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Abstract
Water transparency measured using Secchi disk is an important water quality indicator influenced by various biotic and 
abiotic processes in coastal and marine ecosystems. Understanding the role of this important indicator over large coastal 
environments requires synoptic measurements through ocean color satellites, such as Moderate‐Resolution Imaging Spectro-
radiometer (MODIS) and Medium‐Resolution Imaging Spectrometer (MERIS). In this study, we evaluated the performance 
of different atmospheric correction algorithms and the suitability of different pixel extraction methods in modeling Secchi 
disk depth (ZSD) over the North Arabian Gulf (NAG) waters using MODIS and MERIS imagery. Evaluating the performance 
of different atmospheric correction algorithms and the suitability of pixel extraction methods yielded various ZSD models 
with different accuracy. The most accurate MODIS and MERIS ZSD models had R2 of 0.75 (RMSE = 80 cm) and 0.78 
(RMSE = 74 cm), respectively. These models can be used to accurately map ZSD of NAG waters that would provide a better 
understanding of NAG water quality dynamics. Although these models were designed for NAG waters, they can be applied 
for the entire Arabian Gulf waters and probably other similar waters with the availability of training data. The key factor 
that limits the efficiency of these models and other previous models is the success of atmospheric correction algorithms in 
retrieving reliable remote sensing reflectance over different water bodies.
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Zusammenfassung
Modellierung der Secchi-Scheibentiefe über den Gewässern des Nordarabischen Golfs mit MODIS- und MERIS-Bildern. 
Die mit der Secchi-Scheibe gemessene Wassertransparenz ist ein wichtiger Indikator für die Wasserqualität, der durch 
verschiedene biotische und abiotische Prozesse in Küsten- und Meeresökosystemen beeinflusst wird. Um die Rolle dieses 
wichtigen Indikators in großen Küstenumgebungen zu verstehen, sind synoptische Messungen durch Ozeanfarbsatelliten 
wie das Moderate‐Resolution Imaging Spectroradiometer (MODIS) und das Medium‐Resolution Imaging Spectrometer 
(MERIS) erforderlich. In dieser Studie bewerteten wir die Leistung verschiedener atmosphärischer Korrekturalgorithmen 
und die Eignung verschiedener Pixelextraktionsmethoden bei der Modellierung der Secchi-Scheibentiefe  (ZSD) über 
den Gewässern des Nordarabischen Golfs (NAG) unter Verwendung von MODIS- und MERIS-Bildern. Die Bewertung 
der Leistung verschiedener atmosphärischer Korrekturalgorithmen und der Eignung von Pixelextraktionsmethoden 
ergab verschiedene ZSD-Modelle mit unterschiedlicher Genauigkeit. Die genauesten MODIS- und MERIS ZSD-Modelle 
erreichten R2 von 0,75 (RMSE = 80 cm) bzw. 0,78 (RMSE = 74 cm). Diese Modelle können verwendet werden, um 
ZSD von NAG-Gewässern genau abzubilden, was ein besseres Verständnis der NAG-Wasserqualitätsdynamik ermög-
lichen würde. Obwohl diese Modelle für NAG-Gewässer entwickelt wurden, können sie für die gesamten Gewässer des 
Arabischen Golfs und wahrscheinlich andere ähnliche Gewässer bei der Verfügbarkeit von Trainingsdaten angewendet 
werden. Der Schlüsselfaktor, der die Effizienz dieser Modelle und anderer früherer Modelle einschränkt, ist der Erfolg 
atmosphärischer Korrekturalgorithmen bei der Gewinnung zuverlässiger Fernerkundungsreflexion über verschiedene 
Gewässer.

1 Introduction

Water transparency is a crucial factor for understanding the 
status of the aquatic ecosystem. It controls the amount of 
light available for autotrophs occupying the first layer in 
the aquatic food chain. Water transparency is influenced by 
other important water quality variables [i.e., chlorophyll-
a concentrations (Chl-a), colored dissolved organic matter 
(CDOM) and total suspended sediments (TSS)] (Chang et al. 
2013; Song et al. 2014; Alikas and Kratzer 2017). These 
water constituents are linked to biotic and abiotic processes 
in coastal and marine ecosystems, including phytoplankton 
abundance, bacterial activity and interrelationships between 
inland waters and coastal ecosystems (Kaiser et al. 2011; 
Cherukuru et al. 2014; Boufeniza et al. 2020). Thus, syn-
optic monitoring of water transparency is fundamental to 
understanding, maintaining, and sustaining coastal and 
marine ecosystems.

Water transparency has been routinely monitored for dec-
ades by measuring the depth of Secchi disk (ZSD), a white or 
white and black disk with 20–30 cm diameter (Preisendorfer 
1986; Lewis et al. 1988; Liu et al. 2019). Due to the simple 
procedure for estimating ZSD, large datasets of in situ ZSD 
have been established for many sites worldwide (Seafarers 
et al. 2017). However, such in situ data cannot efficiently 
represent the water transparency of coastal and marine areas 
in a spatial–temporal context. Mapping spatial and tempo-
ral distributions of ZSD requires an integrated approach that 
incorporates in situ data and ocean color images, such as 
those from Moderate‐Resolution Imaging Spectroradiometer 
(MODIS) and Medium‐Resolution Imaging Spectrometer 
(MERIS).

