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Abstract In the current, year’s most of the attention has

been paid towards analysis of uncertainty and vagueness in

fuzzy attributes. In this case, a major problem arises when

the uncertainty exists in the attributes beyond the 2; 62f g
boundaries. The most of the time researchers faced prob-

lem in precise representation of given multi-polar or multi-

decision attributes. To deal with this type of attributes,

current paper introduces a method based on the properties

of m-polar fuzzy set and its concept lattice diagram. The

generation of line diagram is established using the vertices

and nodes of a defined m-polar fuzzy graph and its prop-

erties. A method is also proposed to generate some of the

pattern from the given m-polar fuzzy context at user

required subset of attributes. In addition, the analysis

derived from the proposed method is compared with

Akram and Younas (J Appl Math Comput

53(1–2):365–382, 2017) as well as Mukherjee and Das (in:

Proceedings of Third International Conference on

Advanced Computing, Networking and Informatics,

pp 21–28, 2016) based on various parameters.

Keywords Cognitive learning � Concept lattice � Formal

Concept analysis � Knowledge representation � m-polar

fuzzy graph � m-polar fuzzy set

1 Introduction

Knowledge discovery or extracting some of the meaningful

pattern from a given data set is one of the major concern

for the research communities. To deal with this problem,

Wille (1982) introduced a mathematical model based on

applied abstract algebra. This tool is well known as formal

concept analysis (FCA). It starts the computation from a

given binary matrix data set (X, Y, R) containing the set of

objects (X), the set of attributes (Y), and the corresponding

relationship (R � X � Y) among them (Ganter and Wille

1999). The calculus of FCA provides formal concepts,

concept lattice, and attribute implications from the given

binary matrix to extract the meaningful information from

the given data sets (Davey and Priestley 2002). In case, the

attributes contain uncertainty and vagueness in the prop-

erties of fuzzy sets (Burusco and Fuentes-Gonzalez 1994)

can be utilized in concept lattice theory (Bělohlávek et al.

2005). The orientation of concept lattice with fuzzy sets

given a well-established tool to measure the partial igno-

rance in attributes more precisely using interval-valued

(Burusco and Fuentes-Gonzales 2001; Singh et al. 2016a)

and bipolar fuzzy sets (Singh and Kumar 2014a, b) based

on their acceptation and rejection part. In case the attributes

contains indeterminacy, then it can be measured via

properties of three-way fuzzy concept lattice (Li et al.

2017; Singh 2017a) or complex-vague set (Singh

2017b, c, 2018). Some other approaches are introduced to

process the linked fuzzy context (Singh 2016, 2018)

beyond the unipolar space (Singh 2018) based on its var-

ious possible boundaries (Djouadi and Prade 2011) and

their approximation using lower and upper boundaries

(Yao 2004). Subsequently, the properties of granular

computing (Pedrycz and Chen 2011, 2015a, b) are utilized

to measure the randomness in fuzzy attributes using the
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calculus of entropy theory (Singh and Kumar 2017) and

Huffman coding (Singh and Gani 2015) for precise analysis

of hidden pattern in the data set based on user required

information granules (Singh and Kumar 2017; Webb et al.

2016). All of these methods are well enough to process

maximal fuzzy context in unipolar or bipolar fuzzy space.

In case the data sets contains multi-polar information or

multi-decision attributes (Singh 2018), these approaches

lack in adequate mathematical representation of the data

set and their graphical structure visualization (Voutsadakis

2002). There are many data sets which contain multi-polar

context, as shown in.1 In these type of multi-polar contexts,

finding some of the interesting pattern is critical issues. It

can be observed that less attention has been paid towards

analysis of data with m-polar fuzzy attributes (Singh et al.

2016b, 2018; Voutsadakis 2002; Wang et al. 2017). To fill

this backdrop, the current paper focuses on analysis of

data with m-polar fuzzy attributes with step-by-step

demonstration.

The multi-polar attributes and its examples can be found

in each daily life. One of the suitable example is an

employee who is in the office or not cannot be decided by

binary value present and absent. Sometimes, the concern

employee can be on sick leave, earned leave, on duty,

medical leave, and maternity leave. Similarly, the feedback

given by people is based on multi-criteria or multi-decision

analysis. Representing this type of multi-polar information

in the given context is a major challenge for the researchers

of knowledge discovery and representation tasks. Due to

that Table 1 provides some categorization exists in multi-

polar information and its representation issues in formal

context (Sebastian and Ramakrishnan 2010, 2011) as exists

in several real-life examples:

• The relationship among India and USA (or other

country) is based on multi-polar context.2

• The classification of algae based on their morphological

behavior at given phase of time or place is based on m-

polar fuzzy attributes (Pandey et al 2016).3

• Semantic web (Maio et al. 2016) vision of the World

Wide Web (Rettinger et al. 2012) is data with m-polar

attributes.

• Selection of a candidate for the advertised job is multi-

criteria or m-polar decision based attributes as given in

Akram and Younas (2017).

• Similarly, electing a leader for any democratic country

is based on multi-attribute decision or m-polar attribute

(Mesiarová-Zemanková and Ahmad 2014).

The above given examples show that there are several real-

life examples which contains multi-polar or multi-decision

attributes. Kroonenberg (2008) discussed other areas,

where multi-attribute data sets exist (Mahmoudi1 et al.

2016). In this case, each of the m-polar side of the attribute

coexists simultaneously as an integral part of the infor-

mation (Zenzo 1988). This can be represented using the

properties of m-polar fuzzy set. It can be defined for any

given set (X) as a mapping f : X ! ½0; 1�m, where (0, 0,...,

0) is least element and (1, 1,..., 1) is the greatest element.

This set provides a way to represent each m-polar side of

the information with its precise description and orientation.

However, to discover, some of the interested pattern in the

given data set with m-polar fuzzy attributes is another

concern. For this purpose, some of the researchers have

paid attention towards heterogeneous context (Antoni et al.

2014), vague context (Borzooei and Rashmanlou 2017;

Singh 2017c), and m-polar fuzzy context (Chen et al. 2014;

Ascar and Yener 2009; Singh 2018) to analyze them user

required chosen subsets of attributes (Bělohlávek et al.

2005; Singh and Kumar 2017) using multi-adjoint concept

lattice (Medina and Ojeda-Aciego 2012) or properties of

m-polar fuzzy graph (Samanta et al. 2015; Selvachandrana

et al. 2016a). Mesiarová-Zemanková and Ahmad (2014)

introduced various t-conorms of m-polar fuzzy sets for

precise analysis of multi-polar information. However, for

knowledge processing tasks, the user or expert requires

some of the meaningful information from the data set with

m-polar fuzzy attributes (Singh 2018). Until now, none of

the research method is introduced to discover the pattern in

the given m-polar context (Singh et al. 2016b, 2018). The

reason is simulating the multi-valued attributes (Sebastian

and Ramakrishnan 2010, 2011) and its visualization is one

of the major concern for the researchers (Aliev and

Memmedova 2015). To achieve this goal, current paper

introduces a method for generating the m-polar fuzzy

concepts using the properties of applied abstract algebra in

m-polar fuzzy space. The motivation is to provide a

Table 1 Some inevitable conditions exists in a given formal fuzzy

context

Conditions Objects Attributes Fuzzy relation

(i) Unipolar Unipolar Three-polar or

or Beyond m-polar

Unipolar

(ii) Unipolar Three-polar m-polar

or m-polar

(iii) Three-polar m-polar m-polar

or m-polar

(iv) m-polar m-polar m-polar

1 https://en.wikipedia.org/wiki/Polarity_(international_relations).
2 http://www.southworld.net/india-and-latin-america-in-the-multipo

