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Abstract Many practical problems are naturally reduced

to solving systems of equations. There are many efficient

techniques for solving well-defined systems of equations,

i.e., systems in which we know the exact values of all the

parameters and coefficients. In practice, we usually know

these parameters and coefficients with some uncertainty—

uncertainty usually described by an appropriate granule:

interval, fuzzy set, rough set, etc. Many techniques have

been developed for solving systems of equations under

such granular uncertainty. Sometimes, however, practi-

tioners use previously successful techniques and get inad-

equate results. In this—mostly pedagogical—paper, we

explain that to obtain an adequate solution, we need to take

into account not only the system of equations and the

granules describing uncertainty: we also need to take into

account the original practical problem—and for different

practical problems, we get different solutions to the same

system of equations with the same granules. This need is

illustrated mainly on the example of interval uncertainty,

the simplest type of uncertainty.

Keywords Granular computing � Systems of equations

under uncertainty � United solution � Tolerance solution �
Interval computations � Modal intervals

1 Practical problems that lead to systems
of equations

What we want: two types of objectives Most practical

problems come from the following two main objectives:

• we want to understand the world, to learn more about

it, and

• we also want to change the world.

Often, we pursue both objectives. For example:

• we want to predict the path of a tropical storm, and

• we want to use this prediction to come up with

measures that will decrease the negative effects of this

storm: we need to decide which areas to evacuate, in

which areas to recommend the people to stay indoors

and to cover their windows, etc.

In both cases, we get systems of equations Let us show that

for both types of problems, a precise mathematical for-

mulation leads to a system of equations.

Systems of equations that come from the desire to

understand the world To describe the state of the world

means to describe the numerical values of the corre-

sponding quantities; for example:

• To describe the state of a mechanical system consisting

of several point-wise objects, we need to describe the

spatial coordinates and velocities of all these objects.

• To describe the current weather conditions in an area,

we need to describe the temperature, humidity, wind

speed, and wind direction at different spatial location

throughout this area.

The values of some of these quantities can be easily

measured. However, we cannot directly measure future
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values of the quantities, we need to predict them based on

the known dependence between the current and future

values.

In some practical cases, we have explicit formulas that

enable us to make this prediction. However, in most other

cases, we do not have such explicit formulas; instead, we

have a system of equations that relates current and future

values of the corresponding quantities—and also, some-

times, the values of related auxiliary quantities.

As an example, let us take one of historically first

examples of successful prediction in physics: prediction of

the position of celestial bodies in celestial mechanics.

Newton’s theory does not have explicit formulas for pre-

dicting the position of, e.g., a new comet in the next month

based on its position at the present moment; instead, it has

equations that describe the position of a comet at any given

moment of time as a function of to-be-determined param-

eters of the corresponding orbit. By equating the observed

locations of the orbit with the results predicted by this

formula, we get a system of equations from which we can

find these parameters. Once we have found the values of

these parameters, we can then use a similar equation to

predict the future location of the comet.

In general:

• let us denote the measured quantities by

x ¼ ðx1; . . .; xnÞ,
• let us denote the desired quantities by y ¼ ðy1; . . .; ymÞ,

and

• let us denote the auxiliary quantities by z ¼ ðz1; . . .; zpÞ.
In these terms, the corresponding system of equations has

the form

Fiðx; y; zÞ ¼ 0; i ¼ 1; . . .; q; ð1Þ

where q is the number of equations. In this system of

equations:

• we know x,

• the values y and z are unknowns that need to be

determined from the system (1), and

• we are only interested in the values y.

Systems of equations that come from the desire to change the

world In such problems, the goal is to achieve a certain desired

state of the world by making appropriate changes—e.g.:

• determining how to correct the trajectory of a spaceship

so that it reaches the destination, or

• determining the parameters of an engine that satisfy the

desired specification in terms of efficiency and pollu-

tion level.