Various approaches were used to map ZSD in different 
aquatic ecosystems using remotely sensed data. The accu-
racy of these approaches was influenced by multiple factors, 
including the selection of atmospheric correction algorithm, 
modeling method and in situ-remotely sensed data match-
ing criteria and time window (e.g., Constantin et al. 2016; 
Kulshreshtha and Shanmugam 2017). A standard approach 
of atmospheric correction assumes negligible reflectance 
from near-infrared (NIR) bands over water bodies. This 
approach is successfully used to estimate ZSD in open seas 
and oceans where Chl-a concentrations mainly control the 
optical properties of waters (e.g., Lewis et al. 1988; Sea-
farers et al. 2017; Shi et al. 2014). However, this standard 
atmospheric correction approach is less efficient in turbid 
waters where the reflectance from NIR bands cannot be 
ignored (Hu et al. 2000; Wang et al. 2012).

Two alternative atmospheric correction approaches were 
developed to improve the reliability of remote sensing reflec-
tance (Rrs) over turbid waters, i.e., Management Unit of the 
North Sea Mathematical Models (MUMM) atmospheric 
correction algorithm developed by Ruddick et al. (2006) 
and Near Infrared-Short Wave Infrared (NIR-SWIR) atmos-
pheric algorithm developed by Shi and Wang (2007). The 
MUMM atmospheric algorithm justifies Rrs at NIR wave-
lengths by a parameter derived by ratioing two Rrs of NIR 
bands. The algorithm also derives the aerosol reflectance 
over clear waters and applies it to the image, assuming that 
the atmospheric composition is relatively homogeneous 
over the area of interest. The NIR-SWIR atmospheric algo-
rithm corrects Rrs over coastal waters utilizing SWIR bands, 
which are highly absorbed by turbid waters compared to NIR 
bands (Wang et al. 2009).
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Furthermore, two modeling approaches (i.e., empirical 
and semi-analytical) can be used to derive ZSD. Empiri-
cal models derive ZSD statistically by comparing Rrs to 
simultaneous in situ ZSD observations. The models are 
constructed either using simple regression analysis by 
regressing the product of the band ratio to in situ ZSD or by 
using Rrs in different bands as predictors of ZSD through 
multiple regression analysis or neural network analysis 
(Chen et al. 2015; Stock 2015; Kulshreshtha and Shan-
mugam 2017; Shi et al. 2018). Empirical models were 
usually constructed to map local or regional distributions 
of ZSD (e.g., Toming et al. 2017; Zhang et al. 2012). Semi-
analytical models resolve the apparent optical properties 
(AOP) using semi-analytically derived inherent optical 
properties (i.e., absorption, scattering and backscatter-
ing coefficients) based on the radiation transfer equa-
tion. Semi-analytical approaches attempted to propose 
a universal ZSD model for both clear and turbid waters. 
Although the recent semi-analytical techniques provided 
a promising result in this matter (Lee et al. 2015; Shang 
et al. 2016), they still have lower performance over tur-
bid waters than over clear waters (Liu et al. 2019). Thus, 
empirically deriving ZSD using advanced statistical meth-
ods is still favorable for local and regional estimation of 
ZSD (Kulshreshtha and Shanmugam 2017).

The accuracy of modeling ZSD is also influenced by 
the time window used for matching Rrs with in  situ 
data. Using a narrow time window between the satellite 
overpass and in situ measurements would reduce errors 
induced by temporal changes of water constituents (Bailey 

and Werdell 2006; Petus et al. 2014). Another potential 
source of errors is the way of matching in situ measure-
ments with satellite data. In situ measurements are usu-
ally compared to a group of pixels, i.e., 3 × 3, 5 × 5 or 
7 × 7 pixels, centered at each in situ point to overcome 
the positional uncertainty introduced by satellite images 
(Bailey and Werdell 2006). These pixel values are more 
frequently aggregated by the mean value that can be mis-
leading when presenting a group of heterogeneous pixels. 
To reduce the effect of heterogeneity on the mean value, 
Bailey and Werdell (2006) excluded outlier pixels that 
exceed predefined lower and upper-value limits. Also, they 
stated that using a larger group of pixels would increase 
the heterogeneity effect, especially in dynamic waters. 
To overcome the heterogeneity issue, Chen et al. (2007) 
suggested excluding the mean value of matching pixels 
when its coefficient of variation (CV) is greater than 40%. 
Another remedy of the heterogeneity effect is to use the 
median value, which is not affected by outliers (Goyens 
et al. 2013).

Systematic procedures of matching in situ ZSD with satel-
lite images and selecting the appropriate atmospheric cor-
rection algorithm and modeling technique are significant in 
constructing an accurate and robust model for ZSD estima-
tion. In the Northern Arabian (Persian) Gulf (NAG), there 
have been few attempts to model ZSD. Two ZSD models 
derived from MODIS were established for the Arabian Gulf 
region by Alsahli (2009) and Al-Kaabi et al. (2016); both 
studies used the standard atmospheric algorithm. And, to 
our knowledge, ZSD models derived from MERIS have not 

Fig. 1  The northern part of 
Arabian Gulf (NAG). The 
stars and black circles along 
Kuwait’s territorial waters 
represent sites where seawater 
quality is observed by Kuwait 
Environmental Public Authority 
(KEPA) and Ministry of Public 
Works (MPW), respectively
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been established yet for NAG waters. Therefore, this study 
aimed to: (1) examine the performance of three atmospheric 
correction algorithms (standard, MUMM and NIR-SWIR) 
over NAG, and (2) find the most optimum in situ-satellite 
image matching technique to construct an empirical model 
of ZSD over NAG by investigating the relationship between 
in situ ZSD and Rrs of MODIS and MERIS.