lar-context/.
3 http://indianalgae.co.in.
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compressed graphical structure visualization of given m-

polar context based on the vertices and edges of a defined

m-polar fuzzy graph for precise analysis of hidden pattern

rather than its mathematical representation. To understand

the necessity of this paper some of the potential methods in

FCA with unipolar, bipolar and three-polar or multi-polar

fuzzy setting is analyzed in Table 2. It shows that a basis of

method is need to introduced in FCA with m-polar fuzzy

setting when compared to other approaches (as marked � in

Table 2). To fulfil this aim, current paper introduces a

contextual way representation of multi-polar information

using the properties of m-polar fuzzy matrix. Furthermore,

method is proposed to discover some of the interesting m-

polar fuzzy concepts based on user required subset of

attributes for knowledge processing tasks. To validate the

obtained results from the proposed method, the compara-

tive study among them is shown with recently published

method by Akram and Younas (2017) and Mukherjee and

Das (2016) with an illustrative example. In addition, One

suitable application of the proposed method is also shown

to analyze the opinion of people in a democratic country.

The remaining parts of this paper are constituted as

follows: a brief background about FCA in the fuzzy setting

and m-polar fuzzy graph is shown in Sect. 2. Section 3

contains the proposed method to discover all the m-polar

fuzzy concepts with its illustration in Sect. 4. The com-

parative analysis of the proposed method with recently

published methods is shown in Sect. 5. Section 6 demon-

strates one suitable application of the proposed method

followed by conclusions, acknowledgements, and

references.

2 Background

2.1 Formal concept analysis in the fuzzy setting

The calculus of FCA with fuzzy setting provides a platform

to process data with fuzzy attributes via scale of truth

degrees L. The truth degree for the defined objects and

attributes set is tabulated as formal fuzzy context F = (X, Y,
~R), where X is a set of objects, Y is a set of attributes and ~R

is an L-relation between X and Y, ~R: X �Y ! L (Běloh-

lávek et al. 2005). Each relation ~Rðx; yÞ 2 L represents the

membership value at which the object x 2 X has the attri-

bute y 2 Y in L (2016). The set (L) of all truth degrees

allow certain logical operators and connectives to process

the data. The root of these logical operators and connec-

tives is based on well defined mathematical structures and

their expression (e.g., residuated lattice) to handle the

various multi-polar or multi-valued logic. In this case, L set

can be considered as a support set of some complete

residuated lattice L.

A residuated lattice L = ðL;^;_;�;!; 0; 1Þ is the basic

structure of truth degrees, where 0 and 1 represent least and

greatest elements, respectively. L is a complete residuated

lattice iff (Pollandt 1998):

(1) ðL;^;_; 0; 1Þ is a bounded complete lattice with

bound 0 and 1.

(2) ðL;�; 1Þ is commutative monoid.

(3) � and ! are adjoint operators (called multiplication

and residuum, respectively), that is a� b� c iff

a� b ! c; 8a; b; c 2 L.

The operators � and ! are defined, distinctly by Luka-

siewicz, G€odel, and Goguen t-norms and their residua as

given below (Bělohlávek and Vychodil 2005; Bělohlávek

et al. 2005):

Lukasiewicz:

• a� b = max (a?b–1, 0),

• a ! b = min (1–a?b, 1).

G€odel:

• a� b = min (a, b),

• a ! b = 1 if a� b, otherwise b.

Goguen:

• a� b = a � b,

• a ! b = 1 if a� b, otherwise b/a.

Classical logic of FCA is an example of a complete

residuated lattice which is represented as

ð 0; 1f g;^;_;�;!; 0; 1Þ.
For any L-set A 2 LX of objects, an L-set A " 2 LY of

attributes can be defined using UP operator of Galois

connection as follows:

A "ðyÞ ¼ ^x2XðAðxÞ ! ~Rðx; yÞÞ.
Similarly, for any L-set of B 2 LY of attributes, an L-set

B # 2 LX of objects set can be defined using down operator

of Galois connection as given below:

B #ðxÞ ¼ ^y2YðBðyÞ ! ~Rðx; yÞÞ.
A "ðyÞ is interpreted as the L-set of attribute y 2 Y

shared by all objects from A. Similarly, B #ðxÞ is interpreted

as the L-set of all objects x 2 X having the same attributes

from B in common. The formal fuzzy concept is a pair of

(A, B) 2 LX � LY satisfying A" ¼ B and B# ¼ A, where

fuzzy set of objects A is called an extent and fuzzy set of

attributes B is called an intent. The operators ("; #) are

known as Galois connection and extensively used in fuzzy

setting by Bělohlávek (2004) for crisply generated fuzzy

concepts. It means that formal fuzzy concept is a maximal

rectangle of a given context (F) while integrating the

information from objects and attributes set. All the dis-

covered formal fuzzy concepts follow the partial ordering
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principle, i.e., ðA1;B1Þ� ðA2;B2Þ () A1 � A2ð()
B2 � B1Þ. Including this ordering, there exists an infimum

and a supremum for each formal concepts in the complete

lattice as follows (Ganter and Wille 1999):

• ^j2JðAj;BjÞ = ð
T

j2J Aj; ð
S

j2J BjÞ#"Þ,
• _j2JðAj;BjÞ = ðð

S
j2J AjÞ"#;

T
j2J BjÞ.

The formal fuzzy concepts and their display in the concept

lattice provide an adequate analysis for knowledge pro-

cessing tasks in various ways as given in Bělohlávek and

Vychodil (2005). To accelerate the knowledge processing

tasks, the concept lattice theory is connected with graph

theory (Berry and Sigayret 2004; fuzzy graph theory Ghosh

et al. 2010) and its extension to unipolar (Singh and Kumar

2012) and bipolar fuzzy graph (Singh and Kumar 2014a).

Recently, it is studied in three-polar (Singh 2017a) as well

as m-polar fuzzy g raph by Singh (2018) for precise anal-

ysis of existing uncertainty in data sets. In this paper, a

method is proposed for depth analysis of m-polar fuzzy

context based on user required subset of attributes in the

next section.

2.2 Some properties of m-polar set and its graphical

visualization

To analyze the m-polar fuzzy context, some of the basic

properties of m-polar fuzzy set, m-polar fuzzy graph, and

its lattice theory are given to entrench the connection

among them with an illustrative example:

Definition 1 (m-polar fuzzy set) (Chen et al. 2014): An

m-polar (or a ½0; 1�m) fuzzy set on X can be represented as a

mapping f : X ! ½0; 1�m, where (0, 0, ..., 0) is a least ele-

ment and (1, 1, ..., 1) is a greatest element. The set of all m-

polar fuzzy sets can be represented as m(X). It means m-

polar set is an extension of fuzzy set which can be

visualized using the extensive properties of fuzzy graph

(Ghosh et al. 2010), interval-valued fuzzy graph (Singh

et al. 2016a), bipolar fuzzy graph (Singh and Kumar

2014a, b), three-polar fuzzy graph (Singh 2017a) or m-

polar fuzzy graph (Akram and Younas 2017).

