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Abstract Robustness is defined as a system’s ability to

withstand under disturbances. In real-life applications,

where problem parameters are often uncertain, incorpo-

rating robustness in decision making is important. In this

study, we propose a robust decision making (RDM)

approach using intuitionistic trapezoidal fuzzy number

(ITrFN). Fuzzy linguistic quantifier (FLQ) is used in the

proposed approach to compute the uncertain optimism

degree of the decision maker. Initially, decision maker

expresses his/her opinion using linguistic terms, which are

presented numerically using ITrFNs. The aggregated

ITrFN for each of the alternatives is evaluated using intu-

itionistic trapezoidal fuzzy ordered weighted averaging

operator (ITrFOWA). Then, we find out the expected value

and variance of the aggregated ITrFN for each alternative,

which are subsequently used for robust decision making. A

collective measure of these two values of each alternative

is considered to find an interval of the corresponding

alternative, known as optimal interval. Alternative with

maximum optimal interval is selected as the robust solu-

tion. Applicability of the proposed approach has been

demonstrated on a site selection problem of nuclear power

plant. Site selection for installing a nuclear power plant has

become a crucial problem throughout the world, especially

after the Fukushima (2011) and Chernobyl (1986) nuclear

disasters.

Keywords Multi-criteria decision making � Intuitionistic
trapezoidal fuzzy number � Intuitionistic trapezoidal fuzzy

ordered weighted averaging operator � Robust decision
making � Nuclear power plant

1 Introduction

A robust system maintains its functionalities under condi-

tions of varying internal or external parameters (Bui et al.

2012). A solution is considered as robust if it is still fea-

sible in the changed scenarios. A robust decision is not

necessarily an optimal one. The decision makers need to

search for the robust option rather than optimal one, in case

of severe uncertainty. When future states are predictable,

one may focus on the best or optimal option. However, in

case, the future is uncertain, the focus on best option may

carry significant risks. Only robust option might be the

fruitful choice in these kinds of situations. Robustness is

considered as a broader concept of adaptation. Adaptation

allows inclusion and deletion of functionalities, whereas

robustness tries to self-organize the system through struc-

tural changes to maintain the system’s functionalities (Bui

et al. 2012). Mens et al. (2011) distinguished between

system robustness and decision robustness. According to

them, system robustness is common in the field of engi-

neering and biology. It refers to the ability of systems to

maintain the desired system characteristics when subjected

to disturbances. The authors (Mens et al. 2011) defined
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decision robustness as a characteristic of decisions policy,

which is used as a criterion for making decisions under

uncertainty. They (Mens et al. 2011) stated that a decision

or policy is considered to be robust when it performs well

under a range of conditions. In this era of uncertainty, when

almost everything is uncertain, survival of optimal decision

has been facing a bottleneck. Therefore, the need of robust

decision is vital in uncertain environment. As uncertainties

are well expressed using fuzzy systems, robust decision

making (RDM) using fuzzy systems would be a prominent

research direction. This motivated us to consider RDM

using intuitionistic fuzzy set (IFS), where IFS is considered

as the generalizations of fuzzy set. The application of IFS

instead of fuzzy set implies the introduction of another

degree of freedom into a set description. Here, in addition

to membership value, we also have non-membership value

and hesitation margin. Being a generalization of fuzzy sets,

IFSs give us an additional possibility to represent imperfect

knowledge by which it is possible to describe many real

problems in a more adequate way.

Robustness in decision making strategy is the flexibility

to maintain different possible situations. In real-life appli-

cations, where problem parameters are often uncertain,

incorporating robustness in decision making is important.

Uncertainties are well expressed using qualitative terms

rather than quantitative. Fuzzy system has been proved to

be effective to deal with uncertainties, where linguistic

variables are used to represent the qualitative terms. Due to

the existence of fuzziness in human reasoning and real-life

decision making problems, it is more reasonable and nat-

ural to utilize linguistic information to express decision

makers’ opinion. The use of linguistic information is

inevitable in many real-life situations, where one common

approach to model the linguistic information is the fuzzy

linguistic approach (Zadeh 1975a, b) that uses the fuzzy set

theory to manage the uncertainties. In Zadeh (1975a, b),

Zadeh introduced the concept of linguistic variable as ‘‘a

variable whose values are not numbers but words or sen-

tences in a natural or artificial language’’. A linguistic

value is less precise than a number, but it is more close to

human cognitive processes and used successfully to solve

problems dealing with uncertainty.

In the literature, robustness has been defined by many

researchers in different ways. Gupta and Rosenhead (1968)

first applied robustness to decision problems in the context

of sequential investment planning, which deals with finding

the location of sites for new factories in an industrial

expansion program. Rosenhead et al. (1972) further illus-

trated the concept of robustness, described in Gupta and

Rosenhead (1968). According to them (Rosenhead et al.

1972), robustness of a decision is based on the flexibility

that it maintains. In Deb and Gupta (2006), Gaspar-Cunha

and Covas (2008), and Xue et al. (2007), the authors

introduced robustness in multi-objective optimization. Deb

and Gupta (2006) provided two definitions of robustness

considering uncertain optimization parameters. Gaspar-

Cunha and Covas (2008) defined different fitness functions

for multi-objective evolutionary algorithms that led to

robust solutions. Xue et al. (2007) studied robustness with

respect to changes in external parameters, where changes

are assumed to be stochastic. Decision problems are often

subject to uncertainties. In Simon (1959), Simon defined

that a robust system performs satisfactorily, i.e., it satisfies

the performance criteria over a wide range of uncertain

features. According to Lempert and Collins (2007), robust

decision making (RDM) is a planning framework designed

to help decision makers to formulate plans for the future

under the conditions of uncertainty. The authors in Lempert

and Collins (2007) also stated that robust decision making

(RDM) represents the uncertainty by considering system

performance under a wide range of situations. RDM con-

siders the concept of robustness over optimal situation and

assumes that a robust strategy is able to satisfy minimum

performance criteria over a wide range of possible futures.

Studies of robustness in scheduling problem can be found

in Yanez and Ramirez (2003), Hasuike (2013), and Dey

et al. (2015). Nag et al. (2014) defined robust consensus,

and based on it, they provided a mechanism for multi-

objective optimization problems. The authors proved that

the experimental results are capable of finding solutions

having robust consensus in the soft region, specified by the

users. In Zarghami et al. (2008), authors introduced

robustness in fuzzy multi-criteria decision making

(MCDM) using expected value and variance. Zarghami

et al. (2008) proposed a new approach known as fuzzy

stochastic order weighted averaging (FSOWA) and applied

it in watershed management problem to illustrate the robust

behaviour of the concerned projects. The authors consid-

ered 13 water resource projects under construction in

Sefidrud watershed, located in the northwestern region of

Iran and evaluated the robustness of the projects based on a

set of predefined criteria. Zarghami and Szidarovszky

(2009) proposed stochastic fuzzy multi-criteria decision

making (MCDM) for robust water resources management.