2  Study Area

The NAG lies within the geographic coordinates of 28° 
31′ to 30° 01′ N and 47° 41′ to 51° 05′ E (Fig. 1). This 
part of the Arabian Gulf is shallow with less than 30 m in 
most areas, while the depth gradually increases towards 
the south. The general water movements in the NAG are 
governed by counter-clockwise circulations derived by 
the wind regime of the area (Al-Yamani et al. 2004). This 
circulation system enhances water transportation most of 
the year, from the eastern and northern banks of NAG 
to the western bank (Abuzinada et al. 2008). Freshwaters 
discharge into the NAG through five rivers, i.e., the Shatt 
Al-Arab, Karun, Hendijan, Hilleh, and Mond (also known 
as Mand in literature). The extensive anthropogenic activi-
ties along these rivers have degraded the water quality 
of the rivers and consequently contributed to changing 
NAG water characteristics, including the water transpar-
ency (Marzouni et al. 2014; Rahmanpour et al. 2014; Al-
Mahmood and Mahmood 2019; Cunningham et al. 2019). 
Recently, Alsahli and Nazeer (2021) reported observable 
changes in the NAG water transparency during the last two 
decades. The NAG water transparency has been affected 
by regional and local factors, including dust storms and 
extensive anthropogenic activities along the NAG coasts 
(Al-Ghadban and El-Sammak 2005; Karbassi et al. 2005). 
Ultimately, this adds more environmental stress to the 
marine life of NAG (Alsahli 2009).

3  Data Used

3.1  In Situ Data

The in situ ZSD data collected from Jan. 2003 to Apr. 2015 
were used to model the water transparency using MODIS 
and MERIS images. This period was selected to maximize 
the number of in situ observations for model development 
and capture any potential seasonal variability affecting the 
model robustness. The in situ data were obtained from the 
Kuwait Environmental Public Authority (KEPA) and Min-
istry of Public Works (MPW) of Kuwait. The KEPA col-
lects water quality data monthly at 13 sites along Kuwait 
territorial waters (Fig. 1). The MPW started collecting water 

quality data in 2013 to monitor the environmental status of 
Kuwait Bay during the Sheikh Jaber Al Ahmad Al Sabah 
Causeway Project, one of the mega projects in the country. 
In situ ZSD data of MPW used in this study were collected in 
Kuwait Bay from Jul. 2013 to Apr. 2015 at six sites (Fig. 1). 
In situ ZSD from both datasets (KEPA and MPW) ranged 
from 0.5 to 9.5 m.

3.2  Satellite Data

MODIS (Aqua) and MERIS data were used to model ZSD 
over the NAG. MODIS and MERIS have almost a daily cov-
erage of the study area, allowing finding more coincident 
in situ measurements with these satellite data. The MODIS 
sensors aboard Terra and Aqua platforms were launched dur-
ing Dec. 1999 and May 2002, respectively. They cover the 
entire Earth’s surface in 1–2 days with spatial resolutions 
ranging from 250 to 1000 m and an image swath width of 
2330 km. MODIS Terra and Aqua overpass the study area 
approximately at 10:30 A.M. and 1:00 P.M. (local time), 
respectively. Both have identical multispectral bands suit-
able to observe bio-optical and physical characteristics of 
water bodies. MODIS Terra, however, has been experi-
encing a general system degradation since 2007, reducing 
its adequacy for quantitative analyses (Franz et al. 2008). 
Therefore, only MODIS Aqua level-1A data coincident with 
in situ data were obtained from the Ocean Color website 
(http:// ocean color. gsfc. nasa. gov).

Also, MERIS level-1 data coincident with in situ data 
were obtained from the Envisat MERIS website (http:// meris 
frs- merci- ds. eo. esa. int/ merci). The MERIS images have a 
300 m spatial resolution and have been collected for the 
study area around 10:00 A.M. (local time). The satellite mis-
sion was terminated in 2012 (Nilson et al. 2012). However, 
European Space Agency (ESA) continued MERIS mission 
by launching ESA Sentinel-3A and 3B during Feb. 2016 and 
Apr. 2018, respectively (Nilson et al. 2012; European Space 
Agency (ESA) 2018). The MERIS and current ESA satel-
lites provide an important archive for studying biophysical 
variables of marine and coastal waters.

4  Methodology

4.1  Satellite Data Processing

MODIS and MERIS Images with wide viewing angles or 
affected by environmental conditions, such as dust storms 
and clouds, were disregarded to minimize potential errors 
when modeling ZSD (Bailey and Werdell 2006). Also, a ± 3-h 
window around the satellite overpass was selected for match-
ing in situ observations with MODIS and MERIS data to 
reduce the differences due to the time factor between the two 

http://oceancolor.gsfc.nasa.gov
http://merisfrs-merci-ds.eo.esa.int/merci
http://merisfrs-merci-ds.eo.esa.int/merci
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datasets (Vaičiūtė et al. 2012). Alsahli (2009) revealed that 
using a ± 3-h window around the satellite overpass was sig-
nificantly reduced potential errors induced by the temporal 
variability in the in situ measurements. This time window 
has also been frequently used in other studies (e.g., Chen 
et al. 2014a, b; Delgado et al. 2014).

