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Abstract
In this study, we establish a connection between rough soft set (Shabir et al., Knowl Base Syst 40:72–80, 2013) and fuzzy 
set. Based on the novel granulation structure called modified soft rough approximation space, fuzzy rough soft set is intro-
duced. The important basic properties of fuzzy rough soft set are studied and supported by illustrative examples. Moreover 
lattice theory is studied on fuzzy rough soft set. The definitions and propositions presented in this paper enrich the soft set 
theory, rough set theory and fuzzy set theory, and also extend their application scopes. The paper ends with conclusions 
having future investigations of the study.
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1  Introduction

At present, uncertainty is an important and interesting topic 
to the researchers as it has been considered in many situa-
tions like engineering, economics, social science, computer 
science, environmental science, medical science, etc. Fuzzy 
set theory, probability theory, rough set theory and soft set 
theory are successfully applied to solve the problems with 
uncertainties in these areas. The concept of fuzzy set was 
introduced by Zadeh (1965) and it has been applied to solve 
the various problems (Akram and Ali 2018; Chen and Chen 
2012; Chen and Tanuwijaya 2011; Chen and Chang 2011; 
Chen et al. 2001; Joshi and Kumar 2018; Li et al. 2018; 
Liu and Li 2018; Wang and Chen 2008). Fuzzy set allows 
objects belong to a set or a relation to a given degree ranging 
between 0 and 1, i.e., a membership function is needed to 
define it. Pawlak (1982) gave an alternative approach called 
rough set theory to tackle uncertainties. In this theory, Paw-
lak described that every rough set is associated with two 
crisp sets, called lower and upper approximations and are 
viewed as the set of elements which certainly and possibly 

belong to the set. Rough set is now a rigorous area of 
research with applications in various fields, such as knowl-
edge discovery, decision analysis, signal processing, mereol-
ogy and many other fields. Although, these methods are suc-
cessfully used to describe uncertainty, each of these theories 
has inherent difficulties chosen by Molodtsov (1999, 2004). 
Molodtsov (1999) developed a new concept called soft set 
which is free from difficulties affecting existing methods to 
deal with uncertainty. Most of the operations on soft set are 
defined by Maji et al. (2003) and redefined by Cağman and 
Cagman and Enginoglu, (2010). Of late, a rapid develop-
ment of interest in soft set theory and its applications have 
been found. Maji et al. (2001) also introduced the notion of 
fuzzy soft set. They (Maji et al. 2002) also discussed the 
application of soft set theory in a decision-making problem.

From the mathematical point of view, lattice (Davey and 
Priestley 2001) is a partially ordered set in which any two 
elements have a unique supremum and an infimum. Lattices 
can also be characterized as algebraic structures satisfying 
certain axiomatic identities. Since the two definitions are 
equivalent, lattice theory can be developed on both order 
relation and universal algebra.

The study of the algebraic structure of mathematical 
theory proves itself effective in making the applications 
more efficient. The study of lattices in rough set theory 
was initiated by Iwinski (1987). Pomykala and Pomykala 
(1998) showed that set of rough sets is a stone lattice. 
Thomas and Nair (2011) introduced the concept of intui-
tionistic fuzzy sublattices and intuitionistic fuzzy ideals 
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of a lattice. Bera and Roy (2013) defined modular lattice 
in the rough set environment using indiscernibility rela-
tion. Bera and Roy (2016) introduced notions of upper and 
lower soft rough ideals in a lattice. For more information 
about lattice structure under rough set environment, we 
refer to various works of the authors (Jarvinen 2007; Li 
2010; Liao et al. 2010; Pomykala and Pomykala 1998; 
Rana and Roy 2011, 2013, 2014, 2015 ). Similarly, alge-
braic structure (lattice) of soft set and its hybridization 
with rough set is an interesting topic to the researchers. 
For example, Bera et al. (2017) described the soft binary 
relation as well as soft congruence relation over lattice and 
defined soft congruence relation on lattice. In addition, the 
applications of soft set theory in lattice have been found 
in the papers (Li and Liu 2009; Maji et al. 2002; Roy and 
Bera 2015a; Nagarajan and Meenambigar 2011; Zhang and 
Wang 2014).