In general:

• let x ¼ ðx1; . . .; xnÞ denote the parameters describing the

current state of the world,

• let t ¼ ðt1; . . .; tsÞ denote the parameters that described

the desired state, and

• let y ¼ ðy1; . . .; ymÞ denote the values of the parameters

that describe the sought-for intervention.

In some cases, we have an explicit formula that determines

the future state of the world based on the current state x and

the intervention y, as Gðx; yÞ ¼ ½G1ðx; yÞ; . . .;Gsðx; yÞ�. In
such cases, to find the proper intervention, we must solve

the system of equations

Giðx; yÞ ¼ ti; i ¼ 1; . . .; s: ð2Þ

In this system of equations:

• we know x and t,

• the values y are the unknowns that need to be

determined from the system (2), and

• we are interested in the values y.

In other cases, we only have an implicit relation between x,

y, and the future state, described by the equations

Fiðx; t; y; zÞ ¼ 0; i ¼ 1; . . .; q; ð3Þ

where z ¼ ðz1; . . .; zpÞ are auxiliary quantities and q is the

number of equations. In this system of equations:

• we know x and t,

• the values y and z are unknowns that need to be

determined from the system (3), and

• we are only interested in the values y.

2 Need to take granularity into account

We need to take into account granularity when describing

both what we know and what we want In the above

description, we implicitly assumed that all the known

values are known exactly, whether these are:

• values x that come from measurements or

• values t that describe what we want.

In reality, in both cases, instead of the exact value, we have

a granule [see, e.g., Pedrycz et al. (2008)]:

• For measurements, this is clear: measurements are

never absolutely accurate, there is always some mea-

surement uncertainty; see, e.g., Rabinovich (2005).

• For describing what we want, the need for granules is also

reasonably clear. For example, when we control the

temperature in a room, even when we set a thermostat on

25�, it does not mean that we want exactly 25.0. We will

not notice small differences, so if the actual temperature is,

say, 24�, itmakes no sense towaste energy trying to raise it

to the exact 25� level. In this example, a more adequate

representation of our objective is not the exact value 25,

but rather an interval like [24, 26], or maybe a fuzzy
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number describing the user’s imprecise desire that the

temperature should be around 25�.

Simplest granule: a set In some cases, based on the mea-

surement result, we know exactly which actual values are

possible and which are not possible, and we also know

exactly which states we want and which we do not want. In

such cases, the corresponding information about x (and/or

t) consists of describing which values are possible (corre-

spondingly, desirable) and which are not.

In other words, the proper description of the corre-

sponding granularity is a set:

• a set X of possible current states of the world, and

• a set T of all desired states.

We may need to approximate this set The actual set may be

too complex to process, so we need to approximate it by

sets from a certain given family of sets.

In the 1-D case, it is reasonable to use intervals ½x; x� as
approximations; see, e.g., Jaulin et al. (2001), Kreinovich

(2009), Moore et al. (2009). In the multi-D case, it is

reasonable to use boxes

½x1; x1� � � � � � ½xn; xn�

that provide an interval approximation for each quantity.

Another approximation idea is to divide the entire space

into finitely many regions, and to use unions of such

regions as approximations. This way, if we have N regions,

we need only N bits to represent each approximating set:

for each i from 1 to N, the i-th bit describes whether the

approximating set contains the i-th region.

Upper and lower approximations For sets that describe a

state X, it makes sense to look for upper approximations

(also known as enclosures), i.e., sets X that contain X:

X � X. This way, we are sure that the approximating set X

contains all possible states x 2 X.

For sets T that describe what we want, it makes sense,

vice versa, to look for lower approximations, i.e., approx-

imating sets T that are contained in T: T � T . This way, we

are sure that every state from the set T is desired.

In addition to the approximating set, it would be nice to

have an indication of how accurate is the corresponding

approximation. A reasonable way to describe the accuracy of

anupper approximationX � X is to supplement itwith a lower

approximation X � X. This way, if these two approximations

X and X are close to each other, we know that the actual set X,

for which X � X � X, is also close to both approximations.

