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Abstract
The soft and rough set theories have a great importance in literature to deal vagueness and uncertainty, but both the theories 
are unable to deal the vagueness and uncertainty with multipolar information in multi-criteria decision-making. Hybrid 
models always provide more precise and accurate results in multi-criteria decision making. Thus in this research article, 
we present a novel frame work for handling multi-criteria decision-making by combining the theory of mF sets with rough 
sets and soft sets to introduce the novel models called mF rough set model and soft mF rough set model, which approximate 
the data under multipolar information. Further, we explain the fundamental operations of mF rough sets including union, 
intersection, composition, and investigate some of their properties. We also study some operations of soft mF rough sets. 
Moreover, we explore potential applications of mF rough sets and soft mF rough sets in multi-criteria decision-making. We 
also develop algorithms of our proposed hybrid models to solve multi-criteria decision-making problems.

Keywords mF Rough sets · mF Approximation space · Pseudo mF soft sets · Soft mF rough sets · Multi-criteria · Decision-
making

1 Introduction

Data related to most of our practical life problems including 
medical science, engineering, economics, and environmental 
science are imprecise and its corresponding solutions con-
tain the use of mathematical conventions based on impreci-
sion and uncertainty. We cannot use traditional mathematical 
tools to overcome uncertainties existing in these problems, 
thus to handle such uncertainties, a number of theories have 
been introduced including, fuzzy set theory (Zadeh 1965) 
probability and rough set theory (Pawlak 1982). For applica-
tions of fuzzy set theory, the readers are referred to (Chen 
1998; Chen and Chang 2011; Chen et al. 2001, 2012; Chen 
and Tanuwijaya 2011; Wang and Chen 2008). All of these 
theories have their inherit difficulties identified by Molodt-
sov (1999). Molodtsov introduced a new idea of soft sets 
as a new mathematical tool to deal these difficulties. Soft 

set theory has significant use in game theory, smoothness 
of function, operational research and probability theory 
(Molodtsov 1999, 2004). Maji et al. (2003) presented some 
basic algebraic operations on soft sets and provided an 
analytical approach to theory of soft sets. Ali et al. (2009) 
suggested some different operations for soft sets and devel-
oped the idea of complement of soft sets. They showed that 
the certain De Morgan’s laws hold in soft sets. Park et al. 
(2012) considered properties of equivalence soft set relation. 
Maji et al. (2002) discussed the use of soft sets in decision-
making problems. It is observed that fuzzy sets, soft sets, 
and rough sets are conveniently related notions. Maji et al. 
(2001) combined soft sets with other mathematical struc-
tures and introduced a new hybrid model called fuzzy soft 
sets, which is the fuzzy generalization of soft sets. Further 
they investigated many useful results related to it. Majum-
dar and Samanta (2010) revised the definition of fuzzy soft 
sets and proposed the concept of generalized fuzzy soft sets 
based on (Maji et al. 2003). By combining the interval-val-
ued fuzzy sets with soft sets, Yang et al. (2009) introduced 
a new hybrid model called interval-valued fuzzy soft sets. 
Garg and Arora have a great contribution in literature of 
fuzzy soft sets and discussed the novel decision-making 
methods for solving problems (Arora and Garg 2017, 2018; 
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Garg and Arora 2018a, b). For other notations, terminolo-
gies and applications, the readers are referred to (Akram 
et al. 2018, 2019; Akram and Ali 2018; Kreinovich 2016; 
Liu et al. 2016; Wang et al. 2017).

As a theory of data analysis and processing, the rough 
set theory proposed by Pawlak (1982, 1991, 1996, 2002) is 
a new mathematical tool to deal with incomplete, imprecise 
and uncertain information. In this theory, two precise bound-
ary lines are established to describe the imprecise concepts. 
Therefore, the rough set theory is a certain mathematical 
tool to solve uncertain problems. The theory has promoted 
many applications in certain fields, such as medicine, engi-
neering, and decision support. Pawlak (1996) worked on 
rough relations and rough functions. Zhang et al. (2015) 
considered the union and intersection operations on rough 
sets. Many new concepts were established by relating Paw-
lak rough sets with other uncertainty theories such as fuzzy 
set theory and soft set theory (Feng 2009, 2011; Feng et al. 
2011, 2014). Dubois and Prade (1990) combined fuzzy set 
theory and rough set theory to propose the idea of rough 
fuzzy sets and fuzzy rough sets. Further, rough set approxi-
mations have also been combined with intuitionistic fuzzy 
sets to generate a new concept of intuitionistic fuzzy rough 
sets and rough intuitionistic fuzzy sets (Cornelis et al. 2003; 
Zhang et al. 2012; Zhou and Wu 2011). Yang et al. (2012a) 
studied transformation of bipolar fuzzy rough set models. 
Feng et al. (2010) related fuzzy sets, rough sets and soft sets 
all together, which are considered a strong base for certain 
interesting new models such as soft rough sets, rough soft 
sets and soft rough fuzzy sets. For the sake of new approach 
to decision-making problems, Zhang et al. (2014) proposed 
the notions of soft rough intuitionistic fuzzy sets and intui-
tionistic fuzzy soft rough sets. Moreover, Sun and Ma (2014) 
proposed the concept of soft fuzzy rough sets and discussed 
the application in decision making. For other transforma-
tions of rough sets models and applications readers are 
referred to (Pei and Xu 2007; Wu et al. 2003; Yang et al. 
2013; Yao 1998; Zhan et al. 2017; Zhang and Shu 2015; 
Zhou and Wu 2008).

Chen et al. (2014) introduced the notion of mF sets as 
a generalization of bipolar fuzzy sets (Zhang 1994) and 
presented that bipolar fuzzy sets and 2-polar fuzzy sets are 
cryptomorphic mathematical notions. An mF set on a set X 
is a mapping ∶ X → [0, 1]m . The concept is, multipolar infor-
mation occurs because data of actual world problems are 
sometimes from multiple characters and agents. The mem-
bership values in mF sets are more understanding in obtain-
ing uncertainty of data. mF sets concede higher graphical 
representation of vague data, which promote significantly 
better investigation in similarity measures, incomplete-
ness and data relationships. Akram et al. introduced several 
notions based on mF sets and graphs including (Akram and 

Adeel 2016, 2017; Akram and Waseem 2016; Akram et al. 
2018, 2017).

The mF set theory expresses the vagueness in terms of m 
possible membership functions of a crisp set and the rough 
set theory expresses the vagueness in terms of a boundary 
region of a crisp set. All these theories are unable to approxi-
mate the data under mF knowledge. Hybrid models always 
provide more accurate and consistent results when we have 
to deal with the systems with more than one agreements. 
Thus in this research article, we present a novel framework 
by putting together the theory of mF sets with rough sets 
and soft sets to introduce the novel models called mF rough 
sets and soft mF rough sets. These models are used to han-
dle the multi-criteria decision-making problems, in which 
the data come from multipolar information. As compared to 
previously existing models, an mF rough set model is more 
flexible and practical for real-world problems when we have 
to approximate the data comes from multipolar information 
and soft mF rough set model shows its flexibility, when we 
have to evaluate such type of data on basis of its parameters. 
Proposed models are considered as the generalization of pre-
viously existing models because previous models have such 
a deficiency to handle the uncertain data with multipolar 
information. To extend the range of number of parameters 
with multipolar information in many practical life applica-
tions, we propose the novel approaches to multi-criteria 
decision-making based on mF rough set model and soft mF 
rough set model. We demonstrate the computational process 
of the proposed approaches by some practical examples. The 
complexity to approximate the date under multipolar infor-
mation is overcome with the proposed approaches.

The organization of this research article is as follows.
In Sect. 2, we introduce our first hybrid model (mF rough 

sets) and investigate some of its basic properties. In Sect. 3, 
we illustrate this novel concept with real-life examples. 
Moreover, in Sect. 4, we propose our second hybrid model 
(soft mF rough sets) with its basic operations. In Sect. 5, we 
describe potential applications of soft mF rough sets. We 
also present our proposed methods as algorithms. In Sect. 6, 
we study sensitivity and comparison analysis. In Sect. 7, we 
present the conclusion and future directions.

2  mF rough sets and their operations

In this section, we introduce our first novel hybrid model 
called mF rough sets and discuss its properties. The pro-
posed model emerges from the hybridization of mF set the-
ory with rough sets. The fundamental and essential concept 
behind proposed model is the approximation of lower and 
upper spaces of a set with multipolar information under mF 
relation.
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Definition 2.1 (Chen et al. 2014) An mF set on a universe S is 
a function R = (p1◦R(r), p2◦R(r),… , pm◦R(r)) ∶ S → [0, 1]m, 
where the i − th projection mapping is defined as 
pi◦R ∶ [0, 1]m → [0, 1]. � = (0, 0,… , 0) is the smallest ele-
ment in [0, 1]m and � = (1, 1,… , 1) is the largest element in 
[0, 1]m.