Definition 2 (m-polar fuzzy relation) Akram and Younas

(2017): An m-polar (or a ½0; 1�m) fuzzy relation represents

the relationship among objects and attributes more pre-

cisely through a defined multi-polar fuzzy space. It means

the m-polar fuzzy relation (~R) on the set X and Y can be

represented as follows:
~Rðxi; yjÞ = ðxi; yjÞ; l ~Rðxi; yjÞ

� �
, where l ~Rðxi; yjÞ =

(l1
~R
ðxi; yiÞ; . . .; lm~R ðxi; yiÞ) and the relation is mapped in

the interval [0, 1] as follows: l ~R
mðxi; yjÞ ! ½0; 1�, where

xi 2 X; yj 2 Y .

Definition 3 (m-polar fuzzy graph) (Samanta et al. 2015):

An m-polar fuzzy graph with an underlying pair (V, E)

(where E � V � V is symmetric, i.e., ðv1; v2Þ 2 E ,
ðv2; v1Þ 2 E is defined to be a pair G = (I, J), where I:

V ! ½0; 1�m, i.e., it is an m-polar fuzzy set on V. Similarly,

J: E ! ½0; 1�m, i.e., m-polar fuzzy set on E. It follows

Jðv1v2Þ� inf Iðv1Þ; Iðv2Þf g for each m-polar space. The

given m-polar fuzzy graph is strong iff:

Jðv1v2Þ ¼ inf Iðv1Þ; Iðv2Þf g, as shown in Example 1.

Example 1 Let us suppose, a group of three friends

v1; v2; v3f g want to watch a movie based on their prefer-

ences. It can be observed that the preference is multi-de-

cision attributes and based on rating of movie, songs of

movies, story, or type of movie. This four polar attributes

can be represented using the properties of m-polar fuzzy

set, where 0 represents low, 1 represents high, and 0.5

represents an average movie. This multi-polar information

given by three friends can be represented by 4-polar fuzzy

set, as shown in Table 3. Table 4 represents the

Table 2 Important literature to understand the necessity of FCA with m-polar fuzzy setting

Interval Bipolar Three-polar m-polar

Formal

context

Burusco and Fuentes-

Gonzales (2001)

Singh and Kumar (2014a)

and

Yao (2017) Singh (2018)

�
Formal

concept

Djouadi and Prade (2009) Singh and Kumar (2014b)

and

Singh (2017a) �

Lattice Djouadi (2011); Guo et al.

(2016)

Bloch (2011) Mesiarová-Zemanková

(2015)

Mesiarová-Zemanková and Ahmad

(2014)

Graph Singh and Kumar

(2012, 2017)

Akram (2011) and Singh

(2016, 2017c)

Li et al. (2017) and Singh

(2017a, c)

Chen et al. (2014) and Akram and

Younas (2017)

Concept

lattice

Singh et al. (2016a) Singh and Kumar (2014b) Singh (2017a, b, c) �
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corresponding 4-polar relationship among them. Now,

Tables 3 and 4 can be visualized using the vertices (V) and

edges (E) of a graph defined in m-polar fuzzy space, as

shown in Fig. 1.

Definition 4 (Partial ordering of m-polar fuzzy set)

(Mesiarová-Zemanková and Ahmad 2014): The m-polar

fuzzy relation (or a ½0; 1�m) defines partial ordering when it

follows the pointwise reflexive, symmetric, and transitive

ordering for among each of the given elements, i.e., m =

n 2 Njn�mf g when m[ 0 then x� y , piðxÞ� piðyÞ for

each i 2 m, x; y;2 ½0; 1�m, and pi : ½0; 1�m ! ½0; 1� is the

projection mapping (i 2 m). The partial ordering among m-

polar fuzzy set provides a way to define the super- and sub-

concept hierarchy among all the generated m-polar fuzzy

concepts, as shown in Fig. 2.

Example 2 Let us suppose m = 2, i.e., ½0; 1�2 to represent

ordinary closed unit square in Euclidean space (R2), as

shown in Fig. 2. The upper point, i.e., y = (1,1) in this

square, can be considered as greatest element of ½0; 1�2,

whereas lowest point, i.e., x = (0, 0) can be considered as

lowest element of ½0; 1�2. Now, suppose two elements u =

(0.25,0.75) and v = (0.75,0.25) for defining the partial

ordering among them, i.e., (x� u� yÞ or ðx� v� yÞ. The

partial ordering among u and v can be defined in two ways

x� u� v� y or x� v� u� y, as shown in Fig. 2. The

reason is both u1 = 0.25 � 0.75 = v1 and u2 = 0.75 	 0.25

= v2.

Figures 1 and 2 show that data with m-polar fuzzy

attributes can be hierarchically visualized using the theory

of concept lattice as fuzzy graph (Ghosh et al. 2010),

interval-valued fuzzy graph (Singh et al. 2016a), bipolar

fuzzy graph (Singh and Kumar 2014a, b; Singh 2017b, c),

three-polar fuzzy graph (Singh 2017a) can be done. To

accomplish this task, a method is proposed, in the next

section for discovering all the m-polar fuzzy concepts and

their display in the m-polar fuzzy concept lattice.

3 Proposed method for generating the m-polar
fuzzy concepts

In this section, a method is proposed to generate the m-

polar formal fuzzy concepts using the properties of m-polar

fuzzy graph and componentwise G€odel residuated lattice.

Let us suppose, an m-polar formal fuzzy context F = (X, Y,
~R), where jXj ¼ n, jY j ¼ k and, ~R represents corresponding

m-polar fuzzy relation. Then, the m-polar formal fuzzy

concepts can be generated as follows:

Definition 5 (m-polar formal fuzzy concepts): Let us

suppose a set of attributes, i.e., (B) =

yj; ðl1ðyjÞ; l2ðyjÞ; . . .; lmðyjÞÞ; yj 2 Y
� �

, where ðlY1 ðyjÞ;
. . .; lYmðyjÞÞ is m-polar representation of the attribute yj. For

the selected m-polar attribute set find their covering objects

in the given context, i.e.,

Table 3 A m-polar fuzzy set

representation of vertices (V) for

Example 1

v1 v2 v3

l1 0.6 0.5 0.8

l2 0.5 0.8 0.7

l3 0.7 0.6 0.3

l4 0.8 0.9 0.5

Table 4 A m-polar fuzzy set

representation of edges E for

Example 1

v1v2 v2v3 v3v1

l1 0.2 0.5 0.6

l2 0.3 0.6 0.4

l3 0.2 0.3 0.2

l3 0.1 0.4 0.3

Fig. 1 A 4-polar fuzzy graph for Example 1

Fig. 2 A partial ordering between m-polar elements
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(A) = xi; ðl1ðxiÞ; l2ðxiÞ; . . .; lmðxiÞÞ; xi 2 Xf g, where

ðlX1 ðxiÞ; . . .; lXmðxiÞÞ is m-polar representation of the object

xi.

The obtain pair (A, B) is called an m-polar formal fuzzy

concept iff it is closed with componentwise Galois con-

nection, i.e., A" = B and B# = A. This can be interpreted as

m-polar fuzzy set of objects having maximal membership

value while integrating the information from the common

m-polar fuzzy set of attributes using ½0; 1�m componentwise

Go€del residuated lattice. If the obtain pair of objects and m-

polar fuzzy set constituted by its covering attributes forms

a formal concept, then none of the extra objects (attributes)

can be found to make the constituted membership value

larger. It means that an m-polar formal concept is a max-

imal rectangle covering objects and attributes set (A, B) in

the given m-polar fuzzy context (F) while integrating the

information from them. The obtained pair (A, B) of objects

and attributes set can be visualized using the vertices and

edges of a defined m-polar fuzzy graph, where i� n; j� k

to refine the knowledge more precisely when compared to

its numerical representation. For this purpose, the proposed

method considers maximal acceptance of m-polar fuzzy set

for the given attributes, i.e., (1.0, 1.0,..., 1.0)m to generate

the concepts as shown below:

Step 1: List out all the subsets s2k of given m-polar fuzzy

attributes to generate the concepts.

