative 
xi over alternative xj , rij ∈ [0, 1] , rii = 0.5 , 1 ≤ i ≤ n and 
1 ≤ j ≤ n . Especially,

rij = 0.5 indicates that there is no difference between 
alternative xi and alternative xj;

rij > 0.5 indicates that alternative xi is better than alterna-
tive xj;

rij < 0.5 indicates that alternative xj is better than alterna-
tive xi;

P( ∣ ) = [P(A− ∣ B−) ∧ P(A+ ∣ B+),

P(A− ∣ B−) ∨ P(A+ ∣ B+)].

P(A− ∣ B−) =

∑n

i=1
A−(xi)B

−(xi)pi
∑n

i=1
B−(xi)pi

,

P(A+ ∣ B+) =

∑n

i=1
A+(xi)B

+(xi)pi
∑n

i=1
B+(xi)pi

.

P(c ∣ ) = [1 − P(A+ ∣ B−) ∨ P(A− ∣ B+),

1 − P(A+ ∣ B−) ∧ P(A− ∣ B+)].

R(xi, xj) = (rij)n×n

=

R(xi, yj) x1 x2 · · · xn

x1 r11 r12 · · · r1n
x2 r21 r22 · · · r2n
· · · · · · · · · · · · · · ·
xn rn1 rn2 · · · rnn

, (11)

rij = 1 indicates that alternative xi is absolutely better than 
alternative xj;

rij = 0 indicates that alternative xj is absolutely better than 
alternative xi;

where 1 ≤ i ≤ n and 1 ≤ j ≤ n.

Definition 6  (Lee 2012) Given a fuzzy preference relation 
R = (rij)n×n , where rij denotes the fuzzy preference value 
(FPV) for alternative xi over alternative xj , rij + rji = 1 , 
rii = 0.5 , 1 ≤ i ≤ n and 1 ≤ j ≤ n . The consistency matrix 
R = (rik)n×n is constructed based on the FPR R, shown as 
follows:

The consistency matrix R = (rik)n×n has the following prop-
erties (Lee 2012):

(1)	 rik + rki = 1,
(2)	 rii = 0.5,
(3)	 rik = rij + rjk − 0.5,
(4)	 rik ≤ ris for all i ∈ {1, 2,… , n} , where k ∈ {1, 2,… , n} 

and s ∈ {1, 2,… , n}.

Definition 7  (Chen et al. 2014) Let R = (rik)n×n be a consist-
ency matrix constructed by a FPR R = (rij)n×n given by an 
expert. The consistency degree d between R and R is defined 
as follows:

where d ∈ [0, 1] , rij denotes the FPV in the FPR R for alter-
native xi over alternative xj , and rij denote an FPV in the 
consistency matrix R for alternative xi over alternative xj , 
1 ≤ i ≤ n , and 1 ≤ j ≤ n . The larger the value of d, the more 
consistent the FPR given by the expert. If the value of d is 
close to one, then the information of the FPR given by the 
expert is more consistent.

Definition 8  (Xu 2011) Let  be an interval-valued fuzzy 
preference relation (IVFPR) for the set U = {x1, x2,… , xn} , 
shown as follows:

(12)rik =
1

n

n∑

j=1

(rij + rjk) − 0.5.

(13)d = 1 −
2

n(n − 1)

n∑

i=1

n∑

j=1,j≠i
|||
rij − rij

|||
,

R(xi, xj) = (∇ij)n×n

=

R(xi, yj) x1 x2 · · · xn

x1 ∇11 ∇12 · · · ∇1n

x2 ∇21 ∇22 · · · ∇2n

· · · · · · · · · · · · · · ·
xn ∇n1 ∇n2 · · · ∇nn

, (14)
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where ∇ij = [r−
ij
, r+

ij
] denotes an interval-valued fuzzy prefer-

ence value (IVFPV) for alternative xi over alternative xj . 
Then, 0 ≤ r−

ij
≤ r+

ij
≤ 1 , ∇ji = 1̃ − ∇ij = [1 − r+

ij
, 1 − r−

ij
] , 

r+
ii
= r−

ii
= 0.5 , 1 ≤ i ≤ n and 1 ≤ j ≤ n.

3 � Multi‑granulation interval‑valued fuzzy 
preference relation probabilistic rough 
sets

This section proposes the model of multi-granulation inter-
val-valued fuzzy preference relation probabilistic rough sets 
(MG-IVFPR-PRSs), within the framework of multi-granula-
tion interval-valued fuzzy preference relation probabilistic 
approximation space.

Definition 9  Let U = {x1, x2,… , xn} be a non-empty finite 
universe. q(1 ≤ q ≤ m) be m IVFPRs for the set U. P 
be a probability measure defined on the �-algebra formed 
by the image of element xi ∈ U(1 ≤ i ≤ n) . Then, we call 
(U,q(1 ≤ k ≤ m),P) a multi-granulation interval-valued 
fuzzy preference relation probabilistic approximation space 
(MG-IVFPR-PAS).

For aggregating the m IVFPRs Rq(1 ≤ q ≤ m) given by 
m experts eq(1 ≤ q ≤ m) , we adopt the following algorithm 
as given in Chen et al. (2015).

Algorithm 1 Assume that there are m IVFPRs 1 , 2 , … , 
m given by m experts e1 , e2 , … , em , respectively. Assume 
that the IVFPR q given by expert eq for alternative xi over 
alternative xj is shown as follows:

where ∇q

ij
 is an IVFPV, ∇q

ij
= [r−

ij
q, r+

ij

q
] , 0 ≤ r−

ij
q ≤ r+

ij

q ≤ 1 , 

∇
q

ji
= 1̃ − ∇

q

ij
= [1 − r+

ij

q
, 1 − r−

ij
q]  ,  ∇+

ii

q
= ∇−

ii
q = 0.5  , 

1 ≤ i ≤ n , 1 ≤ j ≤ n , and 1 ≤ q ≤ m.
Step 1: For the IVFPRs given by expert eq , construct the 

FPR Rq = (r
q

ij
)n×n for expert eq , construct the consistency 

matrix R
q
= (r

q

ij
)n×n for each expert eq , construct the collec-

tive consistency matrix R
∗
 = (r

∗

ij
)n×n , and calculate the con-

sistency degree dq of expert eq , where

Rq(xi, xj) = (∇q
ij)n×n

=

Rq(xi, xj) x1 x2 · · · xn

x1 ∇q
11 ∇q

12 · · · ∇q
1n

x2 ∇q
21 ∇q

22 · · · ∇q
2n

· · · · · · · · · · · · · · ·
xn ∇q

n1 ∇q
n2 · · · ∇q

nn

,
(15)

where 1 ≤ i ≤ n , 1 ≤ j ≤ n , 1 ≤ q ≤ m and � ∈ [0, 1] . In 
Eq.  (16), we let rq

ij
=

1

2
(r−

ij
q + r+

ij

q
) , where rq

ij
∈ [0, 1] , 

1 ≤ i ≤ n , 1 ≤ j ≤ n and 1 ≤ q ≤ m , such that we can trans-
form the IVFPR q(xi, xj) = (∇

q

ij
)n×n given by expert eq into 

the FPR Rq = (r
q

ij
)n×n , where rq

ij
∈ [0, 1] , 1 ≤ i ≤ n , 1 ≤ j ≤ n , 

1 ≤ q ≤ m and m is the number of decision makers. In 
Eq. (17), we adopt Eq. (12) to construct the consistency 
matrix R