We first define mF relation, when two crisp universes are 
given.

Definition 2.2 Let S and T be two nonempty universes, an mF 
set � ∈ mF(S × T) of the universe S × T be called an mF rela-
tion from S to T. In general, for any s ∈ S, t ∈ T , the degree of 
the membership �(s, t) = (p1◦�(s, t), p2◦�(s, t),… , pm◦�(s, t)) 
denotes the degree of the relations of s and t. If S = T , then 
the mF relation � ∈ mF(S × T) is called an mF relation on S.

Example 2.3 If S = {s1, s2, s3} and T = {t1, t2, t3} are two 
universes then a 3−polar fuzzy relation � ∶ S → T  of the 
universe S × T  is given in Table 1.

Definition 2.4 Let S and T be two finite universes of dis-
courses and � an mF relation from S to T,  the triple (S, T , �) 
be called mF approximation space. For any set X ∈ mF(T), 
the lower and upper approximations �(X) and �(X) w.r.t. 
approximation space (S, T , �) are mF sets of S,  whose mem-
bership functions for each s ∈ S are defined as

The pair (�(X), �(X)) is called an mFrough set of X w.r.t. 
(S, T , �) and �, � ∶ mF(T) → mF(S) are called lower and 
upper mF  rough approximation operators, respectively. 
Furthermore, if �(X) = �(X), then X is said to be definable.

Remark 1 If S = T , then the pair (�(X), �(X)) is called an 
mF rough set of X w.r.t. (S, �) and �, � ∶ mF(S) → mF(S) are 
called lower and upper mF rough approximation operators, 
respectively.

�(X)(s) =
⋀

t∈T

(
(� − �(s, t)) ∨ X(t)

)
,

�(X)(s) =
⋁

t∈T

(
�(s, t) ∧ X(t)

)
.

Example 2.5 Let S = {s1, s2, s3, s4} and T = {t1, t2, t3}  

be two universes of discourses and X =

{(
0.5,0.6,0.7,0.2

t1

)
,

(
0.3,0.2,0.1,0.8

t2

)
,

(
0.5,0.4,0.6,0.1

t3

)}
 be a 4−polar fuzzy set, for 

these two universes a 4−polar fuzzy relation � ∶ S → T  is 
given in Table 2.

By Definition 2.4, we have

Thus, �(X) =
{(

0.3,0.6,0.4,0.3

s1

)
, 
(

0.8,0.4,0.2,0.4

s2

)
, 
(

0.5,0.4,0.4,0.3

s3

)
, 

(
0.3,0.5,0.6,0.1

s4

)}
,

�(X) =

{(
0.3,0.4,0.2,0.5

s1

)
, 
(

0.2,0.6,0.1,0.8

s2

)
, 
(

0.5,0.6,0.7,0.8

s3

)
, 

(
0.5,0.6,0.7,0.2

s4

)}
.

Hence, the pair (�(X), �(X)) is referred as a 4−polar fuzzy 
rough set.

Theorem 2.6 Let (S, T , �)be an mF approximation space, the 
lower and upper approximations �(X)and �(X)satisfy the fol-
lowing properties for any X, Y ∈ mF(T),

1. �(X) =∼ �(∼ X),

2. X ⊆ Y ⇒ 𝜉(X) ⊆ 𝜉(Y),

3. 𝜉(X ∪ Y) ⊇ 𝜉(X) ∪ 𝜉(Y),

4. �(X ∩ Y) = �(X) ∩ �(Y),

5. �(X) =∼ �(∼ X),

6. X ⊆ Y ⇒ 𝜉(X) ⊆ 𝜉(Y),

7. �(X ∪ Y) = �(X) ∪ �(Y),

8. 𝜉(X ∩ Y) ⊆ 𝜉(X) ∩ 𝜉(Y).

Proof The properties of the lower approximation operator �, 
for any X, Y ∈ mF(T) are proved as follows:

�(X)(s1) = (0.3, 0.6, 0.4, 0.3), �(X)(s1) = (0.3, 0.4, 0.2, 0.5),

�(X)(s2) = (0.8, 0.4, 0.2, 0.4), �(X)(s2) = (0.2, 0.6, 0.1, 0.8),

�(X)(s3) = (0.5, 0.4, 0.4, 0.3), �(X)(s3) = (0.5, 0.6, 0.7, 0.8),

�(X)(s4) = (0.3, 0.5, 0.6, 0.1), �(X)(s4) = (0.5, 0.6, 0.7, 0.2).

Table 1  3-Polar fuzzy relation

� t1 t2 t3

s1 (0.6,0.3,0.1) (0.4,0.7,0.6) (0.4,0.6,0.2)
s2 (0.5,0.3,0.2) (0.5,0.2,0.8) (0.6,0.9,0.6)
s3 (0.3,0.2,0.1) (0.3,0.4,0.8) (0.7,0.3,0.5)

Table 2  4-Polar fuzzy relation

� t1 t2 t3

s1 (0.3,0.4,0.2,0.7) (0.8,0.2,0.6,0.5) (0.1,0.3,0.2,0.5)
s2 (0.2,0.9,0.1,0.5) (0.1,0.3,0.8,0.9) (0.2,0.9,0.1,0.6)
s3 (0.3,0.6,0.8,0.2) (0.2,0.4,0.6,0.8) (0.8,0.9,0.5,0.7)
s4 (0.5,0.7,0.7,0.2) (0.8,0.9,0.5,0.7) (0,0.5,1,0.9)
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1. For all s ∈ S,

 Thus, �(X) =∼ �(∼ X).

2. It can be proved directly using Definition 2.4.
3. For all s ∈ S,

 Thus, 𝜉(X ∪ Y) ⊇ 𝜉(X) ∪ 𝜉(Y).

4. For all s ∈ S,

 Thus, �(X ∩ Y) = �(X) ∩ �(Y).

Similarly, the properties (5 − 8) for the upper approximation 
operator �, for any X, Y ∈ mF(T), can also be proved using 
above arguments.   □

Definition 2.7 Let (S, T , �1) and (S, T , �2) be two mF approxi-
mation spaces.

• The mF approximation space (S, T , �1 ∪ �2) is called the 
union of (S, T , �1) and (S, T , �2).

• The mF approximation space (S, T , �1 ∩ �2) is called the 
intersection of (S, T , �1) and (S, T , �2).

�(X) =
⋀

t∈T

[(
� − �(s, t)

)
∨ X(t)

]

=
⋀

t∈T

[(
� − �(s, t)

)
∨ ∼ X(t)

]

=∼
⋀

t∈T

[(
� − �(s, t)

)
∨ ∼ X(t)

]

=
⋁

t∈T

[
�(s, t) ∧ X(t)

]
.

𝜉(X ∪ Y) =
⋀

t∈T

[(
� − 𝜉(s, t)

)
∨

(
X ∪ Y

)
(t)

]

⊇
⋀

t∈T

[(
� − 𝜉(s, t)

)
∨

(
X(t) ∨ Y(t)

)]

=
⋀

t∈T

[(
(� − 𝜉(s, t)) ∨ X(t)

)
∨

(
(� − 𝜉(s, t)) ∨ Y(t)

)]

=

[⋀

t∈T

(
(� − 𝜉(s, t)) ∨ X(t)

)]
∨

[⋀

t∈T

(
(� − 𝜉(s, t)) ∨ Y(t)

)]

= 𝜉(X) ∪ 𝜉(Y).

�(X ∩ Y) =
⋀

t∈T

[(
� − �(s, t)

)
∨

(
X ∩ Y

)
(t)

]

=
⋀

t∈T

[(
� − �(s, t)

)
∨

(
X(t) ∧ Y(t)

)]

=
⋀

t∈T

[(
(� − �(s, t)) ∨ X(t)

)
∧

(
(� − �(s, t)) ∨ Y(t)

)]

=

[⋀

t∈T

(
(� − �(s, t)) ∨ X(t)

)]
∧

[⋀

t∈T

(
(� − �(s, t)) ∨ Y(t)

)]

= �(X) ∩ �(Y).

Theorem 2.8 Let (S, T , �1)and (S, T , �2)be two mF approxi-
mation spaces and � = �1 ∪ �2,for any s ∈ Sand X ∈ mF(T),

1. � = �1 ∪ �2,

2. �(X) = �1(X) ∪ �2(X),

3. �(X) = �
1
(X) ∩ �

2
(X).

