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Abstract
Presently, from the viewpoint of rough set, most of the attribute reductions are only suitable for analyzing samples with com-
plete labels. However, in many real-world applications, it is difficult to acquire the detailed labels of all samples, it follows that 
many attribute reductions may be ineffective for data with both labeled and unlabeled samples, i.e., partially labeled data. To 
fill such a gap, the attribute reduction is explored by neighborhood rough set over partially labeled data. First, two different 
measurements are combined for evaluating the importance of attribute, which comes from the labeled and unlabeled samples, 
respectively. Second, a heuristic algorithm is re-designed using such combined importance for computing reduct. Finally, 
by considering several different ratios of missing labels over UCI datasets, the experimental results demonstrate that the 
reducts derived by our approach not only reduce the degree of uncertainty, but also offer us better classification performance. 
Therefore, the main contribution of this paper is to construct an effective attribute reduction strategy for partially labeled 
data. Moreover, this research also suggests new applications for considering attribute reduction problems in complex data.
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1  Introduction

Rough set theory, introduced by Pawlak (1992), is an 
effective tool for handling the vagueness, imprecision and 
uncertainty (Zadeh 1965) in data. With more than 30 years 
of development, such method has been widely applied to 

Feature Selection (Min and Xu 2016; Swiniarski and Skow-
ron 2003; Wang et al. 2018), Pattern Recognition (Dai et al. 
2013; Hu et al. 2016), Granular Computing (Huang and 
Li 2018; Pedrycz and Chen 2011, 2015; Peter et al. 2003; 
Polkowski and Artiemjew 2015; Wang 2017; Wang et al. 
2017; Zhi and Li 2018), Knowledge Discovery (Mi et al. 
2004; Wu et al. 2016) and so on. Specially, as what has been 
pointed out by Chen et al. (2012), attribute reduction (Ju 
et al. 2017; Xu et al. 2016) has been considered as one of 
the most representative topics in rough set theory, which can 
be distinguished from other techniques of Feature Selection. 
This is mainly because: (1) attribute reductions have clear 
semantic explanations; (2) many measurements developed 
in rough set can be used to design constraints in attribute 
reductions.

Presently, it has been reported that attribute reduction 
aims to remove the redundant attributes with a given con-
straint. Various measurements such that approximate quality 
(Pawlak and Skowron 2007), conditional entropy (Hu et al. 
2006) and so on have been employed to define constraints. 
Note that most of the measurements are generally derived 
from the relationship between conditional attributes and 
decision attribute. Therefore, the values over decision attrib-
ute, i.e., labels are required for exploring attribute reduction. 
From this point of view, most of the attribute reductions may 
only be performed over data without missing labels.
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In many real-world applications (Chen and Chang 2011; 
Chen and Chen 2009; Chen and Tanuwijaya 2011; Wang 
and Chen 2008), acquiring complete data is a difficult task. 
Generally speaking, the difficulties in labeling samples 
include two aspects. On the one hand, the correct labels 
may be unknown. For example, when adopting computer 
technology to aid medical institution in analyzing medi-
cal image, it is practically impossible for doctors or even 
experienced experts to locate the nidus (Zhou and Li 2010). 
Consequently, the cases of illness (labels) may be unknown. 
On the other hand, labeling samples is hard, expensive and 
time consuming as it costs too many efforts. For instance, in 
this era abounding with social media and connectivity, web 
users are becoming increasingly obsessed with interacting 
and sharing with their phones or computers. Along with this 
process, data are becoming extremely complex and it is hard 
for network supervisor to label all samples. To sum up, data 
with both labeled and unlabeled samples can be seen eve-
rywhere, and such type of data is referred to as the partially 
labeled data (Dai et al. 2017; Liu et al. 2018).