A connection between the soft set and the rough set 
has been discussed by Feng et al. (2011). They introduced 
the notion of the soft rough set, where instead of equiva-
lence classes parameterized subsets of a set is employed 
to find lower and upper approximations of a subset. But 
in their discussion, some cases may be occurred, where 
upper approximation of a non-empty set may be empty. 
Again upper approximation of a subset X may not be con-
tained in the set X. Although these cases do not occur 
in (classical) rough set theory but there are some other 
generalised rough set models (Fan et al. 2017; Li and Xu 
2015; Li et al. 2018; Yao and Lin 1997 ) concerning these 
situations. After that Shabir et al. (2013) redefined the soft 
rough set model and called Modified Soft Rough (MSR) 
set whose lower and upper approximations are different 
from the (classical) rough set theory and soft set theory. 
They showed that MSR-sets satisfy all the basic properties 
of rough sets in one hand, on the other hand in this new 
model, information granules are finer than soft rough sets. 
Then, Roy and Bera (2015a) approximated the soft set in 
the MSR approximation space and defined the notion of 
rough soft set. In the present paper, an attempt is taken to 
connect the rough soft set with the fuzzy set in an MSR 
approximation space.

In this paper, we calculate the measure of roughness of 
rough soft set in a modified soft rough approximation space 
and introduce the notion of fuzzy rough soft set. We also 
define here absolute fuzzy rough soft set and null fuzzy 
rough soft set. We study the properties like subset, union, 
intersection on fuzzy rough soft set and provide some exam-
ples to analyze the definitions. We also present some propo-
sitions on fuzzy rough soft set. An order relation on fuzzy 
rough soft set is also included on fuzzy rough soft set and its 
application to lattice is discussed through an example with 
the help of Hasse diagram. The motivations of this paper 
are as follows:

	 (i)	 To introduce the fuzziness into rough soft set 
approaches.

	 (ii)	 To include the order relation on fuzzy rough soft set 
and study algebraic structure (lattice theory) on fuzzy 
rough soft set.

The rest of the paper is structured as follows: Some basic 
definitions about on fuzzy set, rough set, soft set, modified 
rough soft set and rough soft set are introduced in Sect. 2. 
We introduce the notion of fuzzy rough soft set including the 
definitions and some propositions in Sect. 3. We end Sect. 3 
by presenting the Hasse diagram which is an application of 
fuzzy rough soft set to lattice. Sect. 4 concludes the paper 
with the future investigations of the proposed study.

2 � Preliminaries

Let U be a non-empty set of universe and R be an equiv-
alence relation on U. The pair (U, R) is called Pawlak’s 
approximation space. The equivalence relation R is often 
called an indiscernibility relation and related to an infor-
mation system. An indiscernibility relation R = I(B), B ⊆ A 
is defined as:(x, y) ∈ I(B) ⇔ a(x) = a(y), ∀a ∈ B, where 
x, y ∈ U, and a(x) denotes the value of attribute a for object 
x. When two objects have the same value over a certain 
group of attributes, we say that they are indiscernible with 
respect to this group of attributes, or have the same descrip-
tion with respect to the indiscernibility relation. Indiscerni-
bility relation is an equivalence relation. By this equivalence 
relation, we form equivalence class and all the equivalence 
classes form a partition of the universe, which are the basic 
building blocks of universal set called granules. Any subset 
of objects of the universe is approximated by two sets, called 
the lower and the upper approximations and can be viewed 
as the sets of elements which certainly and possibly belong 
to the set. Pair of two approximations is called Rough set.

Definition 2.1  (Pawlak 1982)    Let U be the set of uni-
verse and � be an equivalence relation on U. The pair 
(U, �) is called Pawlak’s approximation space. The lower 
and upper approximations of X ⊆ U  are treated as: 
X = {x ∈ U ∶ [x]𝜌 ⊆ X} and X = {x ∈ U ∶ [x]� ∩ X ≠ �} , 
where [x]� denotes the equivalence class of x (∈ U) . If 
X ≠ X , then X is said to be rough set over (U, �).