q
= (r

q

ij
)n×n for expert eq , where rq

ij
∈ [0, 1] , 

1 ≤ i ≤ n , 1 ≤ j ≤ n 1 ≤ q ≤ m , and m is the number of deci-
sion makers. In Eq. (18), we adopt Eq. (13) to calculate the 
consistency degree dq for expert eq , where dq ∈ [0, 1] , 
1 ≤ q ≤ m , and m is the number of decision makers. In 
Eq. (19), we let r∗

ij
=

1

m

∑m

q=1
r
q

ij
 to construct the collective 

consistency matrix R
∗
= (r

∗

ij
)n×n for all experts, where 

r
q

ij
∈ [0, 1] , 1 ≤ i ≤ n , 1 ≤ j ≤ n , 1 ≤ q ≤ m , and m is the 

number of decision makers.
Step 2: Calculate the weight �q of expert eq based on 

the obtained consistency degrees of the experts, shown as 
follows:

where dq is the consensus degree of expert eq and 1 ≤ q ≤ m.
Step 3: Construct the weighted collective preference rela-

tion ∗ = (∇∗
ij
)n×n for all experts, shown as follows:

where 1 ≤ i ≤ n , 1 ≤ j ≤ n and 1 ≤ q ≤ m.
Step 4: Construct the group collective preference relation 

(GCPR) ̂ = (∇̂ij)n×n for all experts, shown as follows:

(16)r
q

ij
=

1

2
(r−

ij
q + r+

ij

q
),

(17)r
q

ij
=

1

n

n∑

k=1

(r
q

ik
+ r

q

kj
) − 0.5,

(18)dq = 1 −
2

n(n − 1)

n∑

i=1

n∑

j=1,j≠i
|
|
|
r
q

ij
− r

q

ij

|
|
|
,

(19)r
∗

ij
=

1

m

m∑

q=1

r
q

ij
,

(20)�q =
dq

∑m

t=1
dt
,

(21)
∇∗

ij
=

m∑

q=1

�q∇
q

ij
=

[
m∑

q=1

�qr
−
ij
q,

m∑

q=1

�qr
+
ij

q

]

= [∇−
ij
∗,∇+

ij

∗
],
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where 1 ≤ i ≤ n ,  1 ≤ j ≤ n ,  and 1 ≤ q ≤ m .  Equa-
tion (22) shows that the GCPR is also IVFS, so we denote 
̂ = [̂−, ̂+].

Definition 10  Let q(1 ≤ q ≤ m) be m IVFPRs for the set 
U given by the experts eq(1 ≤ q ≤ m) , respectively. Let ̂ be 
the GCPR constructed by m IVFPRs q(1 ≤ q ≤ m) . Then, 
for each xi ∈ U(1 ≤ i ≤ n) , the IVFS [xi]̂ is defined as

for all xj ∈ U(1 ≤ j ≤ n) . In Eq. (23), we adopt Algorithm 3 
to calculate the fuzzy set [xi]̂(1 ≤ i ≤ n).

3.1 � MG‑IVFPR‑PRSs based on interval‑valued fuzzy 
probability

The aim of proposing MG-IVFPR-PRSs is to characterize 
fuzzy events in terms of the available knowledge represented 
by m IVFPRs given by the m experts.

Definition 11  Let (U,q(1 ≤ k ≤ m),P) be a MG-IVFPR-
PAS, ̂ be the GCPR constructed by m IVFPRs 
q(1 ≤ q ≤ m) , and  = [A−,A+](∈ F

�[0,1]
(U)) be a interval-

valued fuzzy event. For a pair of parameters [�−, �+] and 
[�−, �+] with 0̃ ≤ [𝛽−, 𝛽+] < P() < [𝛼−, 𝛼+] ≤ 1̃ ,  the 
[�−, �+]-multi-granulation interval-valued fuzzy preference 
relation probabilistic lower approximation and [�−, �+]
-multi-granulation interval-valued fuzzy preference relation 
probabilistic upper approximation of  are defined, respec-
tively, as follows:

T h e  p a i r  (Apr
[�−,�+]

̂ (), Apr
[�−,�+]

̂ ())  i s  c a l l e d 

([�−, �+], [�−, �+])-multi-granulation interval-valued fuzzy 
p re fe rence  re l a t ion  p robab i l i s t i c  rough  se t 

(22)
∇̂ij =

[
∇−

ij
∗ + r

∗

ij

2
,
∇+

ij

∗
+ r

∗

ij

2

]

= [∇̂−
ij
, ∇̂+

ij
],

(23)

[xi]̂(xj) = ̂(xi, xj)

= [̂−(xi, xj), ̂+(xi, xj)]

= (∇̂ij)n×n

Apr
[�−,�+]

̂ () = {xi ∈ U(1 ≤ i ≤ n) ∶

P( ∣ [xi]̂) ≥ [�−, �+]},

Apr
[𝛽−,𝛽+]

� () = {xi ∈ U(1 ≤ i ≤ n) ∶

P( ∣ [xi]�) > [𝛽−, 𝛽+]}.

( ([�−, �+], [�−, �+])-MG-IVFPR-PRS) of  . The positive, 
negative, and boundary regions of  are defined, respec-
tively, as follows:

R e m a r k  1   I f  U = {x1, x2,… , x
n
},   a n d  P(xi)  = 

pi(i = 1, 2,… , n) , then we have

where

Proposition 4  Let (U,q(1 ≤ k ≤ m),P) be a MG-IVFPR-
PAS, ̂ be the GCPR constructed by m IVFPRs 
q(1 ≤ q ≤ m) and , ∈ FI[0,1]

(U) with P() ≠ 0̃ . The fol-

lowing properties hold.

(1)	 I f  0̃ ≤ [𝛽−, 𝛽+] < P() < [𝛼−, 𝛼+] ≤ 1̃  ,  t h e n 
Apr

[𝛼−,𝛼+]

� () ⊆ Apr
[𝛽−,𝛽+]

� ().

(2)	 Apr
[�−,�+]

̂ (�) = �,  Apr
[�−,�+]

̂ (U) = U  f o r  a l l 

0̃ < [𝛼−, 𝛼+] ≤ 1̃ and 0̃ ≤ [𝛽−, 𝛽+] < 1̃.

POS[�
−,�+]() = Apr

[�−,�+]

̂ ()

= {xi ∈ U(1 ≤ i ≤ n) ∶

P( ∣ [xi]̂) ≥ [�−, �+]},

NEG[�−,�+]() = (Apr
[�−,�+]

̂ ())c

= {xi ∈ U(1 ≤ i ≤ n) ∶

P( ∣ [xi]̂) ≤ [�−, �+]},

BND([𝛼−,𝛼+],[𝛽−,𝛽+])()

= Apr
[𝛽−,𝛽+]

� () − Apr
[𝛼−,𝛼+]

� ()

= {xi ∈ U(1 ≤ i ≤ n) ∶

[𝛽−, 𝛽+] < P( ∣ [xi]�) < [𝛼−, 𝛼+]}.

