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Abstract Fuzzy graph formed by a collection of fuzzy

rules approximate solutions of partial differential equations

with imprecise parameters in the form of fuzzy numbers.

The fuzzy rules can be constructed by a judicious dis-

cretization of the variables domains, and using the exten-

sion principle on the fuzzy parameter. A detailed algorithm

is developed, and numerical examples are offered using the

heat, wave, and Poisson equations with triangular fuzzy

numbers.

Keywords Granular approximation � Partial differential
equations � Granular modeling

1 Introduction

Granular modeling is an important tool for system mod-

eling, analysis, and applications (Pedrycz 2013). Often, an

information granule is understood as a collection of objects

put together by indistinguishability, similarity, proximity,

and functionality. Examples of information granules

include intervals, rough sets, probability densities, fuzzy

sets, and possibility distributions (Zadeh 1997).

In system modeling, the use of partial differential

equations (PDE) with fuzzy parameters reflects the need to

account for the imprecise nature of real world phenomena.

Contrary to the usual expectations and assumptions, actual

values of the model parameters rarely are known precisely.

System models are much more expressive if the inaccurate

nature of the observations and measurements are intrinsi-

cally accounted by the modeling approach. The values of

measurements are inaccurate because they depend on the

experimental set-up, the nature of the system, and on the

observer. For instance, physical parameters are estimated

using measurements made during different tests with dis-

tinct materials. The values measured depend on the energy

intensity, the degree of freedom of Brownian motion, as in

the case of the diffusion coefficient of the heat equation.

The diffusion coefficient depends on the phase, tempera-

ture, and molecule size. In practice, values of phase, tem-

perature, and molecule size measurements are imprecise.

Probabilistic and statistical methods have been used to

compute parameter variability of the heat and mass transfer

models (Jirka and Socolofsky 2012; Chakraverty and

Nayak 2012; Bart et al 2011), but currently techniques to

convey parameter variability information into solutions of

PDE are unavailable. The use of statistical analysis in

numerical solutions of differential equations is reviewed in

Conrad et al (2017). Different methods have been devel-

oped to solve fuzzy differential equations with fuzzy

parameters. Examples include Hukuhara and generalized

derivatives, Zadeh extension of the classic solution, fuzzy

differential inclusions, and extensions of the derivative

operator (Takata et al 2015). However, these methods are

mainly theoretical. The attempt is to obtain analytical

solutions of fuzzy differential equations.

The framework of fuzzy information granulation, espe-

cially the concepts of linguistic variables, fuzzy if-then

rules, and fuzzy graphs play a major role in many appli-

cations of fuzzy set theory (Ahmad and Pedrycz 2017; Liu
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et al 2017). The idea of fuzzy graph was introduced as a

way to account for granular functional dependences (Zadeh

1971, 1974). A fuzzy graph can be understood as a col-

lection of fuzzy if-then rules (Zadeh 1994). Applications of

fuzzy graph are many. For instance, Batyrshin (2002)

develop a method to solve a granular initial value problem

by granulating the directions field, and propagating fuzzy

constraints. An alternative method to approach PDE

modeling is to construct local models in the form of

functional if-then fuzzy rules with partial differential

equations in the consequents. Combination of the local

models employing fuzzy inference produces a PDE equa-

tion as a global model. This method can be seen as a way to

obtain a granular global model from the aggregation of

local granular models (Silveira and Barros 2015; Wang

et al 2012; Wu et al 2012).

Granular approximations of solutions of PDE with fuzzy

parameters in the form of fuzzy graphs have not, to the best

of the authors knowledge, been addressed yet in the liter-

ature. This is the major contribution of the paper. The idea

can be understood as follows. First, consider the PDE

Pðx; d; uðxÞ; ouðxÞ; o2uðxÞÞ ¼ 0; ð1Þ

where P is a function, x 2 X � R, X is the domain of the

PDE, ouðxÞ and o2uðxÞ denote the partial derivative, and

the partial derivative of order 2 with respect to the variable

x, and d is a known real-valued parameter.

Assume that udðxÞ ¼ Gðx; dÞ is the unique solution of

Eq. (1), and that G is a uniformly continuous function that

assigns to each pair (x, d) in a bounded set the real value

udðxÞ.
The novel granular method to approximate the solutions

of PDE fuzzy parameter can be summarized as follows.