Up to now, most of the previous attribute reductions fail 
to consider the partially labeled data. Therefore, the motiva-
tions of this paper are: (1) how to handle the partially labeled 
data for realizing attribute reduction; (2) how to preserve or 
even improve the various performances of the reducts derived 
from the partially labeled data. For such reasons, we propose 
a novel attribute reduction approach to partially labeled data. 
The main process of our approach includes two steps: (1) con-
sidering that the approximate quality and binary relation can 
be used to evaluate the importance of attribute, which comes 
from labeled and unlabeled samples, respectively, the new 
importance can be expressed by combining such two meas-
urements; (2) the significance function [also fitness function 
(Yang and Yao 2018)] can be constructed based on such new 
importance, correspondingly, a heuristic algorithm can be 
re-designed for computing reduct over partially labeled data.

Note that the neighborhood rough set (Hu et al. 2008b) 
is employed to realize the topic addressed in this paper. It is 
mainly because compared with other rough sets, neighbor-
hood rough set has obvious advantages. Take the compari-
son between neighborhood rough set and fuzzy rough set 
(Dubois and Prade 1990) as an example, it is well known 
that (1) similar to classical rough set, the approximations 
obtained by neighborhood rough set are clear, while those 
obtained by fuzzy rough set are still fuzzy; (2) neighborhood 
rough set provides us a framework for handling continuous 
or even mixed data (Hu et al. 2008a), while fuzzy rough set 
is limited to continuous data.

The main contribution of our research includes two aspects: 
(1) a new importance for attribute reduction over partially 
labeled data is proposed, a heuristic algorithm based on such 
importance can be re-designed for computing reduct over par-
tially labeled data; (2) through introducing the neighborhood 

rough set into our approach, the experimental results over sev-
eral UCI datasets demonstrate that our approach is effective in 
selecting qualified attributes from partially labeled data.

The rest of this paper is organized as follows. Section 2 
reviews some basic notations of rough set and definition of attrib-
ute reduction. The new importance for partially labeled data and 
the corresponding neighborhood attribute reduction approach are 
presented in Sect. 3. Experiments are conducted and the experi-
mental results are analyzed in Sect. 4. Finally, we then conclude 
with some remarks and perspectives for future work in Sect. 5.

2 � Preliminary knowledge

2.1 � Neighborhood rough set

As one of the most important expanded models of classical 
rough set (Dou et al. 2016; Skowron and Stepaniuk 1996; 
Wojna 2005; Xu et al. 2017; Yang et al. 2011a, b), neighbor-
hood rough set has been widely concerned. Since different 
radii used in neighborhood rough set may characterize the 
similarity between samples through different scales, neigh-
borhood rough set is then more flexible and more adaptive for 
complex data (Hu et al. 2008a).

In rough set theory, a decision system can be described by 
a pair such that DS = ⟨U,AT ∪ {d}⟩ , in which the universe U 
is a nonempty and finite set of samples, AT is a nonempty and 
finite set of conditional attributes and d is the decision attrib-
ute. Furthermore, ∀x ∈ U, d(x) indicates the label of sample x.

Given a decision system DS, we assume that the 
values of decision attribute are discrete, then an 
equivalence relation over d can be defined such that 
INDd = {(x, y) ∈ U × U ∶ d(x) = d(y)} . By INDd , a partition 
U∕INDd = {X1,X2,… ,Xn} is derived. In rough set theory, 
Xk ∈ U∕INDd is called the k-th decision class. Specially, the 
decision class which contains sample x is denoted by [x]d.

Given a decision system DS, ∀x ∈ U and ∀A ⊆ AT , then 
given a radius � ∈ [0, 1] , the size of neighborhood of x related 
to A can be defined as (Hu et al. 2008b):

where △A is one distance function, and the Euclidean dis-
tance is employed to derive △A(x, y) in this paper. Note that 
the construction of Eq. (1) aims to avoid an undesirable case: 
given a sample x ∈ U , the neighborhood of x may contain 
only x itself if smaller radius is used. That is, any two sam-
ples can be distinguished to each other and then it is mean-
ingless for learning process.