Proof 

1. For all s ∈ S and t ∈ T  , 

 Thus, � = �1 ∪ �2.

2. For all s ∈ S,

 Thus, �(X) = �1(X) ∪ �2(X).

3. Using the property �(X) =∼ �(∼ X), we have 

 Thus, �(X) = �1(X) ∩ �2(X).

  □

Corollary 2.9 Let (S, T , �1) and (S, T , �2)be two mF approxi-
mation spaces. If 𝜉1 ⊆ 𝜉2, then for any X ∈ mF(T)we have 

�(s) = �(s, t) = (�1 ∪ �2)(s, t)

=

(
(�1)(s, t) ∨ (�2)(s, t)

)

=

(
(�1)(s) ∨ (�2)(s)

)

=

(
�1 ∪ �2

)
(s).

(�(X))(s) =
⋁

t∈T

(
�(s, t) ∧ X(t)

)

=
⋁

t∈T

[(
(�1)(s, t) ∨ (�2)(s, t)

)
∧ X(t)

]

=
⋁

t∈T

[(
(�1)(s, t) ∧ X(t)

)
∨

(
(�2)(s, t) ∧ X(t)

)]

=

[⋁

t∈T

(
(�1)(s, t) ∧ X(t)

)]
∨

[⋁

t∈T

(
(�2)(s, t) ∧ X(t)

)]

=

(
(�1(X))(s) ∨ (�2(X))(s)

)

=

(
�1(X) ∪ �2(X)

)
(s).

�(X) =∼ �(∼ X)

=∼

(
�1(∼ X) ∪ �2(∼ X)

)

=

(
∼ �1(∼ X)

)
∩

(
∼ �2(∼ X)

)

= �1(X) ∩ �2(X).
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Proof It can be proved directly using Definition 2.4.   □

For n different mF relations Theorem 2.8 can be general-
ized as,

Theorem 2.10 Let (S, T , �j) be mF approximation spaces and 
� = ∪n

j=1
�j. Then for any s ∈ Sand X ∈ mF(T),

1. � = ∪n
j=1

�j,

2. �(X) = ∪n
j=1

�j(X),

3. �(X) = ∩n
j=1

�
j
(X).

Proof It is easy to prove using similar arguments, as used in 
Theorem 2.8.   □

Theorem 2.11 Let (S, T , �1) and (S, T , �2) be two mF approxi-
mation spaces and � = �1 ∩ �2, for any s ∈ Sand X ∈ mF(T),

1. � = �1 ∩ �2,

2. 𝜉(X) ⊆ 𝜉1(X) ∩ 𝜉2(X),

3. 𝜉(X) ⊇ 𝜉
1
(X) ∪ 𝜉

2
(X).

Proof 

1. For all s ∈ S and t ∈ T ,

 Thus, � = �1 ∩ �2.

2. For all s ∈ S,

𝜉1(X) ⊆ 𝜉2(X), 𝜉
1
(X) ⊇ 𝜉

2
(X).

�(s) = �(s, t) = (�1 ∩ �2)(s, t)

=

(
(�1)(s, t) ∧ (�2)(s, t)

)

=

(
(�1)(s) ∧ (�2)(s)

)

=

(
�1 ∩ �2

)
(s).

(�(X))(s) =
⋁

t∈T

(
�(s, t) ∧ X(t)

)

=
⋁

t∈T

[(
(�1)(s, t) ∧ (�2)(s, t)

)
∧ X(t)

]

=
⋁

t∈T

[(
(�1)(s, t) ∧ X(t)

)
∧

(
(�2)(s, t) ∧ X(t)

)]

≤

[⋁

t∈T

(
(�1)(s, t) ∧ X(t)

)]
∧

[⋁

t∈T

(
(�2)(s, t) ∧ X(t)

)]

≤

(
(�1(X))(s) ∧ (�2(X))(s)

)

=

(
�1(X) ∩ �2(X)

)
(s).

 Thus, 𝜉(X) ⊆ 𝜉1(X) ∩ 𝜉2(X).

3. Using the property �(X) =∼ �(∼ X), we have 

 Thus, 𝜉(X) ⊇ 𝜉1(X) ∪ 𝜉2(X).

  □

Example 2.12 Consider (S, T , �) is an mF approximation 
space, where S = {s1, s2, s3} and T = {t1, t2, t3} are two uni-
verses of discourses and �1 , �2 are two 3-polar fuzzy relations 
given in Tables 3 and 4.

Intersection � = �1 ∩ �2 of two 3-polar fuzzy relations �1 
and �2 is given in Table 5.

If X =

{(
0.2,0.5,0.4

t1

)
,

(
0.3,0.4,0.1

t2

)
,

(
0.7,0.5,0.2

t3

)}
 is a 3−

polar fuzzy set, then using Definition 2.4, we have

It is easy to see that

For n different mF relations Theorem 2.11 can be gen-
eralized as,

Theorem 2.13 Let (S, T , �j) be mF approximation spaces and 
� = ∩n

j=1
�j, for any s ∈ Sand X ∈ mF(T),

1. � = ∩n
j=1

�j,

2. 𝜉(X) ⊆ ∩n
j=1

𝜉j(X),

3. 𝜉(X) ⊇ ∪n
j=1

𝜉
j
(X).

𝜉(X) =∼ 𝜉(∼ X)

⊇∼

(
𝜉1(∼ X) ∩ 𝜉2(∼ X)

)

=

(
∼ 𝜉1(∼ X)

)
∪

(
∼ 𝜉2(∼ X)

)

= 𝜉1(X) ∪ 𝜉2(X).

�
1
(X) =

{(
0.5, 0.5, 0.4

s1

)
,

(
0.4, 0.5, 0.2

s2

)
,

(
0.4, 0.4, 0.5

s3

)}
,

�
2
(X) =

{(
0.2, 0.4, 0.4

s1

)
,

(
0.3, 0.5, 0.2

s2

)
,

(
0.8, 0.5, 0.3

s3

)}
,

�(X) =

{(
0.7, 0.7, 0.5

s1

)
,

(
0.7, 0.6, 0.7

s2

)
,

(
0.8, 0.5, 0.8

s3

)}
,

�1(X) =

{(
0.5, 0.5, 0.4

s1

)
,

(
0.7, 0.4, 0.2

s2

)
,

(
0.5, 0.5, 0.2

s3

)}
,

�2(X) =

{(
0.3, 0.5, 0.4

s1

)
,

(
0.7, 0.5, 0.2

s2

)
,

(
0.2, 0.5, 0.4

s3

)}
,

�(X) =

{(
0.3, 0.3, 0.4

s1

)
,

(
0.7, 0.4, 0.2

s2

)
,

(
0.2, 0.5, 0.2

s3

)}
.

�(X) ≠ �
1
(X) ∪ �

2
(X), �(X) ≠ �1(X) ∩ �2(X).
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Proof It is easy to prove using similar arguments as used in 
Theorem 2.11.   □

Definition 2.14 Let (S, �1) and (S, �2) be two mF approxima-
tion spaces. The approximation space (S, �1◦�2) is called the 
composition of (S, �1) and (S, �2).

Theorem 2.15 Let (S, �1)and (S, �2)be two mF approximation 
spaces and � = �1◦�2, for any X ∈ mF(S),

1. �(X) = [�1◦�2](X) = �1(�2(X)),

2. �(X) = [�
1
◦�

2
](X) = �

1
(�

2
(X)).

Proof 

1. For all s ∈ S,

(�1(�2(X)))(s) =
⋁

t∈S

[
(�1)(s, t) ∧ �2(X)(t)

]

=
⋁

t∈S

[
(�1)(s, t) ∧

(⋁

r∈S

(�2)(t, r) ∧ X(r)

)]

=
⋁

t∈S

⋁

r∈S

[
(�1)(s, t) ∧

(
(�2)(t, r) ∧ X(r)

)]

=
⋁

r∈S

[⋁

t∈S

(
(�1)(s, t) ∧ (�2)(t, r)

)
∧ X(r)

]

=
⋁

r∈S

[
(�)(s, r) ∧ X(r)

]
= (�(X))(s).

 Thus, �(X) = [�1◦�2](X) = �1(�2(X)).

2. For all s ∈ S,

 Thus, �(X) = [�
1
◦�

2
](X) = �

1
(�

2
(X)).

  □

Theorem 2.16 Let (Q, S, �1) and (S, T , �2) be two mF approxi-
mation spaces and � = �1◦�2, for any X ∈ mF(T),

1. �(X) = [�1◦�2](X) = �1(�2(X)),

2. �(X) = [�
1
◦�

2
](X) = �

1
(�

2
(X)).