Step 2: User or expert can use any of the m-polar fuzzy

set of attributes sj to discover the interesting pattern in the

given data sets. The membership value for the chosen

subset can be decided by user or expert to solve the par-

ticular problem. However, in this paper maximal accep-

tance of each component of the m-polar fuzzy attributes,

i.e., (1.0, 1.0,..., 1.0)m is considered to generate the

concepts.

Step 3: It can be written in precise way as follows: Bsj =

lBj
m ðyjÞ = 1 if sj 2 S otherwise 0. Now, find the covering

objects set which integrate the information from these

objects set.

Step 4: To achieve this goal, the properties of Galois

connection can be applied as follows:

yj; ðl1ðyjÞ; l2ðyjÞ; . . .; lmðyjÞÞ
� �#

= xi; ðl1ðxiÞ; l2ðxiÞ;f
. . .; lmðxiÞÞg for all yj 2 Y; xj 2 X.

Step 5: Now, compute the componentwise m-polar

membership value of the obtained objects set as given

below:

min xi; ðl1ðxiÞ; l2ðxiÞ; . . .; lmðxiÞÞf g.

Step 6: Now, apply the Galois connection on the con-

stituted m-polar set of objects to find their covering attri-

butes while integrating the information from them as

follows:

xi;minðl1ðxiÞ; l2ðxiÞ; . . .; lmðxiÞÞf g" = yj; ðl1ðyjÞ;
�

l2ðyjÞ; . . .; lmðyjÞÞg for all xi 2 X; yj 2 Y .

Step 7: Now, compute the componentwise m-polar

membership value of the obtained attributes set as given

below:

Table 5 A proposed algorithm

for generating the m-polar fuzzy

concepts

Input: A m-polar formal fuzzy context F = (X, Y, ~R),

where |X| = n, |Y| = k.

Output: The set FC F of m-polar formal fuzzy concepts

(Asi , Bsj ), where i� n and j� k

Step 1: Compute the subsets of given m-polar fuzzy attributes, i.e., s2k .

Step 2: Choose any subset sj for generating the concept:

yj; ðl1ðyjÞ;l2ðyjÞ; . . .;lmðyjÞÞ
� �

= (1.0, 1.0, …, 1.0)m

//Initially considered membership value for each m-polar attribute

Step 3: Investigate the maximal covering set of objects for the chosen subsets of attributes:

Step 4: yj; ðl1ðyjÞ; l2ðyjÞ; . . .;lmðyjÞÞ
� �#

= xi; ðl1ðxiÞ;l2ðxiÞ; . . .; lmðxiÞÞf g
for all xi 2 X; yj 2 Y .

Step 5: Now, compute the componentwise m-polar membership value of the obtained objects:

min xi; ðl1ðxiÞ; l2ðxiÞ; . . .;lmðxiÞÞf g
Step 6: Discover the maximal covering attributes for the constituted objects set as follows:

xi;minðl1ðxiÞ; l2ðxiÞ; . . .;lmðxiÞÞf g" = yj; ðl1ðyjÞ; l2ðyjÞ; . . .;lmðyjÞÞ
� �

for all yj 2 Y; xj 2 X.

Step 7: Now, compute the componentwise m-polar membership value of the obtained attributes set:

min yj; ðl1ðyjÞ;l2ðyjÞ; . . .;lmðyjÞÞ
� �

Step 8: The new attribute can be added iff having maximal the acceptance.

Step 9: Similarly, other concepts can be generated using remaining subsets.

Step 10: The concept lattice can be drawn based on the generated subsets.
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min yj; ðl1ðyiÞ; l2ðxiÞ; . . .; lmðxiÞÞ
� �

Step 8: The newly obtained attributes using the " can be

added iff it has maximal acceptance for each component of

m-polar fuzzy set otherwise leave them.

Step 9: Similarly, generate all the m-polar fuzzy con-

cepts using the remaining subset of attributes. The obtained

pair of objects and attributes set (Asi , Bsj) can be considered

as m-polar formal fuzzy concepts.

Step 10: The line diagram can be drawn based on their

subsets to derive the knowledge. Table 5 summarizes the

proposed algorithm in form of a pseudo code.

Complexity It can be observed that Table 5 provides a

method for investigating the pattern in given m-polar fuzzy

context based on user required subset of attributes to solve

the particular problem. To achieve this goal, the proposed

method generates the subset of attributes which takes O2k

time complexity. Now, the proposed method finds the

maximal covering objects set for the chosen subset of

attributes which may take maximal O(2k � n) computa-

tional time. At last, the proposed method computes the

componentwise m-polar membership value for the obtained

objects (or attributes) set which may take total

O(2k � n � m) complexity. It can be observed that the pro-

posed method takes exponential time, but it will work as

basis of an algorithm for further improvement to deal with

data of m-polar fuzzy attributes.

4 Illustrations

Analyzing pattern in data with multi-polar or multi-index

attribute (Mahmoudi1 et al. 2016; Wang et al. 2017) is a

major concern for researchers of semantic web (Maio et al.

2016), World Wide Web (Rettinger et al. 2012) or senti-

ments analysis (Xu et al. 2017) of people in a democratic

country (Loia et al. 2016; Singh 2017a). Recently, Pandey

et al (2016) addressed this issue in categorizing the Indian

Algae based on their morphology.4 The issue is to find

some of the interesting pattern in multi-polar context5 for

knowledge processing tasks. To deal with this problem,

recently, the calculus of fuzzy concept lattice is tried to

characterize via acceptation, rejection, and indeterminacy

regions by Li et al. (2017) and Singh (2017a) with two

different techniques. Some other researchers represented

the uncertainty and vagueness in attributes using the

properties of m-polar fuzzy set (Chen et al. 2014; Mesiar-

ová-Zemanková and Ahmad 2014), m-polar fuzzy graph

(Akram and Younas 2017; Samanta et al. 2015) and its

t-conorm (Mesiarová-Zemanková 2015) for analyzing

multi-way data (Ascar and Yener 2009; Mukherjee and Das

2016). The current paper focuses on discovering all the

hidden pattern in data with m-polar fuzzy attributes and

their compact display in fuzzy concept lattice for refining

the knowledge based on applied abstract algebra. To

achieve the aforementioned goal, this paper proposes a

method in Sect. 3 which is distinct from any of the avail-

able approaches in following aspects:

• The proposed method provides a compact way to

represent the data with m-polar attributes in the formal

context.

• The proposed method generates the formal concepts

while considering maximal acceptance of given m-

polar attributes for precise analysis of knowledge

processing tasks within O(2k � n � m).