(1)
�A(x) = min

y∈U∧y≠x
△A(x, y) + � ⋅

(
max

y∈U∧y≠x
△A(x, y)

− min
y∈U∧y≠x

△A(x, y)

)
,
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Following Eq. (1), the neighborhood relation in DS can 
be defined as:

Correspondingly, the neighborhood of x related to A can be 
defined as:

Definition 1  Given a decision system DS, ∀A ⊆ AT  and 
∀Xk ∈ U∕INDd , the neighborhood lower and upper approxi-
mations of Xk in terms of A are defined as:

The pair [Xk
A
,XkA] is called a neighborhood rough set 

of Xk.

2.2 � Some measurements

Up to now, many measurements have been proposed to 
describe the certainty or uncertainty in data from the view-
point of rough set. Similar to classical rough set, approxi-
mate quality (Pawlak 1992) can also be used for describing 
the degree of certainty in neighborhood rough set. The 
definition is as follows.

Definition 2  Given a decision system DS, ∀A ⊆ AT  , the 
approximate quality of d related to A is defined as:

where |X| denotes the cardinality of set X.

Obviously, 0 ≤ �A(d) ≤ 1 holds. If the value of approx-
imate quality is higher, then the certainty in data is 
regarded as higher.

Besides approximate quality, conditional entropy is also 
another widely accepted measurement in rough set, which 
can characterize the uncertainty. Presently, many defini-
tions of conditional entropy (Hu et al. 2010; Wei et al. 
2013; Zhang et al. 2016; Zhu and Wen 2012) have been 
proposed with respect to different requirements. A typical 
representation of conditional entropy (Hu et al. 2006) is 
shown in Definition 3.

Definition 3  Given a decision system DS, ∀A ⊆ AT , the con-
ditional entropy of d related to A is defined as:

(2)�A = {(x, y) ∈ U × U ∶ △A(x, y) ≤ �A(x)}.

(3)�A(x) = {y ∈ U ∶ △A(x, y) ≤ �A(x)}.

(4)Xk
A
= {x ∈ U ∶ 𝛿A(x) ⊆ Xk};

(5)XkA = {x ∈ U ∶ �A(x) ∩ Xk ≠ �}.

(6)�A(d) =

���
⋃n

k=1
Xk

A

���
�U� ,

Different from approximate quality, it is not difficult to 
observe that the certainty is higher when the value of con-
ditional entropy is lower.

2.3 � Neighborhood classifier

Classifier can be used to evaluate the generalization per-
formance of attributes (Chen et al. 2001). In neighborhood 
rough set, the neighborhood classifier proposed by Hu et al. 
(2008b) is frequently used. Given a test sample, neighbor-
hood classifier uses the majority rule over labels of neigh-
bors to determine the label of such test sample. The detailed 
process is shown in Algorithm 1. 

2.4 � Attribute reduction

In general, the purpose of attribute reduction is to delete the 
redundant or irrelevant attributes, and then the rest can still 
meet the constraint. Based on such purpose, the attribute 
reduction with respect to the approximate quality can be 
defined as follows.

Definition 4  Given a decision system DS, ∀A ⊆ AT  , A is 
referred to as a �-reduct if and only if

1.	 �A(d) ≥ �AT (d);
2.	 ∀B ⊂ A, 𝛾B(d) < 𝛾A(d).

(7)ENTA(d) = −
1

|U|
∑

x∈U

log
|�A(x) ∩ [x]d|

|�A(x)|
.



242	 Granular Computing (2020) 5:239–250

1 3

Based on Definition 4, the approach to find reduct is not 
only worth to be addressed but also important. Up to now, 
the heuristic algorithm based on greedy strategy for finding 
reduct has been widely used because of its lower time con-
suming (Wang et al. 2016; Yang et al. 2019). In the frame-
work of heuristic algorithm, the most significant attribute in 
each iteration is determined by a significance function (Yang 
and Yao 2018). For example, the significance function in 
terms of approximate quality is as follows.

