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Abstract In this paper, on the basis of analyzing some
existing limitations in the operational laws defined for tri-
angular intuitionistic fuzzy numbers (TIFNs), we first
proposed some improved operational laws for TIFNs.
Then, based on new operational laws, we developed some
aggregation operators for TIFNs, such as triangular intu-
itionistic fuzzy-weighted averaging operator, triangular
intuitionistic fuzzy geometric operator, triangular intu-
itionistic fuzzy-ordered-weighted averaging operator, tri-
angular intuitionistic fuzzy-ordered-weighted geometric
operator, triangular intuitionistic fuzzy hybrid averaging
operator, and triangular intuitionistic fuzzy hybrid geo-
metric operators, and discussed some desirable properties
of these operators. Furthermore, based on these aggregation
operators, we developed a multi-criteria decision-making
(MCDM) method in which the criteria values were repre-
sented by TIFNs. Finally, a numerical example was used to
show the practicality and effectiveness of the proposed
MCDM method by comparing the proposed method with
the existing methods.
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1 Introduction

With the arising complexities of decision-making envi-
ronment, the decision makers felt difficulties to get a
decision within appropriate time using imprecise, vague,
and uncertain information (Liu and Li 2017a; Liu and Shi
2017; Liu and Tang 2016; Liu and Wang 2017; Liu et al.
2016; Chen and Hong 2014a, b; Qin 2017; Pedrycz and
Chen 2015; Chen et al. 2014). Intuitionistic fuzzy sets
(IFSs) proposed by Atanassov (1986) are one of the most
admissible theories to handle the impreciseness, vagueness,
and uncertainties (Garg 2016; Jiang et al. 2017; Xu and
Yager 2006; Liu 2017; Liu and Chen 2017; Liu and Li
2017b; Liu et al. 2017; Xu 2007a, b; Xu and Gou 2017;
Chen et al. 2016a, b, ¢c; Chen and Chang 2015, 2016; Chen
and Randyanto 2013). However, in some circumstances, it
is difficult to give the preference of decision makers by a
crisp number and it is suitable to manifest the preference of
decision makers by TIFNs (Liu and Yuan 2007). The basic
feature of TIFNSs is that the values of its truth-membership
and falsity-membership functions are triangular fuzzy
numbers rather than exact numbers. Now, some research
achievements for TIFNs have been done. Liang et al.
(2014) introduced the TIFWG operator, TIFOWG operator,
and the TIFHG operator for TIFNs and applied them to
multiple-attribute group decision making (MAGDM) with
TIFNs. Wang (2008a, b) introduced the fuzzy number
intuitionistic fuzzy set (FNIFS) and proposed some
aggregation operators for FNIFSs, such as FNIFOWA
operator, FNIFHA operator, FNIFWG operator, FINI-
FOWG operator, and FNIFHG operator then applied them
to MCDM problems with FNIFNs. Recently, Zhou and
Chang (2014) proposed some Hamacher aggregation
operators for FNIFNs and applied them to MCDM prob-
lems with FNIFNs. Wei et al. (2010) proposed some

@ Springer


http://orcid.org/0000-0001-5048-8145
http://crossmark.crossref.org/dialog/?doi=10.1007/s41066-017-0061-6&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s41066-017-0061-6&amp;domain=pdf
https://doi.org/10.1007/s41066-017-0061-6

154

Granul. Comput. (2018) 3:153-168

induced ordered weighted geometric (I-TIFOWG) opera-
tors for TIFNs to deal with MCDM problems. More and
more MCDM methods (Qiu 2011; Wang 2012; Zhao et al.
2015) have been applied under triangular intuitionistic
fuzzy (TIF) environment. However, these methods can
only deal with decision-making problems with TIFNs and
cannot handle trapezoidal intuitionistic fuzzy information.
To solve these problems, Ye (2014) proposed the concepts
of trapezoidal intuitionistic fuzzy sets (TrIFSs), trapezoidal
intuitionistic fuzzy numbers (TrIFNs), and defined some
operational laws, score and accuracy functions. Further-
more, they defined some prioritized aggregation operators
for TrIFNs, such as TRIFPWA operators and prioritized
weighted geometric (TrIFPWG) operator for TrIFNs, and
developed an MCDM method based on these prioritized
aggregation operators Liu and Su (2010). The proposed
trapezoidal fuzzy linguistic sets and defined some aggre-
gation operators applied them to MCDM problems.
Moreover, Liu and Qin (2017) proposed Maclaurin sym-
metric mean (MSM) operators of linguistic intuitionistic
fuzzy numbers, and Sahin and Liu (2017) proposed pos-
sibility induced aggregation operator for simplified neu-
trosophic sets and applied them MCDM. Ye (2015)
introduced the concept of trapezoidal neutrosophic set and
defined some aggregation operators and applied them to
MCDM. Ye (2016) proposed projection and bidirectional
projection measures for single-valued neutrosophic sets,
and based on these, measures presented MCDM method to
solve mechanical design scheme problem.

Practically, all the above studies are reasonable under
the conditions that truth-membership or falsity-member-
ship degrees are not equal to zero. However, suppose that
there are two TIFNs a; and aj, such that T(4;) = 0 and
T(a;) #0, or F(a;) =0 and F(a,) # 0, then based on the
aggregation operators defined for TIFNs or for FNIFNs, the
overall aggregated value of either truth-membership or
falsity-membership values is zero. In other words, there is
no effect of other degrees on the overall aggregated values
either truth membership or falsity membership. Moreover,
it has been pointed out that the overall truth-membership
degree (or falsity-membership degree) is independent of
their relative falsity-membership degree (or truth-mem-
bership degree) in the aggregation process. Therefore, the
aggregated results are unacceptable. Hence, there is a need
to modify these existing operations by a proper considering
the correlation between truth-membership degree and fal-
sity-membership degree.

Thus, the objective of this article is to propose some
modified operations for TIFNs. Then, based on these
operational laws, we propose some aggregation operators,
such as triangular intuitionistic fuzzy-weighted averaging
(TIFWA) operator, triangular intuitionistic fuzzy-weighted
geometric (TIFWG) operator, triangular intuitionistic
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fuzzy-ordered-weighted averaging (TIFOWA) operator,
triangular intuitionistic fuzzy-ordered-weighted geometric
(TIFOWG) operator, triangular intuitionistic fuzzy hybrid
averaging (TIFHA) operator, and triangular intuitionistic
fuzzy hybrid geometric (TIFHG) operator to overcome the
limitations of the existing operators. Then, we apply them
to MCDM problems under TIF information. Finally, a
comparison has been made with the existing MCDM
methods.

The rest of the article is arranged as follows. In Sect. 2,
some basic definitions of TIFNs are given. In Sect. 3, we
define some improved operational laws for TIFNs. In
Sect. 4, based on these operations, some weighted aver-
aging aggregation and weighted geometric operators are
developed. In Sect. 5, some ordered weighted averaging
aggregation, ordered weighted geometric operators, and
hybrid aggregation operators for TIFNs are proposed. In
Sect. 6, we develop an MADM method to handle MADM
problem under TIF environment. In Sect. 7, a numerical
example adapted from Herrera et al. (2000) is used to show
the practicality and effectiveness of the proposed method,
and comparison and discussion are done. At the end, the
concluding remarks and future work are given.