Suppose that fuzzy set D replaces the real-valued param-

eter d in Eq. (1). The PDE shown in Eq. (1) becomes

Pðx;D; uðxÞ; ouðxÞ; o2uðxÞÞ ¼ 0: ð2Þ

In particular, let D be a fuzzy number with support

½D�0 ¼ fd 2 D;DðdÞ[ 0g, and core Dp ¼ fd 2 D; lDðdÞ
¼ 1g. Denote the solution udp of the PDE of Eq. (1) when

d ¼ dp as the preferable solution. Consider the interval

I x ¼ ½x� d1; xþ d2�. Because G is uniformly continuous,

given an arbitrary �[ 0, there exists a d1; d2 [ 0,

depending on � only, such that for every x0 in I x, the dis-

tance between Gðx0; �Þ and Gðx; �Þ is less than �. If we

denote by bGxðDÞ the Zadeh extension of the function

Gðx; dpÞ, then we may construct the following fuzzy rule:

If x0 is I x then Gðx0; dpÞ is bGxðDÞ. ð3Þ

Intuitively, Eq. (3) means that whenever the value of the

variable x is within a neighborhood specified by the

interval I x, the solution of the PDE with fuzzy parameter

shown in Eq. (2) is around the corresponding preferred

solution Gðx; dpÞ. The meaning of around is specified by

the fuzzy set found by the extension bGxðDÞ of Gðx0; dpÞ.
Therefore, to build a granular approximation of the func-

tion Gðx; dpÞ ¼ udp we granulate the domain X into n

disjoint intervals I xi ¼ ½xi � d1; xi þ d2�, i ¼ 1; . . .; n,

compute the extension of Gðxi; �Þ using D to obtain the

fuzzy number bGxiðDÞ, and construct a granule for each I xi

in the form of the fuzzy rule as explained in Eq. (3). The

collection of these n rules forms a fuzzy graph. The fuzzy

graph produced by the rule base gives a granular approx-

imation of the preferred solution in the sense of Zadeh

(1997).

In what follows, after a short remind of fuzzy set theory

basics, an algorithm to construct the collection of fuzzy if-

then rules to form a granular approximation of the solution

of Eq. (2) is developed in Sect. 3. Illustrative examples are

given in Sect. 4. Section 5 concludes the paper and sug-

gests issues for further research.

2 Fuzzy sets

This section gives a short review on the basic notions

needed to develop the granular approximation of PDE with

fuzzy parameter algorithm. A more detailed coverage is

found in Zadeh (1975), Barros et al (1997) and Pedrycz

and Gomide (1998).

A fuzzy number is a convex and normal fuzzy set of the real

line. Zadeh extension: if X and Y are sets, then the image of

fuzzy set A in X under function f : X ! Y , is the fuzzy set

B ¼ f ðAÞ in Y whose membership function is lBðyÞ ¼
supx2X lAðxÞ for each y 2 Y such thaty ¼ f ðxÞ. LetD andZbe

nonemptymetric spaces,D a fuzzy set ofD, and f : D ! Z be

a continuous function. Then for every a, 0� a� 1,

f ðDÞ½ �a¼ f D½ �að Þ, where ½D�a ¼ fd 2 D;DðdÞ� ag. A t-

norm is a function T : ½0; 1� � ½0; 1� ! ½0; 1� that is commu-

tative, associative, and monotone with boundary conditions

Tð0; xÞ ¼ 0, and Tð1; xÞ ¼ x. An example of t�norm is

Tminða; bÞ ¼ minfa; bg. A s-norm is a function S : ½0; 1� �
½0; 1� ! ½0; 1� that is commutative, associative, andmonotone

with boundary conditions Sð0; xÞ ¼ x, and Sð1; xÞ ¼ 1. An

example of a s�norm is Smaxða; bÞ ¼ maxfa; bg. A Fuzzy

graph F	 is a fuzzy subset of the Cartesian product X � Y

whose membership function is

lF	 ðx; yÞ ¼ S TðlMj
ðxÞ; lNj

ðyÞÞ
� �

; j ¼ 1; . . .; k ð4Þ

where Mj is a fuzzy set on X, and Nj is fuzzy set on Y,

k 2 N. In what follows we use the t-norm T ¼ Tmin and the

s-norm S ¼ Smax.
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3 Granular approximation of the solution of PDE
with fuzzy parameter