• The proposed method provides precise description of

hidden pattern (i.e., m-polar fuzzy concepts) in data

with m-polar fuzzy attributes and their visualization in

the concept lattice. It is one of the major advantage of

Table 6 A 4-polar relation for

posts-x1; x2; x3; x4 based on

attribute ‘‘Like (y1)’’

x1 x2 x3 x4

l1ðy1Þ 0.2 0.5 0.7 0.9

l2ðy1Þ 0.6 0.7 0.5 0.3

l3ðy1Þ 0.2 0.1 0.4 0.8

l4ðy1Þ 0.4 0.3 0.2 0.3

Table 7 A 4-polar relation for

posts-x1; x2; x3; x4 based on

attribute ‘‘Share (y2)’’

x1 x2 x3 x4

l1ðy2Þ 0.5 0.6 0.4 0.2

l2ðy2Þ 0.7 0.8 0.8 0.1

l3ðy2Þ 0.6 0.6 0.6 0.6

l4ðy2Þ 0.6 0.1 0.1 0.1

Table 8 A 4-polar relation for

posts-x1; x2; x3; x4 based on

attribute ‘‘Comment(y3)’’

x1 x2 x3 x4

l1ðy3Þ 0.6 0.7 0.2 0.6

l2ðy3Þ 0.5 0.6 0.5 0.4

l3ðy3Þ 0.2 0.8 0.6 0.8

l4ðy3Þ 0.7 0.5 0.8 0.7

Table 9 A 4-polar formal context representation of Tables 8, 9, and

10

y1 y2 y3

x1 (0.2, 0.6, 0.2, 0.4) (0.5, 0.7, 0.6, 0.6) (0.6, 0.5, 0.2, 0.7)

x2 (0.5, 0.7, 0.1, 0.3) (0.6, 0.8, 0.4, 0.3) (0.7, 0.6, 0.8, 0.5)

x3 (0.7, 0.5, 0.4, 0.2) (0.4, 0.8, 0.6, 0.1) (0.2, 0.5, 0.6, 0.8)

x4 (0.9, 0.3, 0.8, 0.3) (0.2, 0.1, 0.6, 0.1) (0.6, 0.4, 0.8, 0.7)

4 http://indianalgae.co.in.
5 https://www.projectguru.in/publications/unipolar-bipolar-or-multi

polar-world-order/.
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the proposed method to expedite the knowledge

processing tasks when compared to any other available

approaches.

In general the multi-polar information can be found in

sentiments analysis, opinion mining or complex network.

The most suitable place is social networking sites contains

many multi-decision or multi-criteria attributes as dis-

cussed by Ascar and Yener (2009). The goal is to find some

of the interested pattern among them to analyze its influ-

ence. This is a major concern for any company or orga-

nization while refining the knowledge. To explore this

problem one of the example is given as below:

Example 3 Let us suppose a company wants to analyze

suitability of given posts x1; x2; x3; x4f g for branding its

manufacturing products. To achieve this goal the company

advertise them on the social network sites and want to

measure their importance. It is well known that the opinion

of people on the social network sites can be measured using

the ‘‘Like’’, ‘‘Share’’ or ‘‘Comments’’, i.e., y1; y2; y3f g. In

this case, measuring the opinion of people become complex

the reason is ‘‘Like’’, ‘‘Share’’ and ‘‘Comments’’ on any

given post is based on multi-criteria decisions, i.e., content

of the post, available friends for the given id, the rela-

tionship building of people added in the given id as well as

style of presenting the given post. These m-polar attributes

can be analyzed using the fuzzy membership values.

Suppose 50% people available in the friend list of given id

‘‘Likes ðy1Þ’’ the given post then it can be represented using

0.5 membership values, as shown in Tables 6, 7, and 8,

respectively. To understand the representation a entry of

Table 6 can be considered as follows: x1 =
0:2

l1ðy1Þ?
0:2

l2ðy1Þ?
0:2

l3ðy1Þ?
0:2

l4ðy1Þ. This entry represents that 20%

people Likes post x1 due to its contents (i.e., l1ðy1Þ), 60%

people Likes post x1 from their friend circle (l2ðy1Þ), 20%

people Likes post x1 for relationship building (i.e., l3ðy1Þ),
whereas 40% people Like post x1 based on its style of

presentation (i.e., l3ðy1Þ). Similarly, other m-polar fuzzy

relations shown in Tables 6, 7 and 8 can be interpreted.

Table 9 represents the composed m-polar fuzzy member-

ship values for each of the tables based on their m-polar

attributes. Now, the company requires one of the best post

for the global advertisement from the m-polar fuzzy con-

text, as shown in Table 9. In this case, the goal is to dis-

cover some of the interesting pattern from the given

context. To achieve this goal, the proposed method shown

in Sect. 3 provides following m-polar fuzzy concepts:

The proposed algorithm shown in Table 5 generates

following m-polar fuzzy concepts from the context, as

shown in Table 9:

Step 1: In Step 1, the proposed method computes each of

the subset of given attributes set shown in Table 9 with

their maximal acceptance as follows:

1.
ð1:0;1:0;1:0;1:0Þ

y1
þ ð1:0;1:0;1:0;1:0Þ

y2
þ ð1:0;1:0;1:0;1:0Þ

y3

n o
,

2.
ð1:0;1:0;1:0;1:0Þ

y1

n o
,

3.
ð1:0;1:0;1:0;1:0Þ

y2

n o
,

4.
ð1:0;1:0;1:0;1:0Þ

y3

n o
,

5.
ð1:0;1:0;1:0;1:0Þ

y1
þ ð1:0;1:0;1:0;1:0Þ

y2

n o
,

6.
ð1:0;1:0;1:0;1:0Þ

y1
þ ð1:0;1:0;1:0;1:0Þ

y3

n o
,

7.
ð1:0;1:0;1:0;1:0Þ

y2
þ ð1:0;1:0;1:0;1:0Þ

y3

n o
,

8.
ð0;0;0;0Þ

y1
þ ð0;0;0;0Þ

y2
þ ð0;0;0;0Þ

y3

n o
.

Step 2: Let us choose first subsets of attributes to generate

the concepts, i.e.,

1.
ð1:0;1:0;1:0;1:0Þ

y1
; ð1:0;1:0;1:0;1:0Þ

y2
; ð1:0;1:0;1:0;1:0Þ

y3

n o
.

Step 3: Investigate the maximal covering objects set for the

chosen subset of attributes using the properties of Galois

connection (#) as follows:

ð1:0;1:0;1:0;1:0Þ
y1

þ ð1:0;1:0;1:0;1:0Þ
y2

þ ð1:0;1:0;1:0;1:0Þ
y3

n o#
:

Step 4: It provides following set of m-polar fuzzy set of

objects using the properties of m-polar fuzzy sets as given

below:
ð0:2;0:5;0:2;0:4Þ

x1
þ ð0:5;0:6;0:1;0:3Þ

x2
þ ð0:2;0:5;0:4;0:1Þ

x3
þ ð0:2;0:1;0:6;0:1Þ

x4

n o
.

Step 5: Now, find the maximal covering attributes set for

the above obtained objects set using the " operator of

Galois connection as follows:

ð0:2;0:5;0:2;0:4Þ
x1

þ ð0:5;0:6;0:1;0:3Þ
x2

þ ð0:2;0:5;0:4;0:1Þ
x3

þ ð0:2;0:1;0:6;0:1Þ
x4

n o"
:

Step 6: It provides following set of attributes:
ð1:0;1:0;1:0;1:0Þ

y1
þ ð1:0;1:0;1:0;1:0Þ

y2
þ ð1:0;1:0;1:0;1:0Þ

y3

n o
.

Step 7: In this process, none of the extra attributes is dis-

covered which covers the constituted objects set. In this

case, the obtain set of m-polar objects and attribute set can

Fig. 3 A 4-polar crisply gener-

ated fuzzy concept lattice from

Table 9
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be considered as extent and intent of a m-polar fuzzy

concepts.

Step 8: In this way, it provides following m-polar fuzzy

concepts:

1. Extent =
ð0:2;0:5;0:2;0:4Þ

x1
þ ð0:5;0:6;0:1;0:3Þ

x2
þ ð0:2;0:5;0:4;0:1Þ

x3

þ ð0:2;0:1;0:6;0:1Þ
x4

.