Definition 5  Given a decision system DS, if A ⊂ AT  , then 
∀a ∈ AT − A , its significance with respect to approximate 
quality is :

The detailed process of heuristic approach to com-
pute reduct in terms of approximate quality is shown in 
Algorithm 2. 

(8)Sig� (a,A, d) = �A∪{a}(d) − �A(d).

3 � Attribute reduction for partially labeled 
data

Many significant functions such as the one used in Algo-
rithm 2 are derived from labeled samples. It follows that 
such significant function can be employed to evaluate the 
significance of each attribute in terms of labeled samples. 
However, if unlabeled samples exist in data, then it is impos-
sible for us to obtain the expected measurement. Moreover, 
if unlabeled samples are ignored, then the information given 
by these samples may be wasted. For such reason, attrib-
ute reduction we mentioned in the above section cannot be 
directly used for partially labeled data.

Hence, considering the importance of attribute based 
on both labeled and unlabeled samples, we will propose a 
combined importance. In such strategy, the neighborhood 
approximate quality is used to measure importance of attrib-
ute in terms of labeled samples while the neighborhood rela-
tion is employed to measure the importance of attribute in 
terms of unlabeled samples. The general process of con-
structing the new importance is shown in Fig. 1.

Through many experiments, it is trivial to observe that if 
the number of used attributes is increasing, then the value of 
approximate quality tends to be higher while the cardinality 
of neighborhood relation tends to be lower. Therefore, the 
higher the importance of an attribute, the greater the value 
of approximate quality and the finer the neighborhood rela-
tion. From this point of view, the new importance is defined 
in Definition 6.

Definition 6  Given a decision system DS, let U = l ∪ ul , 
where l is the set of labeled samples and ul is the set of unla-
beled samples, ∀A ⊆ AT  , the importance of A is defined by:

where � l
A
(d) , � l

AT
(d) are computed by labeled samples in l, 

|�ul
AT
| , |�ul

A
| are obtained by unlabeled samples in ul . In addi-

tion, � + � = 1 and their values are in [0, 1].

(9)IMP(A) = � ⋅
� l
A
(d)

� l
AT
(d)

+ � ⋅
|�ul

AT
|

|�ul
A
|
,

Fig. 1   Process of constructing 
new importance
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Example 1  Let us consider the following example of par-
tially labeled data with ten samples and four conditional 
attributes. Among these ten samples, seven samples are 
labeled and three samples are unlabeled.

Suppose that we want to compute the IMP({a1}) in 
Table 1 by Definition 6 when the radius used in neighbor-
hood is 0.1.

1.	 For the first step of computation, we have

2.	 For the second step of computation, we have

Therefore, if � and � are set to 0.8 and 0.2, then 
IMP({a1}) = 0.8 ⋅ (0∕0.2857) + 0.2 ⋅ (6∕6) = 0.2 is obtained 
by Eq. (9).

By Definition 6, the attribute reduction for partially 
labeled data with respect to IMP can be defined as follows.

Definition 7  Given a decision system DS, ∀A ⊆ AT  , A is 
referred to as an IMP-reduct if and only if

1.	 IMP(A) ≥ IMP(AT);
2.	 ∀B ⊂ A , IMP(B) < IMP(A).

Immediately, the significant function designed for IMP 
and the attribute reduction algorithm based on IMP can be 
constructed as follows. Note that to simplify our algorithm 
and reduce its time consumption, we focus on the suboptimal 
solution instead of the optimum solution (Yang et al. 2013, 
2014). Therefore, the second condition in Definition 7 is not 
taken into account in this paper.

Definition 8  Given a decision system DS, if A ⊂ AT  , then 
∀a ∈ AT − A , its significance with respect to IMP is:

� l
AT
(d) = 0.2857 and |�ul

AT
| = 6.