Definition 2.2  (Zadeh 1965) A fuzzy set Ã in X is character-
ized by a membership function 𝜇Ã(x) which associates with 
each point in X to a real number in the interval [0, 1] with 
the value of 𝜇Ã(x) at x representing the grade of membership 
𝜇Ã(x) of x in Ã.

A fuzzy set Ã can be written an Ã = {(x,𝜇Ã(x)) ∶ x ∈ X}.
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According to Zadeh (1965), intersection, union, and 
complement of fuzzy set are defined component-wise as 
follows:

	 (i)	 (𝜇Ã ∩ 𝜇B̃)(x) = min{𝜇Ã(x), 𝜇B̃(x)},
	 (ii)	 (𝜇Ã ∪ 𝜇B̃)(x) = max{𝜇Ã(x), 𝜇B̃(x)},
	 (iii)	 (𝜇c

Ã
)(x) = 1 − 𝜇Ã(x),

where 𝜇Ã(x) and 𝜇B̃(x) are membership functions of two 
fuzzy sets Ã and B̃ , respectively, in X and x ∈ X ; and 𝜇c

Ã
(x) 

denotes the complement of the membership function 𝜇Ã(x).

Definition 2.3  (Maji et al. 2003)  A pair S = (F,A) is called 
a soft set over U,  where F ∶ A → P(U) denotes a set valued 
mapping and P(U) is the power set of U.

It is noted that a soft set is a parameterised family of sub-
set of U. Maji et al. (2003) introduced some binary opera-
tions such as AND, OR on soft set which are defined as 
follows:

Definition 2.4  (Maji et  al. 2003)    Let (G1,B1) and 
(G2,B2) be two soft sets over U. Then (G1,B1) AND 
(G2,B2, ) is denoted by (G1,B1) ∧ (G2,B2, ) and is 
def ined by (G1,B1) ∧ (G2,B2) = (H1,A × B) ,  where 
H1(x, y) = G1(x) ∩ G2(y) , ∀ (x, y) ∈ A × B.

Definition 2.5  (Maji et  al. 2003)    Let (G1,B1) and 
(G2,B2) be two fuzzy rough soft sets over U. Then 
(G1,B1) OR (G2,B2, ) is noted by (G1,B1) ∨ (G2,B2, ) and 
is defined by (G1,B1) ∨ (G2,B2) = (H2,A × B) , where 
H2(x, y) = G1(x) ∪ G2(y) , ∀ (x, y) ∈ A × B.

Definition 2.6  (Shabir et al. 2013)  Let (F, A) be a soft set 
over U and � ∶ U → P(A) be another mapping defined by 
�(x) = {a ∶ x ∈ F(a)} . Then the pair (U,�) is called the 
MSR approximation space and for any X ⊆ U , lower MSR-
approximation, X

�
 and upper MSR-approximation, X� 

respectively are defined as follows:
X
�
= {x ∈ U ∶ �(x) ≠ �(y) ∀ y ∈ Xc} , where Xc is the 

complement of X, i.e., Xc = U − X,
X� = {x ∈ U ∶ �(x) = �(y) for some y ∈ X}.
If X

�
≠ X� , then X is said to be a modified soft rough set.

In the above definition, parameter set A of the soft set 
(F, A) plays the role in defining the approximations of a 
subset X of U.

Example 2.1  Let U = {p1, p2, p3, p4, p5} be the universal set 
and a set of parameters A = {e1, e2, e3, e4} . Let the soft set 
(F, A) over U is stated in below:

F(e1) = {p1, p2, p4} , F(e2) = {p1, p2, p4, p5} , F(e3) = {p5} ,  
F(e4) = {p2, p3, p5} . Then from the definition of MSR set 
� ∶ U → P(A) is constructed as follows:

�(p1) = {e1, e2} ,  �(p2) = {e1, e2, e4} ,  �(p3) = {e4} , 
�(p4) = {e1, e2} , �(p5) = {e2, e3, p4} . Let X = {p1, p2, p3} . 
Then for the MSR approximation space (U,�) , we can write 
X
�
= {p2, p3} and X� = {p1, p2, p3, p4} . Clearly, X

�
≠ X� 

and hence X is the modified soft rough set.