Similarly, a reasonable way to describe the accuracy of a

lower approximation T � T is to supplement it with an

upper approximation T � T . This way, if these two

approximations T and T are close to each other, we know

that the actual set T, for which T � T � T is also close to

both approximations.

The pair of lower and upper approximations X � X is

known as a set interval or twin set.When both approximations

come from a finite partition, the corresponding set interval is

known as a rough set (Pedrycz et al. 2008).

What if we have no information about some states Set

intervals also cover situations when after a measurement:

• for some states x, we know that they are possible,

• for some states x, we know that they are not possible,

and

• for some states x, we have no idea whether they are

possible or not.

This situation can be naturally described by a set interval

½X;X�, where:

• X is the set of all states x about which we know that

they are possible, and

• X is the set of all the states x about which we know that

they may be possible, i.e., about which we do not know

that they are not possible.

Similarly, when we describe our desires:

• for some states t, we know that they are desirable,

• for some states t, we know that they are not desirable,

and

• for some states t, we have no idea whether they will be

desirable or not.

This situation can be naturally described by a set interval

½T; T �, where:

• T is the set of all states t about which we know that they

are desirable, and

• T is the set of all the states t about which we know that

they may be desirable, i.e., about which we do not know

that they are not desirable.

Need to take into account degrees of possibility Often, for

some states for which we are not 100 % sure that these

states are possible, an expert can come up with a degree—

e.g., a number from the interval [0, 1]—indicating to what

extend this particular state x is possible. This additional

information is a function that assigns, to each state, a

degree, and is thus a fuzzy set (Klir and Yuan 1995; Nguyen

and Walker 2006; Zadeh 1965).

For different states t about which we are not sure whe-

ther they are desirable or not, we can often come up with a

degree to which each such state is desirable. In this case,

the set of all desirable states also becomes a fuzzy set.

For possible states, we can also use prior experience of

similar situations and come up with frequencies with which

different states x occurred. In other words, we can also
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have a probability distribution on the set of all possible

states—i.e., a probabilistic granule.

More complex granules are also possible In addition to the

above basic types of granules, we can also have more

complex granules; for example:

• we can have type-2 fuzzy sets, in which the degree of

possibility or desirability is not a real number but is

itself a fuzzy subset of the interval [0, 1] (Mendel 2001;

Mendel and Wu 2010; Nguyen et al. 1997).

• we can have p-boxes, in which, instead of a single

probability distribution, we have a family of probability

distributions (Ferson 2002; Ferson et al. 2007), etc.

Many other types of such complex granules are described

in Pedrycz et al. (2008).

Resulting problem In the previous section, we mentioned

that many practical problems can be reduced to solving

systems of equations, in which we know the values x (and

t), and we need to find the values y.

In this section, we emphasized that in practice, instead

of the exact values of x (and t), we now have granules

X (and T). So, we need to decide how to solve the systems

of equations in such a granular case.

What we show in this paper At first glance, the situation is

straightforward: all we need to do is to find out how to

extend the usual solution algorithms to the corresponding

interval, fuzzy, etc., case.

There are indeed known techniques for extending

algorithms to the interval cases, Zadeh’s extension princi-

ple provides a general extension to the fuzzy case, etc.

In many cases, these extensions work well, but in many

other cases, they don’t. In this paper, we explain why they

don’t: because it is not enough to consider the corre-

sponding mathematical equations, we need to know where

these equations came from, and we need to use different

techniques depending on the original practical problem.

This need is illustrated mainly on the example of

interval uncertainty—the simplest type of uncertainty.

The main intent of this paper is pedagogical: to help

potential users of uncertainty techniques avoid common

mistakes. (There are a few new ideas at the end, but the

main intent is pedagogical.)