Proof It can be proved easily using similar arguments as 
used in Theorem 2.15.   □

3  Applications of mF rough sets

Multi-criteria decision-making includes the situations where 
the information about the alternatives comes from differ-
ent sources. In this section, we present the decision-making 
approach of our proposed model called mF rough sets in an 
Algorithm 1 and discuss its applications in multi-criteria 
decision-making.

Algorithm 1

 Step 1. Input

S and T, universes of discourses.
F̃ , different features of universe S.
X, an mF set such that X ∈ mF(T).
X̃ , different types of set X.

 Step 2. Compute mF relation � ∶ S → T .

 Step 3. Compute lower and upper approximations �(X) and 
�(X), for any set X ∈ mF(T) w.r.t. approximation space 
(S, T , �) as 

(�
1
(�

2
(X)))(s) =

⋀

t∈S

[
(� − �1(s, t)) ∨ �

2
(X)(t)

]

=
⋀

t∈S

[
(� − �1(s, t)) ∨

(⋀

r∈S

(� − �2(t, r)) ∨ X(r)

)]

=
⋀

t∈S

⋀

r∈S

[
(� − �1(s, t)) ∨

(
(� − �2(t, r)) ∨ X(r)

)]

=
⋀

r∈S

[⋀

t∈S

(
(� − �1(s, t)) ∨ (� − �2(t, r))

)
∨ X(r)

]

=
⋀

r∈S

[
(� − �(s, r)) ∨ X(r)

]
= (�(X))(s).

Table 3  3-Polar fuzzy relation �1

�1 t1 t2 t3

s1 (0.1,0.5,0.6) (0.5,0.2,0.6) (0.5,0.3,0.1)
s2 (0.3,0.4,0.2) (0.6,0.5,0.3) (0.7,0.2,0.8)
s3 (0.5,0.8,0.1) (0.6,0.7,0.2) (0.5,0.4,0.2)

Table 4  3-Polar fuzzy relation �2

�2 t1 t2 t3

s1 (0.8,0.2,0.5) (0.1,0.6,0.2) (0.3,0.5,0.6)
s2 (0.7,0.6,0.1) (0.4,0.3,0.8) (0.9,0.7,0.2)
s3 (0.2,0.9,0.5) (0.1,0.2,0.7) (0.1,0.8,0.2)

Table 5  Intersection � = �1 ∩ �2 of two 3-polar fuzzy relations

� = �1 ∩ �2 t1 t2 t3

s1 (0.1,0.2,0.5) (0.1,0.2,0.2) (0.3,0.3,0.1)
s2 (0.3,0.4,0.1) (0.4,0.3,0.3) (0.7,0.2,0.2)
s3 (0.2,0.8,0.1) (0.1,0.2,0.2) (0.1,0.4,0.2)
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 Step 4. Compute choice value �s as 

 Step 5. Repeat this process for different varieties and fea-
tures.

 Step 6. Output
   Sm , the alternative for which �s is maximum.

Working of Algorithm 1 is described as follows:
In algorithm 1, step 1 is taking values as inputs. Step 2 

computes the mF relation between S and T. Step 3 computes 
the lower and upper approximations �(X) and �(X), for any 
set X ∈ mF(T) . Step 4 computes the choice value �s . Step 
5 repeats the process. Step 6 shows the best alternative as 
output.

3.1  Selection of prints and shades for variety 
of fabrics

Nowadays, the selection of suitable patterns, colors and 
shades for fabrics is difficult task for designers. To handle 
this difficult situation, we present the concept of mF rough 
set model, which provides us information about the selection 
of stuffs and variety of colors combination with different 
patterns and shades. It also provides us information about 
the variety of fabrics.

Suppose a textile designing company wants to manufac-
ture different types of fabrics with suitable patterns, colors, 
and shades. Company also wants to prepare such a kind of 
fabric with same design and different variety of materials. 
So, company hands over this task to a designer for such 
types of fabrics.

Let P and T be the two universes of discourses, with 
P = {pattern, color, shade} the set of prints and shades of 
fabrics, T = {cotton,wool, silk, linen} the set of type of mate-
rial, used in manufacturing of fabrics and � ∶ P → T be a 4−
polar fuzzy relation. The universe P is further classified as

�(S)(s) =
⋀

t∈T

(
(� − �(s, t)) ∨ X(t)

)
, s ∈ S,

�(S)(s) =
⋁

t∈T

(
�(s, t) ∧ X(t)

)
, s ∈ S.

�s = max(pi◦�(X), pi◦�(X)), i ∈ m.

• The “Patterns” of fabrics include tartan, cross tee, polka 
dotted and chevron.

• The “Colors” of fabrics include pink, yellow, grey, and 
peach.

• The “Shades” of fabrics include light, dark, dull and 
bright.

A 4−polar fuzzy relation is given in Table 6 as follows:
A 4−polar fuzzy relation � ∈ (P × T) provides us infor-

mation about the patterns, colors and shades of different 
fabrics. For example, if we consider

• “Patterns in cotton” then cotton has 60% tartan, 80% cross 
tee, 20% polka dotted and 10% chevron pattern.

• “Colors in cotton” are classified as 50% pink, 30% yellow, 
10% grey and 50% peach.

• “Shades in cotton” are 40% light, 80% dark, 20% dull and 
30% bright.

Similarly, for all other fabrics we can select patterns, colors, 
and shades.

For different variety of fabrics we take a set M as

M =

{(
0.7,0.8,0.1,0.5

cotton

)
,

(
0.6,0.2,0.3,0.7

wool

)
,

(
0.6,0.4,0.3,0.1

silk

)
,

(
0.3,0.9,0.1,0.7

linen

)}
, which describes the further types of fab-

rics, classified as

• The “types of cotton” include drill cotton, dutch cotton, 
gauze cotton and flannel cotton.

• The “types of wool” include merino wool, alpaca wool, 
mohair wool and lama wool.

• The “types of silk” include charmeuse silk, filament silk, 
georgette silk and habutai silk.

• The “type of linen” include damask linen, blended linen, 
bird’s eye linen, cambric linen.

Now to decide the fabrics of different variety with same pat-
terns, colors and shades we apply lower and upper mF rough 
approximation operators on a 4−polar fuzzy set M using 
Definition 2.4. Further, for final decision we define choice 
value as

�s = max(pi ◦ �(M), pi ◦ �(M)), i ∈ m.

Table 6  4−Polar fuzzy relation � Cotton Wool Silk Linen

Pattern (0.6,0.8,0.2,0.1) (0.4,0.2,0.9,0.5) (0.6,0.5,0.2,0.2) (0.9,0.7,0.3,0.6)
Color (0.5,0.3,0.1,0.5) (0.6,0.6,0.2,0.1) (0.8,0.1,0.7,0.6) (0.8,0.2,0.6,0.1)
Shade (0.4,0.8,0.2,0.3) (0.4,0.9,0.2,0.6) (0.1,0.1,0.3,0.4) (0.6,0.7,0.3,0.2)
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Thus,
Thus, from choice value �p = (0.7,0.8,0.3,0.7) calculated 

in Table 7, we conclude

• 70% “Tartan Pattern” is suitable for drill cotton, merino 
wool, charmeuse silk and damask linen.

• 80% “Cross Tee Pattern” is suitable for dutch cotton, 
alpaca wool, filament silk and blended linen.

• 30% “Polka Dotted Pattern” is suitable for gauze cotton, 
mohair wool, georgette silk and birds eye’s linen.

• 70% “Chevron Pattern” is suitable for flament cotton, 
lama wool, habutai silk and cambric linen.

Similarly, from other choice values as calculated in Table 7, 
we can easily find the suitable colors and shades for different 
types of fabrics.

3.2  Selection of features for different models 
of mobiles

With the advent of new technology, the way of communica-
tion is also changed. Today is the era of wireless communi-
cation which gives rise to mobile phones. Mobiles are the 
latest invention and common way to communicate now-a-
days. Mobile phones are now inexpensive, easy to use, com-
fortable and equipped with almost every latest features we 
desire. Feature specifications of different types of mobiles 
is a complicated task for a company. For this multi-criteria 
decision-making we use the concept of mF rough sets. Sup-
pose a mobile company wants to launch a mobile phone 
with different features and specifications. Let (F, T , �) be an 
mF approximation space, where F and T be two universes of 
discourses and � ∶ F → T  be a 5−polar fuzzy relation . Let 
F = {os, size, battery, processor,memory, network, displays,

sensors, camera} be the set of features of mobiles and 
T = {classic, flip, slider, qwerty, touch} be the set of types 
of mobiles. The universe F is further classified into five dif-
ferent features as

• The “Os” includes Android, Blackberry, Java, Symbion, 
and Window.