Definition 2.7  (Roy and Bera 2015a)  Let (F, A) be a soft set 
over U and (U,�) be an MSR-approximation space with 
respect to (F, A). Let (G, B) be another soft set over U. Then 
(G, B) is said to be rough soft set with respect to the param-
eter e ∈ B if G(e)

�
≠ G(e)� . (G, B) is said to be a full rough 

soft set or a simply rough one if G(e)
�
≠ G(e)� , ∀ e ∈ B and 

it is denoted by RsG(eB) . Therefore, rough soft set with 
respect to the parameter e is given by RsG(e) = (G(e)

�
,

G(e)� ).

In this definition, we see that one soft set is approxi-
mated with respect to another one.

Example 2.2  Considering the universal set U,  soft set (F, A) 
and set valued function � ∶ U → P(A) as given in Example 
2.1. Let (G, B) be another soft set over U, where B = {e1, e2} , 
G(e1) = {p2, p5} and G(e2) = {p1, p3, p5} . Then the lower 
MSR approximation and the upper MSR approximation set 
of (G, B) in (U,�) are G(e1)

�
= {p2, p5} , G(e1)� = {p2, p5} , 

G(e2)
�
= {p3, p5} , G(e2)� = {p1, p3, p4, p5} . Clearly, (G, B) 

is rough soft set with respect to the parameter e2.

Definition 2.8  (Roy and Bera 2015a)  Let (F, A) be a soft set 
over U and (U,�) be an MSR-approximation space. Let 
(G, B) be another soft set over U. Measure of roughness of 
(G, B) with respect to the parameter e ∈ B is denoted by RG(e) 
and is defined as: RG(e) =

|G(e)
�
|

|G(e)� |
 , where |G(e)

�
| and |G(e)� | 

denote the cardinalities of the sets G(e)
�

 and G(e)� , respec-
tively. Clearly, 0 ≤ RG(e) ≤ 1.

3 � Fuzzy rough soft set

Here, we discuss for each soft set (G, B) over U there is an 
associated fuzzy set. It is known that each soft set (G, B) 
over U, roughness of (G, B) with respect to the parameter 
e ∈ B , in MSR-approximation space is a number from the 
interval [0, 1]. Hence, we define a fuzzy set for every soft 
set. We denote the notation (U,�) as a MSR approxima-
tion space with respect to A for the soft set (F, A) over U 
in the paper.
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Definition 3.1  Let (G,  B) be a soft set over U. Then 
fuzzy rough soft set of (G, B) over (U,�) is defined as: 
{(G(e),RG(e)) ∶ G(e) ∈ (G,B)}, where RG(e) is the roughness 
of (G, B) with respect to the parameter e ∈ B.

To understand the concept presented above, we consider 
an example as follows:

Example 3.1  Consider in Example 2.2, roughness of (G, B) 
is given by RG(e1)

= 1 and RG(e2)
=

1

2
 . Therefore, the fuzzy 

rough soft set of (G, B) is given by {(G(e1), 1), (G(e2),
1

2
)}.

Definition 3.2  A fuzzy rough soft set (G, B) over (U,�) is 
said to be null fuzzy rough soft set if RG(e) = 0 , ∀ e ∈ B and 
we use the symbol (G�,B).

Definition 3.3  A fuzzy rough soft set (G, B) over (U,�) is 
said to be absolute fuzzy rough soft set if RG(e) = 1 , ∀ e ∈ B 
and we denote it by (GU ,B).

Example 3.2  In Example 2.1, let (G, C) be another soft set 
over U which is defined as: G(e1) = {p1} , G(e2) = {p4}.

Then in the MSR approximation space (U,�) , lower 
and upper MSR approximations of (G, C) are given by 
G(e1)

�
= �   ,  G(e1)� = {p1, p4}   ,  G(e2)

�
= �   , 

G(e2)� = {p1, p4} . Also roughness of (G, C) is given by 
RG(e1)

= 0 and RG(e2)
= 0 . So (G, C) is a null fuzzy rough 

soft set.
If we consider the soft set (G, D) over U defined as 

G(e1) = {p2, p5} and G(e2) = {p2, p3, p5} . Then in the MSR 
app rox ima t ion  space  (U,�)  ,  G(e1)

�
= {p2, p5} , 

G(e1)� = {p2, p5}   ,  G(e2)
�
= {p2, p3, p5}   , 

G(e2)� = {p2, p3, p5} . Now RG(e1)
= 1 and RG(e2)

= 1 . Hence 
(G, D) is an absolute fuzzy rough soft set.