(24)

P( ∣ [xi]̂)
= [P(A− ∣ [xi]̂−) ∧ P(A+ ∣ [xi]̂+),

P(A− ∣ [xi]̂−) ∨ P(A+ ∣ [xi]̂+)],

(25)P(A− ∣ [xi]̂−) =

∑n

j=1
̂−(xi, xj)A

−(xj)pj
∑n

j=1
̂−(xi, xj)pj

,

(26)P(A+ ∣ [xi]̂+) =

∑n

j=1
̂+(xi, xj)A

+(xj)pj
∑n

j=1
̂+(xi, xj)pj

.
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(3)	 I f   ⊆   a n d  [𝛽−, 𝛽+] < P() ∧ P(), 
P() ∨ P() < [𝛼−, 𝛼+] , then Apr[�

−,�+]

̂  () ⊆ Apr[�
−,�+]

̂  

() and Apr
[�−,�+]

̂  () ⊆ Apr
[�−,�+]

̂  ().
(4)	 If P() < [𝛼−

1
, 𝛼+

1
] ≤ [𝛼−

2
, 𝛼+

2
] ≤ 1̃ and 0̃ ≤ [𝛽−

1
, 𝛽+

1
]

≤ [𝛽−
2
, 𝛽+

2
] < P() , then Apr[𝛼

−
2
,𝛼+

2
]

� () ⊆ Apr
[𝛼−

1
,𝛼+

1
]

� () 

and Apr
[�−

2
,�+

2
]

̂  () ⊆ Apr
[�−

1
,�+

1
]

̂  ().

Proof 

(1)	 If x ∈ Apr
[�−,�+]

̂ () , ∀x ∈ U , then P( ∣ [x]̂) ≥ [�−,

𝛼+] > [𝛽−, 𝛽+] . It shows that x ∈ Apr
[�−,�+]

̂ () . There-

fore, we prove: Apr[�
−,�+]

̂  () ⊆ Apr
[𝛽−,𝛽+]

� ().

(2)	 From Proposition  3(1), we have 

(3)	 If x ∈ Apr
[�−,�+]

̂ () , ∀x ∈ U , then P( ∣ [x]̂) ≥ [�−,

�+] . Since  ⊆  , then from Proposition  3(2), we have 
P( ∣ [x]̂) ≤ P( ∣ [x]̂) .  Therefore,  we have 
P( ∣ [x]̂) ≥ [�−, �+] . It shows that x ∈ Apr

[�−,�+]

̂ () . 
Therefore, we prove Apr[�

−,�+]

̂  () ⊆ Apr[�
−,�+]

̂  () . 
Similarly, we can prove Apr

[�−,�+]

̂  () ⊆ Apr
[�−,�+]

̂  ().
(4)	 If x ∈ Apr

[�−
2
,�+

2
]

̂ () , ∀x ∈ U , then P( ∣ [x]̂) ≥ [�−
2
,

�+
2
] ≥ [�−

1
, �+

1
] . It shows that x ∈ Apr

[�−
1
,�+

1
]

̂ () . There-

fore, we can prove Apr[�
−
2
,�+

2
]

̂  () ⊆ Apr
[𝛼−

1
,𝛼+

1
]

� () . Sim-

ilarly, we can prove and Apr
[�−

2
,�+

2
]

̂  () ⊆ Apr
[�−

1
,�+

1
]

̂  ().

A special case of ([�−, �+], [�−, �+])-MG-IVFPR-PRS 
with [𝛽−, 𝛽+] = 1̃ − [𝛼−, 𝛼+] < P() < [𝛼−, 𝛼+] is referred 
to as symmetric MG-IVFPR-PRS. One of the advantages 
is that only one parameter needs to be decided. This would 
deduce the cost in evaluation of values of parameters.

Apr
[𝛼−,𝛼+]

� (�)

= {x ∈ U ∶ P(� ∣ [x]�) ≥ [𝛼−, 𝛼+]}

= {x ∈ U ∶ 0̃ ≥ [𝛼−, 𝛼+]}

= �,

Apr
[𝛽−,𝛽+]

� (U)

= {x ∈ U ∶ P(U ∣ [x]�) > [𝛽−, 𝛽+]}

= {x ∈ U ∶ 1̃ ≥ [𝛼−, 𝛼+]}

= U.

Definition 12  Let (U,q(1 ≤ k ≤ m),P) be a MG-IVFPR-
PAS, ̂ be the GCPR constructed by m IVFPRs 
q(1 ≤ q ≤ m) and  = [A−,A+](∈ FI[0,1]

(U)) be a interval-

valued fuzzy event. For ̃0.5 < [𝛼−, 𝛼+] ≤ 1̃ , the [�−, �+]

-multi-granulation interval-valued fuzzy preference relation 
probabilistic lower and upper approximations of  are 
defined, respectively, as follows:

The pair (Apr[�
−,�+]

̂ (), Apr
[�−,�+]

̂ ()) , is called [�−, �+]

-multi-granulation interval-valued fuzzy preference relation 
probabilistic rough set ( [�− , �+]-MG-IVFPR-PRS) of  . The 
positive, negative and boundary regions of  are defined, 
respectively, as follows:

From Definition 12, the following assertions are clear.

Proposition 5  Let (U,q(1 ≤ k ≤ m),P) be a MG-IVFPR-
PAS, ̂ be the GCPR constructed by m IVFPRs 
q(1 ≤ q ≤ m) and , ∈ FI[0,1]

(U) with ̃0.5 < [𝛼−, 𝛼+] ≤ 1̃ . 

The following properties hold.

(1)	 Apr
[𝛼−,𝛼+]

� () ⊆ Apr
[𝛼−,𝛼+]

� ().

Apr
[�−,�+]

̂ () = {xi ∈ U(1 ≤ i ≤ n) ∶

P( ∣ [xi]̂) ≥ [�−, �+]},

Apr
[𝛼−,𝛼+]

� () = {xi ∈ U(1 ≤ i ≤ n) ∶

P( ∣ [xi]�) > 1̃ − [𝛼−, 𝛼+]}.

POS[�
−,�+]() = Apr

[�−,�+]

̂ ()

= {xi ∈ U(1 ≤ i ≤ n) ∶

P( ∣ [xi]̂) ≥ [�−, �+]}

NEG[�−,�+]() = (Apr
[�−,�+]

̂ ())c

= {xi ∈ U(1 ≤ i ≤ n) ∶

P( ∣ [xi]̂) ≤ [�−, �+]},

BND[𝛼−,𝛼+]()

= Apr
[𝛼−,𝛼+]

� () − Apr
[𝛼−,𝛼+]

� ()

= {xi ∈ U(1 ≤ i ≤ n) ∶

1̃ − [𝛼−, 𝛼+] < P( ∣ [xi]�) < [𝛼−, 𝛼+]}.
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(2)	 Apr
[�−,�+]

̂ (�) = Apr
[�−,�+]

̂ (�) = �  ,  Apr
[�−,�+]

̂ (U) =

Apr
[�−,�+]

̂ (U) = U.

(3)	 If  ⊆  , then Apr[𝛼
−,𝛼+]

� () ⊆ Apr
[𝛼−,𝛼+]

� () and 

Apr
[𝛼−,𝛼+]

� () ⊆ Apr
[𝛼−,𝛼+]

� ().
(4)	 If ̃0.5 < [𝛼−

1
, 𝛼+

1
] ≤ [𝛼−

2
, 𝛼+

2
] ≤ 1̃ , then Apr[�

−
2
,�+

2
]

̂ ()

⊆ Apr
[𝛼−

1
,𝛼+

1
]

� () and Apr
[𝛼−

1
,𝛼+

1
]

� () ⊆ Apr
[𝛼−

2
,𝛼+

2
]

� ().