• The “Size” includes 3.5 inch, 4 inch, 4.5 inch, 5 inch and 
5.5 inch.

• The “Battery” includes lithium polymer, nickel cadmium, 
nickel metal hydride, lithium ion and new lithium tech-
nology.

• The “Processor” includes dual core, quad core, octa core, 
intel and any other.

• The “Memory” includes drum, floating body, MRAM, 
NAND and ReRAM.

• The “Network” includes wifi, G, 2G, 3G and 4G.
• The “Displays” includes LCD, amoled, OLED, IPS LCD 

and retina.
• The “Sensor” includes vibrations, motions, con-

tact switch, ambient light and sound.
• The “Camera” includes ultrawide angle, wide angle, nor-

mal, telephoto and super telephoto.

A 5−polar fuzzy relation � ∈ (F × T) is given in Table 8 as 
follows:

For different models of mobiles, we take 5−polar fuzzy 
set M as

The models of mobiles are classified as

• The “models of classic mobile” include Samsung S, 
Motorala raza V3,  Nokia 3310,  Motorala 8000 dyna 
TAC and Nokia 1110.

• The “models of flip mobile” include Samsung convoy, 
Blackberry style, LG 450,  Samsung gusto and Nokia 
6350.

• The “models of slider mobile” include Samsung G600,  
C205,  LG cosmos slide, Motorola milestone and Nokia 
N95.

• The “models of qwerty mobile” include Blackberry clas-
sic, Blackberry bold 9790,  Nokia asha 210,  Blackberry 
Q10 and Nokia C3.

• The “models of touch mobile” include Samsung galaxy 
E7,  Blackberry DTE K50,  LGK10,  Lenovo A6000 and 
HTC tough HD.

Now to decide the mobiles of different models with same set 
of features we apply lower and upper mF rough approxima-
tion operators on a 5−polar fuzzy set M,  using Definition 
2.4. Further, for final decision we define choice value as

M =

{(
0.3, 0.4, 0.5, 0.8, 0.6

classic

)
,

(
0.8, 0.2, 0.6, 0.5, 0.7

flip

)
,

(
0.5, 0.9, 0.2, 0.6, 0.7

slider

)
,

(
0.6, 0.8, 0.6, 0.2, 0.3

qwerty

)
,

(
0.6, 0.2, 0.3, 0.5, 0.9

touch

)}
.

�s = max(pi ◦ �(M), pi ◦ �(M)), i ∈ m.

Table 7  Choice value

�(M) �(M) Choice value �s

Pattern (0.3,0.5,0.3,0.7) (0.7,0.8,0.3,0.6) �p =(0.7,0.8,0.3,0.7)
Color (0.3,0.4,0.3,0.4) (0.6,0.3,0.3,0.5) �c =(0.6,0.4,0.3,0.5)
Shade (0.4,0.2,0.7,0.6) (0.4,0.8,0.3,0.6) �s =(0.4,0.8,0.7,0.6)
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Thus,
Thus, from choice value �os = (0.6, 0.7, 0.5, 0.7, 0.8) cal-

culated in Table 9, we conclude

• 60% “OS Android” is suitable for Samsung s, Samsung 
convoy, Samsung G600, Blackberry classic and Samsung 
galaxy E7.

• 70% “OS Blackberry” is suitable for Motorola raza V3,  
Blackberry style, C205, Blackberry bold 9790 and Black-
berry DTEK50.

• 50% “OS Java” is suitable for Nokia 3310, LG450,  LG 
Cosmos slide, Nokia asha 210 and LGK10.

• 70% “OS Symbion” is suitable for Motorola 8000 dyna 
TAC, Samsung gusto, Motorola milestone, Blackberry 
Q10 and Lenovo A6000.

• 80% “OS Window” is suitable for Nokia 1110, Nokia 
6350, Nokia N95, Nokia C3 and HTC tough HD.

Similarly, from other choice values as calculated in Table 9, 
we can easily find the other suitable features for different 
models of mobiles.

4  Soft mF rough sets

In this section, we introduce the concept of pseudo mF 
soft sets, which provide the information about the features 
of alternatives with multipolar information. Further, we 

propose a new model called soft mF rough sets by combing 
soft sets with mF rough sets, which is the generalization of 
previously defined models.

Definition 4.1 Let S be a universe and A be a set of param-
eters, where N ⊆ A . Define � ∶ N → mF(S), where mF(S) is 
the collection of all mF subsets of S, then (� ,N) is called an 
mF soft set over a universe S, which is defined by,

Definition 4.2 Let S be a universe and A be a set of param-
eters. A pair (𝜁−1,A) is called a pseudo mF soft set over the 
universe S if and only if 𝜁−1 ∶ S → mF(A) is a mapping of 
S into all mF subsets of the set A,  where mF(A) expresses 
all mF subsets of parameter set A., i.e., 𝜁−1(s, a) ∈ [0, 1]m, 
∀s ∈ S, a ∈ A.

Remark 2 From Definition of pseudo mF soft set we know 
that the pseudo mF mapping 𝜁−1 ∶ S → mF(A) is a binary 
mF relation defined between the universe S and parameter set 
A. i.e., for any sj ∈ S, ak ∈ A, 𝜁−1(sj, ak) ∈ mF(S × A).

In general, reflexive, symmetric and transitive properties 
do not hold in 𝜁−1(sj, ak). Therefore, 𝜁−1(sj, ak) is an arbitrary 
mF binary relation.

(� ,N) = {(s, pi◦N�(s)) ∶ s ∈ S and � ∈ N}.

Table 8  5−Polar fuzzy relation

� Classic Flip Slider

OS (0.1,0.3,0.6,0.7,0.1) (0.3,0.1,0.5,0.8,0.2) (0.4,0.2,0.3,0.3,0.4)
Size (0.8,0.7,0.5,0.5,0.2) (0.7,0.8,0.6,0.3,0.6) (0.1,0.3,0.4,0.5,0.2)
Battery (0.3,0.4,0.6,0.7,0.5) (0.6,0.2,0.3,0.5,0.8) (0.6,0.2,0.5,0.9,0.1)
Processor (0.3,0.1,0.1,0.2,0.6) (0.5,0.3,0.4,0.6,0.1) (0.4,0.8,0.2,0.1,0.3)
Memory (0.3,0.5,0.3,0.2,0.6) (0.2,0.5,0.6,0.1,0.3) (0.8,0.2,0.3,0.4,0.6)
Network (0.1,0.2,0.1,0.3,0.1) (0.3,0.4,0.5,0.2,0.1) (0.5,0.2,0.6,0.3,0.2)
Displays (0.5,0.6,0.5,0.2,0.1) (0.8,0.9,0.7,0.3,0.1) (0.8,0.5,0.2,0.9,0.7)
Sensors (0.3,0.5,0.2,0.8,0.7) (0.6,0.7,0.8,0.9,0.2) (0.8,0.2,0.3,0.7,0.5)
Camera (0.2,0.3,0.5,0.4,0.9) (0.6,0.8,0.9,0.5,0.4) (0.3,0.5,0.4,0.3,0.2)

� Qwerty Touch

OS (0.5,0.7,0.5,0.3,0.2) (0.9,0.7,0.6,0.5,0.8)
Size (0.1,0.3,0.8,0.7,0.5) (0.2,0.3,0.5,0.7,0.9)
Battery (0.2,0.5,0.9,0.3,0.5) (0.2,0.6,0.7,0.2,0.7)
Processor (0.5,0.9,0.7,0.2,0.1) (0.5,0.4,0.7,0.3,0.1)
Memory (0.7,0.2,0.1,0.6,0.2) (0.3,0.4,0.8,0.1,0.2)
Network (0.8,0.3,0.9,0.7,0.6) (0.5,0.6,0.8,0.3,0.1)
Displays (0.6,0.7,0.8,0.9,0.2) (0.3,0.5,0.8,0.9,0.7)
Sensors (0.8,0.3,0.5,0.6,0.7) (0.3,0.2,0.7,0.8,0.7)
Camera (0.8,0.9,0.5,0.2,0.3) (0.7,0.6,0.5,0.2,0.3)
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Example 4.3 Let C = {c1, c2, c3, c4, c5} be a universe of five 
cars under observation, and A = {a1, a2, a3, a4} be the set of 
parameters, where the parameter,

“a1” represents the price of car,
“a2” represents the color of car,
“a3”represents the body types of car,
“a4” represents the attractiveness of car.

We give further characteristics of these parameters.

• The “price of car” may be cheap, costly, very costly.
• The “color of car” may be the combination of white, grey, 

silver.
• The “body type of car” may be sedan, coupe, hatchback.
• The “attractiveness of car” may include flexibility, com-

fort, speed.