2 Preliminaries

In this section, some basic definitions and operational laws
of TIFSs are briefly reviewed.

2.1 Triangular intuitionistic fuzzy set and their
operations

Definition 1 (Liu and Yuan 2007) Let U be a non-empty
universe of discourse set. Then, a triangular intuitionistic

set M in U is defined and mathematically represented as
follows:

M = {<u T};(ﬁ),F};(ﬁ) >a € ’0} (1)

where T~ (u) and F~(u) are two triangular fuzzy numbers
B R P (G

7@ = (1@, 1,0) . 1) a0 £ @) = (7,0

satisfying the condition 0<7 (u)+

o

}M(ﬁ)gl. For simplicity, let 7-(u) = (p, q, r) and
M

~
)

then the TIFN is denoted by

M(ﬁ) ={t, u,v),

a: <<p7 q, I"), (t7 u, V)>
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Definition 2 (Liu and 2007) Let
d= ((p, g, 1), (t, u, v)), ;11: (P15 q1, 1), (t1, ur, vy))

and dp = ((p2, g2, 12), (t2, u2, v2)) be any three TIFNs
and y >0. Then, some operational laws for TIFNs are
defined as follows:

Yuan

(1) di +dy = {(p1 +p2 = PiP2, @1 + @2 — quqa, 11+ 12 — 1),
(titz, ujua, vivy)),

(2)

(2) di xdy = (P12, 9192, 1172),
(t1 + 12 — 112, Uy + up — uguz, vy +v2 — vi2)),

(3)

(3) X& - <(1 - (] _P)Zv 1- (1 - q)l> I (1 - r)z)v (4)
(%, w, V),

@ d =) (1= (=A== 1= (1)),
(5)

The above-defined operational laws for TIFNs have some
limitations which can be discussed in an example given
below.

Example 1 Three groups of professors P; (j =1, 2, 3)
want to select a student for research project among three
students a; (i =1, 2, 3), and the selection and rejection
rating of the three students from the three groups of pro-
fessors is given by TIFN L;(i, j = 1, 2, 3). Suppose L;; =
((0.1, 0.2, 0.3), (0.3, 0.4, 0.5)), L =1{(0.3,04,0.5),
(0.1,0.1,0.2)), and L;3=((0.4,0.5,0.6), (0.0, 0.0,
0.0)), and the corresponding importance degree of the
groups of three professors is w = (0.3, 0.2, O.4)T; then, by
the operations defined in Definition 2, we get the overall
triangular intuitionistic fuzzy information L; = @7,
w;Ly; ={(0.2178, 0.3116, 0.4072), (0.0, 0.0, 0.0, 0.0)).
That is to say that F, (j = 1, 2) have no effects on the
overall result. This is an undesirable property. Obviously,
these operations can handle a situation in which member-
ship and non-membership functions are not equal to zero.
In other words, if either of the membership or no-mem-
bership degree equals to zero, respectively, then there is no
effect of the other membership or no-membership degrees
on the overall aggregated result in the aggregation process.

Definition 3 (Wang 2012) Let d = ((p, q, r), (t, u, v))
be a TIFN. Then, the score and accuracy functions defined
by Wang (2012) are as follows:

~~ DPt2+r t+2u+v
R e = (6)

~~ pH+2+r t+2u+v
H(d) = 2 + 2 . (7)

Definition 4 Let al = <(p1, q1, }"1), (l], u, V1)> and

32 = ((p2, g2, 12), (f2, Uz, v2)) be any two TIFNs. Then,
the comparison rules for comparing TIFNs are defined as
follows:

3 Improved operational laws for TIFNs

In this section, we propose some improved operational
laws for TIFNs.

5 Let d={(p,q r) (t,u,v), d =
(P, q1, 11)s (t1, ur, v1)) and  do = {(p2, @2, 1),

(t2, up, v1)) be any three TIFNs and i >0. Then, new
operational laws for TIFNs are defined as follows:

(1) dieds= (1= (1=p)(1=p2), 1 = (1= q1)
(I=q2),1 = (1 =ri)(1=r)),
(1 =p)(1 =p2) = (1 = (p1 +11))(1 = (p2 + 12)),
(1=g)(1 —q2) — (1 = (g1 +w))(1 = (q2 + u2)),
(L=r)(1=r) = (1= (r+v))(1 = (r2+m)))),

(8)

Definition

(2) dy@dy=(((1-1)(1—1) = (1= (pr+ 1)1 = (p2+ 1)),
(1 =u)(1 —up) = (1 = (g1 +u1))(1 = (q2 + u2)),
(1 =v)(1=v2) = (1= (r +v1))(A = (r2 +12))),
(1= (1 =1)(1 =), (1 = (1 —wu)(l - u)),
(1= (1 =v)(1 =),

©)

B)yd={1-(1-p" 1-(1=-g) 1-(1-n"),
((1=p)' =1 =(p+0)", (1-9)" = (1= (g +u)",
(1= = (1= (r+v)"),

(10)

4) Eiw ==t =1 =@+0), 01—’ —(1—(g+u)",
(1=v) = (1= (r+v)),
A-1=0"1-00-w", 1-1-=v").

(11)
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Example 2 If we re-calculate Example 1 with this new
operations of TIFNs in Definition 5, then we get the overall
triangular intuitionistic information of the student a; as

3
Ly = @ oLy
=

1
= ((0.2178, 0.3116, 0.4072), (0.1106, 0.1496, 0.2253)).

This new operations are more effective and practical in some
cases than the other operations defined in Definition 2.

Theorem 1 Let d = ((p, q, r), (t, u, v)), di = {(p1, q1,

r1), (ti, ur, vi)) and dy = (P2, @25 12), (12, U2, v2)) e
any three TIFNs and y, y,, y» > 0. Then

I d@dy=dr®dy;

2. d@dy=dy®dy;

3. yldi & dy) = ydy & yd;
4. (;11 ®222)X :;1}1(@);1;;

5. 0d®nd= (1 + 1) d;
6

~X1 ~X2 ~\x
d ®d =d

4 Some aggregation operators for TIFNs

In this section, we defined some aggregation operator for
TIFNs based on these improved operational laws.

4.1 TIF-weighted averaging and TIF-weighted
geometric operator

In this section, we propose TIF-weighted averaging and
TIF-weighted geometric operators to aggregate TIF
information.