Definition 3.4  Let (G1,B1) and (G2,B2) be two fuzzy rough 
soft sets over (U,�) with membership functions RG1(eB1

) and 

RG2(eB2
) , respectively. (G1,B1) is said to be fuzzy rough soft 

subset of (G2,B2) if

(i)	 B1 ⊆ B2 and (ii) RG1(e)
= RG2(e)

 ∀ e ∈ B1.

We write (G1,B1) ⊑F (G2,B2) , where the symbol ‘ ⊑F ’ 
denotes fuzzy rough soft subset.

Definition 3.5  Two fuzzy rough soft sets, (G1,B1) and 
(G2,B2) over (U,�) is said to be equal if (G1,B1) ⊑F (G2,B2) 
and (G2,B2) ⊑F (G1,B1).

Proposition 3.1  If (G1,B1) is a soft subset of (G2,B2) then 
(G1,B1) is a fuzzy rough soft subset of (G2,B2).

Proof  Let (G1,B1) be soft subset of (G2,B2) , then by

Definition 3.6  (i) B1 ⊆ B2 , and(ii) G1(e) = G2(e) ∀ e ∈ B1.
Therefore, G1(e)

�
= G2(e)

�
 and G1(e)� = G2(e)�  , ∀ 

e ∈ B1 . This gives RG1(e)
= RG2(e)

 ∀ e ∈ B1 . This completes 
the proof of the proposition.

From Proposition 3.1, it is clear that every soft subset 
of a soft set is a fuzzy rough soft subset.

Proposition 3.2   Let (G1,B1) and (G2,B2) be two fuzzy rough 
soft sets over (U,�) with membership functions RG(eB1

) and 

RG(eB2
) , respectively. Then H(e) = (G1,B1) ⊔ (G2,B2) , 

B1 ∩ B2 = � is a fuzzy rough soft set. The membership func-
tion of fuzzy rough soft set is denoted by RH(e) and is given 
as follows:

Now we introduce some operations such as union, intersec-
tion, complement, AND, OR on fuzzy rough soft set.

Definition 3.7  Let (G1,B1) and (G2,B2) be two fuzzy rough 
soft sets over (U,�) with membership functions RG1(eB1

) and 

RG2(eB2
) , respectively. Then the union of (G1,B1) and (G2,B2) 

is  def ined as (G1,B1) ⊔F (G2,B2) = (H,C) ,  where 
C = B1 ∪ B2 ; the symbol ‘ ⊔F ’ denotes fuzzy rough soft 
union, and the membership function is described as 
follows:

Definition 3.8  Let (G1,B1) and (G2,B2) be two fuzzy rough 
soft sets over (U,�) with membership functions RG1(eB1

) and 

RG2(eB2
) , respectively. The intersection of (G1,B1) and 

(G2,B2) is defined as (G1,B1) ⊓F (G2,B2) = (H,C) , where 
C = B1 ∩ B2 ; the symbol ‘ ⊓F ’ means fuzzy rough soft 

RH(e) =

{
RG(eB1

), if e ∈ B1 − B2,

RG(eB2
), if e ∈ B2 − B1.

RH(e) =

⎧⎪⎨⎪⎩

RG1(eB1
), if e ∈ B1 − B2,

RG2(eB2
), if e ∈ B2 − B1,

max{RG1(e)
,RG2(e)

}, if e ∈ B1 ∩ B2.
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intersection, and the membership function is given by 
RH(e) = min{RG1(e)

,RG2(e
} , e ∈ C.

Definition 3.9  Complement of a fuzzy rough soft set 
(G, B) with membership function RG(eB)

 is denoted by 
(Gc,B) and the rough membership function is given by 
RGc(eB)

= 1 − RG(eB)
.