� l
{a1}

(d) = 0 and |�ul
{a1}

| = 6.

(10)SigIMP(a,A) = IMP(A ∪ {a}) − IMP(A).

4 � Experiments

4.1 � Datasets

To evaluate various performances of our CIMR, 12 real-
world datasets from UCI machine learning repository have 
been employed in the following experiment. Table 2 sum-
marizes some detailed statistics of these datasets used in 
our experiments.

4.2 � Experimental setup

All the experiments have been carried out on a personal 
computer with Window7, Intel Core i5-3337U CPU 
(1.80 GHz) and 4.00 GB memory. The programming lan-
guage is MATLAB R2014a.

In our experiments, tenfold cross-validation is employed 
for evaluating the effectiveness of different methods. And 
for each train set, we randomly divide it into two groups 
(groups of labeled and unlabeled samples) by ratios of 7:3, 
5:5 and 3:7, i.e., three different ratios (30%, 50% and 70%) 
of missing labels. Moreover, each complete train set without 
missing labels (0% of missing labels) is retained for CAQR. 
And then we appoint ten different neighborhood radii such 
that � = 0.03, 0.06,… , 0.3.

To set � and � for a better performance of our approach, 
we conduct CIMR with different settings beforehand. Ten-
fold cross-validation is also employed, and then CIMR is 
performed over each train set. Through executing those 
derived reducts over each test set, the NEC based classifi-
cation accuracies are compared. Note that for each setting 
of � and � , with such three ratios of missing labels, three 
reducts by CIMR can be derived from each train set. Cor-
respondingly, three groups of classification accuracies can 
be obtained from each test set. And the averages of these 

Table 1   A small example of partially labeled data

Samples a
1

a
2

a
3

a
4

d

1 0.8147 0.1576 0.6557 0.7061 1
2 0.9058 0.9706 0.0357 0.0318 1
3 0.1270 0.9572 0.8491 0.2769 2
4 0.9134 0.4854 0.9340 0.0462 3
5 0.6324 0.8003 0.6787 0.0971 2
6 0.0975 0.1419 0.7577 0.8235 3
7 0.2785 0.4218 0.7431 0.6948 1
8 0.5469 0.9157 0.3922 0.3171 ?
9 0.9575 0.7922 0.6555 0.9502 ?
10 0.9649 0.9595 0.1712 0.0344 ?
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classification accuracies are mainly compared as shown in 
Table 3. It is not difficult to observe that if � and � are set 
to be 0.8 and 0.2, then CIMR may be more effective. From 
this point of view, we set � and � to be 0.8 and 0.2 in our 
experiments.

4.3 � Experimental results and analyses

In the following, with respect to three ratios (30%, 50% 
and 70%) of missing labels, the reducts derived by CAQR 
are denoted as 30%-AQR, 50%-AQR and 70%-AQR, 
respectively. Similar to such representation, the reducts 
obtained by CIMR are indicated as 30%-IMR, 50%-IMR 
and 70%-IMR, respectively. Note that CAQR is only exe-
cuted over the labeled samples and the reduct derived by 
complete data with 0% of missing labels is denoted as 
0%-AQR.

In our experiments, the lengths, values of approximate 
quality, values of conditional entropy and NEC based 
classification accuracies derived by reducts will be com-
pared. The detailed experimental results are shown in the 
following.

With an investigation of Table 4, it is not difficult to 
observe: (1) with the same ratios of missing labels, IMRs 
are longer than AQRs; (2) if CAQR is executed over the 
complete data, the lengths of 0%-AQRs are still smaller. 
It is mainly because both the value of approximate quality 
derived by labeled samples and the neighborhood rela-
tion obtained by unlabeled samples should be considered 
synchronously, i.e., the constraint used in CIMR is stricter 
than that in CAQR.

By Fig. 2, it is not difficult to observe the following.