Definition 6 Let d. = ((p., q., r2), (fz, uz, v.)) (2=
1, 2,..., m) be a family of TIFNs. If the mapping

TIFWA(d, dy, . .., dp) = 01dy ® 02dy @ -+ B Oty

m ~
= wzdz s
z=1

(12)
then, TIFWA is called triangular intuitionistic fuzzy-

weighted averaging (TIFWA) operator, where o =

@ Springer

(w1, w3, ..., w,)" is the importance degree of d.(z =
1,2,...,m) with the condition that ;€
[0, 1], >, w. = 1. Especially, when the importance
degree w= (L L ..., #)T, then the TIFWA operators

becomes TIFA operator:

1

TIFA(d), dy, ..., dy) = —(d) ©®dy & ... ©dy).  (13)

m

Theorem 2 Let az =Py Gzs 7o), (L Uz, vo)) (2=
1, 2,..., m) be a family of TIFNs. Then

TIFWA(dy, ds, .. ., dy)

= <<1 - ﬁ(l —pz)wr’ 1 — ﬁ(l — qz)tuz71 _ ﬁ(l B rz)w:>’

z=1 =1 z=1

x (ﬂ(l SR | (ETRSSIEN § ((RAE

z=1 z=1 z=1

| ((EPTS
z=1

[T =10 -+ v:))‘"«) >

(14)

T . .
where @ = (w1, Wy, ..., Wy) is the importance degree of

d(z=1,2,...,m) with the
o, €[0,1], 3" w. =1

condition that

Proof We prove Eq. (14) using mathematical induction
on m.

1. Whenm =1, w; =1, we have
TrIFWA('.EZI):<(1—(1—pl)‘,l—(1—q1)1,1—(1—r1)]),
(a=p) ==+,
(1=q)'=(1 = (@ +u),(1=m)' = (1= (r+)' ) ).

Thus, Eq. (4) is true for m = 1.
2. For m = 2,, we have

ody = (1= (1=p)” 1= (1= q)”, 1= (1—r)"),
(1 =p)”' =1 = (pr + 1)), (1 = q1)”
= (1= (g1 +u))”, (1 = r)” =(1 = (r1 +v1))”")),

wady = (1= (1= p2)” 1= (1 = g2)™, 1 = (1 = 12)™),
(1 =p2)”=(1 = (p2 + 1)), (1 — q2)”
—(1 = (g2 +u2))”, (1 = r2)”=(1 = (r2 +12))™)),

That is, Eq. (14) holds for m = 2.



Granul. Comput. (2018) 3:153-168 157

TIFWA(&I,;&):<<1 (I—-(1—-(1- )w)) I—(1-=(1-=(1- )w ), 1—=(1—(1-(1 ql)w)
A=(1-(1=1=g)”), 1 =1 =0~ =r)") 1=~ (1~ (1-r)")
(=1 =(1=p)”) A= (1=1=p2)”) = (1= (1= (1=p)”))+((1=p)”" =1~ (p1 +1)")
(A= =1 =p)”)+ (1 =p)”=(1 = (p2+1)")), (1 =1 =1 =g)") - (1= (1—(1—g2)")

(=1 =1 =q)”)+ (1 =g)” =1 = (g1 +u))) - (1= (1= (1 =g2)™)) + (1 = q2)” = (1 = (g2 + u2)™*))
(I=(1=1Q=r)™) - A=(1=1=r)") = (1= 1= (1 =r)”))+((1=r)”"=(1—=(r1 +v1)”)
(A== =r)")+ (1 =r)”=(1 = (r2 +v2)™)))

= (1= =p)”-(1=p)”, 1= (1 =g)”-(1=q)” 1= (1 =r)"(1=r)"),

(1 =p)”(1 =p2)”=((1 = (p1 + 1) (1 = (p2 + 1)),

(1 =q)” (1 =g2)”—((1 = (g1 +u1))”"-(1 = (g2 + u2))”),

(L=r)” (1 =r2)”=((1 = (r +v1))”" (1 = (r2 +2))*))).

3. Let us assume that Eq. (14) is true for m = [, that is

TIFWA(y. do. .. d) Hence, Eq. (14) is true for m =14 1. Therefore,

, , ) Eq. (14) is true for all m = z.
_<<1 [T =p)= 1 =T](1 = q)” 1—H(1—r)“>
=1 z=1 z=1 3
! l R Theorem 3 If dz = <(Pza gz, rz)a (tza Uz, Vz)>(z =
(H(l —p) =T[4 1)) 1, 2,...,m) be a family of TIFNs. Then, the aggregated
z=1 z=1

result using TIFWA operator is also a TIFN, i.e.,
TIFWA(d,, d>, ..., d,y) € TIFNG.

=1 ; =1 =1 Proof Since dz = <(pz» qz» rz)a (tm Uz, Vz)> € TIFNs (Z =
_ H(l —(r V) >> 1,2,...,m), so by Definition 1, we have
=1 0< (pm 9z I’Z), (tza Uz, Vz) <land 0< max(pm qz rz)
4. Now, when m =1+ 1, + max(z, u;, v;) < 1.

TIFWA((?I,le, R ZZHI) = @{,ill wZZZZ = TIFWA(;ll, le, .. .,;11) + w[+1211+1

] ! ; l I

= <<1 - H(l _pz)‘uz7 1— H(] — )w 1 — H(l _ rz>r1)7>, (H(l —pz)wf’_H(l B (pz +tz))wz7
l i ; ]

[T =a)™ =] = (g +u))> T (1 = r)* Hlfrﬁv >>
z=1 =1 pabe’ M

(1= (1= pre)™ 1= (1= que)™ 1= (1= ) ™), (1= (1 = pry) ™ = (1 = (prgy + 111))™",
L= (1= qre)™" =1 = (@1 + w1))” 1= (1= 1) = (1 = (rigr +w141))"))

= <<] - H(l _pz)w;’ 1 - H(l - QZ)(UZG] - H(l - rz)f'b)’ (H(l _pz)wz_H(l - (Pz +tz))wz’H(1 - %)w

z=1 z=1 z=1 z=1 z=1 z=1
I+1 I+1 I+1
H 1 - CIZJFMZ U) 7H(1 7”1)%*1_[(1 - (erFVz))wz .
7=1 z=1 z=1
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Then
0<1
H( (pza qz rz) m <L,0< H tza Uz, Vz))wz
z=1
H(l - (Pza qz, rz) (tza Uz, Vz))wz <1,
z=1
and
<1 - H(l - (pZ7 qz rz))wz> + (H(l - (tm Uz, Vz))wz
z=1 z=1
- H(l = (Pos @2y 72) + (22, 1z, Vz))wz>
z=1
=1- H(l = (P2 @z 1) + (1, Uz, v)) € [0, 1].

Thus, TIFWA(d,, dy,.. ., d,,)is TIFNs. Now, we dis-
cussed some desirable properties of TIFWA operators.

Theorem 4 Let d, = ((Pzs qzy 72), By, Uz, V) and e, =
<(p§, q;, rij), (tj, uz, vf)> be two families of TIFNs and

o = (w1, w2, ..., ) is the associated importance degree
satisfying w, € [O 1] and 377" o, = 1.

1. (Idempotency). Ifd = dO = {(po, qo, 10), (0, Uo, vo))

for all z, then TIFWA(dy, d, . . ., dy) = do.
2. (Boundedness). Let

d = (max (0, min(p, + t,) — max(t,), min(q, + u;)
—max(u;), min(r;, + v;) — max(v;))),

((max(t;), max(u,), max(v.))).

and

d = (max(max(p, + ;) — min(t;), max (g, + u)
—min(u;), max(r, + v;) — min(v;))),

((min(t;), min(u;), min(v;))).