They illustrated their method using a water resources

management problem in the central Tisza river in Hungary.

The authors also compared their method with some of the

existing methods and proved that their method was suit-

able under uncertainty.

Recently, researchers have concentrated on information

granulation for real-life decision making under uncertain-

ties. Human beings often consider information granules

because of their inherent imprecise reasoning process.

Granules act as the pillars of granular computing (GrC),

which are composed of objects that are combined together

by indiscernibility relationship. Granules are considered
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when a problem involves incomplete, uncertain, and vague

information, and it is difficult to discern distinct objects.

The systems based on granular computing exploit the tol-

erance for imprecision, uncertainty, approximate reasoning

as well as partial truth of soft computing framework, and

are capable of achieving tractability, robustness, and close

resemblance with human-like (natural) decision making

(Bargiela and Pedrycz 2012; Cabrerizo et al. 2013).

Robustness in decision making can be achieved by granular

computing, since GrC results in higher efficiency and lower

energy consumption. Nowadays, GrC has become signifi-

cant in the design and implementation of robust intelligent

systems to solve various real-life applications (Pedrycz and

Chen 2015; Peters and Weber 2016; Livi and Sadeghian

2016; Xu and Wang 2016; Antonelli et al. 2016; Mendel

2016; Lingras et al. 2016; Skowron et al. 2016; Dubois and

Prade 2016; Loia et al. 2016; Yao 2016; Ciucci 2016;

Kreinovich 2016; Wilke and Portmann 2016; Min and Xu

2016; Maciel et al. 2016; Apolloni et al. 2016; Song and

Wang 2016; Liu et al. 2016).

Since the introduction of intuitionistic fuzzy set (IFS)

(Atanassov 1986, 1999), researchers have successfully

applied it in decision making problems. IFS is a general-

ized version of fuzzy set and well suited to deal with

uncertainty. In this paper, we propose a robust multi-cri-

teria decision making (MCDM) approach using intuition-

istic trapezoidal fuzzy numbers (ITrFNs). Due to the

complex and vague nature of human judgement, decision

makers often prefer to express their opinions using lin-

guistic terms instead of exact numerical assessments. In

this study, initially, decision maker provides his/her opin-

ion using linguistic terms, which are presented using

ITrFNs. Intuitionistic trapezoidal fuzzy ordered weighted

averaging (ITrFOWA) operator is used to aggregate the

ITrFNs for alternatives corresponding to various criteria.

Score and accuracy values of those aggregated ITrFNs are

computed to find the optimal solution. As we know that

optimal solution may not be a robust one, both expected

values and variances of the aggregated ITrFNs for each of

the alternatives are determined. Finally, these two mea-

sures are combined to evaluate a collective measure and

used to find an interval, known as optimal interval for each

alternative. Robust decision is made by selecting the

alternative with maximum optimal interval.

Considering the various risks associated with nuclear

power plant, the proposed method has been applied to find

a favorable location for installing nuclear power plant.

Nuclear accidents in Fukushima (2011) and Chernobyl

(1986) have raised an intensive awareness and concern

regarding the expansion of nuclear energy portfolio, which

may be socially too risky relative to its benefits compared

to other alternative resources. The issue of risk benefit

trade-off with respect to nuclear power is not a new issue,

but the trade-off margin that was socially acceptable prior

to Fukushima exists no more. This has led to re-evaluate

the role of nuclear power in future energy plan in many

countries. Public protests against nuclear power have

widened and become more intense (Srinivasan and Rethi-

naraj 2013). According to the pioneer of nuclear reactor,

Weinberg (1986), ‘‘nuclear accident anywhere is a nuclear

accident everywhere’’.

To study the applicability of robustness in MCDM, the

rest of the article is organized as follows. Section 2 pre-

sents the basic ideas relevant to this study. Section 3

extends ITrFOWA operator using optimism degree, FLQ,

and RIM quantifier. The proposed algorithmic approach for

robust decision making is also presented here. An appli-

cation of the proposed algorithm in nuclear site selection

problem is demonstrated in Sect. 4 followed by result

discussion and comparison in Sect. 5. Finally, conclusions

are drawn in Sect. 6.

2 Preliminaries

In this section, we recall some basic concepts of ITrFNs

and ITrFOWA operator. We also present some operations

on ITrFNs. In intuitionistic trapezoidal fuzzy set (ITrFS)

(Wang and Zhang 2009b), the membership and non-

membership functions are expressed by trapezoidal fuzzy

numbers. ITrFS is considered to be more powerful in

expressing the uncertainty than intuitionistic fuzzy set. The

basis of ITrFS is intuitionistic trapezoidal fuzzy number

(ITrFN). Wang and Zhang (2009b) defined the concept of

intuitionistic trapezoidal fuzzy numbers and their opera-

tional laws (Xu and Yager 2006).

Definition 2.1 (Intuitionistic trapezoidal fuzzy number)

Let �a be an ITrFN. Its membership function is defined as:

l�aðxÞ ¼

x� a

b� a
l�a; a� x\b;

l�a; b� x� c;

d � x

d � c
l�a; c\x� d;

0; otherwise.

8
>>>>><

>>>>>:

ð1Þ

And its non-membership function is defined as:

m�aðxÞ ¼

b� xþ m�aðx� a1Þ
b� a1

l�a; a1 � x\b;

m�a; b� x� c;

x� cþ m�aðd1 � xÞ
d1 � c

l�a; c\x� d1;

0; otherwise

8
>>>>>>><

>>>>>>>:

ð2Þ

Here, 0� l�a � 1; 0� m�a � 1, and l�a þ m�a � 1, a; b; c;

d; a1; d1 2 R. �a ¼ \ ½a; b; c; d� : l�að Þ; ½a1; b; c; d1� : m�að Þ[
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called an ITrFN. For convenience, ITrFN �a is written as

�a ¼ ½a; b; c; d�; l�a; m�að Þ.

Let �a1 ¼ ½a1;b1;c1;d1�;l�a1 ;m�a1
� �

and �a2 ¼ ½a2;b2;c2;d2�;ð
l�a2 ;m�a2Þ be two ITrFNs, and k�0, then following opera-

tions are defined on �a1 and �a2.