3 Seemingly straightforward approach:
a description and simple examples explaining
why it does not work

Seemingly straightforward approach: reminder In the

seemingly straightforward approach, we believe that to find

the solution to the system under granularity, all we need to

know is the original system of equations and the corre-

sponding granules. In other words:

• for the Eq. (1), it is sufficient to know the granule X;

and

• for the Eq. (3), it is sufficient to know the granules

X and T.

What we show in this section In this section, we give a

simple example of two different practical problems in

which:

• the equations are the same,

• the granules are the same, but

• the practical relevant solutions are different.

Since our intent is pedagogical, we select the simplest

possible examples Our intent, as we have mentioned, is to

help the user deal with uncertainty—and avoid possible

mistakes. From this viewpoint, we are trying to illus-

trate our point on the simplest possible examples, in which

both:

• the uncertainty is of the simplest possible type –

namely, interval uncertainty, and

• the corresponding equations are the simplest possible:

namely, in both example, we consider the same

equation a ¼ bþ c.

First practical problem We have an amount a of water in a

reservoir. We then release the amount b. We would like to

know the amount of water c left in the reservoir.

The solution to this simple problem is straightforward:

c ¼ a� b. For example, for a ¼ 100 and b ¼ 40, we have

c ¼ 100� 40 ¼ 60.

Second practical problemWe have an amount a of water in

the reservoir, which is too large. We want to release some

amount c so that, as a result, we will only have the amount

b left. How much water should we release?

The solution to this second simple problem is also

straightforward: c ¼ a� b. This is exactly the same for-

mula as for the first practical problem. For example, for

a ¼ 100 and b ¼ 40, we get the same solution c ¼ 100�
40 ¼ 60 as for the first practical problem.

Simple granules For both above problems, we implicitly

assumed that we know the exact values a and b. Let us now

consider a more realistic situation, in which, instead of the

exact values a and b, we have intervals A and B.

First example As our first example, let us take

A ¼ ½99; 101�, and B ¼ ½38; 42�. Let us see what happens in
both problems.

First practical problem corresponding to the first example

In the first problem:
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• all we know about the original amount of water a is that

this amount is somewhere between 99 and 101, and

• all we know about the released amount is that it was

somewhere between 38 and 42.

We want to find the range of possible values of the

resulting amount c ¼ a� b, i.e., the set

C ¼ fc ¼ a� b : a 2 ½99; 101�; b 2 ½38; 42�g:

The function c ¼ a� b is increasing in a and decreasing in

b. Thus:

• the largest possible value of c is attained when a is the

largest (i.e., equal to 101) and b is the smallest (i.e.,

equal to 38); the resulting largest possible value of c is

thus equal to c ¼ 101� 38 ¼ 63;

• the smallest possible value of c is attained when a is the

smallest (i.e., equal to 99) and b is the largest (i.e.,

equal to 42); the resulting largest possible value of c is

thus equal to c ¼ 99� 42 ¼ 57.

Thus, the desired interval of possible values of c is equal to

C ¼ ½57; 63�:

Second practical problem corresponding to the first

example In the second problem:

• all we know about the original amount of water a is that

this amount is somewhere between 99 and 101, and

• we want to make sure that after releasing the amount c,

the remaining amount of water is between 38 and 42.

In other words, we need to find the values c for which, no

matter what was the original value a 2 ½99; 101�, the

remaining amount b ¼ a� c will be between 38 and 42.

Let us describe the set of all such values c. We want the

value c for which the double inequality

38� a� c� 42

holds for all a 2 ½99; 101�. By reversing signs, we get an

equivalent double inequality

�42� c� a� � 38:

By adding a to all three sides of this inequality, we get an

equivalent inequality

a� 42� c� a� 38:

The left inequalitymeans that c should be larger than or equal

to the difference a� 42 for all possible values a 2 ½99; 101�.
This is equivalent to requiring that c is larger than or equal to

the largest of these differences. The difference is the largest

when a is the largest, i.e., when a ¼ 101. Thus, the left

inequality is equivalent to c	 101� 42 ¼ 59:

The right inequality means that c should be smaller than

or equal to the difference a� 38 for all possible values

a 2 ½99; 101�. This is equivalent to requiring that c is

smaller than or equal to the smallest of these differences.