Then, d <TIFWA(dy, d, ..., dy) <d .
3. (Monotonicity). When
P:S<p:, @< q, v, S, 2>t u, >ug, v, > vy, for
all z, then

TIFWA(d,, dy, ..., d) <TIFWA(e1, €3, . . ., em).
Proof
1. Since d, = do = {(po, o, 10), (to, o, Vo)) (z =

1,2,...,m) and Y7 @, = 1., then by Theorem 2,
we have

@ Springer

TIFWA(d,, da, ..., dy)

1= (1= o) 21— (1= rg)

z=1 z=1
m
o8
::|“‘>
)

r:[ ﬁ(l T (e (HVZ))“) >
nn >
(1

—(1 = (rp + 0)) 2o W) >

< _po)zzzw @ —(1—=(po+ to))ZZzl @z (1= qO)ZL @

(l—r() Z*

= ((po, 9o, 70); (10, o, Vo)) = do.

—(1—(go+ u()))z

Since
max(;) = 1 — (1 - maX(’z))Zi‘ “>1- ﬁ(l — ;)™ , max(u)
=l
=1—(1— max(u ))Z P> H(l — )™,
=1

max(vz) =1- (1 - IIlaX(vz))Zilw«‘ >1 - H(l _ Vz)m:.

and

thus

max(p; + ;) — min(t;) = (1 — min(z

— (1 —max(p; + ;)

- ﬁ(l - (Pz + tz))“
z=1

> (1 — max(r,)) 2o
(1 — min(p, + tz))zz—l “— min(p, + 1) — max(z,),

g
e
IV
=
|
E

max(q; + u;) — min(u;) = (1 — min(u ))Z -1

ﬁl—u

— (1 — max(q; + u;)

0 - e

> (1 — max(u)) 2~ (1 — min(q. +uz)) 2™
= min(q; + u;) — max(u),
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max(r; +v;) — min(v;) = (1 — min(v;)) 2= TIFWA(d, da, . . ., dp) <TIFWA(e1,e3,...,em ).
— (1 — max(r; +v;)) ~fw>H1—v7
” Definition 7 Let ZJZ ={(pz, Gz, 12), (B, Uz, v)) (2 =
_ H(l —(r. +v.)” 1,2,...,m) be a family of TIFNs. If the mapping
7= — — — ~ ~ 2 ~ Dy
" TIFWG(dy, d3,....dy) =d, ®d, ®...®d,
>(1— max(vz))zzzl “—(1 — min(r, + VZ))ZZ:1 @ ( ) é} Zlmz 2 1)
= min(r, + v;) — max(v;). =R (

Then, according to Theorem 3, we have

m m

H(l - tz)w:_H(l - (pz + tz

=1 z=1

Therefore,
U(l — 1)~ U(l — (P + 1)), U(l —uy)”
- H(l — (g +u)) [J=v)™ ]
z= z=1 z=1
(1= (rz 4+ v2))™

> (max (0, min(p, + #,)max(z,), min(g, + u;)
—max(u;), min(r;, + v;) — max(v;))),

((max(t,), max(u;), max(v;))).

Hence, we can obtain that 227 STIFWA(Zi], ;ZZ,
Ldny<d .
3. Since P:<p3, 4:<q3, o we have
=110 -p)= <1~ H(l )" 1
BecZ::Jse L2t u > uzj v.>vy, w,>w;, and p;+

tz§p§+t§, QZ+uz§CI§+u;arz+vz§r§+v§7
s;+w. <s2+wi(z=1,2,..., m), we have

Hl—(p +1.) (1-1)™
z=1

=

Therefore, according to Definition 5, we have

then, TIFWG is called triangular intuitionistic fuzzy-

weighted geometric operator (TIFWG), where o =

(w1, w3, ..., )" is the importance degree of d.(z =
1,2,...,m) with the condition that ;€
[0, 1], >7, w, = 1. Especially, when the importance
degree @ = (L, L ..., )", then the TIFWG operators
becomes TIFG operator:

TIFG(dy, da, ..., dp) = (d, ®dy ® --- D d,,)". (16)
Theorem 5 Let  d.=((p, gz 12), (tz, 1z, v2))(z =

1, 2,...,m) be a family of TIFNs. Then

TIFWG(dy,dy,...,d,)

m m m

[T =)=~ +e)™ ] (1 —u)™

z=1 z=1 z=1

+u2))m“,f[l(lfv lf[ (L= (r;+v))™),
(1—ﬁ(l—tz)("",1—ﬁ(l—uz)("*”,l—lm_[(l—vz)w

z=1 z=1 z=1

===
_
|

(17)
where w = (w1, wy, .. ., wm)T is the importance degree of
d.(z=1,2,...,m)  with  the

€ [0, 1], Zin o, =1
Proof The proof of Theorem (5) is the same as in
Theorem (2).

condition that

Theorem 6 If d.=((p, q:, 1), (£, uz, v:))(z =1, 2,
.., m) be a family of TIFNs. Then, the aggregated result
using TIFWG operator is also a TIFN, ie.,

TIFWG(d,, d», . .., d,,) € TIFNs.

Theorem 7 Let d. = ((p., q., r-), (t-, us, v;)) and e, =
(P2, 42, r2), (12, uS, v3)) be two families of TIFNs and
o= (o, v, ...,
degree satisfying w, €

o)’ is the associated
[0, 1] and 377" | w. = 1.

importance

1. (Idempotency). Ifd = do = {(po, qo, 7o), (0, uo, vo))

for all z, then TIFWG(dl, dz, e d ) = do.
2. (Boundedness). Let

@ Springer



160

Granul. Comput. (2018) 3:153-168

= (max(0, min(p, + ;) —
—max(u,), min(r, +v;) —
max (u), max(v;))),

max(f.), min(q; + u;)
max(v,)), (max t.),

and

d = (max(max(p; +1t,)

— min(u;), max(r;, + v;)

— min(t;), max(q; + u;)
— min(v,)),

(min(t;), min(u;), min(v;))).

Then, d~ <TIFWG(d,, d», ..., d,,) <d*.

3. (Monotonicity) When — p.<p:,q.<q;, . <r
L2, u 2> ug, v, > vy, for all z, then
TIFWG(d,, ds, . .., d,)) <TIFWG(ey, es, ..., em ).

Proof Same as Theorem 4.

5 Some hybrid aggregation operators for TIFNs

In this section, some ordered weighted averaging, ordered
weighted geometric operators and hybrid weighted aver-
aging, hybrid weighted geometric operators are developed.