1. �a1 � �a2 ¼ ½a1 þ a2; b1 þ b2; c1 þ c2; d1 þ d2�; l�a1þ
�

l�a2 � l�a1l�a2 ; m�a1m�a2Þ
2. �a1 � �a2 ¼ ½a1a2; b1b2; c1c2; d1d2�; l�a1l�a2 ; m�a1 þ m�a2

�

�m�a1m�a2Þ
3. k�a1 ¼ ½ka; kb; kc; kd�; 1� ð1� l�a1Þ

k; mk�a1

� �

4. �ak1 ¼ ½ak; bk; ck; dk�; lk�a1 ; 1� ð1� m�a1Þ
k

� �

Definition 2.2 (Intuitionistic trapezoidal fuzzy deci-

sion matrix) The intuitionistic trapezoidal fuzzy decision

matrix (Wei 2010) is defined as �R ¼ ð�rÞm	n ¼
ð½aij; bij; cij; dij�; lij; mijÞm	n, where m and n are, respec-

tively, the number of alternatives and number of criteria,

and i ¼ 1; 2; . . .;m; j ¼ 1; 2; . . .; n. Here, 0� aij � bij
� cij � dij � 1; 0� lij; mij � 1; 0� lij þ mij � 1.

Intuitionistic trapezoidal fuzzy positive ideal solution

and intuitionistic trapezoidal fuzzy negative ideal

solution

The intuitionistic trapezoidal fuzzy positive ideal solution

�rþ and intuitionistic trapezoidal fuzzy negative ideal

solution �r� are defined as follows:

�rþ ¼ ½aþ; bþ; cþ; dþ�; lþ; mþð Þ ¼ ð½1; 1; 1; 1�; 1; 0Þ ð3Þ

�r� ¼ ½a�; b�; c�; d��; l�; m�ð Þ ¼ ð½0; 0; 0; 0�; 1; 0Þ ð4Þ

Let �ai ¼ ½ai; bi; ci; di�; l�ai ; m�ai
� �

be an intuitionistic trape-

zoidal fuzzy number and �rþ be an intuitionistic trapezoidal

fuzzy positive ideal solution, then the distance between �ai
and �rþ is denoted as d �ai; �rþð Þ. If d �a1; �rþð Þ\d �a2; �rþð Þ, then
�a1 [ �a2.

2.1 Score function and accuracy function

To compare any two intuitionistic trapezoidal fuzzy num-

bers, Wang and Zhang (2009a) defined the score function,

accuracy function, and expected value as given below.

Definition 2.3 (Score and accuracy function of ITrFN)

The score function Sð�aÞ and accuracy function Hð�aÞ of

the ITrFN �a ¼ ½a; b; c; d�; l�a; m�að Þ are respectively defined

as

Sð�aÞ ¼ Ið�aÞ 	 ðl�a � m�aÞ ð5Þ

and

Hð�aÞ ¼ Ið�aÞ 	 ðl�a þ m�aÞ; ð6Þ

where

Ið�aÞ ¼ 1

8
	 ðaþ bþ cþ dÞ 	 ð1þ l�a � m�aÞ½ � ð7Þ

is the expected value of the ITrFN �a.

Using the score and accuracy functions, two ITrFNs

�a1 ¼ ½a1; b1; c1; d1�;l�a1 ; m�a1
� �

and �a2 ¼ ½a2; b2; c2; d2�;ð
l�a2 ; m�a2Þ can be compared as follows:

1. If Sð�a1Þ\Sð�a2Þ, then �a1 is smaller than �a2, i.e., �a1\�a2.
2. If Sð�a1Þ ¼ Sð�a2Þ, then

(a) If Hð�a1Þ\Hð�a2Þ, then �a1 is smaller than �a2, i.e.,
�a1\�a2.

(b) If Hð�a1Þ ¼ Hð�a2Þ, then �a1 and �a2 represent the

same information, i.e., �a1 ¼ �a2.
(c) If Hð�a1Þ[Hð�a2Þ, then �a1 is larger than �a2, i.e.,

�a1 [ �a2.

The variance of ITrFN (Wang and Tian 2010) provides a

measure of the spread of the distribution of ITrFNs

around its expected value. A small value of variance

indicates that the ITrFN is firmly concentrated around its

expected value, and a large value of variance indicates

that the ITrFN has a wide spread around the expected

value.

Definition 2.4 (Variance of ITrFN) The variance Vð�aÞ of
the ITrFN �a ¼ ½a; b; c; d�; l�a; m�að Þ is defined as follows:

(i) when �a ¼ �b; Vð�aÞ ¼ 3ðb� aþ �aÞ2 þ �a2

24
;

(ii) when �a[ �b,

Vð�aÞ ¼

1

6
�ðb� mÞ3

�b
� ða� �a� mÞ3

�a
þ ðb�aþ a�b� mð�aþ �bÞÞ3

�a�bð�a� �bÞ2

" #

; a� m\0

1

6

ða� mÞ3

�a
� ðb� mÞ3

�b
� ða� �a� mÞ3

�a
þ ðb�aþ a�b� mð�aþ �bÞÞ3

�a�bð�a� �bÞ2

" #

; a� m� 0

8
>>>>><

>>>>>:
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iii) when �a\�b,

Here, �a ¼ b� a; �b ¼ d � c, and m ¼ Ið�aÞ.

2.2 Distance measures between ITrFNs

Wang and Zhang (2009b) and Ye (2012) defined two dis-

tance measurement techniques between two intuitionistic

trapezoidal fuzzy numbers which are given below.

2.2.1 Normalized Hamming distance

The normalized Hamming distance between two ITrFNs

�a1 ¼ ½a1; b1; c1; d1�;l�a1 ; m�a1
� �

and �a2 ¼ ½a2; b2; c2; d2�;ð
l�a2 ; m�a2Þ is defined as:

lITrFNð�a1; �a2Þ ¼
1

8

1þ l�a1 � m�a1
� �

a1 � 1þ l�a2 � m�a2
� �

a2
�
�

�
�

þ 1þ l�a1 � m�a1
� �

b1 � 1þ l�a2 � m�a2
� �

b2
�
�

�
�

þ 1þ l�a1 � m�a1
� �

c1 � 1þ l�a2 � m�a2
� �

c2
�
�

�
�

þ 1þ l�a1 � m�a1
� �

d1 � 1þ l�a2 � m�a2
� �

d2
�
�

�
�

0

B
B
B
B
@

1

C
C
C
C
A

ð8Þ

2.2.2 Normalized Euclidean distance

The normalized Euclidean distance between two ITrFNs

�a1 ¼ ½a1; b1; c1; d1�;l�a1 ; m�a1
� �

and �a2 ¼ ½a2; b2; c2; d2�;ð
l�a2 ; m�a2Þ is defined as:

eITrFNð�a1; �a2Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

8

1þ l�a1 � m�a1
� �

a1 � 1þ l�a2 � m�a2
� �

a2
� 	2

þ 1þ l�a1 � m�a1
� �

b1 � 1þ l�a2 � m�a2
� �

b2
� 	2

þ 1þ l�a1 � m�a1
� �

c1 � 1þ l�a2 � m�a2
� �

c2
� 	2

þ 1þ l�a1 � m�a1
� �

d1 � 1þ l�a2 � m�a2
� �

d2
� 	2

0

B
B
B
B
B
@

1

C
C
C
C
C
A

v
u
u
u
u
u
u
u
u
t

ð9Þ

2.3 Intuitionistic trapezoidal fuzzy ordered

weighted averaging operator

Let Q be the set of ITrFNs and �ajðj ¼ 1; 2; . . .; nÞ be a

collection of n ITrFNs. An intuitionistic trapezoidal fuzzy

ordered weighted averaging (ITrFOWA) operator (Wei

2010; Xu 2007) of dimension n is a mapping ITrFOWA:

Qn ! Q, that has an associated vector x ¼
ðx1;x2; . . .;xnÞT , such that xi � 0 and

Pn
j¼1 xj ¼ 1.

Moreover,

ITrFOWAx �a1; �a2; ; . . .; �anð Þ ¼
Xn

j¼1

�arðjÞxj

¼
Xn

j¼1

�arðjÞxj;
Xn

j¼1

�brðjÞxj;
Xn

j¼1

�crðjÞxj;
Xn

j¼1

�drðjÞxj

" #

; 1

 

�
Yn

j¼1

1� l�arðjÞ

� �xj

;
Yn

j¼1

m�arðjÞ

� �xj

!

;

ð10Þ

where rð1Þ; rð2Þ; . . .; rðnÞð Þ is a permutation of

ð1; 2; . . .; nÞ, such that �arðj�1Þ � �arðjÞ, for any j.

3 Robust decision making using intuitionistic
trapezoidal fuzzy number

In this section, we extend the method given in Zarghami

et al. (2008) and Zarghami and Szidarovszky (2009) in the

framework of ITrFNs and propose an algorithmic approach

to solve MCDM problem using intuitionistic trapezoidal

fuzzy ordered weighted averaging (ITrFOWA) operator.

This study also extends the ITrFOWA operator using

optimism degree of decision maker, fuzzy linguistic

quantifier (FLQ), and regular increasing monotonic (RIM)

quantifier to find the robust decision.

3.1 ITrFOWA using optimism degree, FLQ,

and RIM quantifier

Yager (1988) introduced ordered weighted averaging

(OWA) operator which has different varieties for different

orders of weights. Order weights depend on the optimism

degree, also known as orness degree of the decision maker

(Yager 2002). Higher the values of the weights at the

beginning of the weight vector, more will be the optimism

degree. The measure of optimism degree of a decision

maker is defined in the interval [0, 1]. When the optimism

Vð�aÞ ¼

1

6

ða� mÞ3

�a
þ ðbþ �b� mÞ3

�b
� ðb�aþ a�b� mð�aþ �bÞÞ3

�a�bð�a� �bÞ2

" #

; b� m\0

1

6

ða� mÞ3

�a
� ðb� mÞ3

�b
þ ðbþ �b� mÞ3

�b
þ ðb�aþ a�b� mð�aþ �bÞÞ3

�a�bð�a� �bÞ2

" #

; b� m� 0

8
>>>>><

>>>>>:
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degree is 1, the decision maker is considered to be risk-

prone, and when it is 0, the decision maker is said to be

risk-aversion type. When the optimism degree is more, a

decision maker is said to be optimistic. Pessimistic decision

maker is assigned less optimism degree. Generally, opti-

mistic decision maker prefers less criteria, while pes-

simistic decision maker prefers more criteria in their

decision making process (Zarghami et al. 2008; Zarghami

and Szidarovszky 2009). Normally, an expert/decision

maker considers more criteria when he/she prominently

avoids the risk of making improper decisions, which may

result in conventional decision. But when the decision

maker prefers fewer criteria with the hope of finding better

decision, then the results will differ from that of the pes-

simistic decision maker and may be improved.

Definition 3.1 (Optimism degree) Optimism degree

(Yager 1988) h of a decision maker is defined as:

h ¼ 1

n� 1

Xn

j¼1

ðn� jÞwj ð11Þ

Here, n is the number of attributes/criteria, w ¼
ðw1;w2; . . .;wnÞT is a weight vector associated with those

attributes, such that wj � 0 and
Pn

j¼1 wj ¼ 1. Different

decision makers may consider different weight vectors for

the same set of attributes.

FLQ is used to characterize the aggregation process, and

in this study, we consider it with RIM quantifier. Some

examples of FLQ are: all, half, few or at least one of them.

Malczewski (2006) has defined seven RIM quantifiers to

aggregate the inputs, which are shown in Table 1. RIM

quantifiers are used to model the linguistic inputs, which

satisfy the following conditions.

Qð0Þ ¼ 0;Qð1Þ ¼ 1; and Qðp1Þ�Qðp2Þ if p1 � p2

Here, Q is a fuzzy membership function. When RIM

quantifier is associated with an OWA operator, the weight

vector (Yager 1988, 1996) is obtained as given below in

(12).

wj ¼ Q
j

n


 �

� Q
j� 1

n


 �

; j ¼ 1; 2; . . .; n ð12Þ

Among different possible forms of function Q, we have

considered QðpÞ ¼ pa, where a is a positive parameter.

Using (11) and (12), the optimism degree can be expressed

as follows:

h ¼
Z 1

0

QðpÞdp ¼
Z1

0

padp ¼ 1

ð1þ aÞ ; a ¼ 1

h
� 1


 �

ð13Þ

Using (12) and (13), (10) can be further expressed as fol-

lows in (14).