The above two kinds of  MG-IVFPR-PRSs, 
([�−, �+], [�−, �+])-MG-IVFPR-PRS and [�− , �+]-MG-
IVFPR-PRS are parameter-related, i.e., all needs to evaluate 
values of parameters when applying them. In the follow-
ing, we introduce another two kinds of MG-IVFPR-PRSs, 
their parameter free, i.e., which do not have undetermined 
parameter.

Definition 13  Let (U,q(1 ≤ k ≤ m),P) be a MG-IVFPR-
PAS, ̂ be the GCPR constructed by m IVFPRs 
q(1 ≤ q ≤ m) , and  = [A−,A+](∈ F

�[0,1]
(U)) be a interval-

valued fuzzy event. The ̃0.5-multi-granulation interval-val-
ued fuzzy preference relation probabilistic lower and upper 
approximations of  are defined, respectively, as follows:

The pair (Apr ̃0.5

� (), Apr
̃0.5

� ()) is called ̃0.5-multi-granula-

tion interval-valued fuzzy preference relation probabilistic 
rough set (  ̃0.5-MG-IVFPR-PRS) of  . The positive, nega-
tive, and boundary regions of  are defined, respectively, as 
follows:

Apr
̃0.5

� () = {xi ∈ U(1 ≤ i ≤ n) ∶

P( ∣ [xi]�) > ̃0.5},

Apr
̃0.5

� () = {xi ∈ U(1 ≤ i ≤ n) ∶

P( ∣ [xi]�) ≥ ̃0.5}.

POS
̃0.5() = Apr

̃0.5

� ()

= {xi ∈ U(1 ≤ i ≤ n) ∶

P( ∣ [xi]�) > ̃0.5};

NEG
̃0.5() = (Apr

̃0.5

� ())c

= {xi ∈ U(1 ≤ i ≤ n) ∶

P( ∣ [xi]�) < ̃0.5};

From Definition 13, the following assertions are clear.

Proposition 6  Let (U,q(1 ≤ k ≤ m),P) be a MG-IVFPR-
PAS, ̂ be the GCPR constructed by m IVFPRs 
q(1 ≤ q ≤ m) and , ∈ FI[0,1]

(U). The following proper-

ties hold.

(1)	 Apr
̃0.5

� () ⊆ Apr
̃0.5

� ().

(2)	 Apr
̃0.5

� (�) = Apr
̃0.5

R̃
(�) = � ; Apr ̃0.5

� (U) = Apr
̃0.5

� (U) = U.

(3)	 I f   ⊆   ,  t h e n  Apr
̃0.5

� () ⊆ Apr
̃0.5

� ()  a n d 

Apr
̃0.5

� () ⊆ Apr
̃0.5

� ().
Definition 14  Let (U,q(1 ≤ k ≤ m),P) be a MG-IVFPR-
PAS, ̂ be the GCPR constructed by m IVFPRs 
q(1 ≤ q ≤ m) and  = [A−,A+](∈ FI[0,1]

(U)) be a interval-

valued fuzzy event. The Bayesian multi-granulation interval-
valued fuzzy preference relation probabilistic lower and 
upper approximations of  are defined, respectively, as 
follows:

The pair (AprP()

̂ (), Apr
P()

̂ ()) , is called Bayesian multi-

granulation interval-valued fuzzy preference relation proba-
bilistic rough set (B-MG-IVFPR-PRS) of  . The positive, 
negative, and boundary regions of  are defined, respec-
tively, as follows:

BND
̃0.5() = Apr

̃0.5

� () − Apr
̃0.5

� ()

= {xi ∈ U(1 ≤ i ≤ n) ∶

P( ∣ [xi]�) = ̃0.5}.

Apr
P()

� () = {xi ∈ U(1 ≤ i ≤ n) ∶

P( ∣ [xi]�) > P(},

Apr
P()

̂ () = {xi ∈ U(1 ≤ i ≤ n) ∶

P( ∣ [xi]̂) ≥ P()}.

POSP()() = Apr
P()

� ()

= {xi ∈ U(1 ≤ i ≤ n) ∶

P( ∣ [xi]�) > P()};
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From Definition 14, the following assertions are clear.

Proposition 7  Let (U,q(1 ≤ k ≤ m),P) be a MG-IVFPR-
PAS, ̂ be the GCPR constructed by m IVFPRs 
q(1 ≤ q ≤ m) and  ∈ FI[0,1]

(U) . The following properties 

hold.

(1)	 Apr
P()

� () ⊆ Apr
P()

� ().

(2)	 Apr
P()

̂ (�) = Apr
P()

̂ (U) = �, 

Apr
P()

̂ (�) = Apr
P()

̂ (U) = U.

3.2 � Bayesian decision procedure 
within MG‑IVFPR‑PAS

We mainly discuss, in this section, DTRS approach for 
IVFSs in the framework of MG-IVFPR-PAS, i.e., the MG-
IVFPR-DTRS approach.

Let (U,q(1 ≤ k ≤ m),P) be a MG-IVFPR-PAS, ̂ be 
the GCPR constructed by m IVFPRs q(1 ≤ q ≤ m) . The 
Bayesian decision procedure adopts two states and three 
actions to describe the decision process. The set of states 
is given by Ω = {,c} , where  is an IVFS. The set  of 
actions is {aP, aN , aB} , where aP , aN , and aB represent the 
three actions in classifying an object, namely, deciding 
POS() , deciding NEG() , and deciding BND() , respec-
tively. The interval-valued loss function � is given by a 3 × 2 
interval-valued matrix shown in Table 1.

The expected losses of taking the individual actions for 
element x are computed (expressed) as follows:

NEGP()() = (Apr
P()

� ())c

= {xi ∈ U(1 ≤ i ≤ n) ∶

P( ∣ [xi]�) < P()};

BNDP()() = Apr
P()

̂ () − Apr
P()

̂ ()

= {xi ∈ U(1 ≤ i ≤ n) ∶

P( ∣ [xi]̂) = P()}.

(27)
P = (aP ∣ [xi]̂)

= �PPP( ∣ [xi]̂) + �PNP(c ∣ [xi]̂);

(28)
N = (aN ∣ [xi]̂)

= �NPP( ∣ [xi]̂) + �NNP(c ∣ [xi]̂);

(29)
B = (aB ∣ [xi]̂)

= �BPP( ∣ [xi]̂) + �BNP(c ∣ [xi]̂).

Note that, for example, due to the interval values of �PP 
and P( ∣ [xi]̂) , the product of Eq. (27) is defined by for-
mula (4) and the addition operator, ⊕ , is defined by for-
mula (3). For each element xi ∈ U(1 ≤ i ≤ n) , the IVFS [xi]̂ 
is adopted as the description of xi(1 ≤ i ≤ n) and defined in 
Definition 3.3. The Bayesian decision procedure leads to the 
following three minimum-risk decision rules:

	(P1)	 If P ≤ B and P ≤ N , then decide xi ∈ POS().
	(N1)	 If N ≤ P and N ≤ B , then decide xi ∈ NEG().
	(B1)	 For remaining elements xi ∈ U(1 ≤ i ≤ n) satisfying 

neither (P1) nor (N1), decide xi ∈ BND().