Definition 8 Let d. = ((p., gz, r2), (fz, uz, v.)) (2=
1, 2,..., m) be a family of TIFNSs. If the mapping
TIFOWA(d), d, . .., d) = 01dy(1) & 0y &
52 wzao(m)
— & w.d,)- (18)

z=1
Then, TIFOWA is called triangular intuitionistic fuzzy-
ordered-weighted averaging operator, where ZZG(Z) is the zth
of 3(2)(z:1,2,...,

is the importance degree of TIFOWA operator
[0, 1], and >_7" | @. = 1. In a special case, when

o=(L L ..., 17 then the TIFOWA operator reduce to
TIFA operator.

largest  value

T
ceey Om)
with o, €

m)7 = (0)17 w2,

Definition 9 Let az = (P2 @zs 12), (1, Uz v2)) (2=
1, 2,..., m) be a family of TIFNSs. If the mapping

TIFOWG(dy, da, ..., d) = dyy) @ dyiy) ® -~ @ dy
m o,
= & d,,

z=1

(19)
then TIFOWG is called triangular intuitionistic fuzzy-

ordered-weighted geometric operator, where Zio@ is the z th

@ Springer

of dylz=1,2,..,
. wm)T is the importance degree of TIFOWG operator
with @, € [0, 1], and 3" | w. = 1. In a special case, when

o= 1 ... 17 then the TIFOWG operator reduced to
TIFA operator.

largest value m), o = (wy, my,

Theorem 8 Let ‘}z = (P2, Gz, 72), (2, 1z, v)) (2 =
1, 2,...,m) be a family of TIFNs. Then

TIFOWA(dy,d,,...,d,,)

= < <1ﬁ(l 7p0(z))w37 1 ﬁ(lq"'(z))(u}lﬁ(lrg(z>)<’1:>7

z=1 z=1 z=1

(ﬁ(‘ ~Pot) —ﬁ(l = (Pote) +’a<z>))m‘llﬂ[(1 ~4o() ™

z=1 z=1 z=1

,E[l(l - (‘Ia(z)+ua(z)))u'f7ﬁ(1 7"0_(2))(”:7]%[(1 _ (r5(2)+vﬁ(z>))w3> >,

z=1 z=1

(20)
where d o) I8 the zth largest value of ZJ(Z) (z=
1,2,...m), o =(w, w,... wZ)T is the importance
degree of TIFOWG operator with o, € [0, 1], and
Yo, =1.

Proof The proof is similar to Theorem 2.
Theorem 9 Ler az = ((Ps @25 7o), (L uz, vo)) (2=
1,2,..., m) be a family of TIFNs. Then
TIFWOG(d,, d», . . ., dy)
- <(H (1= 10)” 0 = (s +100)™
z=1 z=1
@
LT = o) = TT(U = (o) + o)™
=1 z=1
(n @,
I 10 (40 )
= =1
<1H(1t =TT = )™
z=1 z=1
TH0-w))
z=1
(21)

where ;la(z) is the zth largest value Ofa(z) (z=1,2,...,m),
o= (w, w,..., COm)T is the importance degree of
TIFOWG operator with @, € [0, 1], and Y7 @, = 1.

Proof Same as Theorem 2.The TIFOWA and the TIFWG
operators have the same properties than the TIFWA and
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TIFWG operators. However, TIFOWA and TIFOWG S5 - - -

’ TIFHA,, »(d1, da, .. .., d;) = wi1d d
operators also satisfy the property of commutativity. ooldi, &> )= a(l) O mdym) ©

. D @,

Theorem 10 Assume that d_ = ((p, q,, r.), (t,, u,, v.)) . e"é od.

- = oo = W Wels(z)s
(z=1,2,..., m) is any permutation of d, = {(p;, ¢, 12), =!
(t;, uz, v;)) (z =1,2,..., m), then (23)

TIFOWA(d,, d,, ..., Ezm) = TIFOWA(d,, d», . .., d,).

(22)
Proof Since

TIFOWA(d,,d,,....d,,)

m
;

- < <1 ‘ﬁ(l —p'a(z))v, | _ﬁ(1 ~d4,) 1-TI(1 —raz))“"),

=1 z=1

m m

(H(l ) =I1(= (o +100)) "I (1-0)”

_f[<1—(q'a<z)+”?<1>>)m
_H( ( ORI ))w

TIFOWA(EI >, .Ajm)

z=1

)

z=1 z=1 z=1

4= { (P ). (£102) Y= 1.2cm)
<(Pz,qz,rz)7 (tZ,MZ,VZ)>(Z: 1,2,...,m),

is any permu-

tation of Ziz = then

dy1y=do1)

,d,) = TIFOWA(d;, ds, ..., dy).
Since the TIFWA and TIFWG operators only consider the
importance degree of TIFNs and cannot consider the
importance degree of the position, the TIFOWA and
TIFOWG operators only consider the importance degree of
the position and cannot consider the importance degree of
the TIFNs. To overcome this limitation, we proposed TIF
hybrid aggregation operators.

TIFOWA(d,, d,, ..

Definition 10 Let

Uo(z) Vo)) (2= 1,2,
if the mapping

da(z) = <(p<7(z)7 9s(z)s ru(z))a (ta(z)a
m) be a family of TIFNs. Then,

then TIFHA,,  is said to be triangular intuitionistic fuzzy
hybrid averaging operator, where w = (@, @, .. ., wz)T is
the importance degree of the TIFHA operator with @, €
[0,1], 3" /@, =1. and is the zth largest of the TIF
values ;fz = meZJZ (z=1,2,...,m), (20(1), ;16(2), e
30(2)) is any permutation of the weighted TIFNs
(317 212, ceeey 32) which ZZJ(Z_]) Z Zi(r(z) (Z =
L,2,....m), o= (v, w,... wZ)T is the importance

d.(z=1,2,...,m), such that
[0, 1], >°7, w. = 1, and m is the balancing coefficient.

satisfies

degree  of w,; €

Assume that ha = ((Po(2)» Dol
Ve))(z=1,2,...,

To(2) (fa(z)> Ua(2)>
) be a famlly of TIFNs. Then, we

have
TIFHA,, o(d, d3, ..., d.)

- <<1 - H(l _Pa(z>)w =TI - %@)m ’

z=1 z=1
=TI - ”&m)wz)’ ( (1=rs0)”
z=1 =1

m A «
—1_[]<1— ( 0()+t0(2))) 7H(l_qa(z)>

7= =

z=1
(24)
Definition 11 Let '}, 0 = ((Po2)s To0)s (to(2),
Us()s Vo)) (2 =1,2,...,m) be a famlly of TIFNs. Then,
if the mapping
— — — T PR 7)) .
TIFHG,U7w(d1, dz, ceeey dz) - a(1) ® do’(Z) ® X do’(z)
- Z§1 dJ(Z)
(25)
then TIFHG,, ,, is called triangular intuitionistic fuzzy
hybrid geometric operator, where w = (wy, @y, ..., wZ)T

is the importance degree of the TIFHG operator with @, €
(0,1}, > " @. = 1. and d (o) is the z —th largest of the
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TIF values ;lz = ma)ZZZZ (z=1,2,...,m), (ZZ,,(U, ;10(2>,

. EZU(Z>) is any permutation of the weighted TIFNs
(dy, ds,....,d.) which o1y > dy(z) (2=
L,2,....m), o= (v, w,... wZ)T is the importance
Ziz (z=1,2,...,m), such that
0, 1], >, w. =1 and m is the balancing coefficient.

satisfies

degree  of w,; €

Assume that ma = ((Po(2)» Dol
Ve))(z=1,2,...,

To(2) (ta(2)> Ua(z)>
) be a famlly of TIFNs. Then, we

have
TIFHG,, o(d, da, . . .., d)
= < (Hl(l - t;}@) - Hl(l (pff(z) + ’am)) :
= =

The proof is similar to the above theorems.