1.	 In general, the values of approximate quality derived 
by IMRs are higher than or equal to those by AQRs. As 

Table 2   Characteristics of the 
experimental datasets

ID Datasets Samples Attributes Decision 
classes

1 Breast Cancer Wisconsin (Diagnostic) 569 31 2
2 Breast Tissue 106 10 6
3 Climate Model Simulation Crashes 540 21 2
4 Ecoli 336 8 8
5 Hayes-Roth 132 5 3
6 Leaf 340 16 36
7 Seeds 210 8 3
8 Statlog (Image Segmentation) 2310 19 7
9 Steel Plates Faults 1941 34 2
10 Vertebral Column 310 7 2
11 Website Phishing 1353 10 2
12 Yeast 1484 9 10

Table 3   Classification 
accuracies among different 
settings of � and � (greater 
values are in bold)

ID � = 0.1 � = 0.2 � = 0.3 � = 0.4 � = 0.5 � = 0.6 � = 0.7 � = 0.8 � = 0.9

� = 0.9 � = 0.8 � = 0.7 � = 0.6 � = 0.5 � = 0.4 � = 0.3 � = 0.2 � = 0.1

1 0.9170 0.9162 0.9162 0.9117 0.9119 0.9160 0.9230 0.9242 0.9235
2 0.3873 0.4132 0.4511 0.4671 0.4795 0.4909 0.4855 0.4911 0.4875
3 0.9060 0.9058 0.9042 0.9028 0.9048 0.9030 0.9030 0.9064 0.9064
4 0.7921 0.7869 0.7869 0.7718 0.7782 0.7782 0.7754 0.7921 0.7611
5 0.5255 0.5489 0.5731 0.5868 0.5922 0.5992 0.6133 0.6266 0.6264
6 0.2082 0.2082 0.2082 0.2082 0.2082 0.2082 0.2082 0.2082 0.2082
7 0.8511 0.8438 0.8479 0.8457 0.8492 0.8486 0.8521 0.8679 0.8600
8 0.6908 0.7614 0.7946 0.7988 0.8014 0.8095 0.8096 0.8244 0.7897
9 0.8661 0.9108 0.9458 0.9748 0.9801 0.9909 0.9942 0.9925 0.9893
10 0.7234 0.7275 0.7340 0.7301 0.7262 0.7249 0.7219 0.7249 0.7249
11 0.7966 0.8006 0.8166 0.8406 0.8442 0.8450 0.8468 0.8486 0.8445
12 0.4215 0.4347 0.4311 0.4392 0.4523 0.4496 0.4554 0.4574 0.4554
Average 0.6738 0.6882 0.7008 0.7065 0.7107 0.7137 0.7157 0.7203 0.7148
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Table 4   Comparisons among 
lengths of reducts (great values 
are in bold)

ID 30%- 30%- 50%- 50%- 70%- 70%- 0%-
IMR AQR IMR AQR IMR AQR AQR

1 1.7 1.7 1.3 1.3 1.6 1.5 1.8
2 1.3 1.3 1.8 2.0 1.9 1.7 1.4
3 3.9 3.6 4.8 4.2 4.1 2.8 3.1
4 3.1 2.3 2.7 2.7 2.8 2.4 2.4
5 2.9 2.4 2.4 1.7 3.1 2.8 2.3
6 4.9 1.1 1.9 1.1 12.7 1.0 2.1
7 2.5 2.5 2.3 2.2 1.3 1.0 2.2
8 4.7 4.3 4.4 3.8 4.7 4.4 4.8
9 8.6 6.1 9.6 6.7 9.3 6.3 6.1
10 2.1 2.0 1.6 1.4 1.3 1.2 1.9
11 5.5 4.3 5.3 4.5 5.1 4.0 4.9
12 3.9 3.2 2.3 2.2 4.4 3.6 3.6
Average 3.8 2.9 3.4 2.8 4.4 2.7 3.1
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Fig. 2   Comparisons among values of approximate quality derived by reducts
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shown in Table 4, IMRs are greater than AQRs. There-
fore, we may conclude that a reduct with more attributes 
may bring us higher value of approximate quality.