Selected MODIS and MERIS level-1 data were processed 
to level-2 using SeaWiFS Data Analysis System (SeaDAS 
7.5) software. The MODIS level-1 data were processed 
to level-2 using three atmospheric algorithms (standard, 
MUMM and NIR-SWIR) to investigate their efficiency in 
minimizing effects of atmospheric perturbations over the 
study area, whereas the MERIS level-1 data were processed 
to level-2 using the standard atmospheric algorithm. When 
processing level-1 data to level-2, Rrs and normalized water-
leaving radiance (nLw) (from 413 to 754 nm) were com-
puted. The products of Rrs and nLw at these spectral bands 
have been frequently used in literature to estimate coastal 
water constituents, such as ZSD, turbidity and TSS (e.g., 
Doron et al. 2011; Nechad et al. 2010; Stock 2015).

4.2  Satellite Data Extraction Criteria

The MODIS and MERIS level-2 data were matched with 
in situ data by extracting pixel values using a 3 × 3 window 
centered at each in situ point. The MODIS level-2 data con-
sisted of three datasets processed based on three atmospheric 
algorithms (standard, MUMM and NIR-SWIR). To reduce 
the effect of pixels’ heterogeneity, we investigated the suit-
ability of four aggregation measures in matching the Rrs 
data with in situ ZSD measurements. The mean value with 
CV ≤ 30% (thereafter M-30), mean value with CV ≤ 15% 
(thereafter M-15), median, and the filtered mean suggested 
by Bailey and Werdell (Bailey and Werdell 2006) (Eq. 1).

where X and � are the mean and standard deviation, respec-
tively, of the extracted pixel values at each in situ point, and 

(1)

Filtered mean =

∑

i

�

1.5 × 𝜎 − X

�

< X
i
<

�

1.5 × 𝜎 + X

�

n

Fig. 2  An overview of methodology used to model ZSD
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n is the number of pixels within (± 1.5 × � ) from the mean. 
Filtered means with n less than five were excluded.

The level-2 MODIS and MERIS data were further 
divided into different datasets based on four aggregation 
measures (M-30, M-15, median and filtered mean). These 
datasets were independently analyzed to find the most opti-
mum aggregation measure for matching remotely sensed 
datasets with in situ ZSD.

4.3  Modeling ZSD

Modeling ZSD went through three stages, i.e., preparation 
of variables, construction of ZSD models, and accuracy 
assessment of models. As an initial step of constructing 
the ZSD models, the normality of all variables (i.e., in situ 
ZSD, Rrs and nLw derived from MODIS and MERIS level-2 
images) was tested. Different types of transformations were 
applied on variables that were not normally distributed to 
improve the data distribution shape and linearity between 
the regressed variables of ZSD models (Mertler and Reinhart 
2016). Several ZSD models were developed by regressing 
Rrs and nLw at wavelength extending from 413 to 754 nm 
on in situ ZSD measurements; the MODIS and MERIS data-
sets were analyzed separately. The statistical relationship 
between in situ ZSD and these spectral bands was investigated 
using univariate and multiple regression analyses (based on 
stepwise technique) to find the best model explaining the 
most ZSD variations within NAG waters.

The accuracy of ZSD models was evaluated using cross-
validation techniques. The robustness of MODIS derived ZSD 
models was assessed using 3–1 cross-validation. The dataset 
was divided into three segments; two segments were selected 

to build the model, and the third segment was used to validate 
the model accuracy. This procedure was repeated three times 
by rotating the segment role (Camstra and Boomsma 1992; 
Jonathan et al. 2000; D’Alimonte and Zibordi 2003). For 
MERIS-derived ZSD models, the robustness of models was 
evaluated using the leave-one-out cross-validation (LOOCV) 
method due to the limited number of observations. In the 
LOOCV method, one observation from the dataset was used 
as a training sample, while the rest were used to construct the 
ZSD model. This procedure was repeated until each observa-
tion was trained by switching the role of observations in each 
run. Cawley and Talbot (2004) stated that LOOCV provides 
an accurate estimation of the model robustness. The average 
root mean squared error (RMSE) derived from cross-valida-
tion analysis and coefficient of determination (r2) were used 

Table1  Coefficients of determination (r2) between log-transformed 
in  situ ZSD and log-transformed MODIS Rrs atmospherically cor-
rected using the standard algorithm

The Rrs significantly explained the in  situ ZSD variations are bold. 
The Rrs

412
 was excluded from the analysis because it had a large 

amount of invalid values

Rrs (λ) M-30 M-15 Median Filtered mean

443 0.41 0.46 0.4 0.44
469 0.46 0.47 0.47 0.47
488 0.48 0.49 0.47 0.48
531 0.59 0.61 0.57 0.59
547 0.58 0.59 0.6 0.63
555 0.58 0.6 0.56 0.65
645 0.52 0.45 0.6 0.68
667 0.55 0.5 0.56 0.66
678 0.03 0 0.06 0.65
748 0.62 0.68 0.53 0.61
n 144 111 152 151