6 The MCDM approach with TIFNs

For MCDM problem with TIF information, assume that

there is a set of the alternatives A = {;\1, ;\2, ey An}, and
there is a set of criteria C = {61, G, ..., 6,,,}, with

. . T
associated importance degree o = (wy, Wy,..., Oy) ,

satisfying @, € [0, 1] and )7 .= 1. The decision

maker can give the criteria value 6(Z =1,2,..,

alternative Ay (y=1,2,..., n) by the form of TIFNs Ziyz =

<(pyZ7 qyzs ryz)» (tym Uyz, Vyz)> b=12,..,
1,2,..., m), where (pyz, qyz, ryz) indicates the degree of

m) of
n,z=

membership of the alternative Ay with respect to the criteria

C 2 (tyz, u vz) indicates the degree of non-membership of

the alternative Ay with respect to the criteria 6: (y=

1,2,...,n,z=1,2,..., m). Assume that D= (;lyz)nxm is
the decision matrix. Consequently, a ranking of alternatives
is required.

In general, the decision steps of this MCDM problem
are shown as follows.

@ Springer

Step 1: Calculate the overall TIFN EZ) y=1,2,...,n)
for the alternative Ay y=1,2,..

a,v = <(17yv dy; r).), (tyv Uy, Vy)>'r
= TIFWA(dy, dya, ..., dym)

_ < (1 T -pe™ 1 -0 - a0 ~T]0 - r,z)“t),

=1 z=1 =1

m m
(H(l *1’,\'2)&"* H(l - (Pyz + t}’Z))w:v
v} =1

(1 — 4z )m H(l - (%‘z +”>’:))U):7H(l - r.\':)w:

1 z=1 z=1

1:[1 17 r‘ +vv ’)>,

., n) which is shown by

ES

o
Il

or

’} <(p), qy; r‘) (tyv Uy, Vy)>a
TIFWG(d)17 dﬂv RN ;iym)

< (ﬁ(l - tyz)w: - ﬁ(l = (e +12))", i (1= uy)™

z=1 z=1 z=1

(1~ g )" [T - v) -

1 =1 =1

( 11 (1—1,)", 1- H(l —uy,)" 1 = ﬁ(l —v,\.z)“’~'>>,

z=1 =1

Es

o
Il

where y=1,2,...,n
Step 2: Calculate the score and accuracy values of the

final TIFNs Ziy (y=1,2,..., n) by the following formulas:

. 24, t, + 2u,

E(dy):py+ q)+ry_)+ uy+vy7 (29)
4 4

~ ~ 2q, ;4 2u,

H(d):py+f}+r)+}+ Zl—s—vy. (30)

Step 3: Rank all the alternatives and select the best one.

Use the comparison method defined in Definition 4 to
rank the alternatives and select the best one(s). First, we
can compare with score values of all alternatives, the
bigger the score value for one alternative is, the better this
alternative is. If the score values for some alternatives are
equal, then we can compare with them by accuracy values
of all alternatives. The bigger the accuracy value for one
alternative is, the better this alternative is.

7 Illustrated example

The following example is adapted on the basis of the case
used by Herrera et al. (2000).
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Example 3 Let us assume that an investment company
wants to invest a sum of money in the best option. There
are four possible companies are taken into consideration,
which are described as follows:

1. A;isa car company.

2. A, is a food company.

3. Asisa computer company.
4. A4 is an arm company.

The investment company must take a decision according
to the following four criteria:

(a) 6‘1 is the risk analysis.

(b) C, is the growth analysis.

(c) Cs is the social—political impact analysis.
(d) 6‘4 is the environmental impact.

The importance degree of the criteria is
o =(02,0.2,03,0.3)", and the assessment values of
each alternative given by the decision makers are in the
form of TIFNs and are shown in Table 1.The goal of this
decision problem is to select one best company for

investing.

7.1 Decision steps of the proposed method

Step 1: The overall evaluation value of each alternative ;ly
(y =1, 2,3,4) is obtained using Eq. (27) and is given as
follows:

dy = ((0.325, 0.426, 0.528), (0.126,0.203,0.313));

dy = ((0.584,0.648,0.751), (0.104, 0.103, 0.125));

ds = ((0.372, 0.452, 0.553), (0.161, 0.201, 0.306));

dy = ((0.303,0.403,0.476), (0.164,0.193,0.309)).

Step 2: Using Egs. (29) and (30), to calculate the score
and accuracy values of the overall evaluation values, we
can obtain

S(dy) = 0.215, S(dy) = 0.549, S(ds) = 0.240, S(ds)
=0.182.

Step 3: By the comparison rules defined in Definition 4,
we can get the ranking order of alternatives as follows:

Az >A3 >Al >A4.

Therefore, the best alternative is Az and the worst is ;\4.

In a similar way, the following procedure can be done
by TIFWG operator.

Step 1: The overall evaluation value of each alternative
is obtained using Eq. (28) which is given as follows:

di = ((0.330,0.430,0.540), (0.121,0.2,0.3));

dy = ((0.588, 0.651, 0.754), (0.1, 0.1, 0.121));

ds = ((0.371, 0.454, 0.559), (0.161, 0.2, 0.3));

dy = ((0.303,0.403,0.479), (0.164,0.193,0.300)).

Step 2: Using Egs. (29) and (30), to calculate the score
and accuracy values of the overall evaluation values, we
can obtain

S(dy) = 0.227, S(ds) = 0.556, S(ds) = 0.244 , S(ds)
= 0.186.

Step 3: By the comparison rules defined in Definition 4,
we can get the ranking order of alternatives as follows:

Az >A3 >A] >A4.

Therefore, the best alternative is Az and the worst is A4.
Obviously, the ranking results produced by the TIFWA
operator and TIFWG operator are the same, i.e., the best

alternative is Az and the worst is A4.