ITrFOWAx �a1; �a2; ; . . .; �anð Þ ¼
Xn

j¼1

�arðjÞxj

¼
Xn

j¼1

�arðjÞ
j

n


 �1
h�1

� j� 1

n


 �1
h�1

" #

ð14Þ

3.2 Collective measure using expectation

and variance

Decision making in uncertain environment always yields a

risk for the decision makers due to the uncertain nature of

the decision parameters. When the decision maker does not

consider the risk in the decision making process, then his/

her objective is only to get the optimal solution, i.e., to

maximize the expected value. But when the decision maker

considers the associated risk arising from uncertainty, then

he/she attempts also to minimize the variance. More the

uncertainty, more is the variance. Expectation and variance

are two conflicting objectives. A combination of them,

known as collective measure F

k for the kth alternative is

shown in (15) and used to solve the problem.

F

k ¼ EðFkÞ � nk var ðFkÞ; nk � 0 ð15Þ

Table 1 Family of RIM

quantifiers
Fuzzy linguistic quantifier Parameter of quantifier ðaÞ Optimism degree ðhÞ Optimistic condition

Atleast one of them a ! 0:0 0.999 Very optimistic

Few of them 0.1 0.909 Optimistic

Some of them 0.5 0.667 Fairly optimistic

Half of them 1.0 0.5 Neutral

Many of them 2.0 0.333 Fairly pessimistic

Most of them 10.0 0.091 Pessimistic

All of them a ! 1 0.001 Very pessimistic
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Here, nk determines the importance of decreasing

risk/variation compared to maximizing expected value. nk
is called robust factor. Alternative k will be preferred if

F

k [F


i 8i; i 6¼ k, i.e., alternative k is considered to be the

best if and only if

EðFkÞ � nk var ðFkÞ�EðFiÞ � nk var ðFiÞ 8i; i 6¼ k:

ð16Þ

3.3 Algorithmic approach

Let S ¼ fs1; s2; . . .; smg be the set of m alternatives and

C ¼ fc1; c2; . . .; cng be the set of n criteria. A decision

maker expresses his/her opinion in linguistic terms, rep-

resented in a decision matrix as given below:

D ¼ dij
� �

m	n
¼

d11 d12 � � � d1n

d21 d22 � � � d2n

..

. ..
. . .

. ..
.

dm1 dm2 � � � dmn

2

6
6
6
6
4

3

7
7
7
7
5

Here, dij is a linguistic term to evaluate an alternative

si; 1� i�m with respect to the criteria cj; 1� j� n. In this

study, the linguistic terms are expressed in ITrFNs.

The steps in the algorithm for selecting the best alter-

native considering both expectation and variance are given

below:

Step 1 FLQ is used to obtain the optimism degree of the

decision maker.

Step 2 Ordered weight vector w ¼ fw1;w2; . . .;wngT ;
wj � 0;

Pn
j¼1 wj ¼ 1 is computed based on the optimism

degree of decision maker as shown in (12). For an

optimistic decision maker, the first few ordered weights

have higher values, and for the pessimistic decision

maker, the first few ordered weights have lower values.

Step 3 For each alternative si; 1� i�m, the decision

maker’s opinion for the attributes cj; 1� j� n are

ordered according to their Hamming distances from the

positive ideal ITrFNs, as mentioned earlier in (3). Less

distance signifies more important attribute, represented

by ITrFN.

Step 4 ITrFOWA operator, given in (14), is applied to

compute the value of aggregated ITrFN for each

alternative si; 1� i�m, corresponding to their criteria

cj; 1� j� n, using Step 2 and Step 3.

Step 5 Score SðsiÞ and accuracy values HðsiÞ8i of the

aggregated ITrFNs for the corresponding alternative

si; 1� i�m are computed to rank the alternatives, which

are already mentioned in Definition 2.3. It gives the

optimal choice. In the following steps, we find robust

decision,whichmay not be the same as the optimal choice.

Step 6 The expected value EðFkÞ of the aggregated

ITrFN for each alternative k and its variance,

varðFkÞ; 1� k�m are obtained, respectively, using

Definitions 2.3 and 2.4.

Step 7 Collective measure for each alternative

k; 1� k�m is computed by combining its expectation

and variance using (15).

Step 8 The range of nk, which we call as an optimal

interval of nk for each alternative k; 1� k�m is

evaluated using (16), as given below:

nk � min
EðFkÞ � EðFiÞ

varðFkÞ � varðFiÞ

� 


; if varðFkÞ � varðFiÞð Þ� 0

nk � min
EðFkÞ � EðFiÞ

varðFkÞ � varðFiÞ

� 


; if varðFkÞ � varðFiÞð Þ� 0

i ¼ 1; 2; . . .; k � 1; k þ 1; . . .;m:

Step 9 The robust decision is to select sk if the optimal

interval of nk is more than those of others.

Step 10 If k has more than one value, then any one of the

corresponding sk may be chosen.

4 Application in site selection problem of nuclear
power plant

Selecting proper site for installing a nuclear power plant

has become a crucial problem throughout the world,

especially after the Fukushima (2011) and Chernobyl

(1986) nuclear accidents. A number of factors are to be

considered before installing a nuclear power plant at a

particular location (Kirkwood 1982). Among those, seis-

mological factor, availability of sufficient water, public

health and safety, social and environmental policies are

considered to be most important. A few researchers have

studied on nuclear power plant site selection problem in the

last decade. Kirkwood (1982) performed a series of

screening steps to determine the site to be selected from the

candidate sites for a plant as well as water resources. The

author performed multi-objective decision analysis to

evaluate the rank of the candidate sites and water resour-

ces. Ford et al. (1979) reviewed the alternative method-

ologies, those of which have been used for selecting the

nuclear power plant site. They specified the objective of

each methodology and developed attributes to measure the

degree of usage of each objective. The authors also rated

various methodologies based on various attributes.

To demonstrate the application of the proposed

approach, we present a case study regarding the site

selection for installing nuclear power plant. Nuclear power

plant construction and operation in India is regulated by the

Nuclear Power Corporation of India Ltd (NPCIL). Among
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the set of criteria developed by NPCIL, there are primarily

seven criteria for selecting a proper site to install nuclear

power plant, which are given below:

(a) Population density (c1): Nuclear power plants should

preferably be located in sparsely populated areas,

those of which are at a considerable distance from

the areas of large population. This is necessary to

minimize community opposition and security risks

and to reduce the complexity associated with emer-

gency planning.

(b) Seismological factors (c2): Seismological factors

have a huge impact on the safety measures associ-

ated with nuclear power plants. Installing nuclear

power plants in seismically unstable areas increases

the costs of construction and operation.

(c) Geographical conditions (c3): Geographical condi-

tions directly affect the costs and risks associated

with nuclear power plants. They influence environ-

mental pollution, as well as the risk of natural

disasters triggering a substantial release of radioac-

tive material.