Definition 3.10  Let (G1,B1) and (G2,B2) be two fuzzy rough 
soft sets over (U,�) with membership functions RG1(eB1

) and 

RG2(eB2
) , respectively. Then (G1,B1) AND (G2,B2), denoted 

b y  (G1,B1) ∧F (G2,B2),  d e f i n e d  b y 
(G1,B1) ∧F (G2,B2) = (H1,A × B),  w h e r e 
H1(x, y) = G1(x) ∩ G2(y) and the membership function is 
given by

RH1(x,y)
= min{RG1(x)

,RG2(y)
}, ∀ (x, y) ∈ A × B.

Definition 3.11  Let (G1,B1) and (G2,B2) be two fuzzy rough 
soft sets over (U,�) with membership functions RG1(eB1

) and 

RG2(eB2
) , respectively. Then (G1,B1) OR (G2,B2) is denoted 

b y  (G1,B1) ∨F (G2,B2)  a n d  i s  d e f i n e d  a s 
(G1,B1) ∨F (G2,B2) = (H2,A × B),  w h e r e 
H2(x, y) = G1(x) ∪ G2(y) and the membership function is 
given by

RH2(x,y)
= max{RG1(x)

,RG2(y)
}, ∀ (x, y) ∈ A × B.

Proposition 3.3  Let (G1,B1) and (G2,B2) be two fuzzy rough 
soft sets over (U,�) with the membership functions RG1(eB1

) 

and RG2(eB2
) , respectively. Then

	 (i)	 (G1,B1) ∨F (G2,B2) = (G2,B2) ∨F (G1,B1)

	 (ii)	 (G1,B1) ∧F (G2,B2) = (G2,B2) ∧F (G1,B1).

That is fuzzy rough soft set is commutative in respect of 
the operations ∨F and ∧F.

Proposition 3.4  Let (G1,B1) and (G2,B2) be two fuzzy rough 
soft sets over (U,�) with the membership functions RG1(eB1

) 

and RG2(eB2
) , respectively. Then the following results hold:

	 (i)	 ((G1,B1) ⊔F (G2,B2))
c = (G1,B1)

c ⊓F (G2,B2)
c

	 (ii)	 ((G1,B1) ⊓F (G2,B2))
c = (G1,B1)

c ⊔F (G2,B2)
c.

Proof  Case 1: Let e ∈ B1 − B2 and RG1(e)
= p . Then 

RG2(e)
= 0  .  The re fo re ,  R(G1⊔FG2)

c(e) = 1 − p  .  A l so 
R(G1

c ⊓F G2
c)(e) = min{RG1

c(e),RG2
c(e)} = min{1 − p, 1} = 1 − p

.
Case 2: If e ∈ B2 − B1 , then the proof can be established 

in similar way as in Case 1.

Case 3: Suppose e ∈ B1 ∩ B2 , then

(ii) Proof is similar to that of proof (i). 	�  □

Proposition 3.4 showed that fuzzy rough soft set is satis-
fied by the D‘Morgan law.

Proposition 3.5  For any two fuzzy rough soft sets (G1,B1) 
and (G2,B2) over (U,�) , the following conditions establish.

	 (i)	 (G1,B1) ⊔F (G2,B2) = (G2,B2) ⊔F (G1,B1)  a n d 
(G1,B1) ⊓F (G2,B2) = (G2,B2) ⊓F (G1,B1).

	 (ii)	 (G1,B1) ⊔F (𝜙,B) = (G1,B1)  a n d 
(G1,B1) ⊓F (𝜙,B) = (𝜙,B2) , where (�,B) denotes 
the null fuzzy rough soft set.

	 (iii)	 (𝜙,B) ⊔F (𝜙,B) = (𝜙,B) , (𝜙,B) ⊓F (𝜙,B) = (𝜙,B).

Now, we define a binary relation ‘ ≍ ’ on fuzzy rough 
soft set (G, B) over (U,�) as G(e1) ≍ G(e2) if and only if 
RG(e1)

= RG(e2)
 for e1, e2 ∈ B.

Clearly, ‘ ≍ ’ is an equivalence relation on (G, B). We 
denote equivalence class of (G(e1),RG(e1)

) by the relation 
‘ ≍ ’ as [G(e1)]≍.