This section details the algorithm to construct a granular

approximation of the PDE of Eq. (2). We assume that the

PDE of Eq. (1) has a unique solution udðxÞ ¼ Gðx; dÞ,
d 2 ½D�0, D is a triangular fuzzy number with core

Dp ¼ fdpg, and that function G(x, d) is uniformly contin-

uous with respect to x and d. The steps to develop the

granular approximation of Eq. (2) are the following:

Step 1: let � be an arbitrary positive number. Because G

is uniformly continuous, there exists a d[ 0 such that

jðx; dÞ � ðx0; d0Þj\d, then jGðx; dÞ � Gðx0; d0Þj\�. In

particular,

jGðx; dÞ � Gðx0; dÞj\� for each d 2 ½D�0: ð5Þ

Step 2: let xi 2 X , i ¼ 1; . . .; n, such that X ¼
Sn

i¼1½xi �
d1; xi þ d2� with d1 þ d2 ¼ d, and ½xi � d1; xi þ d2� pair-
wise disjoint intervals.

Step 3: choose intervals Ixi ¼ ½xi � d1; xi þ d2�,
i ¼ 1; . . .; n;

Step 4:fix xi and compute the extension ofGðxi; �Þ usingD
to obtain the fuzzy number bGxiðDÞ. The zero-cut of bGxiðDÞ
is the compact interval ½Gðxi; dpÞ � b1;Gðxi; dpÞ þ b2�,
b1; b2 � 0. Figure 1 illustrates the Step 4.

Step 5: construct n fuzzy rules as follows

If xi is I xi thenGðxi; dpÞ is bGxiðDÞ; i ¼ 1; . . .; n:

Step 6: the granular approximation is the fuzzy graph

lF	 ðx;Gðx; dpÞÞ ¼ S TðlI xi
ðxÞ; l

bGxi
ðDÞ

ðGðx; dpÞÞÞ
� �

;

i ¼ 1; . . .; n: ð8Þ

Figure 2 illustrates Step 6.

It should be emphasized that the algorithm can be

extended to address the case in which Eq. (1) has local

uniformly continuous solutions Giðxi; dpÞ. All that is nee-

ded is to follow the same algorithm steps replacing

Gðxi; dpÞ by Giðxi; dpÞ. This means that the rule conse-

quents are found using the Zadeh extension of each local

solution Giðxi; dpÞ.

4 Granular approximation of PDE solution
with fuzzy parameter: Examples

The algorithm of Sect. 3 is used to develop granular

approximations of the heat, wave, and Poisson PDEs with

fuzzy parameter. These equations are representative of

numerous applications of thermodynamics, communica-

tion, and electrical engineering.

4.1 Granular approximation of the solution

of a heat equation

The heat equation considered is the following:

otuðx; tÞ ¼ do2xxuðx; tÞ; ðx; tÞ 2 ð0; LÞ � ð0; TÞ;
uðx; 0Þ ¼ u0ðxÞ; x 2 ð0; LÞ;
uð0; tÞ ¼ uðL; tÞ ¼ 0; for t 2 ð0; TÞ;

ð7Þ

where d[ 0 is the molecular diffusion coefficient, and

u0ðxÞ ¼ sinðpxÞ.
The solution of Eq. (7) with the initial condition

uðx; 0Þ ¼ u0ðxÞ is given by the Fourier series (Jost 2002)

udðx; tÞ ¼
Z L

0

u0ðyÞ
X
þ1

n¼1

anðx; yÞ exp � dn2p2

L2
t

� �

dy; ð8Þ
Fig. 1 Fuzzy set D (magenta) and the Zadeh extension bGxiðDÞ (red).
Because of the relation detailed in Eq. (5), the parametric form of

Gðxj; dÞ is between the dashed blue lines, representing Gðxi; dÞ � �
(lower blue line), and Gðxi; dÞ þ � (upper blue line)

Fig. 2 Fuzzy graph of the granular approximation
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where

anðx; yÞ ¼ sin
npy
L

� �

sin
npx
L

� �

: ð9Þ

Assume that the parameter d shown in Eq. (7) is the fuzzy

number D shown in Fig. 3 instead.