(d) Atmospheric characteristics (c4): There are two main

atmospheric considerations. The first one is whether

extreme weather conditions could affect the safe and

efficient operation of the nuclear power plant. Two

examples of such events include cyclone and flood.

The second consideration is how atmospheric con-

ditions could affect the dispersion of radioactive

material and other pollutants from routine releases

and accidents. Relevant factors include prevailing

winds, topographical factors that influence local

climate (for example, hills and valleys), and risk of

local fogging or icing due to water vapor discharge.

(e) Cooling water features (c5): Sufficient water is

needed for cooling purpose.

(f) Land use (c6): Decision makers should consider the

fact that installing a nuclear power plant puts

industrial areas and freshwater resources at risk

which may cause undesirable results.

(g) Economic conditions (c7): The construction of

nuclear power plants should be evaluated in terms

of the cost of construction, the cost of building a

power line and the cost of a cooling system.

Minimizing these costs is necessary to reduce basic

fixed costs, which makes an alternative more

desirable.

This study has evaluated 13 sites with respect to these

seven criteria mentioned above, considering a group of

experts. The linguistic terms and their corresponding

ITrFNs are provided in Table 2. The relationships among

the linguistic terms and their corresponding ITrFNs have

been considered in a consistent way motivated by the

linguistic information given in Chen (2000) and Chen and

Lee (2010). The final assessment of the experts given in the

form of an assessment matrix is shown in Table 3, where

assessments of decision makers/experts are given in lin-

guistic terms.

A stepwise illustration of the solving procedure as per

the proposed algorithm is presented below:

[Step 1] This study has used FLQ based on the number

of criteria considered by the group of experts. If the group

of experts consider more criteria for evaluating the alter-

natives, then they are considered to be more pessimistic.

Here, we assume that experts select the quantifier ‘many of

them’ from Table 1, for which the optimism degree is

0.333. Here, the experts are considered as ‘fairly pes-

simistic’ as given in Table 1.

[Step 2] Considering optimism degree h ¼ 0:333 and

number of criteria n ¼ 7, the order weights are evaluated

using (12) as [0.020, 0.061, 0.102, 0.143, 0.184, 0.225,

0.266].

[Step 3 and Step 4] Aggregated ITrFN of each site is

computed using the ITrFOWA operator. The result is

shown in Table 4.

Table 2 Linguistic terms and their corresponding ITrFNs

Linguistic term Intuitionistic trapezoidal fuzzy number

Very low (VL) ([0,0.1,0.2,0.3]; 0.6,0.3)

Low (L) ([0.05,0.15,0.25,0.35]; 0.2,0.5)

Medium low (ML) ([0.2,0.3,0.4,0.7]; 0.7,0.1)

Medium (M) ([0.35,0.45,0.5,0.65]; 0.5,0.5)

Medium high (MH) ([0.5,0.6,0.75,0.8]; 0.3,0.6)

High (H) ([0.65,0.7,0.85,0.9]; 0.4,0.5)

Very high (VH) ([0.8,0.9,1,1]; 0.7,0.2)

Table 3 Assessment matrix expressed in linguistic terms

c1 c2 c3 c4 c5 c6 c7

s1 VL MH L ML H H VH

s2 ML MH H MH ML VH H

s3 H L ML VH M H L

s4 VL L ML H MH L H

s5 VH H ML ML L H L

s6 H VH L L H MH VH

s7 L H MH ML H VH M

s8 MH VL L H VL H L

s9 M MH ML L VH H ML

s10 VH M MH ML L L H

s11 VL L ML H L ML MH

s12 H ML L VH VL L M

s13 ML MH M L H MH ML
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[Step 5] The score values of various sites are evaluated

based on a set of five different values of the quantifier a,
which are 0.05, 0.1, 0.3, 0.5, and 0.7, given in Table 5. It is

observed that site s2 has the highest score value among all

of the five values of a, which are shown in bold face. Thus,

site s2 is the optimal choice of the decision makers. Five

figures, Figs. 1, 2, 3, 4, and 5, are, respectively, the

graphical representations of the score values of different

Table 4 Aggregated ITrFNs

ð½a; b; c; d�; l; mÞ when
h ¼ 0:333

a b c d l m

s1 0.253769 0.359901 0.464945 0.545585 0.471976 0.324806

s2 0.43258 0.557082 0.722392 0.787701 0.491153 0.317335

s3 0.239496 0.345627 0.458866 0.557876 0.403272 0.390032

s4 0.165044 0.271166 0.365995 0.4507 0.422856 0.353434

s5 0.21194 0.336442 0.477236 0.567061 0.337376 0.528727

s6 0.340456 0.428223 0.549642 0.620091 0.32822 0.479903

s7 0.340595 0.446727 0.571198 0.658975 0.420908 0.40634

s8 0.120126 0.21606 0.276189 0.367029 0.451189 0.396517

s9 0.294749 0.416162 0.545728 0.638599 0.460392 0.344888

s10 0.242622 0.349758 0.465044 0.557917 0.363752 0.430755

s11 0.137578 0.252855 0.350736 0.442582 0.446765 0.344721

s12 0.146672 0.253808 0.333344 0.435402 0.457609 0.363707

s13 0.313211 0.428488 0.559074 0.64478 0.399751 0.317335

Table 5 Scores of alternatives

a ¼ 0:05 a ¼ 0:1 a ¼ 0:3 a ¼ 0:5 a ¼ 0:7

s1 0.01881 0.018719 0.034276 0.056584 0.133801

s2 0.069158 0.056567 0.063753 0.102158 0.173358

s3 0.021024 0.021325 0.002686 0.040549 0.129416

s4 0.018602 0.014217 0.011627 0.012388 0.0148

s5 0.020942 0.022189 0.030806 0.01015 0.147386

s6 0.02108 0.023332 0.031178 0.019826 0.140463

s7 0.023501 0.030454 0.003727 0.045684 0.13547

s8 0.019475 0.018733 0.007059 0.007077 0.02194

s9 0.023501 0.030395 0.030524 0.090616 0.171914

s10 0.021079 0.023069 0.012623 0.032477 0.129666

s11 0.018601 0.013938 0.01664 0.044724 0.051852

s12 0.0186 0.013939 0.015013 0.049413 0.135905

s13 0.026792 0.034341 0.021695 0.058916 0.085057

Fig. 1 Plot of score values when a ¼ 0:05

Fig. 2 Plot of score values of different sites when a ¼ 0:1

Fig. 3 Plot of score values of different sites when a ¼ 0:3

Fig. 4 Plot of score values of different sites when a ¼ 0:5

Fig. 5 Plot of score values of different sites when a ¼ 0:7
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sites for five different values of a, which are

0.05, 0.1, 0.3, 0.5, and 0.7.