To define mF soft set, we means to specify the character-
istics of price, color, body type and attractiveness of a car. 
The mF soft set (� ,N) expresses the characteristics of car 
that Mr. Z(say) wants to buy. It is shown in Table 10 as 
follows:

The pseudo mF soft set specifies the features of each car 
including price, color, body type and attractiveness with 
their different characteristics. By Definition 4.2, we have 
the following results:

This means that the car }}c��
1
 has different features as follows:

• The “price of car” shows, it is 20% cheap, 30% costly and 
70% very costly for most of the customers.

• The “color of car” shows, it may have combination of 
colors as 30% white, 80% grey and 70% silver.

• The “body type of car” shows, its shape is 80% sedan, 
30% coupe and 70% hatchback.

• The “attractiveness of car” shows, it has 40% flexibility , 
30% comfort and 20% speed.

Definition 4.4 Let S be a universe and (𝜁−1,A) be a pseudo 
mF soft set over universe S,  where 𝜁−1 be a mapping defined 
as, 𝜁−1 ∶ S → mF(A). The triple (S,A, 𝜁−1) is called soft mF 

𝜁−1(c1) =

{(
0.2, 0.3, 0.7

a1

)
,

(
0.3, 0.8, 0.7

a2

)
,

(
0.8, 0.3, 0.7

a3

)
,

(
0.4, 0.3, 0.2

a4

)}
,

𝜁−1(c2) =

{(
0.8, 0.3, 0.5

a1

)
,

(
0.6, 0.4, 0.3

a2

)
,

(
0.2, 0.1, 0.3

a3

)
,

(
0.5, 0.4, 0.6

a4

)}
,

𝜁−1(c3) =

{(
0.6, 0.7, 0.8

a1

)
,

(
0.8, 0.7, 0.5

a2

)
,

(
0.5, 0.3, 0.2

a3

)
,

(
0.6, 0.8, 0.9

a4

)}
,

𝜁−1(c4) =

{(
0.9, 0.3, 0.5

a1

)
,

(
0.9, 0.2, 0.3

a2

)
,

(
0.8, 0.9, 0.1

a3

)
,

(
0.2, 0.5, 0.4

a4

)}
,

𝜁−1(c5) =

{(
0.7, 0.5, 0.4

a1

)
,

(
0.5, 0.4, 0.2

a2

)
,

(
0.7, 0.8, 0.4

a3

)
,

(
0.4, 0.2, 0.3

a4

)}
.

Table 9  Choice value �(M) �(M) Choice value �s

OS (0.6,0.3,0.4,0.5,0.7) (0.6,0.7,0.5,0.7,0.8) (0.6,0.7,0.5,0.7,0.8)
Size (0.3,0.2,0.5,0.3,0.5) (0.7,0.7,0.6,0.5,0.8) (0.7,0.7,0.6,0.5,0.8)
Battery (0.5,0.4,0.3,0.5,0.5) (0.7,0.4,0.6,0.7,0.7) (0.7,0.4,0.6,0.7,0.7)
Processor (0.6,0.6,0.3,0.5,0.6) (0.5,0.8,0.6,0.5,0.6) (0.6,0.8,0.6,0.5,0.6)
Memory (0.5,0.5,0.3,0.6,0.6) (0.6,0.4,0.6,0.4,0.6) (0.6,0.5,0.6,0.6,0.6)
Network (0.5,0.4,0.3,0.3,0.4) (0.6,0.3,0.6,0.3,0.3) (0.6,0.4,0.6,0.3,0.4)
Displays (0.5,0.2,0.3,0.2,0.7) (0.8,0.7,0.6,0.6,0.7) (0.8,0.7,0.6,0.6,0.7)
Sensors (0.5,0.3,0.3,0.4,0.3) (0.6,0.4,0.6,0.8,0.7) (0.6,0.4,0.6,0.8,0.7)
Camera (0.6,0.2,0.2,0.5,0.6) (0.6,0.8,0.6,0.5,0.7) (0.6,0.8,0.6,0.5,0.7)

Table 10  3-Polar fuzzy soft relation

C / A a1 a2 a3 a4

c1 (0.2,0.3,0.7) (0.3,0.8,0.9) (0.8,0.3,0.7) (0.4,0.3,0.2)
c2 (0.8,0.3,0.5) (0.6,0.4,0.3) (0.2,0.1,0.3) (0.5,0.4,0.6)
c3 (0.6,0.7,0.8) (0.8,0.7,0.5) (0.5,0.3,0.2) (0.6,0.8,0.9)
c4 (0.9,0.3,0.5) (0.9,0.2,0.3) (0.8,0.9,0.1) (0.2,0.5,0.4)
c5 (0.7,0.5,0.4) (0.5,0.4,0.2) (0.7,0.8,0.4) (0.8,0.2,0.3)
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approximation space. For any set X ∈ mF(A), the lower and 
upper approximations of X,  �(X) and �(X) w.r.t. soft mF 
approximation space (S,A, 𝜁−1) are the mF sets of S whose 
membership functions for each s ∈ S are defined respec-
tively, as follows:

The pair (�(X), � (X)) is called soft mF rough set of X w.r.t. 
(S,A, 𝜁−1) and � , � ∶ mF(A) → mF(S) are called lower and 
upper soft mF rough approximation operators respectively. 
Furthermore, if �(X) = � (X), then X is said to be definable.

Example 4.5 Re-consider the Example 4.3 and define a 3−
polar fuzzy set of attributes, X as

From Definition 4.4, lower and upper approximations of X 
can be calculated respectively, as follows:

Thus,

Hence, �(X) and �(X) are the lower and upper approxima-
tions of 3−polar fuzzy subset X in parameter set A,  and the 
pair (�(X), � (X)) specifies the soft 4−polar fuzzy rough set.

𝜁 (X)(s) =
⋀

a∈A

(
(� − 𝜁−1(s, a)) ∨ X(a)

)
,

𝜁 (X)(s) =
⋁

a∈A

(
𝜁−1(s, a) ∧ X(a)

)
.

X =

{
(
0.3, 0.4, 0.5

a1
), (

0.6, 0.5, 0.8

a2
), (

0.9, 0.7, 0.2

a3
), (

0.8, 0.2, 0.3

a4
)

}
.

� (X)(c1) = (0.7, 0.5, 0.3), �(X)(c1) = (0.8, 0.5, 0.8),

� (X)(c2) = (0.3, 0.6, 0.4), �(X)(c2) = (0.6, 0.4, 0.5),

� (X)(c3) = (0.4, 0.2, 0.3), �(X)(c3) = (0.6, 0.5, 0.5),

� (X)(c4) = (0.3, 0.5, 0.5), �(X)(c4) = (0.8, 0.7, 0.5),

� (X)(c5) = (0.3, 0.5, 0.6), �(X)(c5) = (0.8, 0.7, 0.4).

� (X) =

{(
0.7, 0.5, 0.3

c1

)
,

(
0.3, 0.6, 0.4

c2

)
,

(
0.4, 0.2, 0.3

c3

)
,

(
0.3, 0.5, 0.5

c4

)
,

(
0.3, 0.5, 0.6

c5

)}
,

� (X) =

{(
0.8, 0.5, 0.8

c1

)
,

(
0.6, 0.4, 0.5

c2

)
,

(
0.6, 0.5, 0.5

c3

)
,

(
0.8, 0.7, 0.5

c4

)
,

(
0.8, 0.7, 0.4

c5

)}
.

Theorem 4.6 Let (S,A, 𝜁−1)be the soft mF approximation 
space. The lower and upper approximations �(X)and  �(X)
satisfy the following properties for any X, Y ∈ mF(A),

1. �(X) =∼ � (∼ X),

2. X ⊆ Y ⇒ 𝜁 (X) ⊆ 𝜁(Y),

3. 𝜁(X ∪ Y) ⊇ 𝜁 (X) ∪ 𝜁 (Y),

4. �(X ∩ Y) = � (X) ∩ � (Y),

5. �(X) =∼ � (∼ X),

6. X ⊆ Y ⇒ 𝜁 (X) ⊆ 𝜁(Y),

7. �(X ∪ Y) = �(X) ∪ � (Y),

8. 𝜁(X ∩ Y) ⊆ 𝜁(X) ∩ 𝜁 (Y).

Proof It can easily be proved using Definition 4.4.   □

5  Applications of soft mF rough sets

In this section, we apply the concept of our second proposed 
model called soft mF rough sets in real-life examples and 
present its decision-making in an Algorithm 2, which shows 
its importance in multi-criteria decision-making.