Fig. 3  a The MODIS Rrs
443to531

 of the four datasets had a similar 
relationship with in  situ ZSD: Differences were clear beyond Rrs

531

with an exception at Rrs
678

 . b The MODIS Rrs of the four datasets 
exhibited a similar relationship with in situ ZSD. In general, Rrs data-
set extracted using M-15 had the most significant relationship with 
in  situ ZSD. c The MERIS Rrs of the three datasets exhibited some 
variations in the relationship with in situ ZSD. These variations were 
clear beyond Rrs

681
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to sort the ZSD models based on their robustness. The statisti-
cal analysis was carried out using R statistical programming 
language. Figure 2 illustrates an overview of methods used 
to model ZSD.

5  Results

5.1  Simple Regression Analysis

In situ ZSD observations were matched with Rrs and nLw 
products of MODIS and MERIS by calculating four aggrega-
tion measures (i.e., M-30, M-15, median and filtered mean) 
of 3 × 3 pixels centered at each corresponding in situ observa-
tion, meaning that the Rrs and nLw data were divided into 
four datasets based on these aggregation measures. Because 
the exclusion criteria of pixels values were different for each 

aggregation measure, the number of matching in situ obser-
vations corresponding to the aggregated pixel values varied. 
The Rrs and nLw products almost had the same relationship 
with in situ ZSD observations. Thus, we reported the results 
of Rrs here for the sake of brevity. Also, the MODIS level-2 
data estimated using the NIR-SWIR atmospheric correction 
algorithm were excluded at an early stage of the analysis due to 
the many invalid pixels yielded from using this algorithm. The 
NIR-SWIR atmospheric correction algorithm was clearly inef-
ficient over the NAG compared to the Standard and MUMM 
algorithms.

The MODIS products of Rrs531to645 atmospherically cor-
rected using the standard algorithm had a significant general 
relationship with in situ ZSD (Table 1), with an exception 
observed at Rrs645 extracted by M-15 (r2 = 0.45). Contrarily, 
Rrs645 extracted using the filtered mean had the most signifi-
cant relationship with in situ ZSD. All Rrs datasets (i.e., those 
extracted by the different aggregation measures) exhibited, 
in general, a similar relationship with in situ ZSD with two 
apparent exceptions at Rrs645 and Rrs678 (Fig. 3a). Among 
the four aggregation measures, the filtered mean returned a 
consistent relationship between Rrs and in situ ZSD. 

Furthermore, the MODIS products of Rrs531to678 atmos-
pherically corrected using MUMM algorithm exhibited a 
more consistent and significant relationship with in situ ZSD 
than those estimated using the standard atmospheric cor-
rection algorithm (Table 2). The Rrs of the four datasets 
exhibited a generally consistent and similar relationship with 
in situ ZSD. The Rrs555 had the most significant relationship 
with in situ ZSD, especially the Rrs555 extracted by M-15 
(r2 = 0.72) (Fig. 3b). For the Rrs dataset extracted by the 
filtered mean, the most significant relationship with in situ 
ZSD was observed at Rrs555 and Rrs645(r2 = 0.64).

For the MERIS Rrs products, three datasets of Rrs443to754 
were extracted using mean, filtered mean and median of 
3 × 3 pixels centered at each corresponding in situ observa-
tions, whereas excluding Rrs mean values based on their 
CV was not applied due to the limited number of matching 
points (n = 72). The Rrs560to681 of the three datasets had a 
significant relationship with in situ ZSD (Table 3). The most 
significant relationship between in situ ZSD and MERIS 
Rrs was observed at Rrs620 extracted by the filtered mean 
(r2 = 0.62). For the three datasets, Rrs510and560 showed a 
similar relationship with in situ, whereas the relationship 
beyond Rrs681 varied among the three datasets (Fig. 3c).

5.2  Multiple Regression Analysis

Simple regression analysis revealed that Rrs (from MODIS 
and MERIS) responded differently to in situ ZSD variations. 
The MODIS and MERIS Rrs at the green and red wave-
lengths (λ > 530 nm) were very responsive to in situ ZSD var-
iations, whereas the blue wavelengths were less responsive. 

Table 2  Coefficients of determination (r2) between log-transformed 
in  situ ZSD and log-transformed MODIS Rrs atmospherically cor-
rected using MUMM algorithm

The Rrs significantly explained the in situ ZSD variations are bold

Rrs (λ) M-30 M-15 Median Filtered mean

443 0.37 0.40 0.37 0.37
469 0.42 0.45 0.42 0.42
488 0.44 0.49 0.44 0.42
531 0.58 0.63 0.58 0.58
547 0.63 0.68 0.63 0.61
555 0.65 0.72 0.65 0.64
645 0.60 0.64 0.59 0.64
667 0.61 0.65 0.59 0.6
678 0.59 0.62 0.58 0.58
748 0.15 0.11 0.14 0.16
n 152 129 152 130

Table 3  Coefficients of determination (r2) between log-transformed 
in situ ZSD and log-transformed MERIS Rrs

The in situ ZSD variations significantly explained by Rrs are bold

Rrs (λ) Mean Median Filtered mean

443 0.27 0.26 0.34
490 0.42 0.41 0.44
510 0.47 0.46 0.47
560 0.60 0.60 0.60
620 0.54 0.55 0.62
665 0.60 0.59 0.59
681 0.61 0.59 0.58
709 0.57 0.52 0.42
754 0.53 0.19 0.32
n 72 72 72
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The red-edge and NIR wavelengths (700 nm < λ > 800 nm) 
exhibited an inconsistent relationship with in  situ ZSD. 
We observed that each spectral band from Rrs443 to Rrs754 
explained an amount of in situ ZSD variations that can be 
statistically incorporated in a single model using multiple 
regression analysis. Thus, we investigated all these bands 
together as predictors for in situ ZSD to find those that most 
portray in situ ZSD variations.