Intent =
ð1:0;1:0;1:0;1:0Þ

y1
þ ð1:0;1:0;1:0;1:0Þ

y2
þ ð1:0;1:0;1:0;1:0Þ

y3

Step 9: Similarly, other concepts can be generated using

the remaining subsets shown in Step 1. In this case, it

should the noted that any new attributes can be added iff it

contains maximal acceptance:

2. Extent =
ð0:2;0:6;0:2;0:4Þ

x1
þ ð0:5;0:7;0:1;0:3Þ

x2
þ ð0:7;0:5;0:4;0:2Þ

x3
þ

ð0:9;0:3;0:8;0:3Þ
x4

Intent =
ð1:0;1:0;1:0;1:0Þ

y1

3. Extent =
ð0:5;0:7;0:6;0:6Þ

x1
þ ð0:6;0:8;0:4;0:3Þ

x2
þ ð0:4;0:8;0:6;0:1Þ

x3
þ

ð0:2;0:1;0:6;0:1Þ
x4

Intent =
ð1:0;1:0;1:0;1:0Þ

y2

4. Extent =
ð0:6;0:5;0:2;0:7Þ

x1
þ ð0:7;0:6;0:8;0:5Þ

x2
þ ð0:2;0:5;0:6;0:8Þ

x3
þ

ð0:6;0:4;0:8;0:7Þ
x4

.

Intent =
ð1:0;1:0;1:0;1:0Þ

y3
.

5. Extent =
ð0:2;0:6;0:2;0:4Þ

x1
þ ð0:5;0:7;0:1;0:3Þ

x2
þ ð0:4;0:5;0:4;0:1Þ

x3
þ

ð0:2;0:1;0:6;0:1Þ
x4

.

Intent =
ð1:0;1:0;1:0;1:0Þ

y1
þ ð1:0;1:0;1:0;1:0Þ

y2

6. Extent =
ð0:2;0:5;0:2;0:4Þ

x1
þ ð0:5;0:6;0:1;0:3Þ

x2
þ ð0:2;0:5;0:4;0:2Þ

x3
þ

ð0:6;0:3;0:8;0:3Þ
x4

Intent =
ð1:0;1:0;1:0;1:0Þ

y1
þ ð1:0;1:0;1:0;1:0Þ

y3

7. Extent =
ð0:5;0:5;0:2;0:6Þ

x1
þ ð0:6;0:6;0:4;0:3Þ

x2
þ ð0:2;0:5;0:6;0:1Þ

x3
þ

ð0:2;0:1;0:6;0:1Þ
x4

Intent =
ð1:0;1:0;1:0;1:0Þ

y2
þ ð1:0;1:0;1:0;1:0Þ

y3

8. Extent =
ð1;1;1;1Þ

x1
þ ð1;1;1;1Þ

x2
þ ð1;1;1;1Þ

x3
þ ð1;1;1;1Þ

x4

Intent =
ð0;0;0;0Þ

y1
þ ð0;0;0;0Þ

y2
þ ð0;0;0;0Þ

y3
:

Step 10: It can be observed that none of the new attributes

are added in the chosen subset of attributes. The reason is

that newly obtained attributes do not contain maximal

acceptance of membership values (1.0, 1.0, 1.0, and 1.0).

Hence, the proposed method provides crisply generated

attribute (object) oriented m-polar concepts. The super- and

sub-concept hierarchical format among generated concepts

is shown via their subsets, as shown in Fig. 3.

The above generated m-polar fuzzy concepts provides

following meaningful information from the context shown

in Table 9 for knowledge processing tasks:

• Concept number-1 represents that post
ð0:5;0:6;0:1;0:3Þ

x2

contains maximal acceptance membership value for

each of the m-polar attributes (i.e., Like, Share and

Comments -y1, y2, y3) when compared to other posts. In

this case, the company will choose the post x2 as first

preference for the global advertisement.

• Concept number-2 represents that post
ð0:9;0:3;0:8;0:3Þ

x4

contains maximal membership value for the m-polar

attribute ‘‘Like, i.e., (y1)’’. In this case, company will

prefer post x4 while considering the attribute ‘‘Like’’.

• Concept number-3 represents that post
ð0:6;0:8;0:4;0:3Þ

x2

contains maximal membership value for the m-polar

attribute ‘‘Share (y2)’’.

• Concept number-4 represents that post
ð0:7;0:6;0:8;0:5Þ

x2

contains maximal membership value for the m-polar

attribute ‘‘Comments (y3)’’.

• Concept number-5 represents that post
ð0:5;0:7;0:1;0:3Þ

x2

contains maximal membership value for the m-polar

attributes ‘‘Like and Share (y1; y2)’’ .

• Concept number-6 represents that post
ð0:6;0:3;0:8;0:3Þ

x4

contains maximal membership value while integrating

the informal from m-polar attributes ‘‘Like and Com-

ments (y1; y3)’’. In this case, company will choose the

post x4 as first preference and x2 as second preference

while considering these two attributes.

• Concept number-7 represents that post
ð0:6;0:6;0:4;0:3Þ

x2
con-

tains maximal membership value while integrating the

information from the m-polar attributes ‘‘Share and Com-

ments (y2; y3)’’. In this case, company will choose the post

x2 as first preference when considering these two attributes.

• Concept number-8 represents that all posts cannot be

chosen as best for the global advertisement.

The information extracted from the above-mentioned

concepts shows that post x2 will be given first preference

for the global advertisement, whereas the post x4 will be

given second preference. Subsequently, other post can be

analyzed using remaining pattern (i.e., formal concepts). It

can be observed that a problem can be arisen when the size

of m-polar concept lattice become larger. To deal with this

problem author will try to focus on incorporating other

metrics with m-polar fuzzy concept lattice. However,

handling data with m-polar fuzzy attributes and its research

is at infancy stage. In this case, the current research will be

helpful for the researchers working on sentiments analysis

(Xu et al. 2017), situation awareness (Loia et al. 2016),

multi-decision (Wang et al. 2017) making process at multi-

granulation (Liu and Cocea 2017) for precise analysis of

knowledge processing tasks. To validate the obtained

results from the proposed method is comparatively ana-

lyzed with other available approaches in the next section.
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5 Comparative analysis

This paper introduced an alternative way to analyze the

data with m-polar fuzzy attributes using the properties of

concept lattice. Table 10 shows that m-polar fuzzy set is

nothing but one of the generalized representation of fuzzy

set for handling multi-polar information. This research

needs depth analysis and new mathematical foundation to

expedite the knowledge processing tasks. For this purpose

a method is proposed in this paper to analyze the data with

m-polar fuzzy attributes using the concept lattice theory.