Let us first check the hypothesis concerning the uniform

continuity required by function G. It has been proved in

Bertone et al (2013) that G is continuous with respect to d.

Here we show that G is, fixing t, uniformly continuous with

respect x as well. Let X ¼ ½0; L�. From Eqs. (8), (9), and

taking x and x0 in X , we get

judðx; tÞ � udðx0; tÞj

¼
Z
1

0

u0ðyÞ sinðpyÞdyðsinðpxÞ � sinðpx0ÞÞ

�

�

�

�

�

�

�

�

�

�

�

�

� j � 1

2

Z
1

0

ðcosð2pyÞ � 1Þdyjj sinðpxÞ � sinðpx0Þj

¼ 1

2
j sinðpxÞ � sinðpx0Þj

¼ sin
px� px0

2

� �

cos
pxþ px0

2

� ��

�

�

�

�

�

�

�

� px� px0

2

�

�

�

�

�

�

�

�

:

Because d[ 0, the supremum of the function gðdÞ ¼

exp � dn2p2
L2

� �

is equal to 1. Hence, denoting Kn ¼
R L

0
u0ðyÞ

sin npy
L

� �

dy, we have

judðx; tÞ � udðx0; tÞj

�
X
þ1

n¼1

Knj j sinðnpx
L

Þ � sinðnpx
0

L
Þ

�

�

�

�

�

�

�

�

¼
X
þ1

n¼1

jKnj2 sin
npx� npx0

2L

� �

cos
npxþ npx0

2L

� ��

�

�

�

�

�

�

�

� 2
X
þ1

n¼1

jKnj
npx� npx0

2L

�

�

�

�

�

�

�

�

� p
L

x� x0j j
X
þ1

n¼1

njKnj: ð10Þ

For the functions u0ðxÞ for which the series
Pþ1

n¼1 njKnj
converges to a positive real number l, there exists dð�Þ ¼ �L

pl

such that for values of x and x that verify jx� x0j\d we

have jGðx; dÞ � Gðx0; dÞj\�. As a consequence, G is uni-

formly continuous with respect to the variable x for those

type of functions u0ðxÞ.
There exits an enumerated set of these functions,

namely,

u0ðxÞ ¼ sin
kpy
L

� �

; k 2 N:

As a particular case, we use the function u0ðxÞ ¼ sinðpxÞ as
the initial condition in the numerical examples. In addition,

for this particular initial value it is possible to find an

appropriate value of d. If n 6¼ 1, then u0 is orthogonal with

respect to sinðnpyÞ. We get

judðx; tÞ � udðx0; tÞj

¼
Z
1

0

u0ðyÞ sinðpyÞdyðsinðpxÞ � sinðpx0ÞÞ

�

�

�

�

�

�

�

�

�

�

�

�

� j � 1

2

Z
1

0

ðcosð2pyÞ � 1Þdyjj sinðpxÞ � sinðpx0Þj

¼ 1

2
j sinðpxÞ � sinðpx0Þj

¼ sin
px� px0

2

� �

cos
pxþ px0

2

� ��

�

�

�

�

�

�

�

� px� px0

2

�

�

�

�

�

�

�

�

:

The fuzzy graph constructed using the algorithm, keeping

t fixed, is depicted in Fig. 4.

We have that Eq. (10) is valid for all t 2 ð0; TÞ. Figure 5
shows the function Gðx; dpÞ at different time instants.

Fig. 3 Fuzzy number D.
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4.2 Granular approximation of the solution

of a wave equation

The wave equation considered here is:

ottuðx; tÞ ¼ doxxuðx; tÞ; ðx; tÞ 2 ½0; 1� � Rþ;

uðx; 0Þ ¼mðxÞ; utðx; 0Þ ¼ nðxÞ; x 2 ½0; 1�;
uð0; tÞ ¼ 0 and uð1; tÞ ¼ 0:

ð11Þ

The parameter d of the wave equation shown in Eq. (11) is

the speed of the wave, whose value depends on the envi-

ronment through which the wave propagates.