Since the equation P( ∣ [xi]̂) + P(c ∣ [xi]̂) = 1̃ does not 
hold in general. Therefore, to simplify the following discus-
sion, we denote

Then, by Proposition 2 and Remark 1, we have

As a result, the losses for taking actions aP , aB and aN can 
be expressed as

From Eqs. (32)–(34), we have the following equivalences:

(1)	 (a
P
∣ [x

i
]̂) ≤ (a

B
∣ [x

i
]̂) ⇔ (�−

BP
− �−

PP
)(P1 ∧ p2)≥ (�−

PN
− �−

BN
)(1 − p3 ∨ p4)  ,  (�+

BP
− �+

PP
)(P1 ∨ p2) ≥

(�−
PN

− �−
BN
)(1 − p3 ∧ p4);

(2)	 (a
P
∣ [x

i
]̂) ≤ (a

N
∣ [x

i
]̂) ⇔ (�−

NP
− �−

PP
)(P1 ∧ p2)≥ (�−

PN
− �−

NN
)(1 − p3 ∨ p4)  ,  (�+

NP
− �+

PP
)(P1 ∨ p2) ≥

(�−
PN

− �−
NN

)(1 − p3 ∧ p4);

P(A− ∣ [xi]̂−) = p1,P(A
+ ∣ [xi]̂+) = p2,

P(A+ ∣ [xi]̂−) = p3,P(A
− ∣ [xi]̂+) = p4.

(30)P( ∣ [xi]̂) = [p1 ∧ p2, p1 ∨ p2],

(31)P(c ∣ [xi]̂) = [1 − p3 ∨ p4, 1 − p3 ∧ p4].

(32)

(aP ∣ [xi]̂)
= [�−

PP
(P1 ∧ p2) + �−

PN
(1 − p3 ∨ p4),

�+
PP
(P1 ∨ p2) + �+

PN
(1 − p3 ∧ p4)];

(33)

(aN ∣ [xi]̂)
= [�−

NP
(P1 ∧ p2) + �−

NN
(1 − p3 ∨ p4),

�+
NP
(P1 ∨ p2) + �+

NN
(1 − p3 ∧ p4)];

(34)

(aB ∣ [xi]̂)
= [�−

BP
(P1 ∧ p2) + �−

BN
(1 − p3 ∨ p4),

�+
BP
(P1 ∨ p2) + �+

BN
(1 − p3 ∧ p4)].
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(3)	 (a
N
∣ [x

i
]̂) ≤ (a

P
∣ [x

i
]̂) ⇔ (�−

NP
− �−

PP
)(P1 ∧ p2)≥ (�−

PN
− �−

NN
)(1 − p3 ∨ p4),   (�+

NP
− �+

PP
)(P1 ∨ p2) ≥

(�−
PN

− �−
NN

)(1 − p3 ∧ p4);

(4)	 (a
N
∣ [x

i
]̂) ≤ (a

B
∣ [x

i
]̂) ⇔ (�−

NP
− �−

BP
)(P1 ∧ p2)≥ (�−

BN
− �−

NN
)(1 − p3 ∨ p4),   (�+

NP
− �+

BP
)(P1 ∨ p2) ≥

(�−
BN

− �−
NN

)(1 − p3 ∧ p4).

Consider a special kind of loss function:

That is, the loss of classifying an object xi in state  into the 
positive region POS() is less than or equal to the loss of 
classifying xi(1 ≤ i ≤ n) into the boundary region BND() , 
and both of these losses are less than the loss of classifying 
xi(1 ≤ i ≤ n) into the negative region NEG() . The reverse 
order of losses is used for classifying an object that does not 
in state .

From Eq. (35) that

(35)
𝜆∗
PP

< 𝜆∗
BP

< 𝜆∗
NP
,

𝜆∗
NN

< 𝜆∗
BN

< 𝜆∗
PN
, (∗= −,+).

(aP ∣ [xi]̂) ≤ (aB ∣ [xi]̂)

⇔ p1 ∧ p2 ≥ �−
PN

− �−
BN

�−
BP

− �−
PP

(1 − p3 ∨ p4),

p1 ∨ p2 ≥ �+
PN

− �+
BN

�+
BP

− �+
PP

(1 − p3 ∧ p4);

(aP ∣ [xi]̂) ≤ (aN ∣ [xi]̂)

⇔ p1 ∧ p2 ≥ �−
PN

− �−
NN

�−
NP

− �−
PP

(1 − p3 ∨ p4),

p1 ∨ p2 ≥ �+
PN

− �+
NN

�+
NP

− �+
PP

(1 − p3 ∧ p4);

(aN ∣ [xi]̂) ≤ (aP ∣ [xi]̂)

⇔ p1 ∧ p2 ≤ �−
PN

− �−
NN

�−
NP

− �−
PP

(1 − p3 ∨ p4),

p1 ∨ p2 ≤ �+
PN

− �+
NN

�+
NP

− �+
PP

(1 − p3 ∧ p4);

Denote parameters

Then, we have the following:

According to condition (35), decision rules (P1)–(N1) can be 
equivalently rewritten as follows based on aforementioned 
analyses:

	(P2)	 I f  P( ∣ [xi]̂) ≥ [�−, �+]P(c ∣ [xi]̂)  a n d 
P( ∣ [xi]̂) ≥ [�−, �+]P(c ∣ [xi]̂) , then decide 
xi ∈ POS();

(aN ∣ [xi]̂) ≤ (aB ∣ [xi]̂)

⇔ p1 ∧ p2 ≤ �−
BN

− �−
NN

�−
NP

− �−
BP

(1 − p3 ∨ p4),

p1 ∨ p2 ≤ �+
BN

− �+
NN

�+
NP

− �+
BP

(1 − p3 ∧ p4).

(36)�− =
�−
PN

− �−
BN

�−
BP

− �−
PP

, �+ =
�+
PN

− �+
BN

�+
BP

− �+
PP

,

(37)�− =
�−
PN

− �−
NN

�−
NP

− �−
PP

, �+ =
�+
PN

− �+
NN

�+
NP

− �+
PP

,

(38)�− =
�−
BN

− �−
NN

�−
NP

− �−
BP

, �+ =
�+
BN

− �+
NN

�+
NP

− �+
BP

.

(aP ∣ [xi]̂) ≤ (aB ∣ [xi]̂)
⇔ P( ∣ [xi]̂) ≥ [�−, �+]P(c ∣ [xi]̂),

(aP ∣ [xi]̂) ≤ (aN ∣ [xi]̂)
⇔ P( ∣ [xi]̂) ≥ [�−, �+]P(c ∣ [xi]̂),

(aN ∣ [xi]̂) ≤ (aP ∣ [xi]̂)
⇔ P( ∣ [xi]̂) ≤ [�−, �+]P(c ∣ [xi]̂),

(aN ∣ [xi]̂) ≤ (aB ∣ [xi]̂)
⇔ P( ∣ [xi]̂) ≤ [�−, �+]P(c ∣ [xi]̂).