The difference is the smallest when a is the smallest, i.e.,

when a ¼ 99. Thus, the left inequality is equivalent to

c� 99� 38 ¼ 61:

Thus, in this problem, the desired interval of possible

values of c is equal to

C ¼ ½59; 61�:

These solutions are different One can see that these solu-

tions are different: the interval [57, 63] corresponding to

the first problem is much wider than the interval [59, 61]

corresponding to the second problem.

And it is easy to see that this different is not a mistake.

For example,

• the value c ¼ 63 is a possible solution of the first

problem: it corresponds to the case when we originally

had a ¼ 101, and we released b ¼ 38;

• however, the same value c ¼ 63 is not a possible

solution to the second problem: indeed, if we had

a ¼ 99, then by releasing c ¼ 63 units of water, we

would be left with b ¼ a� c ¼ 99� 63 ¼ 36 units of

water, and we wanted the remaining amount to be

always between 38 and 42.

A second example Let us show that a simple modification

of our first example can make the different between the first

and second problems even more drastic. To get such a

modification, let us take use different interval granules:

A ¼ ½98; 102� and B ¼ ½39; 41�. At first glance, this second
example seems very similar to the first one, but, as we will

see, there will be a big difference.

The difference is not so big for the first practical prob-

lem. In this case, we want to find the range of possible

values of the resulting amount c ¼ a� b, i.e., the set

C ¼ fc ¼ a� b : a 2 ½98; 102�; b 2 ½39; 41�g:

Since the function c ¼ a� b is increasing in a and

decreasing in b,

• the largest possible value of c is attained when a is the

largest (i.e., equal to 102) and b is the smallest (i.e.,

equal to 39); the resulting largest possible value of c is

thus equal to c ¼ 102� 39 ¼ 63;

• the smallest possible value of c is attained when a is the

smallest (i.e., equal to 98) and b is the largest (i.e.,

equal to 41); the resulting largest possible value of c is

thus equal to c ¼ 98� 41 ¼ 57.

Thus, the desired interval of possible values of c is equal

to C ¼ ½57; 63�, the same as in the first numerical

example.

However, for the second practical problem, there is a big

difference from the first example. In this case:
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• all we know about the original amount of water a is that

this amount is somewhere between 98 and 102, and

• we want to make sure that after releasing the amount c,

the remaining amount of water is between 39 and 41.

Thus, we need to find the values c for which, no matter

what was the original value a 2 ½98; 102�, the remaining

amount b ¼ a� c will be between 39 and 41:

39� a� c� 41.

By reversing signs, we get an equivalent double

inequality �41� c� a� � 39, i.e., equivalently, a�
41� c� a� 39: Now:

• For a ¼ 98, the right side of this double inequality

implies that c� 98� 39 ¼ 59, so c� 59.

• On the other hand, for a ¼ 102, the left side of this

double inequality implies that c	 102� 41 ¼ 61, so

c	 61.

But a number cannot be at the same time larger than or

equal to 61 and smaller than or equal to 59. Thus, for the

selected intervals A ¼ ½98; 102� and B ¼ ½39; 41�, the sec-

ond practical problem simply has no solutions to all.

Lesson learned There are many papers that:

• first, come up with algorithms for solving, e.g., systems

of linear equations under fuzzy uncertainty, and

• then, apply these algorithms to all the cases when such

linear systems appear in the case of exact knowledge.

We hope that the above two examples convinced the

readers that it is not possible to just get an equation and

fuzzify it, we need to take into account what exactly

practical problem is being solved—and, depending on that,

different solutions will be adequate.

4 So, how shall we solve these problems?

So what do we do? In the previous section, we have shown

that when a practical problem leads to a system of equa-

tions, to get an adequate solution in a granular case, we

need to take into account

• not only this system and the corresponding granules,

• but also what exactly practical problem led to this

system.