2.	 If the radius is greater, then the derived value of approxi-
mate quality tends to be lower. It may because that with 
the greater radius, the value of approximate quality 
derived by raw data tends to be lower, which may lead 
to the looser constraints both in CAQR and CIMR. It fol-
lows that the corresponding reducts may offer us worse 
performances in improving the value of approximate 
quality.

By Fig. 3, the values of conditional entropy derived 
by IMRs are lower than or equal to those by AQRs. By 
Table 4, we may conclude that a reduct with more attrib-
utes may bring us lower value of conditional entropy. 
Moreover, similar to the results related to the values of 
approximate quality, it is easily to know that if the used 

radius is greater, then the value of conditional entropy 
derived by reduct may tend to be higher.

By Fig. 4, we can observe that with the same ratios 
of missing labels, the classification accuracies derived 
by IMRs are higher than or equal to those by AQRs. It 
may because in the process of computing reducts, CAQR 
ignores the unlabeled samples so that samples used in 
CIMR is more. Therefore, if the complete data are used, 
then the classification accuracies derived by 0%-AQRs 
may be higher.

With a thorough investigation of Figs. 2, 3 and 4, we 
can observe that from the viewpoint of used ratio, when 
the ratio of missing labels is 30%, the 30%-IMRs offer us 
the better performances. It may imply that although we 
have found an effective algorithm to deal with partially 
labeled data, if the ratio of missing labels is too high, then 
our algorithm will become much less effective.
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Fig. 3   Comparisons among the values of conditional entropy derived by reducts
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4.4 � Statistics comparisons among the results

In the following, to further analyze the previous results from 
the viewpoint of statistics, the one-way analysis of variance 
(one-way ANOVA) (Fisher 1921) will be employed for com-
paring such results.

The one-way ANOVA can be used for comparing the 
averages of two or more groups of data. In the context of 
this paper, such method is used to rank the differences in 
performances of two different types of reducts. For exam-
ple, for the ratios of missing labels 30%, with 10 different 
neighborhood radii, 10 different 30%-IMRs can be derived, 
then 10 values of approximate quality can be collected into 
a group. Similarly, 10 values of approximate quality in terms 
of 10 different 30%-AQRs can be collected into the other 
group. Immediately, the difference of the values of approxi-
mate quality in such two groups can be compared by the 
one-way ANOVA.

Note that the returned p value in the one-way ANOVA is 
under the null hypothesis that these groups are drawn from 

populations with the same average. If p value is higher than 
the default 5% significance level (0.05), it indicates that the 
averages of these groups are similar; instead, the averages of 
these groups are significantly different. The detailed results 
of p values are shown in Tables 5, 6 and 7.

Following the results shown in Tables 5, 6 and 7, it is not 
difficult to observe that in most cases, the returned p values 
are higher than 0.05. Therefore, we may conclude that the 
performances of IMRs derived by our approach cannot be 
worse than those of AQRs.

5 � Conclusions and future perspectives

In this paper, we have designed a new algorithm of finding 
reduct for partially labeled data. The main contributions of 
this paper are: (1) a new importance for evaluating attribute 
is proposed, and such importance can be used for searching 
suitable attributes over partially labeled data; (2) through 
various comparative experiments, the final results indicate 
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Fig. 4   Comparisons among classification accuracies derived by reducts
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Table 5   p values of one-way 
ANOVA for comparing the 
values of approximate quality 
derived by reducts