The MODIS level-2 products atmospherically corrected 
using the standard algorithm showed that the maximum 
variations of in situ ZSD were explained by Rrs488 and Rrs748 
extracted by M-15 (R2 = 0.73). The Rrs extracted by M-30 
and median responded differently to in situ ZSD variations; 
Rrs678 and Rrs748 extracted by M-30 explained the most 
in situ ZSD variations (R2 = 0.65), whereas Rrs547 and Rrs645 
extracted by the median value had the most significant rela-
tionship with in situ ZSD (R2 = 0.64) (Table 4). Multiple 
regression models using Rrs extracted by the filtered mean 
could not be established as they did not pass the analysis 
assumptions.

The MODIS Rrs estimated based on the MUMM 
atmospheric correction algorithm showed more consistent 
responses to in situ ZSD variations than the Rrs estimated 
based on the standard atmospheric correction algorithm. The 
Rrs extracted by M-30 and median revealed that Rrs488 and 
Rrs555 explained the most in situ ZSD variations (R2 = 0.75 
and R2 = 0.74, respectively) (Table 4). The other Rrs datasets 
(i.e., those extracted by M-15 and filtered mean) did not pass 
the multiple regression analysis assumptions.

Also, incorporating MERIS Rrs using multiple regres-
sion analysis to estimate ZSD yielded a significant relation-
ship; the Rrs681 and Rrs443 extracted by the mean value had 
the most significant relationship with in situ ZSD variations 
(R2 = 0.78). This relationship was changed (R2 = 0.66) when 
extracting Rrs681 and Rrs443 using median. By extracting the 
Rrs using the filtered mean, the most significant predictors 
were different, i.e., Rrs620 and Rrs709 (R2 = 0.72) (Table 5).

5.3  ZSD Model Accuracy Assessment

Significant MODIS ZSD models derived through simple and 
multiple regression analyses (r2 and R2 ≥ 0.5) were evalu-
ated for accuracy and robustness using 3–1 cross-validation. 
The RMSEs of ZSD models estimated by the cross-validation 
technique varied from 220 to 85 cm. Among the MODIS ZSD 
models, the most accurate and robust model was the multi-
ple regression model of Rrs555 and Rrs488 calculated using 
MUMM algorithm and extracted by M-30 (Table 4) (Fig. 4a, 
b). A demonstration of applying this model on MODIS 
level-2 data is illustrated in Fig. 5a; the model is mathemati-
cally expressed as:

 
Furthermore, MERIS models derived from simple and 

multiple regression analysis were evaluated for accuracy 
and robustness using the LOOCV technique. The RMSEs 
of MERIS models estimated by LOOCV technique varied 
from 84 to 74 cm showing robustness comparable to MODIS 
models derived from both atmospheric algorithms (Table 5). 
The most accurate and robustness ZSD model was the mul-
tiple regression model of Rrs681 and Rrs443  (Fig. 4c, d). 
A demonstration of applying this model on MERIS level-2 

(2)ZSD(cm) = 100.522−2.53×logRrs555+1.482×log Rrs488

Table 4  Multiple regression models explained more in situ ZSD varia-
tions than simple regression models

The MUMM algorithm improved the efficiency of Rrs in estimating 
ZSD . The Rrs

555
 and Rrs

488
 extracted M-30 were the most signifi-

cant ZSD predictors. Notice that the logarithmic transformation was 
applied to all Rrs and in situ ZSD to improve the normality and linear-
ity of these variables

Regression analysis Standard algorithm MUMM algo-
rithm

M-30 M-15 Median M-30 Median

 n 114 48 152 153 152
 R2 0.65 0.74 0.65 0.75 0.74

Adjusted R2 0.64 0.73 0.64 0.75 0.74
Significance 0.00 0.00 0.00 0.00 0.00
 b0 0.659 − 1.34 0.777 0.522 0.489
 b1 − 0.589 − 0.975 − 0.536 − 2.53 − 2.449
 b2 0.079 5.242 − 0.234 1.482 1.383

Predictor 1 Rrs
748

Rrs748 Rrs547 Rrs555 Rrs555

Predictor 2 Rrs678 Rrs488 Rrs645 Rrs488 Rrs488

RMSE 89 cm 270 cm 101 cm 80 cm 88 cm
Cross-validation 

RMSE
111 cm 295 cm 106 cm 85 cm 94 cm

Table 5  Statistical comparison between different modeling tech-
niques using MERIS dataset