The solution of Eq. (11) has the following analytic form:

udðx; tÞ ¼
Mðxþ dtÞ þMðx� dtÞ

2
þ 1

2d

Z xþdt

x�dt

NðsÞds;

ð12Þ

where functions M and N are

MðxÞ ¼ mðxÞ if x 2 ½0; 1�;Mðxþ kÞ ¼ mðxÞ; k 2 Z;

NðxÞ ¼ nðxÞ if x 2 ½0; 1�;Nðxþ kÞ ¼ nðxÞ; k 2 Z:

For t fixed, M and N are continuous functions because the

domain of the variable x is the compact interval [0, 1].

Consider equation shown in Eq. (11) with fuzzy

parameter expressed by fuzzy number D of Fig. 3 instead

of a real-valued d. Its granular approximation obtained

following the steps of Sect. 3 is shown in Fig. 6.

The granular approximation of the wave equation

explicit in Eq. (11) fuzzy parameter D at distinct time

instants shown in Fig. 7.

4.3 Granular approximation of solution of a Poisson

equation

The Poisson equation is:

oxxuþ oyyu ¼ djðx; yÞ; ðx; yÞ 2 Q ¼ ½0; a� � ½0; a�;
uðx; yÞ ¼ kðx; yÞ; x 2 oQ;

ð13Þ

where j and k are continuous functions in the square Q of

side a and boundary oQ. Parameter d is the permittivity, a

measure of the resistance encountered when forming an

electric field in a medium.

We have that Eq. (13) has the following analytic solu-

tion (Butkovskiy 1982)

Fig. 4 Granular approximation of the solution of the heat equation

with fuzzy parameter D. The yellow points assemble the preferable

solution. t is fixed

Fig. 5 Granular approximation of the solution of heat equation with

fuzzy parameter D. The yellow points are the values of the function

Gðx; dpÞ at different time instants

Fig. 6 Granular approximation of the wave equation solution with

fuzzy parameter D. t is fixed

Granul. Comput. (2018) 3:1–7 5
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udðx; yÞ ¼
Z a

0

Z a

0

djðn; gÞGRðx; y; n; gÞdgdn

þ
Z a

0

kðgÞon GRðx; y; 0; gÞ � GRðx; y; a; gÞð Þdg
Z a

0

kðnÞog GRðx; y; n; 0Þ � GRðx; y; n; aÞð Þdn;

ð14Þ

where GR is the Green function

GRðx; y; n; gÞ ¼ 2=a
X
1

n¼1

ðsinðpnxÞ sinðpnnÞÞ=ðpn sinhðpnaÞÞ

Hnðy; gÞ;

pn ¼ pn=a, and Hn is the function

Hnðy; gÞ ¼
sin hðpngÞ sin hðpnða� yÞÞ for a� y[ g� 0;

sin hðpngÞ sin hðpnða� gÞÞ for a� g[ y� 0:

	

ð15Þ

The solution of Eq. (13) is infinitely smooth (analytic in the

sense of complex variables (Rudin 1987). Because the

domain is compact (a square of length a), the solution with

respect to x (or y) is uniformly continuous.

Consider the PDE of Eq. (13) with the fuzzy numberD of

Fig. 3 as a parameter instead of the real-valued parameter

d. The algorithm of Sect. 3 produces, keeping y fixed, the

granular approximation shown in Fig. 8. The granular

approximation for different values of y is shown in Fig. 9.

5 Conclusion

A novel algorithm to derive granular approximation of the

solutions of partial differential equations with fuzzy num-

bers as parameters has been developed. The granular

approximation is built in the form of a fuzzy graph. The

fuzzy graph is a collection of fuzzy if-then rules con-

structed from a granulation of the domain of the variables,

and from the extension principle on the fuzzy parameter.

The algorithm is also applicable when the partial differ-

ential equations have local uniformly continuous solutions

only. Illustrative examples have been offered using the

fuzzy parameter counterparts of a heat, wave, and Poisson

partial differential equations. The task of developing

granular solutions for granular differential equations still

remains a challenge to be addressed in the future.
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