Recently, other researchers also depicted the similar

Table 11 Comparison of

proposed method with Akram

and Younas (2017)

Akram and Younas (2017) Proposed algorithm

Domain Universe Universe

of discourse of discourse

Co-domain: m-polar Co-domain: m-polar

i.e., [0,1]m i.e., [0,1]m

Measure uncertainty Yes Yes

Graph Yes Yes

Partially ordered No Yes

Finds pattern No Yes

Methodology Based on projection on Based on subset of

m-polar edges m-polar attribute

Rigorous analysis No Yes

Complexity Not given by author (2k � n � m)

Similarity analysis No Yes

Table 12 A 4-polar formal context for the car, houses and hotels based on given parameters

U1 U2 U3

a1 (0.3, 0.4, 0.9, 0.7) (0.8, 0.6, 0.6) (0.9, 0.7, 0.9)

a2 (0.8, 0.9, 0.3, 0.8) (0.8, 0.8, 0.5) (0.7, 0.6, 0.5)

a3 (1.0, 0.8, 0.7, 0.0) (0.5, 0.3, 0.1) (0.5, 0.3, 0.4)

a4 (0.8, 0.6, 0.1, 0.5) (0.5, 0.3, 0.1) (0.5, 0.3, 0.4)

a5 (0.4, 0.6, 0.8, 0.7) (1.0, 0.9, 0.9) (0.8, 0.5, 0.4)

a6 (0.9, 0.6, 0.7, 0.5) (0.8, 0.8, 0.5) (0.8, 0.8, 1.0)

a7 (1.0, 0.9, 0.8, 0.4) (0.8, 0.8, 0.5) (0.5, 0.6, 0.8)

a8 (0.8, 0.7, 1.0, 0.9) (0.8, 0.8, 0.5) (0.8, 0.9, 0.9)

Table 10 A study on different extension of fuzzy set based on their properties

Interval Bipolar Three-polar m-polar

Domain Universe of discourse Universe of discourse Universe of discourse Universe of discourse

Co-domain Unipolar Bipolar [0,1]2, i.e., Three-polar m-polar

interval [0,1] [-1,0] � [0,1] i.e., [0,1]3 i.e., [0,1]m

Uncertainty Yes Yes Yes Yes

True-value Yes Yes Yes Yes

Falsity No Yes Yes No

Indeterminacy No No Yes No

Graph Yes Yes Yes Yes

Partially ordered Yes Yes Yes Yes
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problem related to data with m-polar fuzzy attributes

(Akram and Younas 2017) and its analysis using an

adaptive method (Mukherjee and Das 2016). Due to that

these two recent methods are considered in this section to

compare the analysis derived from the proposed method, as

shown in Sects. 5.1 and 5.2, respectively.

5.1 Comparative analysis of the proposed method

with Akram and Younas (2017)

To analyze the analysis derived from the proposed method

with Akram and Younas (2017), the same example is

adopted as shown below:

Example 4 Let us suppose,

Mike;Helly;David;Bisma;Ali;Umair; Zahraf g are seven

friends on a given social network website and their influ-

ence on each other. The attribute influence is multi-deci-

sion and multi-criteria attribute which can be based on

logical persuading, exchanging, alliance building, legit-

imizing, and appealing. The corresponding relationship

among these seven friends can be represented using m-

polar fuzzy set, where 0.5 means average as shown below:

(i).
ð0:5;0:4;0:3;0:2;0:3Þ

Mike
.

(ii).
ð0:3;0:6;0:5;0:4;0:2Þ

Helly
.

(iii).
ð0:2;0:4;0:5;0:3;0:6Þ

David
.

(iv).
ð0:5;0:2;0:6;0:7;0:4Þ

Bisma
.

(v).
ð0:4;0:2;0:5;0:6;0:3Þ

Ali
.

(vi).
ð0:7;0:6;0:8;0:9;0:5Þ

Umair
.

(vii).
ð0:6;0:2;0:1;0:3;0:2Þ

Zahra
.

The goal is to measure the influence of

Mike;Helly;David;Bisma;Ali;Umair; Zahraf g on each

others using above collected data set. To deal with this

problem a method is proposed method in Table 5 of this

paper for finding all the hidden pattern in data with m-polar

attributes. The proposed method provides following pattern

based on above given data set (i.e., 21 ¼ 2 subset for one

attribute influence) as given below:

1. Extent =
ð1:0;1:0;1:0;1:0;1:0Þ

Mike
?

ð1:0;1:0;1:0;1:0;1:0Þ
Helly

?

ð1:0;1:0;1:0;1:0;1:0Þ
David

?
ð1:0;1:0;1:0;1:0;1:0Þ

Bisma
?

ð1:0;1:0;1:0;1:0;1:0Þ
Ali

?
ð1:0;1:0;1:0;1:0;1:0Þ

Umair
?

ð1:0;1:0;1:0;1:0;1:0Þ
Zahra

. Intent =
ð0:2;0:2;0:1;0:2;0:2Þ

Influence
.

2. Extent = paper to find all the pattern

among
ð0:5;0:4;0:3;0:2;0:3Þ

Mike
?

ð0:3;0:6;0:5;0:4;0:2Þ
Helly

?
ð0:2;0:4;0:5;0:3;0:6Þ

David

?
ð0:5;0:2;0:6;0:7;0:4Þ

Bisma
?

ð0:4;0:2;0:5;0:6;0:3Þ
Ali

?
ð0:7;0:6;0:8;0:9;0:5Þ

Umair
?

ð0:6;0:2;0:1;0:3;0:2Þ
Zahra

. Intent =
ð1:0;1:0;1:0;1:0;1:0Þ

Influence
.


 Concept number 1 represents that

Mike;Helly;David;Bisma;Ali;Umair; Zahraf g influence

each other equally except alliance building.


 Concept number 2 represents the following

information:

(i) Umair influence their friends maximally based on

logical persuading with membership value 0.7,

whereas Zahra with 0.6 membership value when

compared to others.

(ii) Umair and Helly equally influence their friends

based on exchanging with 0.6 membership value.

(iii) Umair influence their friends maximally based on

alliance building with 0.8 membership value,

whereas Bisma influence them with 0.6 member-

ship value.

Table 13 Comparison of

proposed method with

adjustable approach given in

Mukherjee and Das (2016)

Mukherjee and Das (2016) Proposed algorithm

Domain Universe Universe

of discourse of discourse

Co-domain: m-polar Co-domain: m-polar

i.e., [0,1]m i.e., [0,1]m

Measure uncertainty Yes Yes

Graph No Yes

Partially ordered No Yes

Finds pattern Yes Yes

Methodology Adjustable approach based Based on fuzzy

on Feng’s algorithm concept lattice

Graph No Yes

Rigorous analysis No Yes

Complexity Not given by author O(2k � n � m)

Application In decision making Data with m-polar attribute

Similarity analysis No Yes
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(iv) Umair influence their friends maximally with 0.9

membership value based on legitimizing, whereas

Bisma influence them with 0.7 membership value.

(v) David influence their friends maximally based on

appealing to values with 0.6 membership value,

whereas Umair influence them with 0.5 member-

ship value.

The above-mentioned analysis derived from the proposed

method shows that Umair influence their friends maximally

except the appealing to values, whereas Bisma influence

them second. These derived conclusions from the proposed

method is commensurate with Akram and Younas (2017).

However, the proposed method provides an accurate analysis

and precise description of pattern when compared to Akram

and Younas (2017). Table 11 represents the comparison

among these two methods based on various parameters. It

shows that the proposed method will be more helpful for

handling data with m-polar fuzzy attributes when compared

to Akram and Younas (2017) in given time complexity.

5.2 Comparative analysis of the proposed

with Mukherjee and Das (2016)

To analyze the comparison of the proposed method with

adjustable approach introduced in (Mukherjee and Das

2016). The same data set is considered as given below:

Example 5 Let us suppose, a set of houses (U1) =

h1; h2; h3f g, a set of cars U2 = c1; c2; c3f g, and a set of

hotels U3 = v1; v2; v3f g are represented based on some

given parameters, as shown in Table 12. In this case,

analyzing preference of customer to purchase the car,

house or hotel is a major concern for any company related

to this research field. For this purpose, a method is pro-

posed in this paper to find all the pattern among given m-

polar data set as demonstrated as below:

Extent =
ð1:0;1:0;1:0;1:0Þ

a1
?