Regression analysis Mean Median Filtered mean

 n 72 72 64
 R2 0.78 0.66 0.72

Adjusted R2 0.78 0.65 0.72
Significance 0.00 0.00 0.00
 b0 − 20.917 0.106 − 36.133
 b1 − 13.524 − 0.795 − 19.801
 b2 33.201 3.144 138.082

Predictor 1 log  Rrs681 log  Rrs681 log  Rrs620

Predictor 2
√

Rrs
433

√

Rrs
433

√

Rrs
709

RMSE 74 cm 78 cm 79 cm
Cross-validation RMSE 77 cm 82 cm 82 cm
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Fig. 4  a A scatter plot between actual and estimated log ZSD values 
from the MODIS model. The area between the dotted lines in a and 
c is the prediction margin (α = 0.95) that illustrates the model per-
formance. For MODIS model (b) and MERIS model (d). the ran-

dom pattern between residuals and fitted values shows the model’s 
robustness, i.e., errors do not covary with ZSD values. c A scatter plot 
between actual and estimated 

√

Z
SD

 values (denoted as ̂
√

insituZ
SD

 ) 
from MERIS model

Fig. 5  a The MODIS ZSD model applied on MODIS level-2 acquired in 3 Jan 2011. b The MERIS ZSD model on MERIS level-2 acquired in 23 
Jan 2011
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data is illustrated in Fig. 5; the model is mathematically 
expressed as:

6  Discussion

Modeling ZSD using high temporal resolution satellite 
images, such as MODIS and MERIS, is essential for build-
ing synoptic water quality monitoring programs. In this 
study, two empirical ZSD models were developed for NAG 
waters derived from MODIS and MERIS level-2 data. In 
developing the ZSD models, we investigated the performance 
of three atmospheric correction algorithms (i.e., standard, 
NIR-SWIR and MUMM) over NAG waters and the suit-
ability of four aggregation measures for extracting pixels 
(i.e., M-30, M-15, median and filtered mean). The consistent 
relationship between ZSD and Rrs calculated using MUMM 
algorithm demonstrates the performance of this atmospheric 
correction algorithm over NAG waters. We observed that 
whatever the aggregation measure used to extract Rrs, the 
spectral responses to ZSD variations had a uniform shape 
(Fig. 3b). Also, the standard atmospheric correction algo-
rithm performed well when modeling ZSD using MERIS 
level-2 data. Two possible explanations of this performance 
are the high spatial resolution that could reduce the hetero-
geneity of pixels matched with in situ data, and the use of 
a long wavelength (i.e., red) band that is less affected by 
atmospheric scattering factors (Goyens et al. 2013).

Furthermore, the comparison among the aggregation 
measures revealed that different pixel extraction criteria 
could yield different results. For instance, excluding the 
mean of heterogeneous pixels, whose CV ≥ 30%, improved 
the model’s accuracy more than using the mean after exclud-
ing the outliers (i.e., the filtered mean), especially when the 
number of concurrent in situ observations with satellite data 
is relatively large (n > 100) (Mertler and Reinhart 2016). 
Using the filtered mean suggested by Bailey and Werdell 
(2006) to remedy the heterogeneity issue of matched pix-
els can be a practical alternative aggregation measure when 
the number of matching in situ observations is relatively 
small. Another suitable alternative aggregation measure is 
the median of pixels that was a good representative value of 
Rrs, whereas excluding the mean of pixels whose CV ≥ 15% 
was impractical because it reduced the number of candidate 
in situ observations.

The MODIS and MERIS Rrs at the visible spectrum were 
very responsive to in situ ZSD variations. The Rrs at green 
bands had a high correlation with in situ ZSD observations. 
Modeling ZSD using the most responsive Rrs, however, 
was not the most optimum means to capture the maximum 

(3)ZSD(cm) =

�

−20.917 −
�

13.524 × log Rrs681
�

+

�

33.201 ×
√

Rrs443
��2

ZSD variations as water transparency fluctuates by different 
water constituents that independently contribute to Rrs at 
different visible bands. For instance, CDOM significantly 
contributes to Rrs at blue and green regions, whereas TSS 
contributes to Rrs at red regions (Hu et al. 2004). Using the 
band ratioing approach to overcome this issue might not 
be the best solution. Considering that each spectral band 
contributes to explaining ZSD differently, this approach does 
not efficiently control the contribution weight of bands being 
ratioed. Developing ZSD models using multiple regression 
analysis can solve this issue through coefficients (slopes) 
that precisely determine the contribution of each predictor 
(Rrs) in explaining ZSD variations (Mertler and Reinhart 
2016). Using multiple regression is a straightforward and 
accurate approach to model OAPs when they have (directly 
or by transformation) a linear relationship with Rrs. In con-
trast, complicated nonlinear relationships between OAPs and 
Rrs can be efficiently modeled using neural network analysis 
(Zhang et al. 2002; Chen et al. 2015, 2019; Heddam 2016a). 
Yuan et al. (2017) and Chang et al. (2000), however, stated 
that the efficiency of neural network model varies with the 
training dataset selection, meaning that applying the model 
to data that differ from the training dataset might yield unre-
liable results.