Algorithm 2

 Step 1. Input

S , as a universe.
A, as a set of parameters.
C̃ , different characteristics of parameters set A.

 Step 2. Compute the ideally conventional decision object 
X

   X = max{pi◦𝜁
−1(sj, ak)|sj ∈ S},  w h e r e  i ∈ m, 

j = 1, 2, 3,… , n, k = 1, 2, 3,… , l.

 Step 3. Compute the lower and upper approximations �(X) 
and �(X) for any X ∈ mF(A) w.r.t. approximation space 
(S,A, 𝜁−1) as 

 Step 4. Compute the choice value �sj as

   �sj = pi◦� (X)(sj) + pi◦� (X)(sj), sj ∈ S.

 Step 5. Compute the maximum choice value �sk as
   �sk = maxj �sj , j = 1, 2,… , |S|.

 Step 6. Output

underline𝜁 (X)(s) =
⋀

a∈A

(
(� − 𝜁−1(s, a)) ∨ X(a)

)
, s ∈ S,

𝜁 (X)(s) =
⋁

a∈A

(
𝜁−1(s, a) ∧ X(a)

)
, s ∈ S.
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   SM , the alternative for which �sk is maximum.
 Step 7. If no choice value is maximum, compute
   Psum =

m∑
i=1

pi◦�sj, where j = 1, 2, 3,… , n.

 Step 8. Output
   S̃M , the alternative for which Psum is maximum.

Working of Algorithm 2 is described as follows:
In algorithm 2, step 1 is taking values as inputs. Step 2 

computes the ideally conventional decision object X. Step 3 
computes the lower and upper approximations �(X) and �(X) 
for any X ∈ mF(A) . Step 4 computes the choice value �sj . 
Step 5 computes the maximum value for alternatives. Step 
6 shows the best alternative as output. If step 6 does not 
show any output than compute the maximum value in step 
7. Step 8 shows the best alternative as output according to 
decision of step 7.

5.1  Comparison of popular mobile phones 
for selection

Mobile phones are essential part of our daily communica-
tions. All mobile phones have range for voice and simple 
text messaging services. Recently, mobiles with many more 
features and functions have become available. So, in this 
age of competition it has become difficult to compare the 
features of mobiles for selection.

An Apple’s iPhone company launches a new mobile 
phone with different features and specifications. Company 
wants to compare its new launched mobile phone with lat-
est mobile phones of other companies. For this purpose, we 
propose the idea of soft mF rough sets.

Let (M,A, 𝜁−1) be a soft mF approximation space, where 
M = {m1,m2,m3,m4,m5} be a universe of five mobile 
phones specified as

• m1 = Apple’s iPhone 6, 
• m2 = Amazons Fire Phone,
• m3 = Samsung Galaxy S6, 
• m4 = Motorala Moto X (2nd gen.),
• m5 = HTC One (MB).

Let A = {a1, a2, a3, a4} be the set of parameters related to the 
mobile phones in M, where

“a1” represents the Measurements,
“a2” represents the Key Facts,
“a3”represents the Visual Effects,
“a4” represents the Price.
We give further characteristics of these parameters as

• The “Measurements” include dimensions, weights, slim-
ness.

• The “Key Facts” include operating system, processor, 
memory.

• The “Visual Effects” include camera, display, sensor.
• The “Price” include cheap, costly, very costly.

However, for such a multi-criteria decision-making problem, 
one wishes to determine the decision substitute in universe 
with the estimation value as greater as possible on the whole 
estimated index. Thus, we construct an ideally conventional 
decision object X on the mF set of parameters A as follows:

Now, the soft mF rough lower approximation �(X) and 
upper approximation �(X) of the ideally conventional deci-
sion object X are calculated in Table 11, using the Defini-
tion 4.4. Moreover, the rough lower and upper approxima-
tions are relatively close values to the approximated set of 
universe of mobiles. Thus, we attain relatively close values 
�(X)(mj) and �(X)(mj) to the decision substitute mj ∈ M, by 
the soft mF rough lower and upper approximations of the 
mF subset X. Thus, we enumerate the choice value �mj

 , for 

the decision substitute mj on the universe of sites M as 
follows:

Finally choosing the mobile phone mj ∈ M , which has the 
maximum choice value �mj

 as the most favorable decision for 
the given multi-criteria decision-making problem. From 
Table 12. it is easy to compare the choice values of all the 
mobile phones. m1 =Apple’s iPhone 6, has the maximum 
choice value as compared to all other mobile phones. So, 
Apple’s iPhone 6 is best for selection as compared to all 
other mobile phones.

Generally , if there occurs two or more items mj ∈ M with 
the same maximum choice value �mj

 , then take one of them 

according to your choice as the ideal decision for the given 
multi-criteria decision-making problems.

5.2  Selection of a site for construction of a grid 
station

An electricity grid is an interdependent chain for providing 
the electricity from source to user. It is an amenity project 
aiming to provide relief to citizens, rather than a commer-
cial activity. Selection of site for construction of grid station 
is the early and significant process. This requires accurate 
planning, skillful investigation and administration so that the 

X = max{pi◦𝜁
−1(mj, ak)|mj ∈ M}, i ∈ m.

�mj
= pi◦� (X)(mj) + pi◦� (X)(mj), i ∈ m, mj ∈ M.
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selected site is mechanically, economically, environmentally, 
and socially perfect for requirements.

For this purpose, we use the concept of soft mF rough 
set theory. Let (S,A, 𝜁−1) be a soft mF approximation space, 
and S = {Ss, Sn, Se, Sw, Sc} be a set of sites for grid station 
specified as

• Ss = Site in “south” of city,
• Sn = Site in “north” of city,
• Se = Site in “east” of city,
• Sw = Site in “west” of city,
• Sc = Site in “center” of city.

Let A = {a1, a2, a3, a4} be the set of parameters related to the 
sites of grid station in S, where,

“a1” represents the Energy Sources,
“a2” represents the Transportation,
“a3”represents the Area Attributes,
“a4” represents the Energy Storage Stations.

Further characteristics of parameters are given in Figure 1, 
that explains four different parameters with the deep classifi-
cation of characteristics, each parameter is further classified 
in three different characteristics.

An ideally conventional decision object X on the mF set 
of parameters A is calculated in Table 13.

The choice value �sj , for the decision substitute sj on the 

universe of sites S is calculated in Table 14.
From Table 14, it is easy to compare the choice values of 

all the required sites. Site in “west” of city, has the maximum 

choice value as compared to all other sites. So, it is the best 
site for construction as compared to all other sites.

5.3  Comparison of patients for recovery of heart 
disease

Traditionally, health plans, medicare, and medicaid pay 
providers for whatever services they deliver, regardless of 
whether the services truly benefit the patient. How long 
some one takes to recover after an episode in intensive care 
depends on many things, including their age, prevention, 
health care and medication etc. For such a comparison in 
patients that whose patient will recover soon with preven-
tion and medication we use the approach of soft mF rough 
sets.

Let (P,Ap, 𝜁
−1) be a soft mF approximation space and 

P = {p1, p2, p3, p4, p5, p6} be a set of six patients. Let 
Ap = {a1, a2, a3, a4} be the set of parameters of prevention 
and treatment of heart disease related to the patients in P, 
where

“a1” represents the Vaccination,
“a2” represents the Health care,
“a3”represents the Medication,
“a4” represents the Surgery.
We give further characteristics of these parameters as

• The “Vaccination” includes live-attended vaccines, inac-
tivated vaccines, live non-pathogenic vaccines and live 
active vaccines.

• The “Health Care” includes exercise, balanced diet, rest 
and plenty of liquid.

• The “Medication” includes statins, beta blockers, anti-
platelet and ACE inhibitors.

• The “Surgery” includes coronary artery bypass grafting, 
heart valve repair or replacement, aneurysm repair and 
heart transplant.

An ideally conventional decision object X on the mF set of 
parameters Ap is calculated in Table 15.

The choice value �pj , for the decision substitute pj on the 

universe of patients P is calculated in Table 16.
From Table 16, it is easy to see that no choice value is 

maximum, so it is difficult for someone to take a decision 
that whose patient will recover soon. For taking such a deci-
sion we calculate

4∑

i=1

pi◦�pj, j = 1, 2,… , 6.