Let us give examples of how this can be done – and what is

known about solving the corresponding systems. We will

start with the simplest case of set and interval granules.

Set granules: possible formulations of the problem In the

granular case, we instead of knowing the exact state x (or

t), we only know the set X (or T) of possible states.

For the problem (1) of understanding the world, a nat-

ural idea is to find all possible values y, i.e., to find the set

Y ¼ fy : 9x 2 X 9z 2 Z ðF1ðx; y; zÞ ¼ 0

& . . . &Fqðx; y; zÞ ¼ 0Þg: ð4Þ

This set combines (‘‘unites’’) all the values y corresponding

to all possible values x 2 X and is thus known as the united

solution set.

For the problem (3) of changing the world, we need to

find the values y for which, for all possible values x 2 X,

the resulting vector t is within the desired range T. In this

case, the desired set Y has the form

Y ¼ fy : 8x 2 X 9t 2 T 9z 2 Z ðF1ðx; t; y; zÞ ¼ 0& . . .Þg:
ð5Þ

When we select the control parameters values y from this

set Y, the resulting state t is guaranteed to belong to the set

T of desirable (tolerable) sets; because of this, the solution

(5) is known as the tolerance solution set.

This distinction is described, in detail, in Shary (1996).

How to actually compute these different solutions In gen-

eral, the corresponding problems are NP-hard, even under

interval uncertainty; see, e.g., Kreinovich et al. (1997).

However, in many cases, there are efficient algorithms for

solving these problems.

The most well-studied problem is the problem of finding

the united solution set. The simplest method for solving

this problem—to be more precise, for producing an

enclosure Y for the desired solution set (4)—is the naive

interval computation methods, in which:

• we start with an algorithm for solving the system (1),

and

• we replace each elementary arithmetic operation in this

algorithm with the corresponding operations on inter-

vals (Jaulin et al. 2001; Kreinovich 2009; Moore et al.

2009; Neumaier 1990).

These operations can be easily determined via mono-

tonicity, like we described the range of a� b in the pre-

vious section. If we know that the value a belongs to the

interval ½a; a� and that the value b belongs to the interval

½b; b�, then the set ½c; c� of possible values of the difference
c ¼ a� b can be computed as

½c; c� ¼ ½a� b; a� b�:

This fact can be described as

½a; a� � ½b; b� ¼ ½a� b; a� b�:

Similarly, for other arithmetic operations, the correspond-

ing ranges can be described as follows:
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½a; a� þ ½b; b� ¼ ½aþ b; aþ b�;
½a; a� � ½b; b� ¼ ½minða � b; a � b; a � b; a � bÞ;

maxða � b; a � b; a � b; a � bÞ�;
½a; a�=½b; b� ¼ ½a; a� � ð1=½b; b�Þ;

where

1=½b; b� ¼ ½1=b; 1=b� when 0 62 ½b; b�:

The resulting enclosure is often a drastic overestimation, so

more efficient methods need to be used, such as central

value method, monotonicity checking, bisection, etc.; see,

e.g., Jaulin et al. (2001), Kreinovich (2009), Moore et al.

(2009).

Methods of computing tolerance solutions are sometimes

called modal interval mathematics (Sainz et al. 2014). The

reason for this name is that the main difference from the tra-

ditional interval computations (that computes the united

solution) is that one of the existential quantifiers is replaced by

the universal one. This is similar to the usual interpretation of

modalities like ‘‘possible’’ and ‘‘necessary’’, in which:

• ‘‘possible’’ is understood as occurring in one of the

possible worlds (which corresponds to the existential

quantifier), while

• ‘‘necessary’’ is understood as occurring in all possible

worlds (which corresponds to the universal quantifier).

Intervals ½ti; ti� corresponding to inverse modality can be

formally viewed as improper intervals ½ti; ti� with ti [ ti.

Such intervals are known as Kaucher intervals, after a

mathematician who started using them in computing tol-

erance solutions (Kaucher 1977).