Moreover, the uncertainties associated with ZSD mo dels 
can be induced by in situ ZSD measurements that are influ-
enced by multiple factors, such as the observer’s visual 
acuity and water surface roughness (Preisendorfer 1986; 
Heddam 2016b; Alikas and Kratzer 2017). Visual acuity 
differences among observers would contribute to in situ ZSD 
variations not related to the light intensity within the water 
column. Also, differences in water surface roughness due to 
boat movements and wind speed variations can be a source 
of error. These factors are intrusive during in situ ZSD data 
collection and cannot be avoided. Thus, ZSD models with an 
RMSE of about 75 cm seem to be very accurate considering 
these factors.

The proposed ZSD models in this study improve the esti-
mation of water transparency over NAG waters compared 
to the previous models of the Arabian Gulf region. Alsahli 
(2009) model (r2 = 0.68), developed to estimate water trans-
parency over Kuwait waters using MODIS level-2 data, 
and Al-Kaabi et al. (2016) model (r2 = 0.62), developed to 
estimate water transparency over the Arabian Gulf region 
using MODIS level-2 data, had less performance than the 
proposed ZSD MODIS in his study (R2 = 0.75). The other 
factors that give more reality to the proposed ZSD over the 
previous two models are the number of observations used to 
construct the models and the narrow matching time window. 
The previous two models were developed using observations 
(n < 67) less than what was used on the proposed ZSD model 
(n = 152). Al-Kaabi et al. (2016) used a wider time window 
(± 6 h) to match satellite images with in situ observations 
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that might also not capture the temporal variability of ZSD 
as they were insufficiently distributed over the months of 
the year.

Furthermore, the two previous models used the standard 
atmospheric correction algorithm and light attenuation coef-
ficient at 488 nm  (Kd488) semi-analytically derived using Lee 
et al. (2005) model. The semi-analytical approach showed 
less performance than the empirical approach used in this 
study. Lee et al. (2015) proposed an improved approach of 
the previous semi-analytical model that performed well 
in estimating ZSD in different places (Shang et al. 2016; 
Kulshreshtha and Shanmugam 2017). The performance of 
the current semi-analytical model, however, is question-
able in highly turbid waters, especially those below 2 m as 
illustrated by Liu et al. (2019). Thus, using the empirical 
approach to model ZSD of highly turbid waters where a large 
area of the water body has ZSD below 2 m, such as NAG 
waters, is still the most favorable option.

The NAG ecosystems are significantly influenced by mul-
tiple local and regional factors, including extensive anthro-
pogenic activities and high turbid fresh waters discharging 
from the rivers that carry a large amount of organic mat-
ters and nutrients from agricultural areas and other sources 
(Rahmanpour et  al. 2014; Al-Mahmood and Mahmood 
2019; Cunningham et al. 2019). These factors can disturb the 
NAG ecosystems in different ways. For instance, increasing 
organic matters induced by anthropogenic activities provides 
optimum conditions for heterotrophic plankton communi-
ties to grow and overgraze phytoplankton species leading to 
an imbalance status in the aquatic ecosystem by changing 
water quality indicators (e.g., dissolved oxygen, nitrogen, 
ammonium, and Chl-a concentrations) (Johannessen et al. 
2006; Boufeniza et al. 2020). Thus, monitoring ZSD over 
NAG waters in a synoptic perspective using ocean color sat-
ellite products can be significantly linked to biotic and abi-
otic activities. Monitoring these activities provides an early 
alert for catastrophic events and assists in controlling many 
polluting sources contributing to degrading NAG ecosys-
tems. The MODIS and MERIS ZSD models proposed in this 
study can be applied in water quality monitoring programs to 
significantly estimate water transparency of NAG and under-
stand factors degrading its ecosystems (Alsahli and Nazeer 
2021). Using the two models also can be extended to cover 
the entire Arabian Gulf, and probably similar waters, with 
some training data for the accuracy estimation.

7  Conclusion

Multiple regression analysis was performed to develop two 
empirical ZSD models for NAG waters using MODIS and 
MERIS level-2 data. In constructing these two ZSD models, 
the performance of three atmospheric correction algorithms 

(i.e., standard, NIR-SWIR and MUMM) over NAG waters 
and suitability of four aggregation measures used to extract 
Rrs (i.e., M-30, M-15, median and filtered mean) were eval-
uated. Among the three atmospheric correction algorithms, 
MUMM was the most suitable algorithm for the NAG. The 
comparison among the pixel extraction methods revealed 
that excluding severe heterogeneous groups of pixels, whose 
CV ≥ 30%, was the most appropriate extraction method. In 
contrast, using filtered mean might be an alternative extrac-
tion method when the number of matching in situ observa-
tions is relatively small.

The in situ ZSD variations were significantly explained by 
the ZSD models derived from the MODIS and MERIS level-2 
Rrs products (R2 = 0.75 and RSME = 80 cm, R2 = 0.78 and 
RMSE = 74 cm, respectively). The uncertainties associated 
with ZSD models can be induced by in situ ZSD measurements 
that are influenced by multiple factors, such as the observer’s 
visual acuity and water surface roughness. With this margin 
of error, however, the proposed ZSD models improved the 
estimation of water transparency over NAG waters compared 
to the previous models of the Arabian Gulf region. The ZSD 
models can be used to accurately map spatial and temporal 
distributions of ZSD for NAG waters that would provide a 
better understanding of NAG water quality dynamics. Also, 
the two ZSD models can be applied for the entire Arabian 
Gulf waters and probably other similar waters, with the 
availability of training data.
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