Table 1 Decision matrix of

Example 3 ol Cs C; Cy
A ((0.3,04, 0.5), ((0.4, 0.5, 0.6), ((0.2,0.3,04), ((0.4, 0.5, 0.6),
(0.1, 0.2, 0.3)) (0.2, 0.2,0.3)) (0.1, 0.2, 0.3)) (0.1, 0.2, 0.3))
A, ((0.5, 0.6, 0.7), ((0.4, 0.5, 0.6), {(0.6, 0.7, 0.8), (0.7, 0.7, 0.8),
(0.1, 0.1, 0.2)) (0.1, 0.1, 0.1)) (0.1, 0.1, 0.1) (0.1, 0.1, 0.1))
A; ((0.4,04,0.5), ((0.4, 0.5, 0.6), (0.3, 04, 0.5), ((0.4, 0.5, 0.6),
(0.1, 0.2, 0.3)) (0.1, 0.2, 0.3)) (0.2, 0.2, 0.3)) (0.2,0.2,0.3)
A, ((0.2, 0.3, 04), ((0.4, 0.5, 0.6), ((0.4, 04, 0.5), (0.3, 04, 0.5),
(0.3, 0.3, 0.5)) (0.2, 0.2, 0.2)) (0.1, 0.1, 0.2)) (0.1, 0.2, 0.3))
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7.2 The validity of the proposed method compared
with some existing methods

To show the validity of the proposed method in this paper, now,
we calculate Example 3 using aggregation operators proposed
by Wang (2008a, b), Zhou and Chang (2014) and Wang et al.
(2015), and then compare with the ranking results.

(1) Compared with the method proposed by Wang
(2008a, b)

The steps are shown as follows.

Step 1: The overall evaluation value of each alternative

;ly (y=1,2,3,4) is obtained using FNIFWA operator
defined by Wang (2008a, b), and we have

di = ((0.325,0.426,0.528), (0.115,0.2,0.300));

dy = ((0.584,0.648,0.751), (0.1,0.1,0.115));

ds = ((0.372, 0.452, 0.553), (0.152,0.2,0.3));

dy = ((0.303,0.403,0.476), (0.143,0.176,0.271)).

Step 2: Using Egs. (29) and (30), to calculate the score
and accuracy values of the overall evaluation values, we
can obtain

S(dy) = 0.223, S(d») = 0.554, S(ds) = 0.244, S(ds)
= 0.205.

Step 3: Therefore, the ranking order according to their
score values is

Az >A3 >A] >A4.

Therefore, the best alternative is Az and the worst is A4.

Obviously, this ranking result is the same as one pro-
duced by the proposed method in this paper.

In a similar way, when we use the FNIFWG operator
proposed by Wang (2008a, b) to solve this problem, we can
get the following steps.

Step 1: The overall evaluation value of each alternative
is obtained using FNIFWG operator, and we have

di = ((0.307,0.410,0.512), (0.121,0.2,0.3));

dy = ((0.559,0.635,0.735), (0.1, 0.1, 0.121));

ds = ((0.367,0.447,0.548), (0.161, 0.2, 0.3));

dy = ((0.293,0.395,0.464), (0.164,0.193,0.300)).

Step 2: Using Egs. (29) and (30), to calculate the score
and accuracy values of the overall evaluation values, we
can obtain

S(dy) = 0.205, S(d,) =0.536, S(d3) =0.237 , S(d4)
=0.174.
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Step 3: Therefore, the ranking order according to their
score values is

Az >A3 >A1 >A4.

Therefore, the best alternative is Az and the worst is 34.

This result is the same as the above all ranking results.
Therefore, it can show the validity of the proposed method
in this paper.

(2) Compared with the method proposed by Zhou and
Chang (2014)

In the part, we can compare the proposed method with
the method proposed by Wang (2008a, b), and the steps are
shown as follows.

Step 1: The overall evaluation value of each alternative

dy (y=1, 2,3,4) is obtained by the FNIFHWA operator
defined by Zhou and Chang (2014), and we have

di = ((0.323,0.424,0.525), (0.115,0.2,0.3));
dy = ((0.580,0.646,0.749), (0.1,0.1,0.115));

dsy = ((0.371,0.451,0.552), (0.152,0.2,0.3)):

dy = ((0.301,0.402,0.474), (0.144,0.178,0.274)).

Step 2: Using Egs. (29) and (30), to calculate the score
and accuracy values of the overall evaluation values, we
can obtain

S(dy) = 0.220, S(ds) = 0.552, S(d3) = 0.243, S(d4)
=0.201.

Step 3: Therefore, the ranking order according to their
score values is

Az >A3 >A1 >A4.

Obviously, this ranking result is the same as ones pro-
duced by the proposed method in this paper and by Wang
(2008a, b)’ method.

(3) Compared with the method proposed by Wang et al.
(2015)

In a similar way, we can compare the proposed method
with the method proposed by Wang et al. (2015), and the
steps are shown as follows.

Step 1: The overall evaluation value of each alternative
is obtained by the FNIFHWG operator, and we have

di = ((0.309,0.413,0.515), (0.120,0.2,0.300));

dy = ((0.563,0.637,0.738), (0.1, 0.1, 0.120));

ds = ((0.368,0.448,0.549), (0.160, 0.2, 0.3));

dy = ((0.294,0.396,0.466), (0.161,0.191,0.295)).
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Step 2: Using Egs. (29) and (30), to calculate the score
and accuracy values of the overall evaluation values, we
can obtain

S(dy) = 0.207, S(d>) = 0.539, S(ds) = 0.238 , S(d4)
= 0.178.

Step 3: Therefore, the ranking order according to their
score values is

Az >A3 >Al >A4.

Obviously, this ranking result is the same as ones pro-
duced by the proposed method in this paper, by Wang
(2008a, b)’ method and by Wang et al. (2015)’ method.

This show that our proposed method is valid based on
these improved operational laws.

7.3 Comparison and discussion

Because all ranking results are all same compared with
above three methods, it is difficult to show the advantage of
the proposed method. In this part, we give some revised
data from Example 3. Since the triangular intuitionistic
fuzzy sets are a generalization of the IFSs and are a better
mathematical tool to handle uncertain and inconsistent
information then IFS.

For comparison, we take Example 3 with the TIF
information values, as given in Table 2.

(1) Ranking by the method in Wang (2008a, b)

Now, the steps based on the FNIFWA operator defined
by Wang (2008a, b) are shown as follows.

Step 1: The overall evaluation values obtained using
FNIFWA defined by Wang (2008a, b), and we have

di = ((0.338,0.424,0.535), (0.0, 0.0, 0.0))

d> = ((0.268,0.384,0.572), (0.0, 0.0, 0.0))

ds = ((0.281,0.381,0.500), (0.0, 0.0, 0.0))

dy = ((0.245,0.326,0.326), (0.0, 0.0, 0.0)).

Step 2: Using Egs. (29) and (30), to calculate the score
and accuracy values of the overall evaluation values, we
can obtain

S(dy) = 0.430, S(d,) = 0.402, S(ds3) = 0.385 , S(ds)
= 0.305.

Step 3: Therefore, the ranking order according to their

score values is Al > ;\2 > 23 > 24.

Then, the steps based on the FNIFWG operator defined
by Wang (2008a, b) are shown as follows.

Step 1: The overall evaluation values is obtained using
the FNIFWG operator defined Wang (2008a, b), and we
have

dy = ((0.249,0.298,0.421), (0.205,0.274,0.364));

d> = ((0.0, 0.0, 0.0), (0.081,0.081,0.133));

ds = ((0.277,0.378,0.500), (0.113,0.164,0.218));

ds = ((0.0, 0.0, 0.0), (0.103,0.200,0.279)).