Proposition 3.6  Every fuzzy rough soft set forms a chain by 
the order relation ‘ ≍’.

Proof  Measure of roughness of each members of a class 
[G(e1)]≍ is same. Therefore, each element of [G(e1)]≍ can 
be characterized by a unique real number from the interval 
[0, 1]. Therefore, there is a strict order relation among the 
classes. Hence the fuzzy rough soft set forms chain by the 
order relation ≍ . 	�  □

The following example illustrates the Proposition 3.6.

Example 3.3  Let U = {p1, p2, p3, p4, p5, p6} be the set of peo-
ple in a social gathering. Let the parameter set A described 
the shirts of three colors namely red, white and blue, i.e., 
A = {r,w, b} , where r, w and b stand for red, white and blue, 
respectively. Let us consider the soft set (F, A) with 
F(r) = {p1, p3, p4}  ,  F(w) = {p1, p2, p4, p5, p6}  a n d 
F(b) = {p1, p2, p3, p6} . Then from definition of MSR set 
� ∶ U → P(A) is constructed as: �(p1) = {r,w, b} , 
�(p2) = {w, b}  ,  �(p3) = {r,w}  ,  �(p4) = {r,w}  , 
�(p5) = {w}   ,  �(p6) = {w, b}   .  L e t 
B = { doctor, teacher, engineer } = {d, t, e} , where d, t and 
e denote doctor, teacher and engineer, respectively. Let 
(G,  B) be another soft set over U is defined as: 

R(G1
c ⊓F G2

c)(e) = min{RG1
c(e),RG2

c(e)}

= 1 −max{RG1(e)
,RG2(e)

} = R(G1⊔FG2)
c(e).
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G(d) = {p1, p2, p4} , G(t) = {p1, p2} , G(e) = {p1, p3, p5, p6} . 
Then for the MSR approximation space (U,�) , we can write 
G(d)

�
= {p1, p4} , G(d)� = {p1, p2, p4, p6} , G(t)� = {p1},

G(t)� = {p1, p2, p6} , G(e)� = {p1, p3, p5},

G(e)� = {p1, p2, p3, p5, p6} . Now, RG(d) =
|G(d)

�
|

|G(d)� |
=

2

4
=

1

2
 , 

RG(t) =
|G(t)

�
|

|G(t)� |
=

3

5
 , RG(e) =

|G(e)
�
|

|G(e)� |
=

1

3
 . Therefore, the fuzzy 

r o u g h  s o f t  s e t  o f  (G ,   B )  i s  g i ve n  by 
{(G(d),

1

2
), (G(t),

1

3
), (G(e),

3

5
)} . Then equivalence classes by 

t h e  r e l a t i o n  } ≍�  a r e  [(G(d),
1

2
)]≍ = {(G(d),

1

2
)} , 

[(G(t),
1

3
)]≍ = {(G(t),

1

3
)} , [(G(e), 3

5
)]≍ = {(G(e),

3

5
)}.

Clearly, fuzzy rough soft set of (G, B) forms a chain by 
the order relation ‘ ≍’.

The Hasse diagram for this chain is depicted in Fig. 1.

4 � Conclusion

Soft set theory, rough set theory and fuzzy set theory are 
three remarkable theories and all are dealing with uncer-
tainty for variety of problems. In this paper, an attempt 
has been made to combine these theories and as a result 
fuzzy rough soft set is introduced in the modified soft rough 
approximation space. Some basic properties of fuzzy rough 
soft set are investigated. By defining fuzzy rough soft set in 
a MSR approximation space, flavour of theories of soft sets 
and rough sets and fuzzy sets are retained altogether. Also 
lattice theory is studied in the proposed fuzzy rough soft set. 
In addition to the above, we have concluded that the concept 
of the paper has opened a new platform for algebraic study.

There are many avenues for further study in this paper. 
One main avenue is that one can extend the theme of the 
paper for different types of lattice such as distributive lat-
tice, modular lattice, etc. Another avenue of the paper is that 

researcher may define fuzzy rough soft relation, congruence 
relation and lattice ideal under fuzzy rough soft set.

Acknowledgements  The authors are very much thankful to the anony-
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