ð1:0;1:0;1:0;1:0Þ
a2

?
ð1:0;1:0;1:0;1:0Þ

a3
?

ð1:0;1:0;1:0;1:0Þ
a4

?
ð1:0;1:0;1:0;1:0Þ

a5
?

ð1:0;1:0;1:0;1:0Þ
a6

?
ð1:0;1:0;1:0;1:0Þ

a7
?

ð1:0;1:0;1:0;1:0Þ
a8

. Intent =
ð0:3;0:4;0:1;0:0Þ

U1
?

ð0:5;0:3;0:1Þ
U2

?
ð0:5;0:3;0:4Þ

U3
:

This concept represents following information:


 ð0:3;0:4;0:1;0:0Þ
U1

represents that house h2 will be purchased

as first preference due to its highest membership value, i.e.,

0.4, whereas h1 as second preference.


 ð0:5;0:3;0:1Þ
U2

represents that car c1 will be purchase as first

preference due to its highest membership value, i.e., 0.5,

whereas car c2 as second preference.


 ð0:5;0:3;0:4Þ
U3

represents that hotel v1 will be purchase as

first preference due to its highest membership value, i.e.,

0.5, whereas hotel v3 as second preference.

The above analysis derived from the proposed method

shows that house h2, car c1, hotel v1 will be purchased as

first preference, whereas house h1, car c2, hotel v3 will be

purchased as second preference. These conclusions from

the proposed method approximately commensurate with

the adjustable approach discussed by Mukherjee and Das

(2016). Table 13 shows that the proposed method is better

than adjustable approach in analyzing the data with m-polar

fuzzy attribute.

6 One real life application of the proposed method

There are many real life data set which contains m-polar

fuzzy attributes. One of the suitable examples is opinion of

people in a democratic country is based on multi-polar or

multi-decision attributes to vote the concern party. It is

addressed by several Indian media in 2015 election of

Bihar, as shown in.6 The problem with government agen-

cies as well as private agencies become more complex to

measure the pattern of people in different state. Subse-

quently, it was crucial for them to find those potential

attributes for which the countrymen voted. This election

was very crucial for ruling, opposition, other parties as well

as political scientists of international media. To resolve this

issue current paper introduced a method based on applied

lattice theory and its generalization in the m-polar fuzzy

space as given below:

Example 6 Let us suppose, three political parties

x1; x2; x3f g are participating in a election happens in any

democratic country like India. The people from 29 states

used to participate in the election. In this case, people used

to vote on various parameters as follows: y1 = Corruption;

Table 14 A 5-polar context to

measure the opinion of people

in a democratic country

Political parties Corruption (y1) Terrorism (y2) Un-employment (y3)

x1 (0.5, 0.4, 0.6, 0.5, 0.4) (0.4, 0.5, 0.6, 0.7, 0.5) (0.6, 0.5, 0.4, 0.5, 0.5)

x2 (0.6, 0.7, 0.8, 0.7, 0.9) (0.7, 0.6, 0.8, 0.9, 0.6) (0.7, 0.6, 0.6, 0.6, 0.7)

x3 (0.5, 0.6, 0.5, 0.6, 0.7) (0.5, 0.6, 0.7, 0.6, 0.5) (0.5, 0.4, 0.5, 0.4, 0.6)

6 https://thewire.in/14785/multipolar-5th-phase-in-bihar-polls-makes-

the-going-tougher-for-nitish-lalu/.
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y2 = Terrorism; y3 = Un-employment; y4 = Foreign policy;

y5 = Medical and health policy; y6 = Education policy; y7 =

Economical policy; y8 = Defense policy; y9 = Speech of

leader; y10 = other issues. In this case, opinion of 29-states

people can be considered as 29-polar dimension, political

parties can be considered as objects, whereas the parame-

ters as attributes. For better understanding the author select

first three potential attributes and the 5-states for measuring

the opinion of people and their pattern. To achieve this goal

a 5-polar context is shown in Table 14.

The 5-polar relation ðx1; y1Þ ¼ ð0:5; 0:4; 0:6; 0:5; 0:4Þ
represents that 50% people of state 1, 40% people of state

2, 60% people of state 3, 50% people of state 4, and 40%

people of state 5 voted to political party x1 based on their

stand on corruption y1. Similarly, other entries in given

5-polar fuzzy matrix can be interpreted. Now, the goal is to

find some of the meaningful information from the given

5-polar matrix. This goal can be achieved using the

proposed method shown in Sect. 3 of this paper. However

to achieve this goal the government agencies do not require

all m-polar concepts. They need specialized and general-

ized concepts for extracting a general information as given

below:

1. Generalized concepts:

Extent =
ð1:0;1:0;1:0;1:0ÞÞ

x1
?

ð1:0;1:0;1:0;1:0Þ
x2

?
ð1:0;1:0;1:0;1:0Þ

x3

Intent =
ð0:5;0:4;0:5;0:5;0:4Þ

y1
?

ð0:4;0:5;0:6;0:6;0:5Þ
y2

?

ð0:5;0:4;0:4;0:4;0:5Þ
y3

:

This shows that the 40 to 60% people of 5-states voted

each of the parties based on the given parameters.

2. Specialized concepts:

Extent =
ð0:4;0:4;0:4;0:5;0:4Þ

x1
?

ð0:6;0:6;0:6;0:6;0:6Þ
x2

?

ð0:5;0:4;0:5;0:4;0:5Þ
x3

Intent =
ð1:0;1:0;1:0;1:0ÞÞ

y1
?

ð1:0;1:0;1:0;1:0Þ
y2

?
ð1:0;1:0;1:0;1:0Þ

y3
:

This concept shows that the 40% people of four states

and 50% people of one state people voted to political party

x1 based on the given parameters. More than 60% people

voted to political party x2 on the given parameters.

Similarly, 50% people of three states and 40% people of

two states voted to political party x3 on the given

parameters. In this case, the opinion shows that the

political party x2 may win the election as first preferences,

whereas the political party x3 as second place. The

extracted information helps the political party to identify

their weakness and strength for attracting the voters in a

democratic country. It can be observed that the opinion of

people used to fluctuate at each given phase of time. In this

case, measuring the changes in multi-polar information is

another concern. In the near future, the author research will

focus on quantize the measurement of uncertainty and its

fluctuation in data with m-polar attributes at given phase of

time using the different metrics of granular computing

(Djouadi and Prade 2016; Pedrycz and Chen

2011, 2015a, b; Skowron et al. 2016; Yao 2016) and

complex fuzzy sets (Singh 2018; Selvachandrana et al.

2016a; Selvachandran et al. 2016b).

7 Conclusions and future work

This paper aimed at precise description of data with m-

polar fuzzy attributes using the properties of concept lattice

and its graphical analytics. To achieve this goal, a method

is proposed to generate the m-polar fuzzy concepts based

on user required subset of attributes within O(2k � n � m)

time complexity. It is shown that the obtained results from

the proposed method is concordant with recently available

methods in Akram and Younas (2017) and Mukherjee and

Das (2016). One of the significant advantages of the pro-

posed method is that it provides a compact display of m-

polar fuzzy context for extracting the meaningful infor-

mation in data with m-polar fuzzy attributes. However, the

proposed method takes exponential time which is one its

major disadvantages. Same time it does not allow to

measure the changes in multi-polar information (Singh

2018) at the given threshold. To deal with this problem, the

author will focus on introducing other metrics of m-polar

fuzzy sets in the near future to quantize the information.
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