Step 2: Using Egs. (29) and (30), to calculate the score
and accuracy values of the overall evaluation values, we
can obtain

S(dy) = 0.038, S(dy) = —0.094, S(d3) = 0.219, S(d4)
= —0.195.

Step 3: Therefore, the ranking order according to their
score values is

A3 >Al >22 >A4.

Obviously, this ranking result is different from the one
produced by the FNIFWA operator defined by Wang
(2008a, b).

(2) Ranking by the method in Zhou and Chang (2014)

Table 2 Revised decision

matrix 6‘1 62 63 64
A ((0.6, 0.7, 0.8), ((0.2,0.3,04), ((0.1, 0.1, 0.2), ((0.4, 0.5, 0.6),
(0.0, 0.0, 0.0)) (0.2, 0.2,0.3)) (0.4, 0.5, 0.6)) (0.1, 0.2, 0.3))
A, ((0.5, 0.6, 0.7), ((0.4, 0.5, 0.6), ((0.3, 0.5, 0.8), ((0.0, 0.0, 0.0),
(0.1, 0.1, 0.2)) (0.0, 0.0, 0.0)) (0.1, 0.1, 0.1)) (0.1, 0.1, 0.2))
A; ((0.3, 04, 0.5), ((0.2, 0.3, 0.5), ((0.3, 04, 0.5), ((0.3, 04, 0.5),
(0.1, 0.2, 0.3)) (0.0, 0.0, 0.0)) (0.1, 0.2, 0.2)) (0.2,0.2,0.3))
A, ((0.3,04,0.4), ((0.4,05,0.5), ((0.3, 04, 0.4), ((0.0, 0.0, 0.0),
(0.1, 0.3, 0.4)) (0.1, 0.2, 0.3)) (0.0, 0.0, 0.0)) (0.2,0.3,0.4))
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We use the method in Zhou and Chang (2014) to solve
this problem and the steps are shown as follows.

Step 1: The overall evaluation values obtained by the
FNIFHWA defined by Zhou and Chang (2014), and we have

dy = ((0.324,0.406,0.518), (0.0, 0.0, 0.0))

(
dy = ((0.256,0.367,0.542), (0.0, 0.0, 0.0))
ds = ((0.280,0.381,0.500), (0.0, 0.0, 0.0))

dy = ((0.235,0.311,0.311), (0.0, 0.0, 0.0)).

Step 2: Using Egs. (29) and (30), to calculate the score
and accuracy values of the overall evaluation values, we
can obtain

S(dy) = 0.413, S(dy) = 0.383, S(d3) = 0.385 , S(ds)
=0.292.

Step 3: Therefore, the ranking order according to their
score values is

Al >A3 >A2 >A4.

Obviously, this ranking result is different from the ones
produced by the method defined by Wang (2008a, b).

(3) Ranking by the method in Wang et al. (2015)

The steps are shown as follows.

Step 1: The overall evaluation values is obtained by the
the FNIFHWG operator defined Wang et al. (2015), and we
have

d; = ((0.258,0.313,0.438), (0.195,0.260,0.348));

dy = ((0.0, 0.0, 0.0), (0.1,0.080,0.131));

ds = ((0.277,0.378,0.500), (0.111,0.161,0.212));

dy = ((0.0, 0.0, 0.0), (0.101,0.193,0.267)).

Step 2: Using Egs. (29) and (30), to calculate the score
and accuracy values of the overall evaluation values, we
can obtain

S(dy) = 0.065, S(dy) = —0.093, S(d3) =0.222, S(d,)
= —0.188.

Step 3: Therefore, the ranking order according to their
score values is
A3 >A1 >Az >A4.

This result is the same as one produced by the FNIFWG
operator defined by Wang (2008a, b), and is different from
the other ranking results.

(4) Ranking by the proposed method in this paper

@ Springer

Now, we use the proposed method in this paper to solve
this problem, and steps are shown as follows.

Step 1: The overall evaluation value is obtained using
Eq. (27) as follows:

dy = ((0.338,0.424,0.535), (0.166,0.214,0.289));

dy = ((0.268,0.384,0.572), (0.079,0.082,0.145));

ds = ((0.281,0.381,0.500), (0.117,0.171,0.229));

dy = ((0.245,0.326,0.326), (0.095,0.198,0.288)).
Step 2: Using Egs. (29) and (30), we get

S(dy) = 0.210, S(dy) = 0.305, S(d3) = 0.214, S(ds)
=0.111.

Step 3: Therefore, the ranking order according to their
score values is

Az >A3 >A] >A4.

Therefore, the best alternative is ;\2 and the worst is ;\4.

Now, by the TIFWG operator defined in this article, we
have

Step 1: The overall evaluation values is obtained using
Eq. (28), and is given below:

d; = ((0.299,0.364,0.459), (0.205,0.274,0.364));
dy = ((0.266,0.386,0.584), (0.081,0.081,0.133));

ds = ((0.286,0.389,0.511), (0.113,0.163,0.218));

dy = ((0.236,0.324,0.335), (0.103,0.200, 0.279)).
Step 2: Using Egs. (29) and (30), we can get

S(dy) = 0.093, S(dy) =0.311, S(d3) = 0.229, S(ds)
=0.109.

Step 3: Therefore, the ranking order according to their

score values is Ag > ;\3 > 24 > Al

Obviously, the ranking results by the proposed method
are different from the ones by the other methods.

The reason produced these results is that these methods
adopt the different operational laws of FNIFNs. In Exam-
ple 3, because all membership and non-membership
degrees are not zero, thus, all methods in Wang (2008a, b),
Zhou and Chang (2014), Wang et al. (2015) and our
method in this paper can produce right ranking results.
However, in the revised example, we revise some data to
zero, including some membership degree and some non-
membership degrees, so the methods in Wang (2008a, b),
Zhou and Chang (2014) and Wang et al. (2015) will not
give the right results, because the operational laws of
FNIFNs used in these methods may result in the
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unreasonable results which are explained in Example 1,
while the proposed method adopts improved operational
laws of FNIFNs which can overcome these shortcomings,
and it can give a reasonable ranking results. Therefore, the
proposed aggregation operators and the method in this
article are more practical and effective in the decision-
making process.

8 Conclusion

In this paper, we pointed out some existing limitations in
the operations of TIFNs and proposed some improved
operational laws for TIFNs. Then, based on these improved
operational laws, we propose some aggregation operators
such as TIFWA operator, TIFWG operator, TIFOWG
operator, TIFOWG operator, and TIFHA operator and
TIFHG operators, and discussed some desirable properties
of these operators. Furthermore, based on these aggregation
operators, we define an MCDM method in which the
alternatives values with respect to criteria are represented
in the form of TIFNs. A numerical example is illustrated to
show the practicality and effectiveness of the proposed
MCDM method. Finally, a comparison has been made with
the existing method to show that the proposed aggregation
operators and MCDM method in this paper are more
practical and effective in the decision-making process,
because they have solved the existing limitations in the
operations of TIFNs.

In the future, we shall define Bonferroni mean, Heronian
mean, and scaled prioritized aggregation operators for
TIFSs based on these new operational laws and applied
them to MCGDM problems.
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