Table 1   Interval-valued loss 
function, [�] , for IVFS   : positive c : negative

a
P
 : accept �

PP
= �(a

P
∣ ) = [�−

PP
, �+

PP
] �

PN
= �(a

P
∣ c) = [�−

PN
, �+

PN
]

a
N

 : reject �
NP

= �(a
N
∣ ) = [�−

NP
, �+

NP
] �

NN
= �(a

N
∣ c) = [�−

NN
, �+

NN
]

a
B
 : defer �

BP
= �(a

B
∣ ) = [�−

BP
, �+

BP
] �

BN
= �(a

B
∣ c) = [�−

BN
, �+

BN
]



100	 Granular Computing (2019) 4:89–108

1 3

	(N2)	 I f  P( ∣ [xi]̂) ≤ [�−, �+]P(c ∣ [xi]̂)  a n d 
P( ∣ [xi]̂) ≤ [�−, �+]P(c ∣ [xi]̂) , then decide 
xi ∈ NEG();

	(B2)	 For remaining elements xi ∈ U(1 ≤ i ≤ n) satisfying 
neither (P2) nor (N2), decide xi ∈ BND().

If the loss function still satisfies the following conditions:

then it follows that 𝛼∗ > 𝛾∗ > 𝛽∗ . For the same time, we have

Thus, the decision rules (P2)–(N2) can be obtained under 
conditions (35) and  (39):

	(P3)	 If P( ∣ [xi]̂) ≥ [�−, �+]P(c ∣ [xi]̂) , then decide 
xi ∈ POS();

	(N3)	 If P( ∣ [xi]̂) ≤ [�−, �+]P(c ∣ [xi]̂) , then decide 
xi ∈ NEG();

	(B3)	 For remaining elements xi ∈ U(1 ≤ i ≤ n) satisfying 
neither (P3) nor (N3), decide xi ∈ BND().

Let us consider another condition of loss function:

If the loss function satisfies conditions (35) and  (40), it then 
follows that �∗ = �∗ = �∗ . Thus, we have

When the losses of classifying xi into POS() and BND() 
are the same, we decide xi ∈ BND() . Similarly, when 
the losses of classifying xi into NEG() and BND() are 
the same, we decide xi ∈ BND () . According to this tie-
breaking criteria and the equivalences (41) and  (42), the 

(39)
𝜆∗
PN

− 𝜆∗
BN

𝜆∗
BP

− 𝜆∗
PP

>
𝜆∗
BN

− 𝜆∗
NN

𝜆∗
NP

− 𝜆∗
BP

, (∗= −,+),

P( ∣ [xi]̂) ≥ [�−, �+]P(c ∣ [xi]̂)
⇒ P( ∣ [xi]̂) ≥ [�−, �+]P(c ∣ [xi]̂),

P( ∣ [xi]̂) ≤ [�−, �+]P(c ∣ [xi]̂)
⇒ P( ∣ [xi]̂) ≤ [�−, �+]P(c ∣ [xi]̂).

(40)
�∗
PN

− �∗
BN

�∗
BP

− �∗
PP

=
�∗
BN

− �∗
NN

�∗
NP

− �∗
BP

, (∗= −,+).

(41)
P( ∣ [xi]̂) ≥ [�−, �+]P(c ∣ [xi]̂)

⇔ P( ∣ [xi]̂) ≥ [�−, �+]P(c ∣ [xi]̂),

(42)

P( ∣ [xi]̂) ≤ [�−, �+]P(c ∣ [xi]̂)
⇔ P( ∣ [xi]̂) ≤ [�−, �+]P(c ∣ [xi]̂)
⇔ P( ∣ [xi]̂) ≤ [�−, �+]P(c ∣ [xi]̂).

following simplified and equivalent forms of decision rules 
(P2)–(N2) are obtained:

	(P4)	 If P( ∣ [xi]�) > [𝛼−, 𝛼+] , then decide xi ∈ POS();
	(N4)	 If P( ∣ [xi]�) < [𝛼−, 𝛼+] , then decide xi ∈ NEG();
	(B4)	 For remaining elements xi ∈ U(1 ≤ i ≤ n) satisfying 

neither (P4) nor (N4), decide xi ∈ BND().

Remark 2  Since  the order relation defined in Eq. (6) is par-
tial. Therefore, the situation in some cases must be arise two 
intervals cannot compare directly. In this cases, we adopt the 
comparing methods as given in Liang and Liu (2014). The 
method is described as follows:

Let [a−, a+], [b−, b+] ∈ �
ℝ+ and � ∈ [0, 1] is constant. 

If M�([a
−, a+]) ≤ M�([b

−, b+]) , then [a−, a+] ≤ [b−, b+] , 
and vice versa, where M�([a

−, a+]) = (1 − �)a− + �a+ and 
M�([b

−, b+] ) = (1 − �)b− + �b+ . Where M� is a transformed 
outcome and � reflects the risk attitude of decision maker.

The above compare method is applied only for those situ-
ations when the two intervals cannot be compare directly.

4 � An approach to group decision‑making 
based on MG‑IVFPR‑PRS

Based on the MG-IVFPR-PRS model in Sect. 3, it is requi-
site to consider their applications in group decision-making 
problems. In what follows, we give the algorithm to solve 
the group decision-making problem with MG-IVFPR-PRS.

4.1 � An algorithm

With the help of the results in Sect. 3, we design the algo-
rithm of group decision-making based on the MG-IVFPR-
PRS model and their corresponding 3WDs. The key steps 
are elaborated as follows:

Step 1: Suppose that a group decision-making problem 
has a set of alternatives U = {x1, x2,… , xn}. Assume that 
there are m decision makers e1, e2,… , em provides m IVF-
PRs 1,2,… ,m to evaluate his/her judgments on U.

Step 2: Using Algorithm 1, to construct GCPR ̂ for all 
decision makers.

Step 3: Presenting the values of  is the incomplete 
available information of all the characteristic factors 
xi(i = 1, 2,… , n).

Step 4: Presenting the values of P(xi) = pi(i = 1, 2,… , n) 
is the possible existence of random available information of 
all of xi(i = 1, 2,… , n).

Step 5: Based on Eq. (24), computing the conditional 
probability P( ∣ [xi]̂) (i = 1, 2,… , n).
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Step 6: Based on Eq. (36), computing the conditional 
probability P(c ∣ [xi]̂) (i = 1, 2,… , n).

Step 7: Presenting the values of loss function �Δ∇ 
(Δ = P,B,N;∇ = P,N) according to Table 1.

Step 8: If the values of loss functions satisfy the condi-
tions (35) and (39), then go to Step 9. Otherwise, we need 
to assign a new values of loss functions and go to Step 5.

Step 9: Based on Eqs. (36)–(38), calculate the thresholds 
[�−, �+] , [�−, �+] and [�−, �+].

Step 10: Using Eq. (4), computing [�−, �+]P(c ∣ [xi]̂) 
(i = 1, 2,… , n) and [�−, �+]P(c ∣ [xi]̂) (i = 1, 2,… , n).

Step 11:  I f  P( ∣ [xi]̂) (i = 1, 2,… , n) com-
pare directly [�−, �+]P(c ∣ [xi]̂) (i = 1, 2,… , n) and 
[�−, �+]P(c ∣ [xi]̂) (i = 1, 2,… , n) , then go to Step 13. 
Otherwise, go to Step 12.

Step 12: Based on Remark 2, transform P( ∣ [xi]̂) 
(i = 1, 2,… , n) , [�−, �+]P(c ∣ [xi]̂) (i = 1, 2,… , n) and 
[�−, �+]P(c ∣ [xi]̂) (i = 1, 2,… , n) to M�(P( ∣ [xi]̂)) 
(i = 1, 2,… , n) , M�([�

−, �+]P(c ∣ [xi]̂)) (i = 1, 2,… , n) 
and M�([�

−, �+]P(c ∣ [xi]̂)) (i = 1, 2,… , n) with a certain 
value of � ∈ [0, 1] . Then, go to Step 12.