Kaucher intervals are indeed useful in solving the cor-

responding tolerance problem (Sainz et al. 2014; Shary

1996). For example, in the above problem, if we know that

a 2 ½a; a�, we are given the tolerance intervals ½b; b�, and
we want to find the value c for which b ¼ a� c 2 ½b; b� for
all a 2 ½a; a�. Arguments like the ones that we had in the

previous section lead to the following interval of possible

value of c:

½c; c� ¼ ½a� b; a� b�:

One can easily see that we get exactly this same interval if

we apply the above formula for interval subtraction to the

improper (Kaucher) interval A
 ¼def ½a; a� and to the given

interval ½b; b�.
Similar ideas can be used to solve more complex sys-

tems of equations; see, e.g., Shary (1996).

How these methods help to solve our two practical prob-

lems: first example Let us describe how these methods can

help solve the two practical problems that we described in

Sect. 3. Let us start with the first example.

In both examples, we have two quantities a and b that

we only know with interval uncertainty. In the first

example:

• the only information that we have about the quantity a

is that it is in the interval A ¼ ½99; 101�, and
• the only information that we have about the quantity b

is that it is in the interval B ¼ ½38; 42�.
In the first practical problem, we need to find the range C of

all possible values c ¼ a� b when a 2 A and b 2 B. In

other words, we need to find the set

C ¼ fc : 9a 2 A9b 2 B ðc ¼ a� bÞg: ð6Þ

This is a particular case of the united solution set (4). As

we have mentioned, to compute this set we can use naive

(straightforward) interval computations (which in this

simple case lead to the exact solution).

Specifically, the computation of c consists of a single

arithmetic operation (subtraction). According to the naive

interval computation method, to compute the set C, we

replace this operation-with-numbers by the corresponding

operation-with-intervals, i.e., we compute

C ¼ A� B ¼ ½99; 101� � ½38; 42� ¼ ½57; 63�: ð7Þ

One can see that this is exactly the range that we obtained

in Sect. 3.

In the second practical problem, we need to find the

range C of all possible values c for which, for all a 2 A, the

value b ¼ a� c belongs to the interval B. In other words,

we need to find the set

C ¼ fc : 8a 2 A9b 2 B ðc ¼ a� bÞg: ð8Þ

This is a particular case of the tolerance solution (5). As we

have mentioned, to compute this set, we can use Kaucher

arithmetic. Since the variable a enters this formula with a

universal quantifier instead of the existential one, instead of

the original interval A ¼ ½99; 101�, we need to consider an

improper interval A
 ¼ ½101; 99�. For the resulting pair of

intervals A
 and B, the above general rule of interval

subtraction leads to

C ¼ A
 � B ¼ ½101; 99� � ½38; 42� ¼ ½59; 61�; ð9Þ

i.e., exactly to the range that we found in Sect. 3.

How these methods help to solve our two practical prob-

lems: second example In the second example, we have A ¼
½98; 102� and B ¼ ½39; 41�.

In this example, to compute the range (6) corresponding

to the first practical problem, we perform naive interval

computations and compute

C ¼ A� B ¼ ½98; 102� � ½39; 41� ¼ ½57; 63�;

which is exactly what we obtained in Sect. 3.
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To compute the range (8) corresponding to the second

practical problem, we use Kaucher arithmetic and compute

C ¼ A
 � B ¼ ½102; 98� � ½39; 41� ¼ ½61; 59�:

In contrast to the first example, where the corresponding set

C was a real interval, with lower bound smaller than the

upper bound, here we end up with an improper interval

½c; c� with c[ c.

What is the meaning of this answer? We are looking for

all possible values c for which c� c� c. Since in this

example, c[ c, this simply means that no such c are

possible – i.e., that for this choice of intervals A and B, the

second problem has no solutions. This is exactly the con-

clusion that we obtained in Sect. 3.

What we can learn from these examples These examples

show that the methods described in this section do work.