[Step 6] The expected value EðFkÞ and variance varðFkÞ
of the aggregated ITrFN for each site sk; k ¼ 1; 2; . . .; 13

for five different values of the quantifier a, are given in

Table 6. The result shows that site 2, i.e., s2 is the most

preferred alternative as it has the highest expected value for

all of the five values of a, which are 0.05, 0.1, 0.3, 0.5, and

0.7. So site 2, i.e., s2 can be considered as the optimal

choice, which is the same as evaluated in the previous step,

i.e., Step 5. We know that smaller variance represents safer

decision. So, we compare the variance values and find that

site 2, i.e., s2 is best for a ¼ 0:05 and a ¼ 0:1. However,

site 6, i.e., s6 is best for a ¼ 0:3 and a ¼ 0:5. Site 3, i.e., s3
is best when a ¼ 0:7. This shows the importance of com-

bining variance with expectation, as illustrated below.

[Step 7 and Step 8] Optimal interval of nk as given in

(16) for each site sk; k ¼ 1; 2; . . .; 13 is determined using

the collective measure of expected value and variance,

which is shown in Table 7. Figure 6 illustrates the optimal

interval of nk for each of the sites sk; k ¼ 1; 2; . . .; 13 at

a ¼ 0:1. Similarly, Figs. 7, 8, 9, and 10 present the corre-

sponding optimal intervals of all the 13 sites, respectively,

for the remaining four values of a ,which are 0.05, 0.3, 0.5,

and 0.7.

[Step 9] Robust decision is selected based on the larger

optimal interval of nk; k ¼ 1; 2; . . .; 13. Considering the

uncertain behaviour of the decision parameters, one can

decide that decision making in larger interval is more

robust than that in smaller interval. Figure 6 shows site 4,

i.e., s4 has to be selected for the robust decision when

a ¼ 0:1. Figures 7, 8, 9, and 10 present the respective

robust decisions as selection of site 8, site 13, site 10, and

site 8 for a ¼ 0:05; 0:3; 0:5, and 0.7. Different robust

decisions are observed due to different values of a, which
are associated with different optimism degrees of the

decision maker.

In this study, the opinions of decision makers are

expressed using linguistic terms which have been trans-

formed into ITrFNs. In real-life decision making, the

information about any decision problem and its parameters

is often incomplete and imprecise in nature. To handle

these kinds of problems and due to the inherent fuzzy

reasoning process of human beings, the decision makers

always prefer linguistic terms to express their opinions.

The linguistic terms are well represented by ITrFNs, since

ITrFN uses trapezoidal function for both membership and

non-membership degrees. The trapezoidal function sup-

ports different dimensions (Wang and Zhang 2009a) to

express the uncertain information, which adds more flexi-

bility to model the linguistic terms. Due to the presence of

trapezoidal function, ITrFN is considered to be more

powerful in expressing the linguistic information than

intuitionistic fuzzy set. We have evaluated the optimal

decision as well as the robust decision based on the opti-

mism degree h/parameter of quantifier ðaÞ of the decision

maker. A set of five values of the parameter of quantifier a
has been used to analyze the problem. For each value of a,
i.e., a ¼ 0:05; 0:1; 0:3; 0:5, and a ¼ 0:7, site 2 has been

selected as the optimal decision among a set of 13 sites/

alternatives. But selection of site 2 has not been evaluated

as the robust decision. The robust decision is found to be

different for different values of a. When a ¼ 0:05, site 8

has to be selected for the robust decision. Similarly, when

a ¼ 0:1; 0:3; 0:5, and 0.7, the respective robust decisions

are selection of site 4, site 13, site 10, and site 8. This study

Table 6 Expected value and variances of aggregated ITrFNs

a ¼ 0:05 a ¼ 0:1 a ¼ 0:3 a ¼ 0:5 a ¼ 0:7

EðFkÞ VarðFkÞ EðFkÞ VarðFkÞ EðFkÞ VarðFkÞ EðFkÞ VarðFkÞ EðFkÞ VarðFkÞ

s1 0.106115 0.001666 0.146287 0.001658 0.40605 0.001609 0.558929 0.00132 0.72028 0.001044

s2 0.662186 0.001205 0.653571 0.001319 0.624939 0.001893 0.678571 0.001569 0.773977 0.001104

s3 0.200481 0.001669 0.21398 0.001721 0.400466 0.0018 0.548214 0.001453 0.712856 0.000659

s4 0.105356 0.001667 0.127752 0.001659 0.313226 0.00165 0.455357 0.001214 0.602936 0.001004

s5 0.20046 0.001671 0.213456 0.001778 0.39817 0.00216 0.546429 0.001707 0.711869 0.001228

s6 0.200777 0.001666 0.223118 0.001634 0.484603 0.001132 0.6375 0.000934 0.771586 0.000851

s7 0.224431 0.001641 0.307097 0.001598 0.504374 0.001682 0.614286 0.001387 0.745396 0.001077

s8 0.100167 0.001667 0.105067 0.001666 0.244851 0.001484 0.401786 0.001162 0.574002 0.000795

s9 0.224431 0.001641 0.306955 0.0016 0.47381 0.002113 0.571429 0.001955 0.712115 0.001464

s10 0.20077 0.001666 0.221246 0.001648 0.403835 0.001758 0.532143 0.001612 0.694532 0.001271

s11 0.105357 0.001667 0.127887 0.001665 0.295938 0.001945 0.4125 0.002033 0.557374 0.001503

s12 0.105353 0.001677 0.126839 0.001671 0.292306 0.001857 0.451786 0.001684 0.651622 0.001304

s13 0.22472 0.001639 0.314359 0.001547 0.486388 0.001879 0.533929 0.002033 0.616854 0.001519
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has combined expected value and variance to find out the

robust decision, which tries to maximize the expected

value and minimize the variance.

5 Result discussion and comparison

This section briefly discusses the outcome of the proposed

approach and compares it with the relevant existing

methods.