Table 11  3−Polar fuzzy soft relation

𝜁−1 Measurements Key Facts Visual Effects Price

m1 (0.2,0.6,0.8) (0.8,0.5,0.6) (0.9,0.6,0.2) (0,0.9,0.1)
m2 (0.1,0.5,0.7) (0.2,0.9,0.1) (0,0.2,0.6) (0.1,0.1,0.2)
m3 (0.6,0.2,0.1) (0.4,0.3,0.6) (0.2,0.3,0.3) (0.2,0.8,0.1)
m4 (0.8,0.1,0.7) (0.3,0.5,0.4) (0.5,0.2,0.5) (0.6,0.4,0.4)
m5 (0.2,0.3,0.2) (0.8,0.7,0.6) (0.6,0.7,0.1) (0.2,0.3,0.4)
X (0.8,0.6,0.8) (0.8,0.9,0.6) (0.9,0.7,0.6) (0.6,0.9,0.4)

Table 12  Choice values

�(X) � (X) Choice value (�mj
)

m1 (0.8,0.6,0.6) (0.9,0.9,0.8) �m1
=(1.7,1.6,1.4)

m2 (0.8,0.6,0.6) (0.2,0.9,0.7) �m2
=(1.0,1.5,1.3)

m3 (0.8,0.7,0.6) (0.6,0.8,0.6) �m3
=(1.4,1.5,1.2)

m4 (0.6,0.8,0.6) (0.8,0.5,0.7) �m4
=(1.4,1.3,1.3)

m5 (0.8,0.7,0.6) (0.8,0.7,0.6) �m5
=(1.6,1.4,1.2)
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Finally, taking the patients pj ∈ P with the maximum sum 
of poles of choice value �pj as the ideal decision for the given 

multi-criteria decision-making problem. From Table 16, it 
is easy to compare the choice values of all the required 
patients. Fourth patient has the maximum sum of poles of 
choice value as compared to all other patients. So, he will 

recover soon from heart disease with prevention and treat-
ment as compared to others.

6  Sensitivity and comparison analysis

Generally, the real-world decision-making problems occur 
in complex environment under imprecise, uncertain, and 
multipolar information, which is difficult to handle. Pro-
posed models are very suitable for the situations when the 
information is complex, multipolar, imprecise, and uncer-
tain. The fundamental concept behind the proposed models 
is to approximate the data under multipolar information. 
In proposed models the lower and upper approximations 
of a set are used to approximate the date under imprecise 
and multipolar information. The subset generated by lower 
approximations is characterized by objects that definitely 

Parameters

Energy Sources

Energy Storage Stations

Transportation

Area Attributes

Accessibility to energy sources

Accessibility to substations

Accessibility to residential+ commercial areas

Pumped hydro-storage

Fossil-fired power plant
Wind+battery storage

Substations
Neighborhood battery storage

Commercial campus with thermal storage

Construction availability

Harmonic pollution

Wire connections through poles

Fig. 1  Characteristics of parameters

Table 13  3−Polar fuzzy soft 
relation 𝜁−1 Energy Sources Transportation Area Attributes Energy Storage Stations

Ss (0.45,0.32,0.81) (0.52,0.58,0.23) (0.35,0.76,0.89) (0.35,0.81,0.48)
Sn (0.51,0.68,0.77) (0.12,0.76,0.77) (0.22,0.78,0.70) (0.72,0.76,0.59)
Se (0.23,0.82,0.55) (0.52,0.80,0.63) (0.57,0.65,0.27) (0.67,0.39,0.23)
Sw (0.53,0.82,0.29) (0.92,0.36,0.27) (0.20,0.72,0.88) (0.73,0.58,0.55)
Sc (0.88,0.21,0.66) (0.89,0.76,0.54) (0.70,0.20,0.73) (0.55,0.46,0.60)
X (0.88,0.82,0.81) (0.92,0.80,0.77) (0.70,0.78,0.89) (0.73,0.81,0.60)

Table 14  Choice value

�(X) � (X) Choice value (�sj )

Ss (0.70,0.78,0.60) (0.52,0.81,0.81) �ss =(1.22,1.59,1.41)
Sn (0.73,0.78,0.60) (0.72,0.78,0.77) �sn =(1.45,1.56,1.37)
Se (0.70,0.78,0.77) (0.67,0.82,0.63) �se =(1.37,1.60,1.40)
Sw (0.73,0.78,0.60) (0.92,0.82,0.88) �sw =(1.65,1.60,1.48)
Sc (0.70,0.78,0.60) (0.89,0.76,0.73) �sc =(1.59,1.54,1.33)
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form a part of an interest subset, whereas the subset gener-
ated by the upper approximations is characterized by objects 
that possibly form a part of an interest subset. Both the mod-
els provide more compatibility and flexibility as compared 
to previously defined models, which deal multipolar infor-
mation with enough number of parameters to handle the 
uncertain facts. All others models are unable to deal with 
such a kind of multipolar information. In literature, previ-
ously defined models based on mF set theory also deal the 
multipolar information but in those models, the data used 
to relate the universes are crisp which are unable to handle 
the uncertain and mF information about the relation of dif-
ferent universes. In short, we can say such type of models 
approximate an mF input under crisp knowledge, whereas 
in decision-making our proposed models are able to pro-
vide the complete information about universes under mF 
knowledge.

7  Conclusion

The mF set theory has a significant use in various fields and 
attracted a number of researchers. The combination of mF 
set theory with other mathematical theories is a useful tool 
for dealing with various types of uncertainties with multipo-
lar information, because hybrid models always provide more 
accurate and consistent results when we have to deal with 
the systems with more than one agreements. In this research 
article, we have presented new hybrid models by combining 
the theory of mF sets with rough sets and soft sets to intro-
duce the idea of mF rough sets and soft mF rough sets, which 
have their own importance in multi-criteria decision-making. 

We have introduced the basic operations of our proposed 
models and investigated some of their properties. To extend 
the range of number of parameters with multipolar infor-
mation in many practical life applications, we also have 
proposed the novel approaches to multi-criteria decision-
making based on proposed models and demonstrated the 
computational process by some practical examples. The 
complexity to approximate the data under multipolar infor-
mation is overcome with our proposed approaches. We also 
have developed algorithms for multi-criteria decision-mak-
ing problems. We will extend our research work on hybrid 
models of mF rough sets such as, (1) soft mF rough hyper 
graphs, (2) soft mF rough graphs, (3) soft rough mF graphs. 
Our proposed models may be extended to new directions 
including multi-criteria decision-making and aggregation 
operators based on (Garg 2018; Garg and Singh 2018; Garg 
and Kumar 2018).
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Table 15  4−Polar fuzzy soft 
relation 𝜁−1 Vaccination Healthcare Medication Surgery

p1 (0.3,0,0.8,0.4) (0.7,0.2,0.6,0.8) (0.5,0.3,0.2,0.7) (0.6,0.2,0.8,0.7)
p2 (0.4,0.7,0.1,0.3) (0.1,0.1,0.5,0.7) (0.4,0.6,0.3,0.2) (0.5,0.4,0.6,0.7)
p3 (0.4,0.4,0.1,0.6) (0.7,0.2,0.5,0.8) (0.7,0.5,0.6,0.2) (0.6,0.7,0.5,0.6)
p4 (0.7,0.5,0.2,0.4) (0.6,0.8,0.5,0.5) (0.5,0.8,0.5,0.3) (0.7,0.3,0.8,0.8)
p5 (0.1,0.6,0.1,0.5) (0.2,0.7,0.5,0.7) (0.2,0.8,0.3,0.2) (0.6,0.8,0.7,0.5)
p6 (0.5,0.6,0.1,0.3) (0.5,0.6,0.7,0.8) (0.5,0.6,0.4,0.2) (0.5,0.8,0.6,0.6)
X (0.7,0.7,0.8,0.6) (0.7,0.8,0.7,0.8) (0.7,0.8,0.6,0.7) (0.7,0.8,0.8,0.8)

Table 16  Choice value �(X) � (X) Choice value �pj
∑4

i=1
pi◦�pj

p1 (0.7,0.8,0.7,0.6) (0.7,0.3,0.8,0.7) �p1 =(1.4,1.1,1.5,1.3) �p1 =5.2
p2 (0.7,0.7,0.7,0.6) (0.5,0.7,0.6,0.7) �p2 =(1.2,1.4,1.3,1.3) �p2 =5.2
p3 (0.7,0.7,0.6,0.6) (0.7,0.6,0.6,0.8) �p3 =(1.4,1.3,1.2,1.4) �p3 =5.3
p4 (0.7,0.7,0.6,0.6) (0.7,0.8,0.8,0.8) �p4 =(1.4,1.5,1.4,1.4) �p4 =5.7
p5 (0.7,0.7,0.7,0.6) (0.6,0.8,0.7,0.7) �p5 =(1.3,1.5,1.4,1.3) �p5 =5.5
p6 (0.7,0.7,0.6,0.7) (0.5,0.8,0.7,0.8) �p6 =(1.2,1.5,1.3,1.5) �p6 =5.5
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