ID 30%-AQR& 50%-AQR& 70%-AQR& 0%-AQR& 0%-AQR& 0%-AQR&
30%-IMR 50%-IMR 70%-IMR 30%-IMR 50%-IMR 70%-IMR

1 0.9701 0.9956 0.9766 0.9590 0.6215 0.0853
2 0.9639 0.9516 0.7142 0.5070 0.4326 0.4411
3 0.9477 0.9220 0.2932 0.5046 0.1204 0.0776
4 0.9635 0.8594 0.8784 0.9777 0.1382 0.3989
5 0.9793 0.9078 1.0000 0.8327 0.0985 0.5750
6 0.4998 0.3951 0.7730 0.1345 0.1108 0.1104
7 0.9645 0.9620 0.8446 0.8143 0.9240 0.0841
8 0.8934 0.8414 0.9628 0.8777 0.6947 0.8142
9 0.6770 0.8069 0.5261 0.6676 0.4134 0.3702
10 0.7611 0.8722 0.9593 0.4731 0.4902 0.4417
11 0.3905 0.8852 0.0932 0.4859 0.7877 0.0849
12 0.9956 0.9905 0.9675 0.8809 0.6720 0.3941

Table 6   p values of one-way 
ANOVA for comparing the 
values of conditional entropy 
derived by reducts

ID 30%-AQR& 50%-AQR& 70%-AQR& 0%-AQR& 0%-AQR& 0%-AQR&
30%-IMR 50%-IMR 70%-IMR 30%-IMR 50%-IMR 70%-IMR

1 0.9280 0.9632 0.9222 0.6608 0.1100 0.0439
2 0.8208 0.7915 0.1882 0.3484 0.3252 0.1722
3 0.7511 0.8935 0.2550 0.2960 0.0825 0.4412
4 0.3330 0.7324 0.6372 0.6121 0.1946 0.1783
5 0.5234 0.6883 0.6155 0.4098 0.3597 0.3423
6 0.1044 0.6474 0.4808 0.0096 0.0596 0.0190
7 0.9780 0.7376 0.8663 0.8334 0.7008 0.1388
8 0.6058 0.6261 0.7023 0.6837 0.6660 0.5863
9 0.6609 0.5704 0.4098 0.6579 0.2244 0.2025
10 0.7378 0.6958 0.7716 0.3083 0.7599 0.4412
11 0.2428 0.8475 0.1278 0.2694 0.7431 0.1853
12 0.7498 0.9790 0.5874 0.8978 0.8899 0.3674

Table 7   p values of one-
way ANOVA for comparing 
classification accuracies of 
reducts

ID 30%-AQR& 50%-AQR& 70%-AQR& 0%-AQR& 0%-AQR& 0%-AQR&
30%-IMR 50%-IMR 70%-IMR 30%-IMR 50%-IMR 70%-IMR

1 0.5290 0.9132 0.4463 0.8453 0.9030 0.2992
2 0.6131 0.5671 0.2090 0.2912 0.0721 0.1715
3 0.1476 0.1303 0.2883 0.8636 0.9419 0.0419
4 0.1369 0.8247 0.3878 0.6586 0.9838 0.7531
5 0.8575 0.1796 0.1857 1.0000 0.4420 0.0000
6 0.1465 0.4180 0.0662 0.0507 0.5800 0.7797
7 0.3077 0.7509 0.5249 0.4839 0.0544 0.0000
8 0.6341 0.7798 0.8080 0.7339 0.8249 0.7717
9 0.7005 0.4904 0.4071 0.7005 0.2189 0.2226
10 0.7222 0.7654 0.5499 0.9584 0.2022 0.0235
11 0.6442 0.3894 0.0243 0.0331 0.1194 0.0000
12 0.7277 0.9481 0.5023 0.7523 0.3726 0.6266



249Granular Computing (2020) 5:239–250	

1 3

that our approach is effective in handling partially labeled 
data. The following topics deserve our further investigations.

1.	 We have only realized our algorithm with the concept of 
approximate quality in this paper, and some other meas-
urements, such as conditional entropy and neighborhood 
decision error rate, will be further applied.

2.	 Attribute reduction can be considered as the previous 
step of data processing, and classification performances 
of different classifiers based on our reduct will be further 
explored.
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