5.1 Discussion on results

This study initially computes the optimal choice of deci-

sion makers, which is shown in Table 5, using a set of five

different values of the quantifier a; 0:05; 0:1; 0:3; 0:5, and
0.7. We find that site s2 is selected as the optimal decision

as it has the highest score value for all of the five values of

Table 7 Optimal intervals of nk for each site k

a = 0.05 a = 0.1 a = 0.3 a = 0.5 a = 0.7

s1 [0, 31455.33] [1079.23, 8574.5952] [164.68, 1346.90] [202.06, 861.455] [229.74, 894.95]

s2 [0.00, 251.12] [391.24, 423.57] [1011.23, 1657.47] [345.78, 539.21] [0, 10.331]

s3 [0, 995.05] [0, 1094.69] [880.58, 2413.69] [991.87, 1126.43] [0, 331.927]

s4 [0, 47562.50] [1397.245, 18333.26] [2263.99, 5973.37] [649.51, 955.44] [1134.96, 2933.599]

s5 [0, 990.83] [0, 959.81] [0, 1609.36] [100.66, 957.87] [1.0423, 500.87]

s6 [0, 1000.89] [0, 241.724] [0, 184.41] [0, 64.63] [0, 0]

s7 [0, 144.500] [0, 1243.29] [0, 571.40] [51.24, 352.56] [138.01, 1058.55]

s8 [0, 50137.00] [2851.57, 13099.57] [681.11, 1310.72] [1026.03, 1032.84] [1020.98, 3617.57]

s9 [0, 144.50] [0, 1235.62] [0, 686.95] [0, 277.32] [0, 171.84]

s10 [0, 0] [0, 1728.66] [1322.88,1637.80] [150.31, 3408.39] [91.1036, 475.72]

s11 [47562.00, 95419.99] [153.983, 6001.90] [1058.76, 6326.94] [0, 0] [3717.5, 3967.718]

s12 [0, 47564.00] [1872.64, 3786.59] [1897.54, 9239.8] [1973.54, 4099.418] [378.08, 1300.3]

s13 [0, 1007.98] [0, 1486.68] [91.29, 9896.5] [0, 481.108] [0, 1732.018]

Fig. 6 Optimal intervals of 13 sites when a ¼ 0:1

Fig. 7 Optimal intervals of 13 sites when a ¼ 0:05

Fig. 8 Optimal intervals of 13 sites when a ¼ 0:3

Fig. 9 Optimal intervals of 13 sites when a ¼ 0:5

Fig. 10 Optimal intervals of 13 sites when a ¼ 0:7
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a. As we know that optimal decision is not always the

robust decision, we proceed further to compute the robust

decision using expected value and variance. In the process,

we fist compute expected value of each site for the five

different values of að0:05; 0:1; 0:3; 0:5; 0:7Þ to measure the

central tendency of each site which is considered as

weighted average of the criteria values of that site. The

expected values of 13 sites using five different values of

að0:05; 0:1; 0:3; 0:5; 0:7Þ are given in Table 6. From

Table 6, we observe that site s2 is again selected as optimal

decision due to having highest expected value for all the

five different values of the quantifier a. When we consider

variance, we observe that different sites are selected based

on different values of the quantifier due to having less

variance. It is known that higher expected value provides

better decision and lower variation provides safer decision.

Hence, a combination of expected value and variance will

provide better as well as riskless decision. This leads us to

combine expected value and variance to determine robust

decision which is both better and less risky. Table 7 shows

the necessary intervals for each of the 13 sites for the five

different values of the quantifier a. For each value of a, site
with largest interval is selected as robust decision.

5.2 Comparative study

The proposed decision making approach in this study is

considered as an extension of the approach given in

Zarghami et al. (2008). Zarghami et al. (2008) proposed

fuzzy stochastic ordered weighted averaging (FSOWA)

method to find robust decision in Sefidrud watershed

problem, located in the northwestern region of Iran.

Sefidrud is an important watershed in Iran, mainly used

for water resources development, which has 13 projects

on water resources. They initially performed a stochastic

simulation on the input dataset and, then, investigated the

robust project combining expected value and variance.

Zarghami and Szidarovszky (2009) used a method, called

as fuzzy stochastic ordered weighted averaging, to solve

water resources management problem in the central Tisza

River in Hungary. As an extension to the approach, given

in Zarghami et al. (2008), and Zarghami and Szi-

darovszky (2009) used linguistic opinions of decision

makers. Both authors, Zarghami et al. (2008) and Zar-

ghami and Szidarovszky (2009), used stochastic fuzzy

MCDM methods with a discrete set of alternatives, where

they initially performed a stochastic simulation and, then,

used FLQ to obtain the optimism degree of decision

makers. Compared to the approaches, given in Zarghami

et al. (2008) and Zarghami and Szidarovszky (2009),

where the uncertainty is managed stochastically, we have

used IFS, more concretely ITrFN, which is more close to

the reasoning process of human being. ITrFNs are based

on IFS and used to represent the opinions of decision

makers. Instead of performing stochastic simulation, we

have used intuitionistic trapezoidal fuzzy ordered weigh-

ted averaging (ITrFOWA) operator to determine the

aggregated evaluation of each site corresponding to the

various criteria. This aggregated evaluation, in turn,

assists us to explore the optimal decision. Then, we

proceed further to evaluate the robust decision using

collective measure.

6 Conclusions

This paper has proposed a robust MCDM approach as an

extension of the method of Zarghami et al. (2008) in the

context of ITrFNs. Optimism degree of a decision maker

is obtained from FLQ, which is represented by RIM

quantifier. In this study, quantifier executes an important

role to assign optimism degree to a decision maker. Less

is the quantifier, more is the optimism degree. ITrFOWA

operator has been used to aggregate ITrFNs for each of

the alternatives. Optimal decision is evaluated by ranking

the alternatives based on their score and accuracy values.

However, an optimal decision may not be the robust one.

To explore the robust decision, expected value and

variances of each alternative are computed and, then,

combined for a collective measure. Finally, robust deci-

sion is taken based on the optimal interval. More is the

optimal interval, the decision is more robust. This study

finds that the optimal decision is not necessarily the

robust decision and vice versa. The proposed approach is

demonstrated on a site selection problem of nuclear

power plant. This study has shown the significance of

robust decision in the changed scenario using a real-life

example. The change in the scenario arises out of

uncertainty. The uncertainty is represented by different

parameters, like linguistic terms, quantifier, expectation,

and variance. These parameters are used in the proposed

method to tackle the uncertain behaviour of the power

plant to be installed. If we consider robust decision

instead of optimal one, the effect of nuclear hazards in

case of an unexpected event due to changes in the

parameters can be reduced. In future, the concept of

robustness can be embedded to many decision making

problems for making the decision robust. Since different

types of criteria, such as benefit type and cost type, have

been used in the decision process, to avoid deriving the

wrong results, the decision information presented in the

decision matrix may be normalized using the idea given

in Xu and Hu (2010). Information granules can also be

considered to design the robust system.
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