Step 13: Making the decision according to the decision 
rules (P2)–(N2).

4.2 � An illustrative example

In this subsection, we apply the propose algorithm to a 
real group decision-making. This example is about quick 
decision-making based on a real investment context, under 

MG-IVFPR-PRS environment. Furthermore, analysis is 
done to provide to show the feasibility and reasonableness 
of the proposed models.

4.2.1 � Problem description

The various types of mutual funds (MFs) of different com-
panies listed in the Growth Enterprise Market board of the 
India Stock Exchange are a popular investment source to 
an investor as a long-term investment. However, the suffi-
cient knowledge about the various types of MFs of different 
companies is always not possible for every investor. Our 
proposed models are effective for those investors. Suppose 
an investor plans to invest his/her money in MFs of differ-
ent companies, with the aim of high returns, while he/she 
has no sufficient knowledge about all MFs. He/she chooses 
initially five MFs according to the past performances, while 
he/she invests his/her money to the best options out of these 
five MFs. For this, he/she decides to take advice’s from 
three stock market brokers in India. For making reasonable 
options, we have the following decision analysis.

4.2.2 � Decision analysis

We use the algorithm in Sect. 4.1 of decision analysis based 
on MG-IVFPR-PRSs for group decision-making.

Step 1: Suppose U = {x1, x2, x3, x4, x5} be the five MFs 
and E = {e1, e2, e3} be the three brokers. Assume that these 
three brokers provide his/her judgments using IVFPRs, 
which represent in Eqs. (43)–(45).

R1(xi, xj) =

R1(xi, xj) x1 x2 x3 x4 x5
x1 [0.5, 0.5] [0.6, 0.8] [0.7, 1] [0.2, 0.3] [0.4, 0.5]
x2 [0.2, 0.4] [0.5, 0.5] [0.4, 0.6] [0.7, 0.8] [0.3, 0.5]
x3 [0, 0.3] [0.4, 0.6] [0.5, 0.5] [0.6, 0.9] [0.4, 0.7]
x4 [0.7, 0.8] [0.2, 0.3] [0.1, 0.4] [0.5, 0.5] [0.3, 0.4]
x5 [0.5, 0.6] [0.5, 0.7] [0.3, 0.6] [0.6, 0.7] [0.5, 0.5]

, (43)

R2(xi, xj) =

R2(xi, xj) x1 x2 x3 x4 x5
x1 [0.5, 0.5] [0.5, 0.7] [0.8, 0.9] [0.3, 0.5] [0.3, 0.6]
x2 [0.3, 0.5] [0.5, 0.5] [0.6, 0.7] [0.5, 0.6] [0.4, 0.5]
x3 0.1, 0.2] [0.3, 0.4] [0.5, 0.5] 0.7, 0.9] [0.6, 0.7]
x4 [0.5, 0.7] [0.4, 0.5] [0.1, 0.3] [0.5, 0.5] [0.5, 0.6]
x5 [0.4, 0.7] [0.5, 0.6] [0.3, 0.4] [0.4, 0.5] [0.5, 0.5]

, (44)

R3(xi, xj) =

R3(xi, xj) x1 x2 x3 x4 x5
x1 [0.5, 0.5] [0.7, 0.9] [0.8, 1] [0.4, 0.5] [0.3, 0.4]
x2 [0.1, 0.3] [0.5, 0.5] [0.6, 0.7] [0.4, 0.7] [0.4, 0.6]
x3 [0, 0.2] [0.3, 0.4] [0.5, 0.5] [0.7, 0.8] [0.5, 0.8]
x4 [0.5, 0.6] [0.3, 0.6] [0.2, 0.3] [0.5, 0.5] [0.4, 0.7]
x5 [0.6, 0.7] [0.4, 0.6] [0.2, 0.5] [0.3, 0.6] [0.5, 0.5]

. (45)
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Step 2: Using Algorithm 1, to construct GCPR ̂ for all 
brokers, which represent in Eq. (46).

Step 3: Let IVFS

be the quantitative description of all the characteristic factors 
xi(i = 1, 2, 3, 4, 5) according to the available inaccurate and 
insufficient information.

Step 4: Let {0.15, 0.13, 0.24, 0.18, 0.3} be the pos-
sible existence of random available information of 
xi(i = 1, 2, 3, 4, 5).

Step 5: Using Eq. (24), we compute the conditional prob-
ability P( ∣ [xi]̂) (i = 1, 2, 3, 4, 5) as follows:

Step 6: Using Eq. (36), we compute the conditional prob-
ability P(c ∣ [xi]̂) (i = 1, 2, 3, 4, 5) as follows:

Step 7: Suppose that the loss function is given as fol-
lows: �PP = [1, 2] , �BP = [3, 5] , �NP = [5, 8] , �NN = [0, 1] , 
�BN = [5, 7.6] , and �PN = [11, 15.1].

Step 8: Since the given loss functions satisfy the condi-
tions (35) and (39).

Step 9: Based on Eqs.  (36)–(38), we compute the thresh-
olds values: [�−, �+] = [3 , 2.5], [�−, �+] = [2.75, 2.35] , and 
[�−, �+] = [2.5, 2.2].

R(xi, xj) =

R(xi, xj) x1 x2 x3 x4 x5
x1 [0.5, 0.5] [0.5873, 0.6873] [0.6768, 0.7761] [0.4613, 0.5286] [0.4499, 0.5344]
x2 [0.3127, 0.4127] [0.5, 0.5] [0.5053, 0.5718] [0.5402, 0.6226] [0.4268, 0.5095]
x3 [0.2239, 0.3232] [0.4282, 0.4947] [0.5, 0.5] [0.6018, 0.7021] [0.489, 0.6045]
x4 [0.4714, 0.5387] [0.3774, 0.4598] [0.2979, 0.3982] [0.5, 0.5] [0.4207, 0.5031]
x5 [0.4656, 0.5501] [0.4905, 0.5732] [0.3955, 0.511] [0.4969, 0.5793] [0.5, 0.5]

. (46)

 =
[0.75, 0.85]

x1
+

[0.6, 0.65]

x2
+

[0.85, 0.9]

x3

+
[0.25, 0.35]

x4
+

[0.8, 0.9]

x5

P( ∣ [x1]̂) = [0.6936, 0.7706],

P( ∣ [x2]̂) = [0.6631, 0.7469],

P( ∣ [x3]̂) = [0.657, 0.7372],

P( ∣ [x4]̂) = [0.6545, 0.7565],

P( ∣ [x5]̂) = [0.6703, 0.75].

P(c ∣ [x1]̂) = [0.2288, 0.3066],

P(c ∣ [x2]̂) = [0.2572, 0.334],

P(c ∣ [x3]̂) = [0.2619, 0.3458],

P(c ∣ [x4]̂) = [0.2603, 0.3273],

P(c ∣ [x5]̂) = [0.2466, 0.3316].

Ste p  1 0 :  B a s e d  o n  E q .   ( 4 ) ,  we  c o m -
p u t e  [�−, �+]P(c ∣ [xi]̂)  (i = 1, 2, 3, 4, 5)  a n d 

[�−, �+]P(c ∣ [xi]̂) (i = 1, 2, 3, 4, 5) as follows:

and

Step 11: Since P( ∣ [xi]̂) cannot be compared directly 
[�−, �+]P(c ∣ [xi]̂) and [�−, �+]P(c ∣ [xi]̂) for all 
(i = 1, 2, 3, 4, 5) . Then, go to Step 12.