Set case: more complex formulationsOther formulations are

possible. For example, in some practical problems, the

control parameters y can be divide into two groups: param-

eters y0 that we select once and for all (e.g., the parameters

that describe the design of the controller), and parameters y00

that we can change all the time. In this case, instead of a

single desired state t, it makes sense to consider different

desired states that form a set T – so that at different moments

of time, we can reach different states. This is exactly the case

with heating and air conditioning: it is usually set up in such a

way that different users (or the same user at different

moments of time) can set up different desired temperatures.

In this case, when look for the original setting y0, we
must set it in such a way that any state from T is accessible

via an appropriate selection of y00. The resulting solution set
has the following form

Y 0 ¼ fy0 : 9y00 2 Y 00 8x 2 X 9z 2 Z 9t 2 T

ðF1ðx; t; y; zÞ ¼ 0& . . .g:

This solution set is known as the controlled set.

Even more complex solution sets appear in many game-

type real-life situations, when several participants make

selections in turn.

Beyond set granules If, in addition to sets, we also have

degree of certainty, then we need to take these degrees into

account when formulating what is a solution.

Understanding the world: case of problem (1) Taking

degrees into account is rather straightforward for the

problem (1), in which the system (1) implicitly describes a

function y ¼ f ðxÞ that maps x into y.

• if we know the probability distribution on the set X,

then we can use the relation y ¼ f ðxÞ to determine the

resulting probability distribution on the set Y;

• if our knowledge about x is described by a fuzzy set X,

then we can use the usual Zadeh’s extension principle

to compute the resulting fuzzy set Y ¼ f ðXÞ, etc.
It is known (Klir and Yuan 1995; Kreinovich 2008;

Nguyen and Walker 2006) that computations about

Zadeh’s extension principle can be reduced to interval (or

set) computations corresponding to the a-cuts: for every

a 2 ½0; 1�, the a-cut Ya of the fuzzy set Y is equal to the

range f ðXaÞ of the function f(x) on the a-cut Xa.

Changing the world: case of problem (3) For the problem

(3) related to changing the world, the situation is more

complicated. Let t ¼ f ðx; yÞ be an implicit function

described by the system (3).

Let us first consider the case of fuzzy uncertainty, when:

• we have a fuzzy set X of possible values, i.e., for every

tuple x, we have a degree lXðxÞ with which this tuple is

possible; and

• we have a fuzzy set T of desired values, i.e., for every

tuple t, we have a degree lTðtÞ with which this tuple is

desirable.

In this case, a reasonable idea is to select a pair of threshold

degrees aX ; aT 2 ½0; 1�, and form a set TaX ;aT of all the

tuples t for which:

• for all states x which are sufficiently possible—i.e., for

which lXðxÞ	 aX ,
• the resulting value t ¼ f ðx; yÞ is sufficiently desirable,

i.e., lTðtÞ	 aT .

In mathematical terms, this meas that we solve the set-

valued tolerance set problem for the set XaX and TaT .

In the case of probabilistic uncertainty on X, we can

similarly select the threshold probability p0 and look for the

set of all tuples y for which the probability that t ¼ f ðx; yÞ
is in the desired set T is greater than or equal to p0.

For other types of granules, it is also important to first

formulate the corresponding problem in precise mathe-

matical terms.

5 General conclusion

In this paper, we showed that when a practical problem

reduces to a system of equations, to find its relevant solu-

tion under granular uncertainty, it is not enough to know

the corresponding granules—we also need to take into

account the original practical problem.

This is the main point of this paper. There are many

papers in which systems of equations are solved under

different types of granules, this paper is not intended as an

overview—such an overview would require a book. Our

point is that even when a method is practically successful

in many applications, it does not mean that can use it in our

178 Granul. Comput. (2016) 1:171–179

123



application as well—we need to first look into the corre-

sponding practical problem and make sure that the corre-

sponding mathematical formulation is adequate for our

practical problem.
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