Step 12: Based on Remark 2, we transform P( ∣ [xi]̂) , 
[�−, �+]P( ∣ [xi]̂) , and [�−, �+]P( ∣ [xi]̂) with different 
values of � . The results are shown in Figs. 2, 3, and 4.

Step 13: According to the decision rules (P2)–(N2), the 
decision results are shown in Table 2 with different values 
of �.

From Table 2, we can see that the smaller value of � , the 
decision results may be different for the higher value of � . 
However, the decision results are unchanged from certain 
stage with the increasing of � . For clarity, we display the 
decision results in Fig. 8. In this paper, we suggest that an 
appropriate value of � is between 0.5 and 1 due to the fact 
that it can get an appropriate decision results.

4.2.3 � The influences of the parameter �

During the decision analysis of group decision-making 
based on MG-IVFPR-PRSs, it involves the parameter � . In 
what follows, we successively analyze this parameter to the 
selection of MFs in details.

[�−, �+]P(c ∣ [x1]̂) = [0.6865, 7666],

[�−, �+]P(c ∣ [x2]̂) = [0.7716, 0.8349],

[�−, �+]P(c ∣ [x3]̂) = [0.7858, 0.8644],

[�−, �+]P(c ∣ [x4]̂) = [0.7808, 0.8182],

[�−, �+]P(c ∣ [x5]̂) = [0.7399, 0.8289],

[�−, �+]P(c ∣ [x1]̂) = [0.5721, 0.6746],

[�−, �+]P(c ∣ [x2]̂) = [0.6430, 0.7347],

[�−, �+]P(c ∣ [x3]̂) = [0.6548, 0.7607],

[�−, �+]P(c ∣ [x4]̂) = [0.6506, 0.7200],

[�−, �+]P(c ∣ [x5]̂) = [0.6166, 0.7294].
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1.	 The transform outcomes values of P( ∣ [xi]̂) , 
[�−, �+]P( ∣ [xi]̂) , and [�−, �+]P( ∣ [xi]̂) with dif-
ferent values of � . Based on Remark 2, the transform 
outcomes of P( ∣ [xi]̂) , [�−, �+]P( ∣ [xi]̂) , and 
[�−, �+]P( ∣ [xi]̂) with different values of � are fur-
ther discussed in Figs. 5, 6, and 7. With regard to the 
results of Figs. 5, 6, and 7, we find that the transform 
outcomes of P( ∣ [xi]̂) , [�−, �+]P( ∣ [xi]̂) , and 
[�−, �+]P( ∣ [xi]̂) are increasing with the increasing 
of �.

Fig. 2   Transform outcomes of P( ∣ [x
i
]̂) with different values of �

Fig. 3   Transform outcomes of [�−, �+]P( ∣ [x
i
]̂) with different val-

ues of �

Fig. 4   Transform outcomes of [�−, �+]P( ∣ [x
i
]̂) with different val-

ues of �

Table 2   Decision results for different risk attitude of decision maker

� Positive region Negative region Boundary region

0 x1 ∅ x2, x3, x4, x5

0.1 x1 ∅ x2, x3, x4, x5

0.2 x1 x3 x2, x4, x5

0.3 x1 x3 x2, x4, x5

0.4 x1 x3 x2, x4, x5

0.5 x1 x3 x2, x4, x5

0.6 x1 x3 x2, x4, x5

0.7 x1 x3 x2, x4, x5

0.8 x1 x3 x2, x4, x5

0.9 x1 x3 x2, x4, x5

1 x1 x3 x2, x4, x5
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2.	 The decision rules with different values of � Continu-
ing the discussion of Figs. 5, 6, and 7, we deduce the 
decision rules with different values of � . On the basis of 
the condition [𝛼−, 𝛼+] > [𝛽−, 𝛽+] > [𝛾−, 𝛾+] , we gener-

ate decision rules (P2)–(N2), i.e., POS() , NEG() and 
BND() . With respect to (P2)–(N2), the three decision 
regions rely on the values of [�−, �+]P( ∣ [xi]̂) and 

Fig. 5   Transform outcomes of P( ∣ [x
i
]̂) with different values of �

Fig. 6   Transform outcomes of [�−, �+]P( ∣ [x
i
]̂) with different values of �.
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[�−, �+]P( ∣ [xi]̂) . Hence, the decision rules with dif-
ferent values of � are described in Fig. 8.

4.3 � Comparisons of the proposed model and other 
existing models in group decision‑making 
problems

1.	 Comparison with IVF-PRS model The IVF-PRS model 
in Zhao and Hu (2016) is established based on single 

interval-valued fuzzy relation (IVFR), so the model in 
Zhao and Hu (2016) cannot deal with group decision-
making problems with preference analysis. The MG-
IVFPR-PRS model proposed in the present paper is 
based on multiple IVFPRs, which can deal group deci-
sion-making problems with preference analysis. Hence, 
the application domain of the MG-IVFPR-PRS model is 
wider than that of the IVF-PRS model in Zhao and Hu 
(2016).

Fig. 7   Transform outcomes of [�−, �+]P( ∣ [x
i
]̂) with different values of �

Fig. 8   Decision rules with dif-
ferent values of �
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2.	 Comparison with IVF-DTRS approach The interval-
valued decision-theoretic rough set approach in Liang 
and Liu (2014) is established based on single classical 
equivalence relation and consider that only the loss func-
tion is interval-valued. The IVF-DTRS approach in Zhao 
and Hu (2016) is established based on single IVFR and 
also consider that the loss function is interval-valued. 
However, these approaches cannot be dealt with group 
decision-making with preference analysis. Our proposed 
approaches can do it.

3.	 Comparison with group decision-making method based 
on IVFPRs The method for group decision-making in 
Chen et al. (2015) is established on IVFPRs and consist-
ency matrices. Using this model, the decision results 
are obtained only on the basis of experts’ suggestions 
which cannot consider the incomplete available informa-
tion and the existence of random available information. 
However, we cannot avoid it for obtaining more accurate 
decision results. If we consider these two types available 
information, the obtained decision results may be differ-
ent. For instance, if we obtain the decision results to pro-
pose example, using the method in Chen et al. (2015), 
the best option is x1 and the worst option is x4 . However, 
if we use the method proposed in the present paper, the 
best option is x1 (positive region) and the worst option 
is x3 (negative region).

5 � Conclusion

This paper investigates MG-IVFPR-PRS models within 
the frameworks of MG-IVFPR-PAS and GCPR. Using this 
model, we have presented an approach for group decision-
making, which is basis of the experts’ suggestions, the 
incomplete available information, and the existence of 
random available information of the objects. The proposed 
method provides us with a useful way for group decision-
making using MG-IVFPR-PRS model based on IVFPRs and 
consistency matrices.

In this paper, we cannot consider the mathematical way to 
find the optimal value of the parameter � ; however, it plays 
important role for the decision analysis of group decision-
making based on MG-IVFPR-PRSs. To address this issue, 
we use optimization techniques as given by Tsai et al. (2008, 
2012), Chen and Huang (2003), Chen and Chung (2006) and 
Chen and Chien (2011) in our future concerns.
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